
WYSINWYX:

What You See Is Not What You eXecute

GOGUL BALAKRISHNAN

NEC Laboratories America, Inc.

and

THOMAS REPS

University of Wisconsin and GrammaTech, Inc.

Over the last seven years, we have developed static-analysis methods to recover a good approxi-
mation to the variables and dynamically-allocated memory objects of a stripped executable, and
to track the flow of values through them. The paper presents the algorithms that we developed,
explains how they are used to recover intermediate representations (IRs) from executables that
are similar to the IRs that would be available if one started from source code, and describes their
application in the context of program understanding and automated bug hunting.

Unlike algorithms for analyzing executables that existed prior to our work, the ones presented
in this paper provide useful information about memory accesses, even in the absence of debugging
information. The ideas described in the paper are incorporated in a tool for analyzing Intel x86
executables, called CodeSurfer/x86. CodeSurfer/x86 builds a system dependence graph for the
program, and provides a GUI for exploring the graph by (i) navigating its edges, and (ii) invoking
operations, such as forward slicing, backward slicing, and chopping, to discover how parts of the
program can impact other parts.

To assess the usefulness of the IRs recovered by CodeSurfer/x86 in the context of automated
bug hunting, we built a tool on top of CodeSurfer/x86, called Device-Driver Analyzer for x86
(DDA/x86), which analyzes device-driver executables for bugs. Without the benefit of either
source code or symbol-table/debugging information, DDA/x86 was able to find known bugs (that
had been discovered previously by source-code-analysis tools), along with useful error traces,
while having a low false-positive rate. DDA/x86 is the first known application of program analy-

sis/verification techniques to industrial executables.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-

Authors’ addresses: G. Balakrishnan, NEC Laboratories America, Inc., 4 Independence Way,
Princeton, NJ 08540; bgogul@nec-labs.com. T. Reps, Computer Sciences Dept., Univ. of Wis-
consin, 1210 W. Dayton St., Madison, WI 53703, and GrammaTech, Inc., 317 N. Aurora St.,
Ithaca, NY 14850; reps@cs.wisc.edu. At the time the research reported in the paper was carried
out, G. Balakrishnan was affiliated with the University of Wisconsin.

The work was supported in part by ONR under grants N00014-01-1-{0796, 0708}, by NSF
under grants CCR-9986308 and CCF-{0540955, 0524051}, by HSARPA under AFRL contract
FA8750-05-C-0179, and by AFRL under contract FA8750-06-C-0249.

T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of the
technology reported in this publication.

Portions of the work appeared in the 13th, 14th, and 17th Int. Confs. on Compiler Construction
[Balakrishnan and Reps 2004; Balakrishnan et al. 2005; Reps and Balakrishnan 2008], the 17th
Int. Conf. on Computer Aided Verification [Balakrishnan et al. 2005], the 3rd Asian Symp. on
Prog. Langs. and Systems [Reps et al. 2005], the 2006 Workshop on Part. Eval. and Semantics-
based Prog. Manip. [Reps et al. 2006], the 13th Int. Static Analysis Symp. [Balakrishnan and
Reps 2006], the 8th Int. Conf. on Verif., Model Checking, and Abs. Interp. [Balakrishnan and
Reps 2007], and the 14th Int. Conf. on Tools and Algs. for the Const. and Analysis of Systems
[Balakrishnan and Reps 2008], as well as in G. Balakrishnan’s Ph.D. dissertation [Balakrishnan
2007].
c© 2009 G. Balakrishnan and T. Reps

2 · G. Balakrishnan and T. Reps

cation—Assertion checkers; model checking; D.2.5 [Software Engineering]: Testing and De-

bugging—Symbolic execution; D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineering ; D.3.2 [Programming

Languages]: Language Classifications—Macro and assembly languages; D.4.6 [Operating Sys-

tems]: Security and Protection—Invasive software; E.1 [Data]: Data Structures—arrays; lists,
stacks, and queues; records; F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—Program analysis

General Terms: Algorithms, Security, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, context-sensitive analysis, data-
structure recovery, interprocedural dataflow analysis, pointer analysis, reverse engineering, static
analysis

1. INTRODUCTION

Recent research in programming languages, software engineering, and computer
security has led to new kinds of tools for analyzing programs for bugs and secu-
rity vulnerabilities [Havelund and Pressburger 2000; Wagner et al. 2000; Engler
et al. 2000; Corbett et al. 2000; Bush et al. 2000; Ball and Rajamani 2001; Chen
and Wagner 2002; Henzinger et al. 2002; Das et al. 2002]. In these tools, static
analysis is used to determine a conservative answer to the question “Can the pro-
gram reach a bad state?”1 Some of this work has already been transitioned to
commercial products for source-code analysis (see Ball et al. [2006], [Coverity], and
[CodeSonar]).

However, these tools all focus on analyzing source code written in a high-level
language. Unfortunately, most programs that an individual user will install on his
computer, and many commercial off-the-shelf (COTS) programs that a company
will purchase, are delivered as stripped machine code (i.e., neither source code
nor symbol-table/debugging information is available). If an individual or company
wishes to vet such programs for bugs, security vulnerabilities, or malicious code
(e.g., back doors, time bombs, or logic bombs) the availability of good source-code-
analysis products is irrelevant.

Less widely recognized is that even when the original source code is available,
source-code analysis has certain drawbacks [Howard 2002; WHDC 2007]. The rea-
son is that computers do not execute source code; they execute machine-code pro-
grams that are generated from source code. The transformation from source code to
machine code can introduce subtle but important differences between what a pro-
grammer intended and what is actually executed by the processor. For instance,
the following compiler-induced vulnerability was discovered during the Windows
security push in 2002 [Howard 2002]: the Microsoft C++ .NET compiler reasoned
that because the program fragment shown below on the left never uses the val-
ues written by memset (intended to scrub the buffer pointed to by password), the

1Static analysis provides a way to obtain information about the possible states that a program
reaches during execution, but without actually running the program on specific inputs. Static-
analysis techniques explore the program’s behavior for all possible inputs and all possible states
that the program can reach. To make this feasible, the program is “run in the aggregate”—i.e.,
on descriptors that represent collections of memory configurations [Cousot and Cousot 1977].

WYSINWYX: What You See Is Not What You eXecute · 3

memset call could be removed—thereby leaving sensitive information exposed in
the freelist at runtime.

memset(password, ’\0’, len);

free(password);
=⇒ free(password);

Such a vulnerability is invisible in the original source code; it can only be detected
by examining the low-level code emitted by the optimizing compiler. We call this
the WYSINWYX phenomenon (pronounced “wiz-in-wicks”): What You See [in
source code] Is Not What You eXecute [Reps et al. 2005; Balakrishnan et al. 2007;
Balakrishnan 2007].

WYSINWYX is not restricted to the presence or absence of procedure calls; on
the contrary, it is pervasive. Some of the reasons why analyses based on source
code can provide the wrong level of detail include

—Many security exploits depend on platform-specific details that exist because of
features and idiosyncrasies of compilers and optimizers. These include memory-
layout details (such as the positions—i.e., offsets—of variables in the runtime
stack’s activation records and the padding between structure fields), register us-
age, execution order (e.g., of actual parameters at a call), optimizations per-
formed, and artifacts of compiler bugs. Bugs and security vulnerabilities can
escape notice when a tool is unable to take into account such fine-grained details.

—Analyses based on source code2 typically make (unchecked) assumptions, e.g.,
that the program is ANSI C compliant. This often means that an analysis does
not account for behaviors that are allowed by the compiler and that can lead to
bugs or security vulnerabilities (e.g., arithmetic is performed on pointers that are
subsequently used for indirect function calls; pointers move off the ends of arrays
and are subsequently dereferenced; etc.)

—Programs are sometimes modified subsequent to compilation, e.g., to perform
optimizations or insert instrumentation code [Wall 1992]. They may also be
modified to insert malicious code. Such modifications are not visible to tools
that analyze source code.

In short, even when source code is available, a substantial amount of information
is hidden from source-code-analysis tools, which can cause bugs, security vulnera-
bilities, and malicious behavior to be invisible to such tools.

The alternative is to perform static analysis at the machine-code level. The
advantage of this approach is that the machine code contains the actual instructions
that will be executed; this addresses the WYSINWYX phenomenon because it
provides information that reveals the actual behavior that arises during program
execution.

Although having to perform static analysis on machine code represents a daunt-
ing challenge, there is also a possible silver lining: by analyzing an artifact that
is closer to what is actually executed, a static-analysis tool may be able to obtain
a more accurate picture of a program’s properties. The reason is that—to vary-
ing degrees—the semantic definition of every programming language leaves certain
details unspecified. Consequently, for a source-code analyzer to be sound, it must

2Terms like “analyses based on source code” and “source-code analyses” are used as a shorthand
for “analyses that work on intermediate representations (IRs) built from source code.”

4 · G. Balakrishnan and T. Reps

7777

State space

q 7777

State space

q

(a) (b)

Fig. 1. Source-code analysis, which must account for all possible choices made by the compiler,
must summarize more paths (see (a)) than machine-code analysis (see (b)). Because the latter
can focus on fewer paths, it can yield more precise results.

account for all possible implementations, whereas a machine-code analyzer only has
to deal with one possible implementation—namely, the one for the code sequence
chosen by the compiler.

For instance, in C and C++ the order in which actual parameters are evaluated
is not specified: actuals may be evaluated left-to-right, right-to-left, or in some
other order; a compiler could even use different evaluation orders for different func-
tions. Different evaluation orders can give rise to different behaviors when actual
parameters are expressions that contain side effects. For a source-level analysis to
be sound, at each call site it must take the join (t) of the results from analyzing
each permutation of the actuals.3 In contrast, an analysis of an executable only
needs to analyze the particular sequence of instructions that lead up to the call.

Static-analysis tools are always fighting imprecision introduced by the join op-
eration. One of the dangers of static-analysis tools is that loss of precision by the
analyzer can lead to the user being swamped with a huge number of reports of
potential errors, most of which are false positives. As illustrated in Fig. 1, because
a source-code-analysis tool summarizes more behaviors than a tool that analyzes
machine code, the join performed at q must cover more abstract states. This can
lead to less-precise information than that obtained from machine-code analysis. Be-
cause more-precise answers mean a lower false-positive rate, machine-code-analysis
tools have the potential to report fewer false positives.

There are other trade-offs between performing analysis at source level versus the
machine-code level: with source-code analysis one can hope to learn about bugs
and vulnerabilities that exist on multiple platforms, whereas analysis of the ma-
chine code only provides information about vulnerabilities on the specific platform
on which the executable runs. From that standpoint, source-code analysis and
machine-code analysis are complementary.

Although it is possible to create source-code tools that strive to have greater
fidelity to the program that is actually executed—examples include Chandra and
Reps [1999] and Nita et al. [2008]—in the limit, the tool would have to incorporate

3We follow the conventions of abstract interpretation [Cousot and Cousot 1977], where the lattice
of properties is oriented so that the confluence operation used where paths come together is join
(t). In dataflow analysis, the lattice is often oriented so that the confluence operation is meet
(u). The two formulations are duals of one another.

WYSINWYX: What You See Is Not What You eXecute · 5

all the platform-specific decisions that would be made by the compiler. Because
such decisions depend on the level of optimization chosen, to build these choices into
a tool that works on a representation that is close to the source level would require
simulating much of the compiler and optimizer inside the analysis tool. Such an
approach is impractical.

In addition to addressing the WYSINWYX issue, performing analysis at the
machine-code level provides a number of other benefits:

—Programs typically make extensive use of libraries, including dynamically linked
libraries (DLLs), which may not be available as source code. Typically, source-
code analyses are performed using code stubs that model the effects of library
calls. Because these are created by hand, they may contain errors, which can
cause an analysis to return incorrect results. In contrast, a machine-code-analysis
tool can analyze the library code directly [Gopan and Reps 2007].

—The source code may have been written in more than one language. This com-
plicates the life of designers of tools that analyze source code because multiple
languages must be supported, each with its own quirks.

—Even if the source code is primarily written in one high-level language, it may
contain inlined assembly code in selected places. Source-code-analysis tools typ-
ically either skip over inlined assembly [CodeSurfer] or do not push the analysis
beyond sites of inlined assembly [PREfast 2004]. To a machine-code-analysis
tool, inlined assembly just amounts to additional instructions to analyze.

—Source-code-analysis tools are only applicable when source is available, which
limits their usefulness in security applications (e.g., to analyzing code from open-
source projects).

Research carried out during the last decade by our research group [Xu et al.
2000; 2001; Balakrishnan and Reps 2004; Reps et al. 2005; Reps et al. 2006; Bal-
akrishnan and Reps 2006; 2007; Gopan and Reps 2007; Balakrishnan 2007; Lim and
Reps 2008; Balakrishnan and Reps 2008] as well as by others [Larus and Schnarr
1995; Cifuentes and Fraboulet 1997b; Debray et al. 1998; Bergeron et al. 1999;
Amme et al. 2000; De Sutter et al. 2000; Bergeron et al. 2001; Kiss et al. 2003;
Debray et al. 2004; Backes 2004; Regehr et al. 2005; Guo et al. 2005; Christodor-
escu et al. 2005; Kruegel et al. 2005; Cova et al. 2006; Chang et al. 2006; Brumley
and Newsome 2006; Emmerik 2007; Zhang et al. 2007] has developed the foun-
dations for performing static analysis at the machine-code level. The machine-
code-analysis problem comes in three versions: (i) in addition to the executable,
the program’s source code is also available; (ii) the source code is unavailable,
but the executable includes symbol-table/debugging information (“unstripped ex-
ecutables”), and (iii) the executable has no symbol-table/debugging information
(“stripped executables”). The appropriate variant to work with depends on the
intended application. Many techniques apply to multiple variants, but are severely
hampered when symbol-table/debugging information is absent.

In 2004, we supplied a key missing piece, particularly for analysis of stripped
executables [Balakrishnan and Reps 2004]. Previous to that work, static-analysis
tools for machine code had rather limited abilities: it was known how to (i) track
values in registers and, in some cases, the stack frame [Larus and Schnarr 1995], and

6 · G. Balakrishnan and T. Reps

(ii) analyze control flow (sometimes by applying local heuristics to try to resolve
indirect calls and indirect jumps, but otherwise ignoring them).

The work presented in our 2004 paper [Balakrishnan and Reps 2004] provided
a way to apply the tools of abstract interpretation [Cousot and Cousot 1977] to
the problem of analyzing stripped executables, and we followed this up with other
techniques to complement and enhance the approach [Reps et al. 2005; Lal et al.
2005; Reps et al. 2006; Balakrishnan and Reps 2006; 2007; Balakrishnan 2007;
Balakrishnan and Reps 2008]. This body of work has resulted in a method to re-
cover a good approximation to an executable’s variables and dynamically allocated
memory objects, and to track the flow of values through them. These methods are
incorporated in a tool called CodeSurfer/x86 [Balakrishnan et al. 2005].

CodeSurfer/x86: A Platform for Recovering IRs from Stripped Executables. Given
a stripped executable as input, CodeSurfer/x86 [Balakrishnan et al. 2005] recovers
IRs that are similar to those that would be available had one started from source
code. The recovered IRs include control-flow graphs (CFGs), with indirect jumps
resolved; a call graph, with indirect calls resolved; information about the program’s
variables; possible values for scalar, array, and pointer variables; sets of used, killed,
and possibly-killed variables for each CFG node; and data dependences. The tech-
niques employed by CodeSurfer/x86 do not rely on debugging information being
present, but can use available debugging information (e.g., Windows .pdb files) if
directed to do so.

The analyses used in CodeSurfer/x86 are a great deal more ambitious than even
relatively sophisticated disassemblers, such as IDAPro [IDAPro]. At the technical
level, they address the following problem:

Given a (possibly stripped) executable E, identify the procedures, data
objects, types, and libraries that it uses, and,

—for each instruction I in E and its libraries,

—for each interprocedural calling context of I, and

—for each machine register and variable V in scope at I,

statically compute an accurate over-approximation to the set of values
that V may contain when I executes.

It is useful to contrast this approach against the approach used in much of the
other work that now exists on analyzing executables. Many research projects have
focused on specialized analyses to identify aliasing relationships [Debray et al. 1998],
data dependences [Amme et al. 2000; Cifuentes and Fraboulet 1997b], targets of
indirect calls [De Sutter et al. 2000], values of strings [Christodorescu et al. 2005],
bounds on stack height [Regehr et al. 2005], and values of parameters and return
values [Zhang et al. 2007]. In contrast, CodeSurfer/x86 addresses all of these prob-
lems by means of a set of analyses that focuses on the problem stated above. In
particular, CodeSurfer/x86 discovers an over-approximation of the set of states
that can be reached at each point in the executable—where a state means all of the
state: values of registers, flags, and the contents of memory—and thereby provides
information about aliasing relationships, targets of indirect calls, etc.

One of the goals of CodeSurfer/x86 is to be able to detect whether an executable
conforms to a standard compilation model. By “standard compilation model” we

WYSINWYX: What You See Is Not What You eXecute · 7

mean that the executable has procedures, activation records (ARs), a global data
region, and a free-storage pool; might use virtual functions and DLLs; maintains
a runtime stack; each global variable resides at a fixed offset in memory; each
local variable of a procedure f resides at a fixed offset in the ARs for f ; actual
parameters of f are pushed onto the stack by the caller so that the corresponding
formal parameters reside at fixed offsets in the ARs for f ; the program’s instructions
occupy a fixed area of memory, and are not self-modifying.

During the analysis performed by CodeSurfer/x86, these aspects of the program
are checked. When violations are detected, an error report is issued, and the anal-
ysis proceeds. In doing so, however, we generally choose to have the analyzer only
explore behaviors that stay within those of the desired execution model. For in-
stance, if the analysis finds that the return address might be modified within a
procedure, it reports the potential violation, but proceeds without modifying the
control flow of the program. Consequently, if the executable conforms to the stan-
dard compilation model, CodeSurfer/x86 creates a valid IR for it; if the executable
does not conform to the model, then one or more violations will be discovered, and
corresponding error reports will be issued; if the (human) analyst can determine
that the error report is indeed a false positive, then the IR is valid. The advantages
of this approach are (i) it provides the ability to analyze some aspects of programs
that may deviate from the desired execution model; (ii) it generates reports of
possible deviations from the desired execution model; (iii) it does not force the an-
alyzer to explore all of the consequences of each (apparent) deviation, which may
be a false positive due to loss of precision that occurs during static analysis.

The contributions of our work can be summarized as follows:

—We devised an abstract memory model that is suitable for analyzing executables
(see §2).

—We developed (several variations of) a static-analysis algorithm that—without
relying on symbol-table or debugging information—is able to track the flow of
values through memory (see §3).

—We devised an algorithm to recover variable-like entities from an executable that
can serve as proxies for the missing source-level variables in algorithms for further
analysis of executables (see §4 and §5). The algorithm addresses the problem of
recovering such entities regardless of whether they are local, global, or allocated
in the heap.

—We used these methods to create the first program-slicing tool for executables that
can help with understanding dependences across memory updates and memory
accesses [Balakrishnan et al. 2005].

—We used these methods to create the first automatic program-verification tool for
stripped executables: it allows one to check that a stripped executable conforms
to an API-usage rule specified as a finite-state machine [Balakrishnan et al. 2005;
Balakrishnan and Reps 2008] (see §6).

Legal Issues. Machine-code analysis has different usage scenarios depending, for
instance, on whether

—the user has source code for the entire application, including the libraries and OS
utilities that it uses

8 · G. Balakrishnan and T. Reps

—the user has source code for the application, but only machine code for the
libraries and OS utilities

—the user has only machine code

In most parts of the world, the latter two situations may be subject to legal re-
strictions. Most end-user license agreements (EULAs) contain provisions that pro-
hibit disassembly, decompilation, and reverse engineering of the licensed program.
Wikipedia’s page on “Software License Agreements” [Wikipedia: Shrink-Wrap and
Click-Wrap Licenses] notes, “Whether shrink-wrap licenses are legally binding [in
the United States] differs between jurisdictions, though a majority of jurisdictions
hold such licenses to be enforceable.” It adds,

. . . publishers have begun to encrypt their software packages to make it
impossible for a user to install the software without either agreeing to
the license agreement or violating the Digital Millennium Copyright Act
(DMCA) and foreign counterparts. [Wikipedia: Enforceability]

In the United States, the DMCA prohibits the circumvention of access-control tech-
nologies [DMCA §1201]. However, there are several statutory exceptions for law
enforcement, intelligence, and other government activities (§1201(e)), reverse en-
gineering/interoperability (§1201(f)), encryption research (§1201(g)), and security
testing (§1201(j)). In addition to the statuatory exceptions, other exemptions can
be granted by the Librarian of Congress. As to whether EULA clauses that prohibit
reverse engineering for interoperability purposes are enforceable,

The 8th Circuit case of Blizzard v. BnetD determined that such clauses
are enforceable, following the Federal Circuit decision of Baystate v.
Bowers. [Wikipedia: Shrink-Wrap and Click-Wrap Licenses]

To us, however, the boundary between permitted activities and excluded activ-
ities is not entirely clear. The point of a EULA is to allow users to execute the
application’s machine code. These days many applications are run in non-standard
ways—e.g., in a guest virtual machine, using runtime optimization [Bala et al.
2000], or under program shepherding [Kiriansky et al. 2002]. Static analysis of ma-
chine code is yet another non-standard form of execution—one based on abstract
interpretation [Cousot and Cousot 1977]. In general, as in ordinary execution of
machine code, abstract execution of machine code involves repeatedly decoding an
instruction and performing a state change according to the instruction’s semantics.
The only difference from standard execution is that a non-standard semantics is
used: in essence, instead of running the program on single concrete states, the pro-
gram is “run in the aggregate”; i.e., it is executed over descriptors that represent
collections of states.

Organization and Roadmap to the Paper. The remainder of the paper is orga-
nized as follows: §2 presents the abstract memory model used in CodeSurfer/x86,
and an algorithm to recover variable-like entities, referred to as a-locs (for abstract
locations), from an executable. §3 presents an abstract-interpretation-based algo-
rithm, referred to as value-set analysis (VSA), to recover information about the
contents of machine registers and memory locations at every program point in an
executable. §4 presents an improved a-loc recovery algorithm. §5 describes how the

WYSINWYX: What You See Is Not What You eXecute · 9

various algorithms used in CodeSurfer/x86 interact with each other. §6 presents
Device-Driver Analyzer for x86 (DDA/x86)—a tool built on top of CodeSurfer/x86
to analyze device-driver executables for bugs—and presents a case study in which
DDA/x86 was used to find bugs in Windows device drivers. §7 discusses related
work. §8 presents our conclusions and directions for further work.

Even though this is a lengthy paper, it was necessary to be selective about the
material presented, or the paper would have been considerably longer. The paper
concentrates on the essential core of our work; in a few places we refer the reader
to other papers, either for additional details (see footnote 4, §3.1, and §3.4) or for
information about variations and enhancements of the techniques presented in this
paper (see the list at the beginning of §7).

For readers more familiar with source-code analysis, we have tried to make the
paper as accessible as possible. Such readers may wish to keep two counterbalancing
themes in mind (concentrating on whichever is of greater interest to them):

—To a considerable degree, we were able to make our analysis problems closely
resemble standard source-code-analysis problems. To a large extent, the algo-
rithms we describe are adaptations and variations on well-known techniques.
This theme runs through §2, §3, and §6, which provide a flavor of the algorithms
used in CodeSurfer/x86 and how their capabilities compare with source-code
analyses.

—At the same time, considerable work was necessary to map ideas from source-code
analysis over to machine-code analysis, due to several reasons:
—We work with stripped executables, so our analyses start with no information

about the program’s variables.
—Even control-flow information presents difficulties: (i) branch conditions are

implicit because in x86 separate instructions are used for setting flags based
on some condition, and a subsequent conditional-jump instruction performs
the branch according to flag values; and (ii) it is often difficult to identify the
targets of indirect jumps and indirect function calls.

—As discussed in §6.2, when creating finite-state machines for property checking,
the vocabulary of events in executables differs from the vocabulary of events
in source code.

The theme of how our analyzer can bootstrap itself from preliminary IRs that
record fairly basic information about the code of a stripped executable to IRs on
which it is possible to run analyses that resemble standard source-code analyses
is the subject of §2.2, §4, and §5.

In source-code analysis, abstraction refinement [Kurshan 1994; Clarke et al. 2000]
is a well-known technique for enhancing precision. §5 describes our abstraction-
refinement loop, which not only improves precision but also orchestrates the anal-
ysis phases that allow us to overcome the lack of any initial information about a
program’s variables.

2. AN ABSTRACT MEMORY MODEL

One of the major stumbling blocks in analyzing executables is the difficulty of
recovering information about variables and types, especially for aggregates (i.e.,
structures and arrays). Consider, for instance, a data dependence from statement a

10 · G. Balakrishnan and T. Reps

to statement b that is transmitted by write/read accesses on some variable x. When
performing source-code analysis, the programmer-defined variables provide us with
convenient compartments for tracking such data manipulations. A dependence
analyzer must show that a defines x, b uses x, and there is an x-def-free path
from a to b. However, in executables, memory is accessed either directly—by
specifying an absolute address—or indirectly—through an address expression of
the form “[base + index × scale + offset]”, where base and index are registers, and
scale and offset are integer constants. It is not clear from such expressions what the
natural compartments are that should be used for analysis. Because executables do
not have intrinsic entities that can be used for analysis (analogous to source-level
variables), a crucial step in the analysis of executables is to identify variable-like
entities.

If debugging information is available (and trusted), this provides one possibility;
however, even if debugging information is available, analysis techniques have to
account for bit-level, byte-level, word-level, and bulk-memory manipulations per-
formed by programmers (or introduced by the compiler) that can sometimes violate
variable boundaries [Backes 2004; Miné 2006; Reps et al. 2006]. If a program is
suspected of containing malicious code, even if debugging information is present,
it cannot be entirely relied upon. For these reasons, it is not always desirable to
use debugging information—or at least to rely on it alone—for identifying a pro-
gram’s data objects. (Similarly, past work on source-code analysis has shown that
it is sometimes valuable to ignore information available in declarations and infer
replacement information from the actual usage patterns found in the code [Eidorff
et al. 1999; O’Callahan and Jackson 1997; Ramalingam et al. 1999; Siff and Reps
1996; van Deursen and Moonen 1998].)

Example 2.1. The two programs shown in Fig. 2 will be used in this section
to illustrate the issues involved in recovering a suitable set of variable-like entities
from a machine-code program. The C program shown in Fig. 2(a) initializes all
elements of array pts[5] and returns pts[0].y. The x-members of each element are
initialized with the value of the global variable a and the y-members are initialized
with the value of global variable b. The initial values of the global variables a and
b are 1 and 2, respectively.

Fig. 2(b) shows the corresponding x86 program (in Intel assembly-language syn-
tax). By convention, esp is the stack pointer in the x86 architecture. Instruction
1 allocates space for the locals of main on the stack. Fig. 3(a) shows how the
variables are laid out in the activation record of main. Note that there is no space
for variable i in the activation record because the compiler promoted i to register
edx. Similarly, there is no space for pointer p because the compiler promoted it to
register eax.

Instructions L1 through 12 correspond to the for-loop in the C program. Instruc-
tion L1 updates the x-members of the array elements, and instruction 8 updates
the y-members. Instructions 13 and 14 correspond to initializing the return value
for main. �

WYSINWYX: What You See Is Not What You eXecute · 11

typedef struct {
int x,y;

} Point;

int a = 1, b = 2;

int main(){
int i, *py;
Point pts[5], *p;

py = &pts[0].y;
p = &pts[0];

for(i = 0; i < 5; ++i) {
p->x = a;
p->y = b;

p += 8;
}
return *py;

}

proc main ;
1 sub esp, 44 ;Allocate locals

2 lea eax, [esp+8] ;t1 = &pts[0].y
3 mov [esp+0], eax ;py = t1

4 mov ebx, [4] ;ebx = a
5 mov ecx, [8] ;ecx = b
6 mov edx, 0 ;i = 0

7 lea eax,[esp+4] ;p = &pts[0]
L1: mov [eax], ebx ;p->x = a

8 mov [eax+4],ecx ;p->y = b
9 add eax, 8 ;p += 8

10 inc edx ;i++
11 cmp edx, 5 ;
12 jl L1 ;(i < 5)?L1:exit loop

13 mov edi, [esp+0] ;t2 = py
14 mov eax, [edi] ;set return value (*t2)

15 add esp, 44 ;Deallocate locals
16 retn ;

(a) (b)

Fig. 2. (a) A C program that initializes an array of structs; (b) the corresponding x86 program
(in Intel assembly-language syntax).

2.1 Memory-Regions and Abstract Addresses

This section presents the basic abstract memory model that is used in
CodeSurfer/x86’s analyses. One simple model considers memory to be an array
of bytes. Writes (reads) in this model are treated as writes (reads) to the corre-
sponding element of the array. However, there are some disadvantages in such an
approach:

—It may not be possible to determine specific address values for certain memory
blocks, such as those allocated from the heap via malloc. For the analysis to
be sound, writes to (reads from) such blocks of memory have to be treated as
writes to (reads from) any part of the heap, which leads to imprecise (and mostly
useless) information about memory accesses.

—The runtime stack is reused during each execution run; in general, a given area
of the runtime stack will be used by several procedures at different times during
execution. Thus, at each instruction a specific numeric address can be ambiguous
(because the same address may belong to different Activation Records (ARs) at
different times during execution): it may denote a variable of procedure f, a
variable of procedure g, a variable of procedure h, etc. (A given address may
also correspond to different variables of different activations of f.) Therefore, an
instruction that updates a variable of procedure f would have to be treated as
possibly updating the corresponding variables of procedures g, h, etc., which also
leads to imprecise information about memory accesses.

To overcome these problems, we work with the following abstract memory model
[Balakrishnan and Reps 2004]. Although in the concrete semantics the activation
records for procedures, the heap, and the memory area for global data are all part of
one address space, for the purposes of analysis, we separate the address space into a
set of disjoint areas, which are referred to as memory-regions (see Fig. 3(b)). Each
memory-region represents a group of locations that have similar runtime properties:
in particular, the runtime locations that belong to the ARs of a given procedure
belong to one memory-region. Each (abstract) byte in a memory-region represents

12 · G. Balakrishnan and T. Reps

a set of concrete memory locations. For a given program, there are three kinds
of regions: (1) the global -region, for memory locations that hold initialized and
uninitialized global data, (2) AR-regions, each of which contains the locations of
the ARs of a particular procedure, and (3) malloc-regions, each of which contains
the locations allocated at a particular malloc site. We do not assume anything
about the relative positions of these memory-regions.

For an n-bit architecture, the size of each memory-region in the abstract memory
model is 2n. For each region, the range of offsets within the memory-region is
[−2n−1, 2n−1−1]. Offset 0 in an AR-region represents all concrete starting addresses
of the ARs that the AR-region represents. Offset 0 in a malloc-region represents
all concrete starting addresses of the heap blocks that the malloc-region represents.
Offset 0 of the global-region represents the concrete address 0.

The analysis treats all data objects, whether local, global, or in the heap, in
a fashion similar to the way compilers arrange to access variables in local ARs,
namely, via an offset. We adopt this notion as part of our abstract semantics:
an abstract address in a memory-region is represented by a pair: (memory-region,
offset).

By convention, esp is the stack pointer in the x86 architecture. On entry to a
procedure P, esp points to the top of the stack, where the new activation record for
P is created. Therefore, in our abstract memory model, esp holds abstract address
(AR P, 0) on entry to procedure P, where AR P is the activation-record region
associated with procedure P. Similarly, because malloc returns the starting address
of an allocated block, the return value for malloc (if allocation is successful) is the
abstract address (Malloc n, 0), where Malloc n is the memory-region associated
with the nth call-site on malloc.4

Example 2.2. Fig. 3(c) shows the memory-regions for the program in Ex. 2.1.
There is a single procedure, and hence two regions: one for global data and one for
the AR of main. Furthermore, the abstract address of local variable py is the pair
(AR main,-44) because it is at offset -44 with respect to the AR’s starting address.
Similarly, the abstract address of global variable b is (Global,8). �

2.2 Abstract Locations (A-Locs)

As pointed out earlier, executables do not have intrinsic entities like source-code
variables that can be used for analysis; therefore, the next step is to recover variable-
like entities from the executable, which will serve as proxies for the program’s actual
variables (e.g., the variables declared in the source code from which the executable
was created). We refer to such variable-like entities as a-locs (for “abstract loca-
tions”).

Heretofore, the state of the art in recovering variable-like entities is represented
by IDAPro [IDAPro], a commercial disassembly toolkit. IDAPro’s algorithm is

4CodeSurfer/x86 actually uses an abstraction of heap-allocated storage, called the recency abstrac-
tion, that involves more than one memory-region per call-site on malloc [Balakrishnan and Reps
2006]. The recency abstraction overcomes some of the imprecision that arises due to the need
to perform weak updates—i.e., accumulate information via join—on fields of summary malloc-
regions. In particular, the augmented domain often allows our analysis to establish a definite link
between a pointer field of a heap-allocated object and objects pointed-to by the pointer field.

WYSINWYX: What You See Is Not What You eXecute · 13

-40

-36

ret-addr

-32

pts[4].y

pts[4].x

pts[0].x

pts[0].y

-8

-4

0

. . .

py -44

. . .

. . .

GLOBAL DATA

GLOBAL DATA

AR of G

AR of G

. . .

AR of F

AR of G

AR of F

Runtime Address Space Memory Regions

mem_8

mem_4
8

4

Global Region
-40

-36

ret-addr
0

var_44
-44

var_36

var_40

AR_main

-2 31

FormalGuard
4

231-1

LocalGuard

(a) (b) (c)

Fig. 3. (a) Layout of the activation record for procedure main in Ex. 2.1; (b) abstract memory
model; (c) a-locs identified by the Semi-Näıve algorithm.

based on the observation that the data layout generally follows certain conventions:
accesses to global variables appear as “[absolute-address]”, and accesses to local
variables appear as “[esp + offset]” or “[ebp − offset]”. IDAPro identifies such
statically-known absolute addresses, esp-based offsets, and ebp-based offsets in the
program, and treats the set of locations in between two such absolute addresses or
offsets as one entity. We refer to this method of recovering a-locs as the Semi-Näıve
algorithm. The Semi-Näıve algorithm is based on purely local techniques. (IDAPro
does incorporate a few global analyses, such as one for determining changes in stack
height at call-sites. However, the techniques are ad-hoc, heuristic methods.)

In CodeSurfer/x86, the Semi-Näıve algorithm is used to identify the initial set
of a-locs; several global analyses based on abstract interpretation are then used to
obtain an improved set of a-locs. The latter methods are discussed in §4.

Let us look at the a-locs identified by the Semi-Näıve algorithm for the program
in Ex. 2.1.

Global A-Locs. In Ex. 2.1, instructions “mov ebx, [4]” and “mov ecx,[8]”
have direct memory operands, namely, [4] and [8]. IDAPro identifies these
statically-known absolute addresses as the starting addresses of global a-locs and
treats the locations between these addresses as one a-loc. Consequently, IDAPro
identifies addresses 4..7 as one a-loc, and the addresses 8..11 as another a-loc.
Therefore, we have two a-locs: mem 4 (for addresses 4..7) and mem 8 (for addresses
8..11). (An executable can have sections for read-only data. The global a-locs in
such sections are marked as read-only a-locs.)

Local A-Locs. Local a-locs are determined on a per-procedure basis as follows.
At each instruction in the procedure, IDAPro computes the difference between
the value of esp (or ebp) at that point and the value of esp at procedure en-
try. These computed differences are referred to as sp delta.5 After computing
sp delta values, IDAPro identifies all esp-based indirect operands in the proce-

5When IDAPro computes the sp delta values, it uses heuristics to identify changes to esp (or ebp)
at procedure calls and instructions that access memory, and therefore the sp delta values may be
incorrect. Consequently, the layout obtained by IDAPro for an AR may not be in agreement with

14 · G. Balakrishnan and T. Reps

dure. In Ex. 2.1, instructions “lea eax, [esp+8]”, “mov [esp+0], eax”, “lea
eax, [esp+4]”, and “mov edi, [esp+0]” have esp-based indirect operands. Re-
call that on entry to procedure main, esp contains the abstract address (AR main,

0). Therefore, for every esp/ebp-based operand, the computed sp delta values
give the corresponding offset in AR main. For instance, [esp+0], [esp+4], and
[esp+8] refer to offsets -44, -40, and -36, respectively, in AR main. This gives rise
to three local a-locs: var 44, var 40, and var 36. Note that var 44 corresponds to
all of the source-code variable py. In contrast, var 40 and var 36 correspond to dis-
joint segments of array pts[]: var 40 corresponds to program variable pts[0].x;
var 36 corresponds to the locations of program variables pts[0].y, p[1..4].x,
and p[1..4].y. In addition to these a-locs, an a-loc for the return address is also
defined; its offset in AR main is 0.

In addition to the a-locs identified by IDAPro, two more a-locs are added: (1)
a FormalGuard that spans the space beyond the topmost a-loc in the AR-region,
and (2) a LocalGuard that spans the space below the bottom-most a-loc in the
AR-region. FormalGuard and LocalGuard delimit the boundaries of an activation
record; therefore, a memory write to FormalGuard or LocalGuard represents a write
beyond the end of an activation record.

Heap A-Locs. In addition to globals and locals, we have one a-loc per heap-region.
There are no heap a-locs in Ex. 2.1 because it does not use the heap.

Registers. In addition to the global, heap, and local a-locs, registers are also
considered to be a-locs.

After the a-locs are identified, we create a mapping from a-locs to (rgn, off, size)
triples, where rgn represents the memory-region to which the a-loc belongs, off is
the starting offset of the a-loc in rgn, and size is the size of the a-loc. The start-
ing offset of an a-loc a in a region rgn is denoted by offset(rgn, a). For Ex. 2.1,
offset(AR main,var 40) is -40 and offset(Global, mem 4) is 4. The a-loc lay-
out map can also be queried in the opposite direction: for a given region, offset,
and size, what are the overlapping a-locs? As described in §3.4, such information
is used to interpret memory-dereferencing operations during VSA.

3. VALUE-SET ANALYSIS (VSA)

Another significant obstacle in analyzing executables is that it is difficult to obtain
useful information about memory-access expressions in the executable. Information
about memory-access expressions is a crucial requirement for any tool that works
on executables. Consider the problem of identifying possible data dependences
between instructions in executables. An instruction i1 is data dependent on another
instruction i2 if i1 might read the data that i2 writes. For instance, in Ex. 2.1,
instruction 14 is data dependent on instruction 8 because instruction 8 writes to
pts[0].y and instruction 14 reads from pts[0].y. On the other hand, instruction
14 is not data dependent on instruction L1.

the way that memory is actually accessed during execution runs. This can have an impact on the
precision of the results obtained by our abstract-interpretation algorithms; however, as discussed
in §4.4, the results obtained by the algorithms are still sound, even if the initial set of a-locs is
suboptimal because of incorrect sp delta values.

WYSINWYX: What You See Is Not What You eXecute · 15

There has been work in the past on analysis techniques to obtain such informa-
tion. However, prior techniques are either overly-conservative or unsound in their
treatment of memory accesses. The alias-analysis algorithm proposed by Debray
et al. [1998] assumes that any memory write can affect any other memory read.
Therefore, their algorithm reports that instruction 14 is data dependent on both
L1 and 8—i.e., it provides an overly-conservative treatment of memory operations.
On the other hand, Cifuentes and Fraboulet [1997b] use heuristics to determine if
two memory operands are aliases of one another, and hence may fail to identify the
data dependence between instruction 8 and instruction 14.

To obtain information about memory-access expressions, CodeSurfer/x86 makes
use of a number of analyses, and the sequence of analyses performed is itself it-
erated (for reasons discussed in §5). The variable and type-discovery phase of
CodeSurfer/x86 recovers information about variables that are allocated globally,
locally (i.e., on the stack), and dynamically (i.e., from the freelist); see §2.2 and §4.
The recovered variables (a-locs) are the basic variables used in CodeSurfer/x86’s
value-set-analysis (VSA) algorithm, which statically identifies the set of values that
the a-locs may contain when an instruction I executes. This section describes the
VSA algorithm.

VSA is a combined numeric-analysis and pointer-analysis algorithm that deter-
mines a safe approximation of the set of numeric values or addresses that each
register and a-loc holds at each program point. In particular, at each instruction
I that contains an indirect memory operand, VSA provides information about the
contents of the registers that are used. This permits it to determine the (abstract)
addresses that are potentially accessed—and hence the a-locs that are potentially
accessed—which, in turn, permits it to determine the potential effects of I on the
state.

The problem that VSA addresses has similarities with the pointer-analysis prob-
lem that has been studied in great detail for programs written in high-level lan-
guages [Hind 2001]. For each variable (say v), pointer analysis determines an over-
approximation of the set of variables whose addresses v can hold. Similarly, VSA
determines an over-approximation of the set of addresses that a register or a mem-
ory location holds at each program point. For instance, VSA determines that at
instruction L1 in Ex. 2.1 eax holds one of the offsets {−40, −32, −24, . . ., −8} in
the activation record of procedure main, which corresponds to the addresses of field
x of the elements of array pts[0..4].

On the other hand, VSA also has some of the flavor of numeric static analyses,
where the goal is to over-approximate the integer values that each variable can hold;
in addition to information about addresses, VSA determines an over-approximation
of the set of integer values that each data object can hold at each program point.
For instance, VSA determines that at instruction L1, edx holds numeric values in
the range 0, . . . , 4.

A key feature of VSA is that it tracks integer-valued and address-valued quan-
tities simultaneously. This is crucial for analyzing executables because numeric
operations and address-dereference operations are inextricably intertwined even in
the instruction(s) generated for simple source-code operations. For instance, con-
sider the operation of loading the value of a local variable v into register eax. If v
has offset -12 in the current AR, the load would be performed by the instruction

16 · G. Balakrishnan and T. Reps

mov eax, [ebp-12]. This involves a numeric operation (ebp-12) to calculate an
address whose value is then dereferenced ([ebp-12]) to fetch the value of v, after
which the value is placed in eax. A second key feature of VSA is that, unlike earlier
algorithms [Cifuentes and Fraboulet 1997a; 1997b; Cifuentes et al. 1998; Debray
et al. 1998], it takes into account data manipulations that involve memory locations.

VSA is based on abstract interpretation [Cousot and Cousot 1977], where the aim
is to determine the possible states that a program reaches during execution, but
without actually running the program on specific inputs. The set of descriptors of
memory configurations used in abstract interpretation is referred to as an abstract
domain. An element of an abstract domain represents a set of concrete (i.e., run-
time) states of a program. An element of the abstract domain for VSA associates
each a-loc with a set of (abstract) memory addresses and numeric values.

VSA is a flow-sensitive, context-sensitive, interprocedural, abstract-interpretation
algorithm (parameterized by call-string length [Sharir and Pnueli 1981]). In the rest
of this section, we formalize the VSA domain and describe the VSA algorithm in
detail.

3.1 Value-Sets

A value-set represents a set of memory addresses and numeric values. Recall from
§2.1 that each abstract address is a pair (memory-region, offset). Therefore, a set
of abstract addresses can be represented by a set of tuples of the form (rgni 7→
{oi

1, o
i
2, ..., o

i
ni
}). A value-set uses a k-bit strided-interval (SI) [Reps et al. 2006] to

represent the set of offsets in each memory-region. Let γ denote the concretization
function for the strided-interval domain; a k-bit strided interval s[l,u] represents
the set of integers

γ(s[l,u]) = {i ∈ [−2k−1, 2k−1 − 1] | l ≤ i ≤ u, i ≡ l(mod s)}, where

—s is called the stride.

—[l,u] is called the interval.

—0[l, l] represents the singleton set {l}.

We also call ⊥ a strided interval; it denotes the empty set of offsets (i.e., ∅).
Consider the set of addresses S = {(Global 7→ {1, 3, 5, 9}), (AR main 7→

{−48,−40})}. The value-set for S is the set {(Global 7→ 2[1,9]), (AR main 7→
8[−48,−40])}. Note that the value-set for S is an over-approximation; the value-
set includes the global address 7, which is not an element of S. For conciseness, a
value-set will be shown as an r-tuple of SIs, where r is the number of memory-regions
for the executable. By convention, the first component of the r-tuple represents
addresses in the Global memory-region. Using this notation, the value-set for S is
the 2-tuple, (2[1,9],8[−48,−40]).

A value-set is capable of representing a set of memory addresses as well as a set
of numeric values (which is a crucial requirement for analyzing executables because
numbers and addresses are indistinguishable at runtime). For instance, the 2-tuple
(2[1,9],⊥) denotes the set of numeric values {1, 3, 5, 7, 9} as well as the set of ad-
dresses {(Global, 1), (Global, 3), . . . , (Global, 9)}; however, because the second
component is ⊥, it does not represent any addresses in memory-region AR main.
The 2-tuple (⊥,8[−48,−40]) represents the set of addresses {(AR main,−48),

WYSINWYX: What You See Is Not What You eXecute · 17

(AR main,−40)}; however, because the first component is ⊥, it does not represent
any pure numeric values nor any addresses in the Global memory-region.

Advantages of Strided Intervals for Analysis of Executables. We chose to use
SIs instead of ranges because alignment and stride information allow indirect-
addressing operations that implement either (i) field-access operations in an array
of structs, or (ii) pointer-dereferencing operations, to be interpreted more precisely.

Let *a denote a dereference of a-loc a. Suppose that the contents of a is not
aligned with the boundaries of other a-locs; then a memory access *a can fetch
portions of two or more a-locs. Similarly, an assignment to *a can overwrite portions
of two or more a-locs. Such operations appear to forge new addresses. For instance,
suppose that the address of a-loc x is 1000, the address of a-loc y is 1004, and the
contents of a-loc a is 1001. Then *a (as a 4-byte fetch) would retrieve 3 bytes of
x’s value and 1 byte of y’s value.

This issue motivated the use of SIs because SIs are capable of representing certain
non-convex sets of integers, and ranges (alone) are not. Suppose that the contents
of a is the set {1000, 1004}; then *a (as a 4-byte fetch) would retrieve all of x (and
none of y) or all of y (and none of x). The range [1000, 1004] includes the addresses
1001, 1002, and 1003, and hence *[1000, 1004] (as a 4-byte fetch) could result in a
forged address. However, because VSA is based on SIs, {1000, 1004} is represented
exactly, as the SI 4[1000, 1004]. If VSA were based on range information rather
than SIs, it would either have to try to track segments of (possible) contents of data
objects, or treat such dereferences conservatively by returning >vs, thereby losing
track of all information.

The Value-Set Abstract Domain. Value-sets form a lattice. Informal descriptions
of a few 32-bit value-set operators are given below. (For a detailed description of
the value-set domain, see Reps et al. [2006].)

—(vs1 vvs vs2): Returns true if the value-set vs1 is a subset of vs2, false otherwise.

—(vs1 uvs vs2): Returns the meet (intersection) of value-sets vs1 and vs2.

—(vs1 tvs vs2): Returns the join (union) of value-sets vs1 and vs2.

—(vs1 ∇
vs vs2): Returns the value-set obtained by widening [Cousot and Cousot

1976] vs1 with respect to vs2, e.g., if vs1 = (4[40,44]) and vs2 = (4[40,48]), then
(vs1 ∇vs vs2) = (4[40,231 − 4]). Note that the upper bound for the interval in
the result is 231 − 4 (and not 231 − 1) because 231 − 4 is the maximum positive
value that is congruent to 40 modulo 4.

—(vs+vs c): Returns the value-set obtained by adjusting all values in vs by the
constant c, e.g., if vs = (4,4[4,12]) and c = 12, then (vs+vs c) = (16,4[16,24]).

—∗(vs, s): Returns a pair of sets (F, P). F represents the set of “fully accessed”
a-locs: it consists of the a-locs that are of size s and whose starting addresses
are in vs. P represents the set of “partially accessed” a-locs: it consists of (i)
a-locs whose starting addresses are in vs but are not of size s, and (ii) a-locs
whose addresses are in vs but whose starting addresses and sizes do not meet the
conditions to be in F . (This information is obtained using the a-loc layout map
described in §2.2.)

—RemoveLowerBounds(vs): Returns the value-set obtained by setting the lower

18 · G. Balakrishnan and T. Reps

bound of each component SI to −231. For example, if vs = (1[0,100],1[100,200]),
then RemoveLowerBounds(vs)= (1[−231,100],1[−231,200]).

—RemoveUpperBounds(vs): Similar to RemoveLowerBounds, but sets the upper
bound of each component to 231 − 1.

3.2 Abstract Environment (AbsEnv)

AbsEnv (for “abstract environment”) is the abstract domain used during VSA to
represent a set of concrete stores that arise at a given program point. This section
formalizes AbsEnv.

Let Proc denote the set of memory-regions associated with procedures in the
program; AllocMemRgn denote the set of memory-regions associated with heap-
allocation sites; Global denote the memory-region associated with the global data
area; and a-locs[R] denote the a-locs that belong to memory-region R. We work with
the following basic domains:

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn
ValueSet = MemRgn → StridedInterval⊥

AlocEnv[R] = a-locs[R] → ValueSet
Flag = {CF, ZF, SF, PF, AF, OF}

Flag represents the set of x86 flags. An x86 flag is either set to True or False at
runtime. To represent multiple possible Boolean values, we use the abstract domain
Bool3:

Bool3 = {False,Maybe,True}.

In addition to the Booleans False and True, Bool3 has a third value, Maybe,
which means “the value is unknown” (i.e., it may be False or it may be True).
AbsEnv maps each region R to its corresponding AlocEnv[R], each register to a
ValueSet, and each Flag to a Bool3:

AbsEnv =

(register → ValueSet)
× (Flag → Bool3)
× ({Global} → AlocEnv[Global])
× (Proc → AlocEnv[Proc]⊥)
× (AllocMemRgn → AlocEnv[AllocMemRgn]⊥)

In the above definitions, ⊥ is used to denote a partial map. For instance, a ValueSet
may not contain offsets in some memory-regions. Similarly, in AbsEnv, a procedure
P whose activation record is not on the stack is mapped to ⊥ rather than to a value
in AlocEnv[P].

We use the following notational conventions:

—Given a memory a-loc or a register a-loc a and ae ∈ AbsEnv, ae[a] refers to the
ValueSet for a-loc a in ae.

—Given vs ∈ ValueSet and r ∈ MemRgn, vs[r] refers to the strided interval for
memory-region r in vs.

—Given f ∈ Flag and ae ∈ AbsEnv, ae[f] refers to the Bool3 for flag f in ae.

WYSINWYX: What You See Is Not What You eXecute · 19

3.3 Representing Abstract Stores Efficiently

To represent the abstract store at each program point efficiently, we use applicative
dictionaries, which provide a space-efficient representation of a collection of dictio-
nary values when many of the dictionary values have nearly the same contents as
other dictionary values in the collection [Reps et al. 1983; Myers 1984].

Applicative dictionaries can be implemented using applicative balanced trees,
which are standard balanced trees on which all operations are carried out in the
usual fashion, except that whenever one of the fields of an interior node M would
normally be changed, a new node M ′ is created that duplicates M , and changes
are made to the fields of M ′. To be able to treat M ′ as the child of parent(M), it
is necessary to change the appropriate child-field in parent(M), so a new node is
created that duplicates parent(M), and so on, all the way to the root of the tree.
Thus, new nodes are introduced for each of the original nodes along the path from
M to the root of the tree.

Because an operation that restructures a standard balanced tree may modify all
of the nodes on the path to the root anyway, and because a single operation on
a standard balanced tree that has n nodes takes at most O(log n) steps, the same
operation on an applicative balanced tree introduces at most O(log n) additional
nodes and also takes at most O(log n) steps. The new tree resulting from the
operation shares the entire structure of the original tree except for the nodes on a
path from M ′ to the root, plus at most O(log n) other nodes that may be introduced
to maintain the balance properties of the tree. In our implementation, the abstract
stores from the VSA domain are implemented using applicative AVL trees [Myers
1984]. That is, each function or partial function in a component of AbsEnv is
implemented with an applicative AVL tree.

3.4 Intraprocedural Value-Set Analysis

This subsection describes an intraprocedural version of VSA. For the time being,
we consider programs that have a single procedure and no indirect jumps. To aid in
explaining the algorithm, we adopt a C-like notation for program statements. We
will discuss the following kinds of instructions, where R1 and R2 are two registers
of the same size, c, c1, and c2 are explicit integer constants, and ≤ and ≥ represent
signed comparisons:

R1 = R2+ c R1 ≤ c
*(R1 + c1) = R2+ c2 R1 ≥ R2

R1 = *(R2 + c1) + c2

Conditions of the two forms shown on the right are obtained from the instruction(s)
that set condition codes used by branch instructions (see §3.4.2).

The analysis is performed on a control-flow graph (CFG) for the procedure. The
CFG consists of one node per x86 instruction, and there is a directed edge n1→n2

between a pair of nodes n1 and n2 in the CFG if there is a flow of control from n1
to n2. The edges are labeled with the instruction at the source of the edge. If the
source of an edge is a branch instruction, then the edge is labeled according to the
outcome of the branch. For instance in the CFG for the program in Ex. 2.1, the
edge 12→L1 is labeled edx<5, whereas the edge 12→13 is labeled edx≥5. Each
CFG has two special nodes: (1) an enter node that represents the entry point of

20 · G. Balakrishnan and T. Reps

the procedure, (2) an exit node that represents the exit point of the procedure.

Instruction AbstractTransformer(in: AbsEnv): AbsEnv

R1 = R2 + c

Let out := in and vsR2 := in[R2]
out[R1] := vsR2 +vs c

return out

∗(R1 + c1) = R2 + c2

Let vsR1 := in[R1], vsR2 := in[R2], (F, P) = ∗(vsR1 +vs c1, s), and out := in

Let Proc be the procedure containing the instruction
if (|F | = 1∧|P | = 0 ∧ (F has no heap a-locs or a-locs of recursive procedures))
then

out[v] := vsR2 +vs c2, where v ∈ F // Strong update
else

for each v ∈ F do

out[v] := out[v]tvs(vsR2 +vs c2) // Weak update
end for

end if

for each v ∈ P do // Set partially accessed a-locs to >vs

out[v] := >vs

end for

return out

R1 = ∗(R2 + c1) + c2

Let vsR2 := in[R2], (F, P) = ∗(vsR2 +vs c1, s) and out := in

if (|P | = 0) then

Let vsrhs :=
⊔

vs{in[v] | v ∈ F}
out[R1] := vsrhs +vs c2

else

out[R1] := >vs

end if

return out

R1 ≤ c

Let vsc := ([−231, c],>si, . . . ,>si) and out := in

out[R1] := in[R1]uvs
vsc

return out

R1 ≥ R2

Let vsR1 := in[R1] and vsR2 := in[R2]
Let vslb := RemoveUpperBounds(vsR2) and vsub := RemoveLowerBounds(vsR1)
out := in

out[R1] := vsR1 u
vs

vslb

out[R2] := vsR2 u
vs

vsub

return out

Fig. 4. Abstract transformers for VSA. (In the second and third instruction forms, s represents
the size of the dereference performed by the instruction.)

Each edge in the CFG is associated with an abstract transformer that captures
the semantics of the instruction represented by the CFG edge. Each abstract trans-
former takes an in ∈ AbsEnv and returns a new out ∈ AbsEnv. Sample abstract
transformers for various kinds of edges are listed in Fig. 4. Interesting cases in
Fig. 4 are described below:

—Because each AR region of a procedure that may be called recursively—as well
as each heap region—potentially represents more than one concrete data object,
assignments to their a-locs must be modeled by weak updates, i.e., the new value-
set must be joined with the existing one, rather than replacing it (see case two
of Fig. 4).

—Furthermore, unaligned writes can modify parts of various a-locs (which could
possibly create forged addresses). In case 2 of Fig. 4, such writes are treated

WYSINWYX: What You See Is Not What You eXecute · 21

1: decl worklist : Set of Node
2:
3: proc IntraProceduralVSA()
4: worklist := {enter}
5: absEnventer := Initial values of global a-locs and esp

6: while (worklist 6= ∅) do

7: Select and remove a node n from worklist
8: m := Number of successors of node n
9: for i = 1 to m do

10: succ := GetCFGSuccessor(n, i)
11: edge amc := AbstractTransformer (n → succ, absEnvn)
12: Propagate(succ, edge amc)
13: end for

14: end while

15: end proc

16:
17: proc Propagate(n: Node, edge amc: AbsEnv)
18: old := absEnvn

19: new := oldtae edge amc
20: if (old 6= new) then

21: absEnvn := new
22: worklist := worklist ∪ {n}
23: end if

24: end proc

Fig. 5. Intraprocedural VSA Algorithm.

safely by setting the values of all partially modified a-locs to >vs. Similarly, case
3 treats a load of a potentially forged address as a load of >vs. (Techniques for
more precise handling of partial accesses to a-locs are discussed in §4.)

Given a CFG G for a procedure (without calls), the goal of intraprocedural VSA
is to annotate each node n with absEnvn ∈ AbsEnv, where absEnvn represents
an over-approximation of the set of memory configurations that arise at node n
over all possible runs of the program. The intraprocedural version of the VSA
algorithm is given in Fig. 5. The value of absEnventer consists of information about
the initialized global variables and the initial value of the stack pointer (esp).

The AbsEnv abstract domain has very long ascending chains.6 Hence, to ensure
termination, widening needs to be performed. Widening needs to be carried out at
at least one edge of every cycle in the CFG; however, the edge at which widening
is performed can affect the accuracy of the analysis. To choose widening edges, our
implementation of VSA uses techniques due to Bourdoncle [1993] (see Balakrishnan
[2007, Ch. 7]).

Example 3.1. This example presents the results of intraprocedural VSA for the
program in Ex. 2.1. For the program in Ex. 2.1, the AbsEnv for the entry node of
main is {esp 7→ (⊥,0), mem 4 7→ (1,⊥), mem 8 7→ (2,⊥)}. Recall that instruction
“L1:mov [eax], ebx” updates the x members of array pts. Instruction “14: mov

6The domain is of bounded height because strided intervals are based on 32-bit two’s complement
arithmetic. However, for a given executable, the bound is very large: each a-loc can have up to
|MemRgn| SIs; hence the height is (n × |MemRgn| × 232), where n is the total number of a-locs.

22 · G. Balakrishnan and T. Reps

eax, [edi]” initializes the return value of main to p[0].y. The results of the VSA
algorithm at instructions L1, 8, and 14 are as follows:

Instruction L1 and 8 Instruction 14

esp 7→ (⊥,−44)
mem 4 7→ (1,⊥)
mem 8 7→ (2,⊥)
eax 7→ (⊥,8[−40,231 − 8])
ebx 7→ (1,⊥)
ecx 7→ (2,⊥)
edx 7→ (1[0,4],⊥)
edi 7→ >vs

var 44 7→ (⊥,−36)

esp 7→ (⊥,−44)
mem 4 7→ (1,⊥)
mem 8 7→ (2,⊥)
eax 7→ (⊥,8[−40,231 − 8])
ebx 7→ (1,⊥)
ecx 7→ (2,⊥)
edx 7→ (5,⊥)
edi 7→ (⊥,−36)

var 44 7→ (⊥,−36)

For instance, VSA recovers the following facts:

—At instruction L1, the set of possible values for edx is {0, 1, 2, 3, 4}. At instruction
14, the only possible value for edx is 5. (Recall that edx corresponds to the loop
variable i in the C program.)

—At instruction L1, eax holds the following set of addresses:
{(AR main,−40), (AR main,−32), . . . , (AR main,0), . . . , (AR main,231 − 8)}.

That is, at instruction L1, eax holds the addresses of the local a-locs var 40,
var 36, ret-addr, and FormalGuard. (See Fig. 3(b) for the layout of AR main.)
Therefore, instruction L1 possibly modifies var 40, var 36, ret-addr, and
FormalGuard.
Similarly, at instruction 8, eax+4 refers to the following set of addresses:

{(AR main,−36), (AR main,−28), . . . , (AR main,4), . . . , (AR main,231 − 4)}.
Therefore, instruction 8 possibly modifies var 36 and FormalGuard.

—At instruction 14, the only possible value for edi is the address (AR main,−36),
which corresponds to the address of the local a-loc var 36.

The value-sets obtained by the analysis can be used to discover the data de-
pendence that exists between instructions 8 and 14. At instruction 8, the set of
possibly-modified a-locs is {var 36, FormalGuard}. At instruction 14, the set of
used a-locs is {var 36}. Reaching-definitions analysis based on this information
reveals that instruction 14 is data dependent on instruction 8.

Reaching-definitions analysis based on the information at instruction L1 would
also reveal that instruction 14 is also data dependent on instruction L1, which
is spurious (i.e., a false positive), because the set of actual addresses accessed at
instruction L1 and instruction 14 are different. The reason for the spurious data
dependence is that the Semi-Näıve algorithm, described in §2, recovers too coarse
a set of a-locs. For instance, for the program in Ex. 2.1, the Semi-Näıve algorithm
failed to recover any information about the array pts. §4 presents an improved a-
loc-recovery algorithm that is capable of recovering information about arrays, fields
of structs, etc., thereby reducing the number of spurious data dependences.

At instruction L1, the set of possibly-modified a-locs includes ret-addr, which
is the a-loc for the return address. This is because the analysis was not able to
determine a precise upper bound for eax at instruction L1, although register edx

has a precise upper and lower bound at instruction L1. Note that, because eax

WYSINWYX: What You See Is Not What You eXecute · 23

and edx are incremented in lock-step within the loop, the affine relation eax =
(esp+edx×8)+4 holds at instruction L1. The implemented system identifies such
affine relations and uses them to find precise upper or lower bounds for registers,
such as eax, within a loop [Balakrishnan 2007, Ch. 7, Sect. 2].

�

3.4.1 Idioms. Before applying an abstract transformer, the instruction is checked
to see if it matches a pattern for which we know how to carry out abstract inter-
pretation more precisely than if value-set arithmetic were to be performed directly.
Some examples are given below.

XOR r1,r2, when r1 = r2 = r. The XOR instruction sets its first operand to the
bitwise-exclusive-or (∧) of the instruction’s two operands. The idiom catches the
case when XOR is used to set a register to 0; hence, the a-loc for register r is set to
the value-set (0[0,0],⊥, . . .).

TEST r1,r2, when r1 = r2 = r. The TEST instruction computes the bitwise-and
(&) of its two operands, and sets the SF, ZF, and PF flags according to the result.
The idiom addresses how the value of ZF is set when the value-set of r has the
form (si,⊥, . . .):

ZF :=

True if γ(si) = {0}
False if γ(si) ∩ {0} = ∅
Maybe otherwise

where ‘γ’ is the concretization function for the strided-interval domain (see §3.1).

CMP a,b or CMP b,a. In the present implementation, we assume that an alloca-
tion always succeeds (and hence value-set analysis only explores the behavior of the
system on executions in which allocations always succeed). Under this assumption,
we can apply the following idiom: Suppose that k1, k2, . . . are malloc-regions, the
value-set for a is (⊥, . . . , sik1, sik2, . . .), and the value-set for b is (0[0,0],⊥, . . .).
Then ZF is set to False.

3.4.2 Predicates for Conditional Branch Instructions. In x86 architectures, pred-
icates used in high-level control constructs such as if, while, for, etc. are imple-
mented using conditional branch instructions. A conditional branch instruction
(say jxx TGT) evaluates a predicate involving the processor’s flags and transfers
control to the target instruction (TGT) if the predicate expression is True; oth-
erwise, it transfers control to the next instruction. For instance, a jl instruction
evaluates the conditional expression SF = 1, where SF is the sign flag. It is not
clear from conditional expressions such as SF = 1 what the high-level predicate is.

To determine the high-level predicate, it is necessary to consider the instruction
that sets the processor’s flags before the conditional jump instruction is executed.
In Ex. 2.1, i < 5 is compiled down to the x86 instruction sequence (cmp edx, 5;
jl L1). The cmp operation sets the processor’s flags to the result of computing the
arithmetic expression edx−5. Instruction “cmp edx, 5” sets SF to 1 iff (edx−5 <
0), i.e., iff edx < 5. Because instruction jl is preceded by “cmp edx, 5” and jl

transfers control to L1 iff SF = 1, we conclude that the instruction sequence (cmp
edx, 5; jl L1) implements the high-level predicate edx < 5. High-level predicates

24 · G. Balakrishnan and T. Reps

cmp X, Y sub X, Y test X, Y

Flag Predicate Predicate Flag Predicate Predicate Flag Predicate Predicate

Unsigned Comparisons

ja,jnbe ¬CF ∧ ¬ZF X >u Y ¬CF ∧ ¬ZF X′ 6= 0 ¬ZF X&Y 6= 0

jae,jnb,jnc ¬CF X ≥u Y ¬CF True True True

jb,jnae,jc CF X <u Y CF X′ 6= 0 False False

jbe,jna CF ∨ ZF X ≤u Y CF ∨ ZF True ZF X&Y = 0

je,jz ZF X = Y ZF X′ = 0 ZF X&Y = 0

jne,jnz ¬ZF X 6= Y ¬ZF X′ 6= 0 ¬ZF X&Y 6= 0

Signed Comparisons

jg,jnle ¬ZF ∧ (OF ⇔ SF) X > Y ¬ZF ∧ (OF ⇔ SF) X′ > 0 ¬ZF ∧ ¬SF (X&Y 6= 0) ∧ (X > 0 ∨ Y > 0)

jge,jnl OF ⇔ SF X ≥ Y OF ⇔ SF True ¬SF (X ≥ 0 ∨ Y ≥ 0)

jl,jnge (OF ⊕ SF) X < Y (OF ⊕ SF) X′ < 0 SF (X < 0 ∧ Y < 0)

jle,jng ZF ∨ OF⊕ SF X ≤ Y ZF ∨ (OF⊕ SF) True ZF ∨ SF (X&Y = 0) ∨ (X < 0 ∧ Y < 0)

(Note: A⊕ B = (¬A ∧ B) ∨ (A ∧ ¬B), & refers to the bitwise-and operation.)

Fig. 6. High-level predicates for conditional jump instructions. (In column 5, X′ refers to the value
of X after the instruction executes. Because test sets CF and OF to False, the flag predicates in

column 6 have been simplified accordingly.)

for various instruction sequences involving conditional jump instructions are shown
in Fig. 6.

3.5 Context-Insensitive Interprocedural Value-Set Analysis

Let us consider procedure calls, but ignore indirect jumps and indirect calls for
now. The interprocedural algorithm is similar to the intraprocedural algorithm,
but analyzes the supergraph of the executable.

Supergraph. In addition to the nodes used in an intraprocedural CFG, a super-
graph has two nodes for every call-site: a call node and an end-call node. A super-
graph for a program is obtained by first building CFGs for individual procedures
and adding edges among call, end-call, enter, and exit nodes as follows:

—For every call-site call P, an edge is added from the CFG node for call P to
the enter node of procedure P.

—For every procedure P, an edge is added from the exit node of P to the end-call
node associated with every call to procedure P.

The call→enter and the exit→end-call edges are referred to as linkage edges. The
abstract transformers for non-linkage edges in a supergraph are similar to the ones
used in §3.4. The abstract transformers for the linkage edges are discussed in this
section.

Example 3.2. We use the program shown in Fig. 8 to explain the interprocedu-
ral version of VSA. The program consists of two procedures, main and initArray.
Procedure main has an array pts of struct Point objects, which is initialized by
calling initArray. After initialization, initArray returns the value of pts[0].y.

The memory-regions and their layout are shown in Fig. 7. Note that all the local
variables in initArray are mapped to registers in the disassembly: i is mapped
to edx, p is mapped to eax, and py is mapped to edi. Therefore, AR initArray

only has the following three a-locs: the return address, formal parameter arg 0,
and formal parameter arg 4. �

Observation 3.3. In our abstract memory model, we do not assume anything
about the relative positions of the memory-regions. However, at a call, it is possible

WYSINWYX: What You See Is Not What You eXecute · 25

-44

-40

ret-addr
0

ext_48
-48

var_40

ext_44

AR_main

arg_0

ret-addr

8

0

arg_4

4

AR_initArray

mem_8
8

4

Global Region

mem_4

Fig. 7. Layout of the memory-regions for the program in Ex. 3.2. (LocalGuard and FormalGuard

are not shown.)

typedef struct {
int x,y;

} Point;

int a = 1, b = 2;

int initArray(

struct Points pts[],
int n) {

int i, *py, *p;
py = &pts[0].y;

p = &pts[0];
for(i = 0; i < n; ++i) {

p->x = a;

p->y = b;
p += 8;

}
return *py;

}

int main(){
Point pts[5];
return initArray(pts, 5);

}

proc initArray ;
1 sub esp, 4 ;Allocate locals
2 lea eax, [esp+16] ;t1 = &pts[0].y

3 mov [esp+0], eax ;py = t1
4 mov ebx, [4] ;ebx = a

5 mov ecx, [8] ;ecx = b
6 mov edx, 0 ;i = 0

7 lea eax, [esp+12] ;p = &pts[0]
L1: mov [eax], ebx ;p->x = a
8 mov [eax+4],ecx ;p->y = b

9 add eax, 8 ;p += 8
10 inc edx ;i++

11 cmp edx,[esp+4] ;
12 jl L1 ;(i < n)?L1:exit loop
13 mov edi, [esp+0] ;t2 = py

14 mov eax, [edi] ;set return value (*t2)
15 add esp, 12 ;Deallocate locals and

;actuals
16 retn ;

;
proc main ;

17 sub esp, 40 ;Allocate locals

18 push 5 ;2nd actual

19 push esp ;1st actual
20 call initArray ;

21 add esp, 40 ;
22 retn ;

(a) (b)

Fig. 8. (a) A C program that initializes an array of structs; (b) the corresponding x86 program.

to establish the relative positions of the caller’s AR-region (AR C) and the callee’s
AR-region (AR X). Fig. 9 illustrates this idea. At runtime, AR C and AR X overlap on
the stack just before a call is executed. Specifically, the abstract address (AR C,−s)
in memory-region AR C corresponds to the abstract address (AR X,4) in memory-
region AR X. Therefore, the value of esp at a call refers to the abstract address
(AR C,−s) or (AR X,4). This observation about the relative positions of AR C and
AR X established at a call-site is used to develop the abstract transformers for the
linkage edges.

For instance, at instruction 20 in Ex. 3.2, (AR main,−48) corresponds to
(AR initArray, 4). Note that the observation about the relative positions of AR main

and AR initArray at instruction 20 enables us to establish a correspondence be-

26 · G. Balakrishnan and T. Reps

tween the formal parameters arg 0 and arg 4 of AR initArray and the actual
parameters ext 48 and ext 44 of AR main, respectively. (See Fig. 7.) This cor-
respondence between the actuals parameters of the caller and the formal parameters
of the callee is used to initialize the formal parameters in the abstract transformer
for a call→enter edge.

�

. . .
GLOBAL DATA

AR_X

AR_C

. . .

esp

(AR_C, 0)

s (AR_C, -s)
(or)

(AR_X, 4)return address

(AR_X, 0)

Fig. 9. Relative positions of the AR-regions of the caller (C) and callee (X) at a call.

3.5.1 Abstract Transformer for a call→enter Edge. The pseudo-code for the
abstract transformer for a call→enter edge is shown in Fig. 10. Procedure CallEn-
terTransformer takes the current AbsEnv value at the call node as an argument and
returns a new AbsEnv value for the call→enter edge. As a first step, the value-set of
esp in the newly computed value is set to (⊥, . . . ,0, . . . ,⊥), where the 0 occurs in
the slot for AR X (line 4 in Fig. 10). This step corresponds to changing the current
AR from that of AR C to AR X. After initializing esp, for every a-loc a ∈ a-locs[AR X],
the corresponding set of a-locs in the AR X is determined (line 8 of Fig. 10), and a
new value-set for a (namely newa) is computed (lines 6–15 of Fig. 10). (Note that
line 8 of Fig. 10 is based on Obs. 3.3.) If procedure X is not recursive, the value-set
for a in out is initialized to newa (line 19 of Fig. 10). If procedure X is recursive,
a weak update is performed (line 17 of Fig. 10). It is necessary to perform a weak
update (rather than a strong update as at line 19 of Fig. 10) because the AR-region
for a recursive procedure (say P) represents more than one concrete instance of P’s
activation record. Note that initialization of the a-locs of callee X (lines 5–20 of
Fig. 10) has the effect of copying the actual parameters of caller C to the formal
parameters of callee X.7

Example 3.4. In the fixpoint solution for the program in Ex. 3.2, the AbsEnv
for the enter node of initArray is as follows:

7Note that when processing the other instructions of callee X that update the value of a formal
parameter, we do not update the corresponding actual parameter of the caller, which is unsound.
We do not update the value-set of the actual parameter simultaneously because we do not know
relative positions of AR C and AR X at these instructions. The problem can be addressed by
tracking the relative positions of the memory-regions at all instructions (and an experimental
implementation that does so was carried out by J. Lim).

WYSINWYX: What You See Is Not What You eXecute · 27

1: proc CallEnterTransformer(in : AbsEnv): AbsEnv
2: Let C be the caller and X be the callee.
3: out := in
4: out[esp] := (⊥, . . . ,0, . . . ,⊥) // 0 occurs in the slot for AR X

5: for each a-loc a ∈ a-locs[AR X] do

6: Let Sa be the size of a-loc a.
7: // Find the corresponding a-locs in AR C.
8: (F, P) := ∗(in[esp] +vs offset(AR X, a), Sa)
9: newa := ⊥vs

10: if (P 6= ∅) then

11: newa := >vs

12: else

13: vsactuals := tvs{in[v] | v ∈ F}
14: newa := vsactuals

15: end if

16: if X is recursive then

17: out[a] := in[a]tvs newa

18: else

19: out[a] := newa

20: end if

21: end for

22: return out
23: end proc

Fig. 10. Transformer for call→enter edge.

mem 4 7→ (1,⊥,⊥) eax 7→ (⊥,−40,⊥)
mem 8 7→ (2,⊥,⊥) esp 7→ (⊥,⊥,0)
arg 0 7→ (⊥,−40,⊥) ext 48 7→ (⊥,−40,⊥)
arg 4 7→ (5,⊥,⊥) ext 44 7→ (5,⊥,⊥)

(The regions in the value-sets are listed in the following order: Global, AR main,
AR initArray.) Note that the formal parameters arg 0 and arg 4 of initArray

have been initialized to the value-sets of the corresponding actual parameters ext 48

and ext 44, respectively. �

3.5.2 Abstract Transformer for an exit→end-call Edge. Unlike other abstract
transformers, the transformer for an exit→end-call edge takes two AbsEnv values:
(1) inc, the AbsEnv value at the corresponding call node, and (2) inx, the AbsEnv
value at the exit node. The desired value for the exit→end-call edge is similar to inx

except for the value-sets of ebp, esp, and the a-locs of AR C. The new out ∈ AbsEnv
is obtained by merging inc and inx, as shown in Fig. 11.

In standard code, the value of ebp at the exit node of a procedure is usually
restored to the value of ebp at the call. Therefore, the value-set for ebp in the new
out is obtained from the value-set for ebp at the call-site (line 5 of Fig. 11). The
actual implementation of VSA checks the assumption that the value-set of ebp at
the exit node has been restored to the value-set of ebp at the corresponding call
node by comparing inx[ebp] and inc[ebp]. If inx[ebp] is different from inc[ebp], VSA
issues a report to the user.

Obs. 3.3 about the relative positions of AR-regions AR C and AR X is used to
determine the value-set for esp at the end-call node (lines 6–18 of Fig. 11). Re-
call that if esp holds the abstract address (AR C, s) at the call, (AR C, s) corre-

28 · G. Balakrishnan and T. Reps

1: proc MergeAtEndCall(inc: AbsEnv, inx: AbsEnv): AbsEnv
2: out := inx

3: Let AR C be the caller’s memory-region.
4: Let AR X be the callee’s memory-region.
5: out[ebp] := inc[ebp]
6: SIc := inc[esp][AR C]
7: SIx := inx[esp][AR X]
8: if (SIx 6= ⊥) then

9: VS′

esp := out[esp]

10: VS′

esp[AR C] := (SIc +si SIx)
11: if (AR C 6= AR X) then VS′

esp[AR X] := ⊥
12: out[esp] := VS′

esp

13: for each a-loc a ∈ a-locs[AR X]\{FormalGuard, LocalGuard} do

14: Update those a-locs in a-locs[AR C] that correspond to a. (This step is similar to
lines 5–20 of Fig. 10.)

15: end for

16: else

17: out[esp] := inx[esp]
18: end if

19: return out
20: end proc

Fig. 11. Abstract transformer for exit→end-call edge.

sponds to (AR X,4). When the call is executed, the return address is pushed on the
stack. Therefore, at the enter node of procedure X, esp holds the abstract address
(AR C, s− 4) or (AR X,0). Consequently, if esp holds the abstract address (AR X, t)
at the exit node of procedure X,8 the value-set of esp in the new AbsEnv value for the
exit→end-call edge can be set to (AR C, s+si t). For instance, at the call instruction
20 in Ex. 3.2, the value-set for esp is (⊥,−48,⊥). Therefore, the abstract address
(AR main,−48) corresponds to the abstract address (AR initArray,4). Further-
more, at the exit node of procedure initArray, esp holds the abstract address
(AR initArray,8). Consequently, the value-set of esp at the end-call node is the
abstract address (AR main,−40). Note that this adjustment to esp corresponds
to restoring the space allocated for actual parameters at the call-site of AR main.
Finally, the value-sets of the a-locs in a-locs[AR C] are updated, which is similar to
lines 5–20 of Fig. 10. If the value-set for esp at the exit node has no offsets in
AR X (the false branch of the condition at line 8 of Fig. 11), the value-set of esp

for the exit→end-call edge is set to the value-set for esp at the exit node. (The
condition at line 8 of Fig. 11 is usually false for procedures, such as alloca, that
do not allocate a new activation record on the stack.)

3.5.3 Interprocedural VSA algorithm. The algorithm for interprocedural VSA
is similar to the intraprocedural VSA algorithm given in Fig. 5 except that the
Propagate procedure is replaced with the one shown in Fig. 12.

3.6 Indirect Jumps and Indirect Calls

The supergraph of the program will not be complete in the presence of indirect
jumps and indirect calls. Consequently, the supergraph has to be augmented with

8We assume that the return address has been popped off the stack when the exit node is processed.

WYSINWYX: What You See Is Not What You eXecute · 29

1: proc Propagate(n: node, edge amc: AbsEnv)
2: old := absEnvn

3: if n is an end-call node then

4: Let c be the call node associated with n
5: edge amc := MergeAtEndCall(edge amc, absEnvc(cs))
6: end if

7: new := oldtae edge amc
8: if (old 6= new) then

9: absEnvn := new
10: worklist := worklist ∪ {n}
11: end if

12: end proc

Fig. 12. Propagate procedure for interprocedural VSA.

missing jump and call edges using abstract memory configurations determined by
VSA. For instance, suppose that VSA is interpreting an indirect-jump instruction
J1:jmp [1000 + eax × 4], and let the current abstract store at this instruction be
{eax 7→ (1[0,9],⊥, . . . ,⊥)}. Edges need to be added from J1 to the instructions
whose addresses could be in memory locations {1000, 1004, . . . , 1036}. If the
addresses {1000, 1004, . . . , 1036} refer to the read-only section of the program,
then the addresses of the successors of J1 can be read from the header of the
executable. If not, the addresses of the successors of J1 in locations {1000, 1004,
. . . , 1036} are determined from the current abstract store at J1. Due to possible
imprecision in VSA, it could be the case that VSA reports that the locations {1000,
1004, . . . , 1036} have all possible addresses. In such cases, VSA proceeds without
recording any new edges. However, this could lead to an under-approximation
of the value-sets at program points. Therefore, the analysis issues a report to
the user whenever such decisions are made. We will refer to such instructions as
unsafe instructions. Another issue with using the results of VSA is that an address
identified as a successor of J1 might not be the start of an instruction. Such
addresses are ignored, and the situation is reported to the user.

When new edges are identified, instead of adding them right away, VSA defers
the addition of new edges until a fixpoint is reached for the analysis of the current
supergraph. After a fixpoint is reached, the new edges are added and VSA is
restarted on the new supergraph. This process continues until no new edges are
identified during VSA.

Indirect calls are handled similarly, with a few additional complications.

—A successor instruction identified by the method outlined above may be in the
middle of a procedure. In such cases, VSA reports this to the user.

—The successor instruction may not be part of a procedure that was identified
by IDAPro. This can be due to the limitations of IDAPro’s procedure-finding
algorithm: IDAPro does not identify procedures that are called exclusively via
indirect calls. In such cases, VSA can invoke IDAPro’s procedure-finding algo-
rithm explicitly, to force a sequence of bytes from the executable to be decoded
into a sequence of instructions and spliced into the IR for the program. (At
present, this technique has not been incorporated in our implementation.)

30 · G. Balakrishnan and T. Reps

3.7 Context-Sensitive Interprocedural Value-Set Analysis

The VSA algorithm discussed so far is context-insensitive, i.e., at each node in a
procedure it does not maintain different abstract states for different calling contexts.
Merging information from different calling contexts can result in a loss of precision.
In this section, we discuss a context-sensitive VSA algorithm based on the call-
strings approach [Sharir and Pnueli 1981]. The context-sensitive VSA algorithm
distinguishes information from different calling contexts to a limited degree, thereby
computing a tighter approximation of the set of reachable concrete states at every
program point.

Call-Strings. The call-graph of a program is a labeled graph in which each node
represents a procedure, each edge represents a call, and the label on an edge repre-
sents the call-site corresponding to the call represented by the edge. A call-string
[Sharir and Pnueli 1981] is a sequence of call-sites (s1s2 . . . sn) such that call-site s1

belongs to the entry procedure, and there exists a path in the call-graph consisting
of edges with labels s1, s2, . . . , sn. CallString is the set of all call-strings for the
executable. CallSites is the set of call-sites in the executable.

A call-string suffix of length k is either (c1c2 . . . ck) or (∗c1c2 . . . ck), where c1,
c2, . . . , ck ∈ CallSites. (c1c2 . . . ck) represents the string of call-sites c1c2 . . . ck.
(∗c1c2 . . . ck), which is referred to as a saturated call-string, represents the set {cs ∈
CallString | cs = πc1c2 . . . ck, π ∈ CallString, and |π| ≥ 1}. CallStringk is the set
of saturated call-strings of length k, plus non-saturated call-strings of length ≤ k.
Consider the call-graph shown in Fig. 13(a). The set CallString2 for this call-graph
is {ε, C1, C2, C1C3, C2C4, *C3C5, *C4C5, *C5C4}.

The following operations are defined for a call-string suffix:

—cs �cs c: Let cs ∈ CallStringk and c ∈ CallSites. cs �cs c returns a new call-string
suffix c′ ∈ CallStringk as follows:

c′ =

{

(c1c2 . . . cic) if cs = (c1c2 . . . ci) ∧ (i < k)
(∗c2c3 . . . ckc) if cs = (c1c2 . . . ck)

—cs1 ;
cs cs2: Let cs1 ∈ CallStringk and cs2 ∈ CallStringk. (cs1 ;

cs cs2) evaluates
to True if cs1 leads to cs2, i.e., if ∃c ∈ CallSites such that (cs1 �cs c) = cs2;
otherwise, it evaluates to False.

Context-Sensitive VSA Algorithm. The context-sensitive VSA algorithm [Bal-
akrishnan 2007] associates each program point with an AbsMemConfig:

AbsMemConfig = (CallStringk → AbsEnv⊥)

That is, at every program point, VSA maps each call-string to a different AbsEnv,
thereby possibly distinguishing the information obtained from different call-sites to
a limited extent.

3.7.1 Memory-Region Status Map. Recall from case 2 of Fig. 4 that, for an a-loc
that belongs to the AR of a recursive procedure, it is only possible to perform a
weak update during intraprocedural VSA. During context-sensitive VSA, on the
other hand, it is possibly to perform a strong update in certain cases. For instance,
we can perform a strong update for a-locs that belong to a recursive procedure, if
recursion has not yet occurred in the given calling context. During VSA, all abstract

WYSINWYX: What You See Is Not What You eXecute · 31

MAIN

BA

D

c1 c2

c3
c4

c5

Call-string Length Memory-region
status map

Comment

C1C3 2 MAIN 7→ NS, A 7→
NS, D 7→ NS

B is inaccessible

C2C4 2 MAIN 7→ NS, B 7→
NS, D 7→ NS,

A is inaccessible

*C5C4 2 MAIN 7→ NS, A 7→
NS, B 7→ S,D 7→ S

(a) (b)

Fig. 13. (a) Call-graph; (b) memory-region status map for different call-strings. (Key: NS: non-
summary, S: summary; * refers to a saturated call-string.)

transformers are passed a memory-region status map that indicates which memory-
regions, in the context of a given call-string cs, are summary memory-regions.
Whereas the Global region is always non-summary and all malloc-regions are always
summary, to decide whether a procedure P ’s memory-region is a summary memory-
region, first call-string cs is traversed, and then the call graph is traversed, to see
whether the runtime stack could contain multiple pending activation records for P .
Fig. 13(b) shows the memory-region status map for different call-strings of length
2.

The memory-region status map provides one of two pieces of information used
to identify when a strong update can be performed. In particular, an abstract
transformer can perform a strong update if the operation modifies (a) a register,
or (b) a non-array variable9 in a non-summary memory-region.

3.8 Soundness of VSA

Soundness would mean that, for each instruction in the executable, value-set anal-
ysis would identify an AbsMemConfig that over-approximates the set of all possible
concrete stores that a program reaches during execution for all possible inputs.
This is a lofty goal; however, it is not clear that a tool that achieves this goal would
have practical value. (It is achievable trivially, merely by setting all value-sets to
>vs.) There are less lofty goals that do not meet this standard—but may result in
a more practical system. In particular, we may not care if the system is sound, as
long as it can provide warnings about the situations that arise during the analysis
that threaten the soundness of the results. This is the path that we followed in our
work.

Here are some of the cases in which the analysis can be unsound, but where the
system generates a report about the nature of the unsoundness:

—The program can read or write past the end of an AR. A report is generated at
each point at which LocalGuard or FormalGuard could be read from or written
to.

—The control-flow graph and call-graph may not identify all successors of indirect
jumps and indirect calls. Report generation for such cases is discussed in §3.6.

9The Semi-Näıve algorithm described in §2 does not recover information about arrays. However,
the a-loc-recovery algorithm described in §4 is capable of recovering information about arrays.

32 · G. Balakrishnan and T. Reps

—A related situation is a jump to a code sequence concealed in the regular instruc-
tion stream; the alternative code sequence would decode as a legal code sequence
when read out-of-registration with the instructions in which it is concealed. The
analysis could detect this situation as an anomalous jump to an address that is
in the code segment, but is not the start of an instruction.

—With self-modifying code, the control-flow graph and call-graph are not available
for analysis. The analysis can detect the possibility that the program is self-
modifying by identifying an anomalous jump or call to a modifiable location, or
by a write to an address in the code region.

3.9 Dynamically Loaded Libraries (DLLs)

In addition to statically linked libraries, application programs also use dynamically
loaded libraries (DLLs) to access common APIs. Unlike statically linked libraries,
the code for a DLL is not included with the executable. Therefore, to be sound,
CodeSurfer/x86 has to find and include the code for the DLLs during the analysis.
It is relatively simple for CodeSurfer/x86 to deal with DLLs that are known at link
time. Information about such DLLs is available in the executable’s header, and
therefore, CodeSurfer/x86 has to simply mimic the OS loader.

Executables may also load DLLs programmatically. A typical API sequence10

used to load a DLL and invoke an API method in the newly loaded DLL is as
follows: (1) invoke LoadLibrary with the name of the DLL as an argument, (2)
obtain the address of the required API method by invoking GetProcAddress with
the name of the API method as an argument, and (3) use the address obtained from
GetProcAddress to make the API call. Information about such DLLs is not known
until CodeSurfer/x86 analyzes the corresponding LoadLibrary call. Furthermore,
the calls to APIs in DLLs that are loaded programmatically appear as indirect
function calls in the executable. We deal with such DLLs in a way similar to
how indirect jumps and indirect calls are handled. Whenever a LoadLibrary call is
encountered, instead of loading the DLL right away, only the information about the
new DLL is recorded. When VSA reaches a fixpoint, the newly discovered DLLs
are loaded, and VSA is restarted. This process is repeated until no new DLLs are
discovered. §5 describes this iteration loop in detail.

4. IMPROVED TECHNIQUES FOR DISCOVERING (PROXIES FOR) VARIABLES

In this section, we return to the issue that was discussed in §2.2—namely, how
to identify variable-like entities (“a-locs”) that can serve as proxies for the missing
source-level variables in algorithms for further analysis of executables, such as VSA.

IDAPro’s Semi-Näıve algorithm for identifying a-locs, described in §2.2, has cer-
tain limitations. IDAPro’s algorithm only considers accesses to global variables
that appear as “[absolute-address]”, and accesses to local variables that appear as
“[esp + offset]” or “[ebp − offset]” in the executable. It does not take into account
accesses to elements of arrays and variables that are only accessed through point-
ers, and sometimes cannot take into account accesses to fields of structures, because
these accesses are performed in ways that do not match any of the patterns that
IDAPro considers. Therefore, it generally recovers only very coarse information

10The Windows API sequence is presented here. The techniques are not OS specific.

WYSINWYX: What You See Is Not What You eXecute · 33

about arrays and structures. Moreover, this approach fails to provide any informa-
tion about the fields of heap-allocated objects, which is crucial for understanding
programs that manipulate the heap.

The aim of the work presented in this section is to improve the state of the art
by using abstract interpretation [Cousot and Cousot 1977] to replace local analyses
with ones that take a more comprehensive view of the operations performed by
the program. We present an algorithm that combines Value-Set Analysis (VSA) as
described in §3 and Aggregate Structure Identification (ASI) [Ramalingam et al.
1999], which is an algorithm that infers the substructure of aggregates used in a
program based on how the program accesses them, to recover variables that are
better than those recovered by IDAPro. As explained in §4.4, the combination of
VSA and ASI allows us (a) to recover variables that are based on indirect accesses
to memory, rather than just the explicit addresses and offsets that occur in the pro-
gram, and (b) to identify structures, arrays, and nestings of structures and arrays.
Moreover, when the variables that are recovered by our algorithm are used during
VSA, the precision of VSA improves. This leads to an interesting abstraction-
refinement scheme; improved precision during VSA causes an improvement in the
quality of variables recovered by our algorithm, which, in turn, leads to improved
precision in a subsequent round of VSA, and so on.

Our goal is to subdivide the memory-regions of the executable into variable-like
entities (which we call a-locs, for “abstract locations”). These can then be used as
variables in tools that analyze executables. Memory-regions are subdivided using
the information about how the program accesses its data. The intuition behind this
approach is that data-access patterns in the program provide clues about how data
is laid out in memory. For instance, the fact that an instruction in the executable
accesses a sequence of four bytes in memory-region M is an indication that the
programmer (or the compiler) intended to have a four-byte-long variable or field at
the corresponding offset in M. First, we present the problems in developing such an
approach, and the insights behind our solution, which addresses those problems.
Details are provided in §4.4.

4.1 The Problem of Indirect Memory Accesses

The Semi-Näıve algorithm described in §2.2 uses the access expressions of the forms
“[absolute-address]”, “[esp + offset]”, and “[ebp −offset]” to recover a-locs. That
approach produces poor results in the presence of indirect memory operands.

Example 4.1. The program shown below initializes the two fields x and y of a
local struct through the pointer pp and returns 0. pp is located at offset -12,11 and
struct p is located at offset -8 in the activation record of main. Address expression
“ebp-8” refers to the address of p, and address expression “ebp-12” refers to the
address of pp.

11Recall that we follow the convention that the value of esp (the stack pointer) at the beginning
of a procedure marks the origin of the procedure’s AR-region.

34 · G. Balakrishnan and T. Reps

typedef struct {
int x, y;

} Point;

int main(){
Point p, *pp;

pp = &p;

pp->x = 1;

pp->y = 2;

return 0;

}

proc main

1 mov ebp, esp

2 sub esp, 12

3 lea eax, [ebp-8]

4 mov [ebp-12], eax

5 mov [eax], 1

6 mov [eax+4], 2

7 mov eax, 0

8 add esp, 12

9 retn

Instruction 4 initializes the value of pp. (Instruction “3 lea eax, [ebp-8]” is
equivalent to the assignment eax := ebp-8.) Instructions 5 and 6 update the
fields of p. Observe that, in the executable, the fields of p are updated via eax,
rather than via the pointer pp itself, which resides at address ebp-12. �

In Ex. 4.1, -8 and -12 are the offsets relative to the frame pointer (i.e., ebp)
that occur explicitly in the program. The Semi-Näıve algorithm would say that
offsets -12 through -9 of the AR of main constitute one variable (say var 12), and
offsets -8 through -1 of AR of main constitute another (say var 8). The Semi-
Näıve algorithm correctly identifies the position and size of pp. However, it groups
the two fields of p together into a single variable because it does not take into
consideration the indirect memory operand [eax+4] in instruction 6.

Typically, indirect operands are used to access arrays, fields of structures, fields
of heap-allocated data, etc. Therefore, to recover a useful collection of variables
from executables, one has to look beyond the explicitly occurring addresses and
stack-frame offsets. Unlike the operands considered in the Semi-Näıve algorithm,
local methods do not provide information about what an indirect memory operand
accesses. For instance, an operand such as “[ebp − offset]” (usually) accesses a local
variable. However, “[eax + 4]” may access a local variable, a global variable, a
field of a heap-allocated data-structure, etc., depending upon what eax contains.

Obtaining information about what an indirect memory operand accesses is not
straightforward. In this example, eax is initialized with the value of a register
(minus a constant offset). In general, a register used in an indirect memory operand
may be initialized with a value read from memory. In such cases, to determine the
value of the register, it is necessary to know the contents of that memory location,
and so on. Fortunately, Value-Set Analysis (VSA), described in §3, can provide
such information.

4.2 The Problem of Granularity and Expressiveness

The granularity and expressiveness of recovered variables can affect the precision
of analysis clients that use the recovered variables as the executable’s data objects.

As a specific example of an analysis client, consider a data-dependence analyzer,
which answers such questions as: “Does the write to memory at instruction L1

in Ex. 2.1 affect the read from memory at instruction 14”. Note that in Ex. 2.1
the write to memory at instruction L1 does not affect the read from memory at
instruction 14 because L1 updates the x members of the elements of array pts,

WYSINWYX: What You See Is Not What You eXecute · 35

while instruction 14 reads the y member of array element pts[0]. To simplify the
discussion, assume that a data-dependence analyzer works as follows: (1) annotate
each instruction with used, killed, and possibly-killed variables, and (2) compare
the used variables of each instruction with killed or possibly-killed variables of every
other instruction to determine data dependences.12

Consider three different partitions of the AR of main in Ex. 2.1:

VarSet1. As shown in Fig. 3(c), the Semi-Näıve approach from §2.2 would say
that the AR of main has three variables: var 44 (4 bytes), var 40 (4 bytes), and
var 36 (36 bytes). The variables that are possibly killed at L1 are {var 40, var 36},
and the variable used at 14 is var 36. Therefore, the data-dependence analyzer
reports that the write to memory at L1 might affect the read at 14. (This is sound,
but imprecise.)

VarSet2. As shown in Fig. 3(c), there are two variables for each element of
array pts. The variables possibly killed at L1 are {pts[0].x, pts[1].x, pts[2].x,
pts[3].x, pts[4].x}, and the variable used at instruction 14 is pts[0].y. Because
these sets are disjoint, the data-dependence analyzer reports that the memory write
at instruction L1 definitely does not affect the memory read at instruction 14.

VarSet3. Suppose that the AR of main is partitioned into just three variables: (1)
py, which represents the local variable py, (2) pts[?].x, which is a representative
for the x members of the elements of array pts, and (3) pts[?].y, which is a
representative for the y members of the elements of array pts. pts[?].x and
pts[?].y are summary variables because they represent more than one concrete
variable. The summary variable that is possibly killed at instruction L1 is pts[?].x
and the summary variable that is used at instruction 14 is pts[?].y. These are
disjoint; therefore, the data-dependence analyzer reports a definite answer, namely,
that the write at L1 does not affect the read at 14.

Of the three alternatives presented above, VarSet3 has several desirable features:

—It has a smaller number of variables than VarSet2. When it is used as the set of
variables in a data-dependence analyzer, it provides better results than VarSet1.

—The variables in VarSet3 are capable of representing a set of non-contiguous
memory locations. For instance, pts[?].x represents the locations corresponding
to pts[0].x, pts[1].x, . . . , pts[4].x. The ability to represent non-contiguous
sequences of memory locations is crucial for representing a specific field in an
array of structures.

—The AR of main is only partitioned as much as necessary. In VarSet3, only
one summary variable represents the x members of the elements of array pts,
while each member of each element of array pts is assigned a separate variable
in VarSet2.

12This method provides flow-insensitive data-dependence information; flow-sensitive data-
dependence information can be obtained by performing a reaching-definitions analysis in terms of
used, killed, and possibly-killed variables. This discussion is couched in terms of flow-insensitive
data-dependence information solely to simplify the discussion; the same issues arise even if one
uses flow-sensitive data-dependence information.

36 · G. Balakrishnan and T. Reps

A good variable-recovery algorithm should partition a memory-region in such a
way that the set of variables obtained from the partition has the desirable features of
VarSet3. When debugging information is available, this is a trivial task. However,
debugging information is often not available. Data-access patterns in the program
provide information that can serve as a substitute for debugging information. For
instance, instruction L1 accesses each of the four-byte sequences that start at offsets
{−40, −32, . . . , −8} in the AR of main. The common difference of 8 between
successive offsets is evidence that the offsets may represent the elements of an
array. Moreover, instruction L1 accesses every four bytes starting at these offsets.
Consequently, the elements of the array are judged to be structures in which one
of the fields is four bytes long.

4.3 Background: Aggregate Structure Identification (ASI)

Ramalingam et al. [1999] observe that there can be a loss of precision in the results
that are computed by a static-analysis algorithm if it does not distinguish between
accesses to different parts of the same aggregate (in Cobol programs). They devel-
oped the Aggregate Structure Identification (ASI) algorithm to distinguish among
such accesses, and showed how the results of ASI can improve the results of dataflow
analysis. This section briefly describes the ASI algorithm. (In §4.4, we show how
to use the information gathered during VSA to harness ASI to the problem of
identifying variable-like entities in executables.)

ASI [Ramalingam et al. 1999] is a unification-based, flow-insensitive algorithm to
identify the structure of aggregates in a program (such as arrays, C structs, etc.).
The algorithm ignores any type information known about aggregates, and considers
each aggregate to be merely a sequence of bytes of a given length. The aggregate is
then broken up into smaller parts depending on how it is accessed by the program.
The smaller parts are called atoms.

The data-access patterns in the program are specified to the ASI algorithm
through a data-access constraint language (DAC). The syntax of DAC programs
is shown in Fig. 14. There are two kinds of constructs in a DAC program: (1)
DataRef is a reference to a set of bytes, and provides a means to specify how the
data is accessed in the program; (2) UnifyConstraint provides a means to spec-
ify the flow of data in the program. Note that the direction of data flow is not
considered in a UnifyConstraint. The justification for this is that a flow of data
from one sequence of bytes to another is evidence that they should both have the
same structure. ASI uses the constraints in the DAC program to find a coarsest
refinement of the aggregates.

Pgm ::= ε | UnifyConstraint Pgm

UnifyConstraint ::= DataRef ≈ DataRef ;

DataRef ::= ProgVars | DataRef[UInt:UInt] | DataRef\UInt+

Fig. 14. Data-Access Constraint (DAC) language. UInt is the set of non-negative integers; UInt+

is the set of positive integers; and ProgVars is the set of program variables.

There are three kinds of data references:

—A variable P ∈ ProgVars refers to all the bytes of variable P.

WYSINWYX: What You See Is Not What You eXecute · 37

—DataRef[l:u] refers to bytes l through u in DataRef. For example, P[8:11]

refers to bytes 8..11 of variable P.

—DataRef\n is interpreted as follows: DataRef is an array of n elements and
DataRef\n refers to the bytes of an element of array DataRef. For example,
P[0:11]\3 refers to the sequences of bytes P[0:3], P[4:7], or P[8:11].

Instead of going into the details of the ASI algorithm, we provide the intuition
behind the algorithm by means of an example. Consider the source-code program
shown in Ex. 2.1. The data-access constraints for the program are

pts[0:39]\5[0:3] ≈ a[0:3];

pts[0:39]\5[4:7] ≈ b[0:3];

return main[0:3] ≈ pts[4:7];

i[0:3] ≈ const 1[0:3];

p[0:3] ≈ const 2[0:3];

py[0:3] ≈ const 3[0:3];

The first constraint encodes the initialization of the x members, namely, pts[i].x
= a. The DataRef pts[0:39]\5[0:3] refers to the bytes that correspond to the x

members in array pts. The third constraint corresponds to the return statement;
it represents the fact that the return value of main is assigned bytes 4..7 of pts,
which correspond to pts[0].y. The constraints reflect the fact that the size of
Point is 8 and that x and y are laid out next to each other.

40

44

4 ⊗⊗⊗⊗

pts i

4

return_main
8

p py

44 4

40(i1)

4 ⊗⊗⊗⊗ (i2)

ptsi

4(a1)

return_main

8(i3)4(a2)

4(a3) 4(a4)

4(a5) 4(a6)
p

4(a7)

py

4(a8)

struct {
int a3;

int a4;

struct {
int a5;

int a6;

} i3[4];

} pts;

(a) (b) (c)

Fig. 15. (a) ASI DAG, (b) ASI tree, and (c) the struct recovered for the program in Ex. 2.1. (To
avoid clutter, global variables are not shown.)

The result of the ASI atomization algorithm is a DAG that shows the structure
of each aggregate as well as relationships among the atoms of aggregates. The DAG
for Ex. 2.1 is shown in Fig. 15(a). An ASI DAG has the following properties:

—A node represents a set of bytes.

—A sequence of bytes that is accessed as an array in the program is represented by
an array node. Array nodes are labeled with

⊗

. The number in an array node
represents the number of elements in the array. An array node has one child,
and the DAG rooted at the child represents the structure of the array element.
In Fig. 15(a), bytes 8..39 of array pts are identified as an array of four 8-byte
elements. Each array element is a struct with two fields of 4 bytes each.

38 · G. Balakrishnan and T. Reps

—A sequence of bytes that is accessed like a C struct in the program is represented
by a struct node. The number in the struct node represents the length of the
struct; the children of a struct node represent the fields of the struct. The order
of the children in the DAG represent the order of the fields in the struct. In
Fig. 15(a), bytes 0..39 of pts are identified as a struct with three fields: two
4-byte scalars and one 32-byte array.

—Nodes are shared if there is a flow of data in the program involving the corre-
sponding sequence of bytes either directly or indirectly. In Fig. 15(a), the nodes
for the sequences of bytes return main[0:3] and pts[4:7] are shared because of
the return statement in main. Similarly, the sequence of bytes that correspond
to the y members of array pts, namely pts[0:39]\5[4:7], share the same node
because they are all assigned the same constant at the same instruction.

The ASI DAG is converted into an ASI tree by duplicating shared nodes. The
atoms of an aggregate are the leaves of the corresponding ASI tree. Fig. 15(b)
shows the ASI tree for Ex. 2.1. ASI has identified that pts has the structure shown
in Fig. 15(c).

4.4 Recovering A-locs via Iteration

The atoms identified by ASI for Ex. 2.1 are close to the set of variables VarSet3

that was discussed in §4.2. One might hope to apply ASI to an executable by
treating each memory-region as an aggregate and determining the structure of each
memory-region (without using VSA results). However, one of the requirements for
applying ASI is that it must be possible to extract data-access constraints from
the program. When applying ASI to programs written in languages such as Cobol
this is possible: the data-access patterns—in particular, the data-access patterns
for array accesses—are apparent from the syntax of the Cobol constructs under
consideration. Unfortunately, this is not the case for executables. For instance, the
memory operand [eax] can either represent an access to a single variable or to the
elements of an array.

Fortunately, the results of VSA provide information that can be used to gen-
erate suitable data-access constraints for an executable. A value-set is an over-
approximation of a set of offsets in each memory-region. We use VSA results to
interpret each indirect memory operand to obtain an over-approximation of the set
of locations that the operand may access. Together with the information about the
number of bytes accessed (which is available from the instruction), this provides
the information needed to generate data-access constraints for the executable.

Some of the features of VSA that are useful in a-loc recovery are

—VSA provides information about indirect memory operands: For the program in
Ex. 4.1, VSA determines that the value-set of eax at instruction 6 is (∅,0[−8,−8]),
which means that eax must hold the offset −8 in the AR-region of main. Us-
ing this information, we can conclude that [eax+4] refers to offset −4 in the
AR-region of main.

—VSA provides data-access patterns: For the program in Ex. 2.1, VSA determines
that the value-set of eax at program point L1 is (∅,8[−40,−8]), which means
that eax may hold the offsets {−40,−32, . . . ,−8} in the AR-region of main.
(These offsets are the starting addresses of field x of elements of array pts.)

WYSINWYX: What You See Is Not What You eXecute · 39

—VSA tracks updates to memory: This is important because, in general, the reg-
isters used in an indirect memory operand may be initialized with a value read
from memory. If updates to memory are not tracked, we may neither have useful
information for indirect memory operands nor useful data-access patterns for the
executable.

Furthermore, when we use the atoms of ASI as a-locs in VSA, the results of VSA
can improve. Consider the program in Ex. 4.1. Recall from §4.1 that the length
of var 8 is 8 bytes. Because value-sets are only capable of representing a set of
4-byte addresses and 4-byte values, VSA recovers no useful information for var 8:
it merely reports that the value-set of var 8 is >vs (meaning any possible value or
address). Applying ASI (using data-access patterns provided by VSA) results in the
splitting of var 8 into two 4-byte a-locs, namely, var 8.0 and var 8.4. Because
var 8.0 and var 8.4 are each four bytes long, VSA can now track the set of values
or addresses in these a-locs. Specifically, VSA would determine that var 8.0 (i.e.,
p.x) has the value 1 and var 8.4 (i.e., p.y) has the value 2 at the end of main.

We can use the new VSA results to perform another round of ASI. If the value-
sets computed by VSA are improved from the previous round, the next round of
ASI may also improve. We can repeat this process as long as desired, or until the
process converges (see §5).

Although not illustrated by Ex. 4.1, additional rounds of ASI and VSA can result
in further improvements. For example, suppose that the program uses a chain of
pointers to link structs of different types, e.g., variable ap points to a struct A,
which has a field bp that points to a struct B, which has a field cp that points to
a struct C, and so on. Typically, the first round of VSA recovers the value of ap,
which lets ASI discover the a-loc for A.bp (from the code compiled for ap->bp);
the second round of VSA recovers the value of ap->bp, which lets ASI discover the
a-loc for B.cp (from the code compiled for ap->bp->cp); etc.

To summarize, the algorithm for recovering a-locs is

(1) Run VSA using a-locs recovered by the Semi-Näıve approach

(2) Generate data-access patterns from the results of VSA

(3) Run ASI

(4) Run VSA

(5) Repeat steps 2, 3, and 4 until there are no improvements to the results of
VSA.13

Because ASI is a unification-based algorithm, generating data-access constraints
for certain kinds of instructions leads to undesirable results (see §4.8 for more
details). Fortunately, it is not necessary to generate data-access constraints for all
instructions in the program that contain memory-access expressions because VSA
generates sound results for any collection of a-locs with which it is supplied. For
these reasons, ASI is used only as a heuristic to find a-locs for VSA. (If VSA is
supplied with very coarse a-locs, many a-locs will be found to have the value >vs

13Or, equivalently, until the set of a-locs discovered in step 3 is unchanged from the set previously
discovered in step 3 (or step 1).

40 · G. Balakrishnan and T. Reps

at most points; however, by refining the a-locs in use, more precise answers can
generally be obtained.)

In short, our abstraction-refinement principles are as follows:

(1) VSA results are used to interpret memory-access expressions in the executable.

(2) ASI is used as a heuristic to determine the structure of each memory-region
according to information recovered by VSA.

(3) Each ASI tree reflects the memory-access patterns in one memory-region, and
the leaves of the ASI trees define the a-locs that are used for the next round of
VSA.

ASI alone is not a replacement for VSA. That is, ASI cannot be applied to exe-
cutables without the information that is obtained from VSA—namely value-sets.

In the rest of this section, we describe the interplay between VSA and ASI: (1)
we show how value-sets are used to generate data-access constraints for input to
ASI, and (2) how the atoms in the ASI trees are used as a-locs during the next
round of VSA.

4.5 Generating Data-Access Constraints

This section describes the algorithm that generates ASI data-references for x86
operands. Three forms of x86 operands need to be considered: (1) register operands,
(2) memory operands of form “[register]”, and (3) memory operands of the form
“[base + index × scale + offset]”.

To prevent unwanted unification during ASI, we rename registers using live-
ranges. For a register r, the ASI data-reference is rlr[0 : n − 1], where lr is the
live-range of the register at the given instruction and n is the size of the register
(in bytes).

In the rest of the section, we describe the algorithm for memory operands. First,
we consider indirect operands of the form [r]. To gain intuition about the algorithm,
consider operand [eax] of instruction L1 in Ex. 2.1. The value-set associated with
eax is (∅,8[−40,−8]). The stride value of 8 and the interval [−40,−8] in the AR of
main provide evidence that [eax] is an access to the elements of an array of 8-byte
elements in the range [−40,−8] of the AR of main; an array access is generated for
this operand.

Recall that a value-set is an n-tuple of strided intervals. The strided interval
s[l, u] in each component represents the offsets in the corresponding memory-region.
Fig. 16 shows the pseudocode to convert offsets in a memory-region into an ASI
reference. Procedure SI2ASI takes the name of a memory-region r, a strided in-
terval s[l, u], and length (the number of bytes accessed) as arguments. The length
parameter is obtained from the instruction. For example, the length for [eax] is 4
because the instruction at L1 in Ex. 2.1 is a four-byte data transfer. The algorithm
returns a pair in which the first component is an ASI reference and the second
component is a Boolean. The significance of the Boolean component is described
later in this section. The algorithm works as follows: If s[l, u] is a singleton (i.e.,
it represents just a single value, and thus s = 0 and l = u), then the ASI reference
is the one that accesses offsets l to l + length − 1 in the aggregate associated with
memory-region r. If s[l, u] is not a singleton, then the offsets represented by s[l, u]
are treated as references to an array. The size of the array element is the stride s

WYSINWYX: What You See Is Not What You eXecute · 41

Input: The name of a memory-region r, strided interval s[l, u], number of bytes accessed length.
Output: A pair in which the first component is an ASI reference for the sequence of length

bytes starting at offsets s[l, u] in memory-region r and the second component is a Boolean that
represents whether the ASI reference is an exact reference (true) or an approximate one (false).
(‖ denotes string concatenation.)

proc SI2ASI (r: String, s[l, u]: StridedInterval, length: Integer)
if s[l, u] is a singleton then

return 〈r ‖ “[l : l + length − 1]”, true〉
else

size := max(s, length)
n := b(u − l)/sizec + 1
ref := r ‖ “[l : u + size − 1]\n[0 : length − 1]”
return 〈ref, (s ≥ length)〉

end if

end proc

Fig. 16. Algorithm to convert a given strided interval into an ASI reference.

whenever (s ≥ length). However, when (s < length) an overlapping set of locations
is accessed by the indirect memory operand. Because an overlapping set of loca-
tions cannot be represented using an ASI reference, the algorithm chooses length as
the size of the array element. This is not a problem for the soundness of subsequent
rounds of VSA because of refinement principle 2. The Boolean component of the
pair denotes whether the algorithm generated an exact ASI reference or not. The
number of elements in the array is b(u − l)/sizec + 1.

For operands of the form [r], the set of ASI references is generated by invok-
ing procedure SI2ASI shown in Fig. 16 for each non-empty memory-region in r’s
value-set. For Ex. 2.1, the value-set associated with eax at L1 is (∅,8[−40,−8]).
Therefore, the set of ASI references is {AR main[(-40):(-1)]\5[0:3]}.14 There are no
references to the Global region because the set of offsets in that region is empty.

The algorithm for converting indirect operands of the form [base + index × scale
+ offset] is given in Fig. 17. One typical use of indirect operands of the form
[base + index × scale + offset] is to access two-dimensional arrays. Note that
scale and offset are statically-known constants. Because abstract values are strided
intervals, we can absorb scale and offset into base and index. Hence, without loss of
generality, we only discuss memory operands of the form [base+index]. Assuming
that the two-dimensional array is stored in row-major order, one of the registers
(usually base) holds the starting addresses of the rows and the other register (usually
index) holds the indices of the elements in the row. Fig. 17 shows the algorithm to
generate an ASI reference, when the set of offsets in a memory-region is expressed
as a sum of two strided intervals as in [base+index]. Note that we could have
used procedure SI2ASI shown in Fig. 16 by computing the abstract sum (+si) of
the two strided intervals. However, doing so results in a loss of precision because
strided intervals can only represent a single stride exactly, and this would prevent us
from recovering the structure of two-dimensional arrays. (In some circumstances,

14Offsets in a DataRef cannot be negative. Negative offsets are used for clarity. Negative offsets
are mapped to the range [0, 231 − 1]; non-negative offsets are mapped to the range [231, 232 − 1].

42 · G. Balakrishnan and T. Reps

Input: The name of a memory-region r, two strided intervals s1[l1, u1] and s2[l2, u2], number of
bytes accessed length.

Output: An ASI reference for the sequence of length bytes starting at offsets s1[l1, u1]+s2[l2, u2]
in memory region r.

proc TwoSIsToASI (r: String, s1[l1, u1]: StridedInterval, s2[l2, u2]: StridedInterval, length:
Integer)

if (s1[l1, u1] or s2[l2, u2] is a singleton) then

return SI2ASI (r, s1[l1, u1] +si s2[l2, u2], length)
end if

if s1 ≥ (u2 − l2 + length) then

baseSI := s1[l1, u1]
indexSI := s2[l2, u2]

else if s2 ≥ (u1 − l1 + length) then

baseSI := s2[l2, u2]
indexSI := s1[l1, u1]

else

return SI2ASI (r, s1[l1, u1] +si s2[l2, u2], length)
end if

〈baseRef, 〉 := SI2ASI (r,baseSI, stride(baseSI)) // SI2ASI always returns an exact refer-
ence here.
return baseRef ‖ SI2ASI (“”, indexSI, length)

end proc

Fig. 17. Algorithm to convert the set of offsets represented by the sum of two strided intervals
into an ASI reference.

our implementation of ASI can recover the structure of arrays of 3 and higher
dimensions.)

Procedure TwoSIsToASI works as follows: First, it determines which of the two
strided intervals is used as the base because it is not always apparent from the
representation of the operand. The strided interval that is used as the base should
have a stride that is greater than the length of the interval in the other strided
interval. Once the roles of the strided intervals are established, the algorithm
generates the ASI reference for base followed by the ASI reference for index. In
some cases, the algorithm cannot establish either of the strided intervals as the
base. In such cases, the algorithm computes the abstract sum (+si) of the two
strided intervals and invokes procedure SI2ASI .

Procedure TwoSIsToASI generates a richer set of ASI references than procedure
SI2ASI shown in Fig. 16. For example, consider the indirect memory operand
[eax+ecx] from a loop that traverses a two-dimensional array of type char[5][10].
Suppose that the value-set of ecx is (∅, 10[−50,−10]), the value-set of eax is
(1[0, 9], ∅), and length is 1. For this example, the ASI reference that is generated is
“AR[-50:-1]\5[0:9]\10[0:0]”. That is, AR is accessed as an array of five 10-byte
entities, and each 10-byte entity is accessed as an array of ten 1-byte entities. In
contrast, if we performed (∅, 10[−50,−10]) +vs (1[0, 9], ∅) = (∅, 1[−50,−1]) and ap-
plied SI2ASI , the ASI reference that would be generated is “AR[-50:-1]\50[0:0]”;
i.e., AR is accessed as an array of fifty 1-byte entities.

WYSINWYX: What You See Is Not What You eXecute · 43

4.6 Interpreting Indirect Memory References

This section describes a lookup algorithm that finds the set of a-locs accessed by a
memory operand. The algorithm is used to interpret pointer-dereference operations
during VSA. For instance, consider the instruction “mov [eax], 10”. During VSA,
the lookup algorithm is used to determine the a-locs accessed by [eax] and the
value-sets for the a-locs are updated accordingly. In §3, the algorithm to determine
the set of a-locs for a given value-set is trivial because each memory-region in §3
consists of a linear list of a-locs generated by the Semi-Näıve approach. However,
after ASI is performed, the structure of each memory-region is an ASI tree.

Ramalingam et al. [1999] present a lookup algorithm to retrieve the set of atoms
for an ASI expression. However, their lookup algorithm is not appropriate for use
in VSA because the algorithm assumes that the only ASI expressions that can
arise during lookup are the ones that were used during the atomization phase.
Unfortunately, this is not the case during VSA, for the following reasons:

—ASI is used as a heuristic. As will be discussed in §4.8, some data-access patterns
that arise during VSA should be ignored during ASI.

—The executable can access fields of structures that have not yet been broken down
into atoms. For example, the initial round of ASI, which is based on data-access
constraints generated using the Semi-Näıve approach, will not have performed
atomization based on accesses on fields of structures. However, the first round
of VSA may have to interpret such field accesses.

We will use the tree shown in Fig. 15(b) to describe the lookup algorithm. Every
node in the tree is given a unique name (shown within parentheses). The following
terms are used in describing the lookup algorithm:

—NodeFrag is a descriptor for a part of an ASI tree node and is denoted by a triple
〈name, start, length〉, where name is the name of the ASI tree node, start is the
starting offset within the ASI tree node, and length is the length of the fragment.

—NodeFragList is an ordered list of NodeFrag descriptors, [nd1, nd2, . . . , ndn]. A
NodeFragList represents a contiguous set of offsets in an aggregate. For example,
[〈a3, 2, 2〉, 〈a4, 0, 2〉] represents the offsets 2..5 of node i1; offsets 2..3 come from
〈a3, 2, 2〉 and offsets 4..5 come from 〈a4, 0, 2〉.

The lookup algorithm traverses the ASI tree, guided by the ASI reference for
the given memory operand. First, the memory operand is converted into an
ASI reference using the algorithm described in §4.5, and the resulting ASI
reference is broken down into a sequence of ASI operations. The task of
the lookup algorithm is to interpret the sequence of operations working left-
to-right. There are three kinds of ASI operations: (1) GetChildren(aloc),
(2) GetRange(start, end), and (3) GetArrayElements(m). For example,
the list of ASI operations for “pts[0:39]\10[0:1]” is [GetChildren(pts),

GetRange(0,39), GetArrayElements(10), GetRange(0,1)]. Each operation
takes a NodeFragList as argument and returns a set of NodeFragList values.
The operations are performed from left to right. The argument of each operation
comes from the result of the operation that is immediately to its left. The a-locs
that are accessed are all the a-locs in the final set of NodeFrag descriptors.

44 · G. Balakrishnan and T. Reps

The GetChildren(aloc) operation returns a NodeFragList that contains
NodeFrag descriptors corresponding to the children of the root node of the tree
associated with the aggregate aloc.
GetRange(start, end) returns a NodeFragList that contains NodeFrag descrip-

tors representing the nodes with offsets in the given range [start : end].
GetArrayElements(m) treats the given NodeFragList as an array of m elements

and returns a set of NodeFragList lists. Each NodeFragList list represents an
array element. There can be more than one NodeFragList for the array elements
because an array can be split during the atomization phase and different parts of
the array might be represented by different nodes.

The following examples illustrate traces of a few lookups.

Example 4.2. Lookup pts[0:3]

[〈i1, 0, 40〉]
GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]
GetRange(0,3) ⇓

[〈a3, 0, 4〉]

GetChildren(pts) returns the NodeFragList [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]. Ap-
plying GetRange(0,3) returns [〈a3, 0, 4〉] because that describes offsets 0..3 in the
given NodeFragList. The a-loc that is accessed by pts[0:3] is a3. �

Example 4.3. Lookup pts[0:39]\5[0:3]
Let us look at GetArrayElements(5) because the other operations are similar

to Ex. 4.2. GetArrayElements(5) is applied to [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉].
The total length of the given NodeFragList is 40 and the number of required array
elements is 5. Therefore, the size of the array element is 8. Intuitively, the operation
unrolls the given NodeFragList and creates a NodeFragList for every unique n-
byte sequence starting from the left, where n is the length of the array element. In
this example, the unrolled NodeFragList is [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈a5, 0, 4〉, 〈a6, 0, 4〉,
. . . , 〈a5, 0, 4〉, 〈a6, 0, 4〉]. The set of unique 8-byte NodeFragLists has two ordered
lists: {[〈a3, 0, 4〉, 〈a4, 0, 4〉], [〈a5, 0, 4〉, 〈a6, 0, 4〉]}.

[〈i1, 0, 40〉]
GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]
GetRange(0,39) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]
GetArrayElements(5) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉],
[〈a5, 0, 4〉, 〈a6, 0, 4〉]

GetRange(0,3) ⇓
[〈a3, 0, 4〉],
[〈a5, 0, 4〉]

�

Example 4.4. Lookup pts[8:37]\5[0:5]
This example shows a slightly complicated case of the GetArrayElements opera-

tion. Unrolling of [〈i2, 0, 30〉] results in four distinct representations for 6-byte array

WYSINWYX: What You See Is Not What You eXecute · 45

elements, namely, [〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉], [〈a6, 0, 4〉, 〈a5, 0, 2〉],
and [〈a5, 2, 2〉, 〈a6, 0, 4〉].

[〈i1, 0, 40〉]
GetChildren(pts) ⇓

[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]
GetRange(8, 37) ⇓

[〈i2, 0, 30〉]
GetArrayElements(5) ⇓

[〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉],
[〈a6, 0, 4〉, 〈a5, 0, 2〉], [〈a5, 2, 2〉, 〈a6, 0, 4〉]

GetRange(0, 5) ⇓
[〈a5, 0, 4〉, 〈a6, 0, 2〉], [〈a6, 2, 2〉, 〈a5, 0, 4〉],
[〈a6, 0, 4〉, 〈a5, 0, 2〉], [〈a5, 2, 2〉, 〈a6, 0, 4〉]

�

Handling an access to a part of an a-loc. The abstract transformers for VSA as
shown in Fig. 4 handle partial updates to a-locs (i.e., updates to parts of an a-loc)
very imprecisely. For instance, the abstract transformer for “∗(R1+ c1) = R2+ c2”
in Fig. 4 sets the value-sets of all the partially accessed a-locs to >vs. Consider
“pts[0:1] = 0x10”.15 The lookup operation for pts[0:1] returns [〈a3, 0, 2〉],
where 〈a3, 0, 2〉 refers to the first two bytes of a3. The abstract transformer from
Fig. 4 “gives up” (because only part of a3 is affected) and sets the value-set of a3

to >vs, which would lead to imprecise results. Similarly, a memory read that only
accesses a part of an a-loc is treated conservatively as a load of >vs (cf. case 3
of Fig. 4). The abstract transformers for VSA are modified as outlined below to
handle partial updates and partial reads more precisely.

The value-set domain [Reps et al. 2006] provides bit-wise operations such as bit-
wise and (&vs), bit-wise or (|vs), left shift (�vs), right shift (�vs), etc. We use these
operations to adjust the value-set associated with an a-loc when a partial update
has to be performed during VSA. Assuming that the underlying architecture is
little-endian, the abstract transformer for “pts[0:1] = 0x10” updates the value-
set associated with a3 as follows:

ValueSet′(a3) = (ValueSet(a3) &vs 0xffff0000) |vs (0x10).
(A read that only accesses a part of an a-loc is handled in a similar manner.)

4.7 Hierarchical A-locs

The iteration of ASI and VSA can over-refine the memory-regions. For instance,
suppose that the 4-byte a-loc a3 in Fig. 15(b) used in some round i is partitioned
into two 2-byte a-locs, namely, a3.0, and a3.2 in round i + 1. This sort of over-
refinement can affect the results of VSA; in general, because of the properties
of strided-intervals, a 4-byte value-set reconstructed from two adjacent 2-byte a-
locs can be less precise than if the information was retrieved from a 4-byte a-
loc. For instance, suppose that at some instruction S, a3 holds either 0x100000 or
0x110001. In round i, this information is exactly represented by the 4-byte strided
interval 0x10001[0x100000, 0x110001] for a3. On the other hand, the same set of
numbers can only be over-approximated by two 2-byte strided intervals, namely,

15Numbers that start with “0x” are in C hexadecimal format.

46 · G. Balakrishnan and T. Reps

2(a3.0)

4(a3)

2(a3.2)

Fig. 18. Hierarchical a-locs.

1[0x0000, 0x0001] for a3.0, and 0x1[0x10,0x11] for a3.2 (for a little-endian machine).
Consequently, if a 4-byte read of a3 in round i+1 is handled by reconstituting a3’s
value from a3.0 and a3.2, the result would be less precise:

ValueSet(a3) = (ValueSet(a3.2) �vs 16)|vsValueSet(a3.0)
= {0x100000, 0x100001, 0x110000, 0x110001}
⊃ {0x100000, 0x110001}.

We avoid the effects of over-refinement by keeping track of the value-sets for a-loc
a3 as well as a-locs a3.0 and a3.2 in round i + 1. Whenever any of a3, a3.0, and
a3.2 is updated during round i + 1, the overlapping a-locs are updated as well. For
example, if a3.0 is updated then the first two bytes of the value-set of a-loc a3 are
also updated (for a little-endian machine). For a 4-byte read of a3, the value-set
returned would be 0x10001[0x100000, 0x110001].

In general, if an a-loc a of length ≤ 4 gets partitioned into a sequence of a-locs
[a1, a2, . . . , an] during some round of ASI, in the subsequent round of VSA, we
use a as well as {a1, a2, . . . , an}. We also remember the parent-child relationship
between a and the a-locs in {a1, a2, . . . , an} so that we can update a whenever any
of the ai is updated during VSA and vice versa. In our example, the ASI tree used
for round i + 1 of VSA is identical to the tree in Fig. 15(b), except that the node
corresponding to a3 is replaced with the tree shown in Fig. 18.

One of the sources of over-refinement is the use of union types in the program.
The use of hierarchical a-locs allows at least some degree of precision to be retained
in the presence of unions.

4.8 Pragmatics

ASI takes into account the accesses and data transfers involving memory, and finds
a partition of the memory-regions that is consistent with these transfers. However,
from the standpoint of accuracy of VSA and its clients, it is not always beneficial
to take into account all possible accesses:

—VSA might obtain a very conservative estimate for the value-set of a register (say
R). For instance, the value-set for R could be >vs, meaning that register R can
possibly hold all addresses and numbers. For a memory operand [R], we do not
want to generate ASI references that refer to each memory-region as an array of
1-byte elements.

—Some compilers initialize the local stack frame with a known value to aid in
debugging uninitialized variables at runtime. For instance, some versions of the
Microsoft Visual Studio compiler initialize all bytes of a local stack frame with
the value 0xC. The compiler might do this initialization by using a memcpy.
Generating ASI references that mimic memcpy would cause the memory-region
associated with this procedure to be broken down into an array of 1-byte elements,
which is not desirable.

WYSINWYX: What You See Is Not What You eXecute · 47

To deal with such cases, some options are provided to tune the analysis:

—The user can supply an integer threshold. If the number of memory locations
that are accessed by a memory operand is above the threshold, no ASI reference
is generated.

—The user can supply a set of instructions for which ASI references should not be
generated. One possible use of this option is to suppress memcpy-like instructions.

—The user can supply explicit references to be used during ASI.

4.9 Experiments

In this section, we present the results of our experiments, which were designed to
answer the following questions:

(1) How do the a-locs identified by abstraction refinement compare with the pro-
gram’s debugging information? This provides insight into the usefulness of the
a-locs recovered by our algorithm for a human analyst.

(2) How much more useful for static analysis are the a-locs recovered by an abstract-
interpretation-based technique when compared to the a-locs recovered by purely
local techniques?

In this section, we highlight the important results from the experiments; the exper-
iments are presented in more detail in Balakrishnan and Reps [2007], Balakrishnan
[2007, Ch. 5], and Reps and Balakrishnan [2008].

The experiments were carried out on a 32-bit desktop equipped with an Intel P4
3.0 GHz processor and 4 GB of physical memory, running Windows XP.

4.9.1 Comparison of A-locs with Program Variables. To measure the quality
of the a-locs identified by the abstraction-refinement algorithm, we used a set of
C++ benchmarks collected from Aigner and Hölzle [1996] and Pande and Ryder
[1996]. These programs make heavy use of inheritance and virtual functions, and
hence are a challenging set of examples for the algorithm. We compiled the set
of programs using the Microsoft VC 6.0 compiler with debugging information, and
ran the a-loc-recovery algorithm on the executables produced by the compiler until
the results converged. After each round of ASI, for each program variable v present
in the debugging information, we compared v with the structure identified by our
algorithm (which did not use the debugging information).

On average, our technique is successful in identifying correctly over 88% of the
local variables and over 89% of the fields of heap-allocated objects (and was 100%
correct for fields of heap-allocated objects in over half of the examples). In contrast,
the Semi-Näıve approach recovered 83% of the local variables, but 0% of the fields
of heap-allocated objects.

In most of the programs, only one round of ASI was required to identify all
the fields of heap-allocated data structures correctly. In some of the programs,
however, it required more than one round to find all the fields of heap-allocated
data-structures. Those programs that required more than one round of ASI-VSA
iteration used a chain of pointers to link structs of different types, as discussed in
§4.4. Most of the example programs do not have structures that are declared local
to a procedure. Consequently, the Semi-Näıve approach identified a large fraction

48 · G. Balakrishnan and T. Reps

Program Procedures Instructions n Time

src/vdd/dosioctl/krnldrvr 70 2824 3 21s
src/general/ioctl/sys 76 3504 3 37s
src/general/tracedrv/tracedrv 84 3719 3 1m
src/general/cancel/startio 96 3861 3 26s
src/general/cancel/sys 102 4045 3 26s
src/input/moufiltr 93 4175 3 4m
src/general/event/sys 99 4215 3 31s
src/input/kbfiltr 94 4228 3 3m
src/general/toaster/toastmon 123 6261 3 5m
src/storage/filters/diskperf 121 6584 3 7m
src/network/modem/fakemodem 142 8747 3 16m
src/storage/fdc/flpydisk 171 12752 3 31m

src/input/mouclass 192 13380 2 1h 51m
src/input/mouser 188 13989 3 40m
src/kernel/serenum 184 14123 3 38m
src/wdm/1394/driver/1394diag 171 23430 3 28m
src/wdm/1394/driver/1394vdev 173 23456 3 23m

mplayer2 172 14270 2 0h 11m
smss 481 43034 3 2h 8m
print 563 48233 3 0h 20m
doskey 567 48316 3 2h 4m
attrib 566 48785 3 0h 23m
routemon 674 55586 3 2h 28m
cat 688 57505 3 0h 54m
ls 712 60543 3 1h 10m

Table I. Windows Device Drivers (top) and Executables (bottom). (n is the number of VSA-ASI
rounds.)

of the local variables correctly. However, when programs had structures that are
local to a procedure, our approach identifies more local variables correctly.

4.9.2 Usefulness of the A-locs for Static Analysis. The aim of this experiment
was to evaluate the quality of the variables and values discovered as a platform for
performing additional static analysis. In particular, because resolution of indirect
operands is a fundamental primitive that essentially any subsequent analysis would
need, the experiment measured how well we can resolve indirect memory operands
not based on global addresses or stack-frame offsets (e.g., accesses to arrays and
heap-allocated data objects).

We ran several rounds of VSA on the collection of commonly used Windows
executables and Windows device drivers listed in Tab. I, as well as the set of C++
benchmarks mentioned in §4.9.1. The executables for the Windows device-driver
examples in Tab. I were obtained by compiling the driver source code along with the
harness and OS environment model used in the SDV toolkit [Ball et al. 2006]. (See
§6 for more details.) For the programs from §4.9.1 and the drivers in Tab. I, we ran
VSA-ASI iteration until convergence. For the executables listed in the bottom third
of Tab. I, we limited the number of VSA-ASI rounds to at most three. Round 1 of
VSA performs its analysis using the a-locs recovered by the Semi-Näıve approach;
all subsequent rounds of VSA use the a-locs recovered by the abstraction-refinement
algorithm. After the first and final rounds of VSA, we classify each memory operand
as follows:

WYSINWYX: What You See Is Not What You eXecute · 49

evaluated operand ≠ SvsIndirect operand
[eax]
[ebp + ecx*4 - 60]
. . .

4-, 2-, or 1-byte a-loc

4-, 2-, or 1-byte a-loc

Fig. 19. Properties of a strongly-trackable memory operand.

—A memory operand is strongly-trackable (see Fig. 19) if

—the lvalue evaluation of the operand does not yield >vs, and

—each lvalue obtained refers to a 4-, 2-, or 1-byte a-loc.

—A memory operand is weakly-trackable if

—the lvalue evaluation of the operand does not yield >vs, and

—at least one of the lvalues obtained refers to a 4-, 2-, or 1-byte a-loc.

—Otherwise, the memory operand is untrackable; i.e., either

—the lvalue evaluation of the operand yields >vs, or

—all of the lvalues obtained refer to an a-loc whose size is greater than 4 bytes.

VSA tracks value-sets for a-locs whose size is less than or equal to 4 bytes, but
treats a-locs greater than 4 bytes as having the value-set >vs. Therefore, untrack-
able memory operands are ones for which VSA provides no useful information at
all, and strongly-trackable memory operands are ones for which VSA can provide
useful information.

We refer to a memory operand that is used to read the contents of memory as a
use-operand, and a memory operand that is used to update the contents of memory
as a kill-operand. VSA can provide some useful information for a weakly-trackable
kill-operand, but provides no useful information for a weakly-trackable use-operand.
To understand why, first consider the kill-operand [eax] in “mov [eax], 10”. If
[eax] is weakly-trackable, then VSA may be able to update the value-set—to a
value other than >vs—of those a-locs that are (i) accessed by [eax] and (ii) of size
less than or equal to 4 bytes. (The value-sets for a-locs accessed by [eax] that
are of size greater than 4 bytes already hold the value >vs.) In contrast, consider
the use-operand [eax] in “mov ebx, [eax]”; if [eax] is weakly-trackable, then at
least one of the a-locs accessed by [eax] holds the value >vs. In a mov instruction,
the value-set of the destination operand (ebx in our example) is set to the join
(tvs) of the value-sets of the a-locs accessed by the source operand ([eax] in our
example); consequently, the value-set of ebx would be set to >vs—which is the
same as what happens when [eax] is untrackable.

We classified memory operands as either direct or indirect. A direct memory
operand is a memory operand that uses a global address or stack-frame offset. An
indirect memory operand is a memory operand that uses a non-stack-frame register
(e.g., a memory operand that accesses an array or a heap-allocated data object).
Direct Memory Operands. For direct use-operands and direct kill-operands,
both the Semi-Näıve approach and our abstract-interpretation-based a-loc-recovery

50 · G. Balakrishnan and T. Reps

Percentages of Trackable Memory Operands
Strongly-Trackable Strongly-Trackable Weakly-Trackable
Indirect Uses (%) Indirect Kills (%) Indirect Kills (%)

Test Suite First Final First Final First Final

C++ Examples 8 46 3 80 4 83
Windows Device Drivers 19 29 8 30 9 33
Windows Executables 2 6 6 19 6 22

Table II. Percentages of trackable memory operands in the first and final rounds. The numbers
reported for each test suite are the geometric means of the percentages measured for that test
suite.

algorithm perform equally well: for all three test suites, almost 100% of the direct
uses and kills are strongly trackable.
Indirect Memory Operands. For indirect memory operands, the results are
substantially better with the abstraction-interpretation-based method. Tab. II sum-
marizes the results. (Note that the “Weakly-Trackable Indirect Kills” are a superset
of the “Strongly-Trackable Indirect Kills”.)

We were surprised to find that the Semi-Näıve approach was able to provide
a small amount of useful information for indirect memory operands. On closer
inspection, we found that these indirect memory operands access local or global
variables that are also accessed directly elsewhere in the program. (In source-level
terms, the variables are accessed both directly and via pointer indirection.) For
instance, a local variable v of procedure P that is passed by reference to procedure
Q will be accessed directly in P and indirectly in Q.

Our abstract-interpretation-based a-loc-recovery algorithm works well for the
C++ examples, but the algorithm is not so successful for the Windows device-
driver examples and the Windows executables. Several sources of imprecision in
VSA prevent us from obtaining useful information at many of the indirect mem-
ory operands in those executables. One source of imprecision is widening [Cousot
and Cousot 1977]. VSA uses a widening operator during abstract interpretation
to accelerate fixpoint computation (see §3.4). Due to widening, VSA may fail to
find non-trivial bounds for registers that occur in indirect memory operands that
implement (source-level) array-access expressions; such indirect memory operands
will be classified as untrackable.

The fact that the VSA domain is non-relational amplifies this problem. (To a
limited extent, we overcome the lack of relational information by obtaining relations
among the values of the x86 registers using an additional analysis called affine-
relation analysis; see Balakrishnan [2007, Ch. 7] for details.) The widening problem
is actually orthogonal to the issue of finding a suitable set of a-locs. Even if an
a-loc-recovery algorithm were to recover all of the source-level variables exactly,
imprecision due to widening would still be an issue.

In Balakrishnan [2007, Ch. 7] and Reps and Balakrishnan [2008], we described
a technique, called GMOD-based merging, that increases the precision of abstract
interpretation of procedure calls and also reduces the undesirable effects of widen-
ing. As shown in Tab. III, when GMOD-based merging was used for the Windows
device-driver examples, the percentage of trackable memory operands in the final
round improved dramatically: from 29%, 30%, and 33% to 81%, 85%, and 90%,
respectively.

WYSINWYX: What You See Is Not What You eXecute · 51

Percentages of Trackable Memory Operands
Strongly-Trackable Strongly-Trackable Weakly-Trackable
Indirect Uses (%) Indirect Kills (%) Indirect Kills (%)

Without GMOD-based merging 29 30 33
With GMOD-based merging 81 85 90

Table III. Percentages of trackable memory operands in the final round for the Windows device-
driver examples.

These measurements show that the results of VSA are significantly better when
a-locs identified using abstract-interpretation and abstraction-refinement are used
in place of the a-locs identified by the Semi-Näıve algorithm, which uses purely
local techniques.

5. ITERATIVE REFINEMENT IN CODESURFER/X86

This section describes the abstraction-refinement loop used in CodeSurfer/x86. The
refinement loop runs repeated phases of ASI, ARA,16 and VSA. The goal of the
loop is not only to improve precision, but also to invoke the analysis components
that allow CodeSurfer/x86 to overcome the lack of any initial information about a
program’s variables.

The order in which the analyses are applied is

Dis ASI0 ARA VSA (DisDLL ASI ARA VSA)n

where “Dis” is the disassembler phase (our implementation uses IDAPro [IDAPro]),
which includes creating the initial IRs for DLLs known at link time; ASI0 is a “min-
imal” ASI that uses the disassembler results as input, and implements the Semi-
Näıve approach to identifying a-locs; DisDLL disassembles the DLLs discovered from
arguments to LoadLibrary during the most recent phase of VSA, and creates initial
IRs for them. (. . .)n denotes n repetitions of the parenthesized expression, where
n can be controlled by the user.

The first round of VSA can uncover memory accesses that are not explicit in the
program—e.g., due to operands that have forms other than “[absolute-address]”,
“[esp + offset]”, and “[ebp −offset]”—which allows ASI to refine the a-locs for the
next round of VSA, and may, in turn, produce more precise value-sets because it is
based on a better set of a-locs. Similarly, subsequent rounds of VSA can uncover
more memory accesses, and hence allow ASI to refine the a-locs. The refinement
of a-locs cannot go on indefinitely because, in the worst case, an a-loc can only be
partitioned into a sequence of 1-byte entities. However, in practice, the refinement
process converges before the worst-case partitioning occurs.

When the data structures in a program are more complex, more rounds of the re-
finement loop will (in general) be required to analyze them. Roughly speaking, each
round of the loop will resolve one layer of indirection in program data structures:
ASI refines the a-locs that can be determined from previously-identified structures

16ARA refers to affine-relation analysis [Müller-Olm and Seidl 2005]. ARA is used in
CodeSurfer/x86 to identify relationships among x86 machine registers. ARA is also performed
over certain collections of registers, global a-locs, and local a-locs. The information from ARA is
used to overcome the lack of relational information during VSA due to the non-relational nature
of the VSA domain (see Lal et al. [2005] and Balakrishnan [2007, Ch. 7, Sect. 2]).

52 · G. Balakrishnan and T. Reps

and memory accesses, and then VSA uses these a-locs to determine value sets whose
contents may include pointers that ASI will use in the next round.

Determining the targets of library function calls and indirect jumps is closely
related to determining the contents of memory locations, and also takes place in
the refinement loop. A program with more levels of library function calls and/or
indirect jumps will (in general) require more rounds of the refinement loop for full
analysis than a program with fewer levels. The iteration process converges when
the set of a-locs, and the set of targets for indirect function calls and indirect jumps
does not change between successive rounds.

Most of the analyses in CodeSurfer/x86 are interdependent. The refinement loop
is a relatively simple way to allow the results of one analysis to improve the results
of the other analyses. The analyses influence one another in the following ways:
ASI → VSA : ASI results are useful to VSA in two important ways:

—The a-locs represent the collection of containers whose values will be tracked by
VSA.

—The size and structure of a-locs are also important to VSA. Value sets only
represent values up to 4 bytes (for a 32-bit machine). Therefore, if an a-loc is
larger than 4 bytes and does not have any identifiable substructure, VSA cannot
determine a value set other than “unknown” (>vs) to represent the values it might
hold. Once ASI has subdivided such an a-loc into 1-, 2-, or 4-byte subcomponents,
VSA is generally able to produce more precise value sets for the subcomponents.

VSA → ASI : ASI determines the location and structure of a-locs based on memory
access patterns within the program. If a memory access is indirect, its destination
must be determined before ASI can use it to identify an a-loc. VSA provides the
value sets needed to compute those addresses.
ARA → VSA : If an affine relation is known to hold between two a-locs at a
particular program point, VSA can make use of the relation to determine a more
precise value set for one or both of the a-locs.
VSA → DisDLL : The value sets refined by VSA may include the targets of
indirect jumps and/or indirect function calls. Resolving these targets may result in
new control-flow edges added to the CFG, new call edges added to the call-graph,
and initial IRs created for the DLLs discovered from arguments to LoadLibrary

during the most recent phase of VSA,
VSA and DisDLL → ARA : After new targets of indirect jumps and/or indirect
function calls have been identified, or initial IRs have been created for newly dis-
covered DLLs, ARA must be re-run so that this new information can be taken into
account in the affine relations computed for the program’s instructions.
ASI → ARA : ARA is also performed over certain collections of registers, global
a-locs, and local a-locs. Because ASI refines the set of a-locs in each round, this
ARA information must be recomputed for the refined set of a-locs.

6. CASE STUDY: ANALYZING WINDOWS DEVICE DRIVERS

A device driver is a program in the operating system that is responsible for manag-
ing a hardware device attached to the system. In Windows, a (kernel-level) device
driver resides in the address space of the kernel, and runs at a high privilege level;

WYSINWYX: What You See Is Not What You eXecute · 53

therefore, a bug in a device driver can cause the entire system to crash. The Win-
dows kernel API [Oney 2003] requires a programmer to follow a complex set of
rules: (1) a call to the functions IoCallDriver or PoCallDriver must occur only at
a certain interrupt request level, (2) the function IoCompleteRequest should not be
called twice with the same parameter, etc.

The device drivers running in a given Windows installation are one of the sources
of instability in the Windows platforms: according to Swift et al. [2005], bugs in
kernel-level device drivers cause 85% of the system crashes in Windows XP. Because
of the complex nature of the Windows kernel API, the probability of introducing
a bug when writing a device driver is high. Moreover, drivers are typically written
by less-experienced or less-skilled programmers than those who wrote the Windows
kernel itself.

Several approaches to improve the reliability of device drivers have been previ-
ously proposed [Ball et al. 2006; Ball and Rajamani 2001; Chou et al. 2001; Swift
et al. 2005]. Swift et al. [2004; 2005] propose a runtime approach that works on
executables; they isolate the device driver in a lightweight protection domain to
reduce the possibility of whole-system crashes. Because their method is applied at
runtime, it may not prevent all bugs from causing whole-system crashes. Other ap-
proaches [Ball et al. 2006; Ball and Rajamani 2000; 2001; Henzinger et al. 2002] are
based on static program analysis of a device driver’s source code. Ball et al. [2006;
2001] developed the Static Driver Verifier (SDV), a tool based on model checking
to find bugs in device-driver source code. A kernel API usage rule is described as
a finite-state machine (FSM), and SDV analyzes the source code for the driver to
determine whether there is a path in the driver that violates the rule.

In our work, we extended the algorithms developed for CodeSurfer/x86 to cre-
ate a static-analysis tool for checking properties of stripped Windows device-driver
executables. With this tool, called Device-Driver Analyzer for x86 (DDA/x86),
neither source code nor symbol-table/debugging information need be available (al-
though DDA/x86 can use debugging information, such as Windows .pdb files, if it
is available). Consequently, DDA/x86 can provide information that is useful in the
common situation where one needs to install a device driver for which source code
has not been furnished.

Microsoft has a program for signing Windows device drivers, called Windows
Hardware Quality Lab (WHQL) testing. Device vendors submit driver executables
to WHQL, which runs tests on different hardware platforms with different versions
of Windows, reviews the results, and, if the driver passes the tests, creates a dig-
itally signed certificate for use during installation that attests that Microsoft has
performed some degree of testing. However, there is anecdotal evidence that device
vendors have tried to cheat [WHQL 2004]. A tool like DDA/x86 could allow static
analysis to play a role in such a certification process.

Even if you have a driver’s source code (and can build an executable) and also
have tools for examining executables equipped with symbol-table/debugging infor-
mation, this would not address the effects of the optimizer. If you want to look
for bugs in an optimized version, you would have a kind of “partially stripped”
executable, due to the loss of debugging information caused by optimization. This
is a situation where our techniques for analyzing stripped executables should be of
assistance.

54 · G. Balakrishnan and T. Reps

KeInitializeEvent(&event, NotificationEvent, FALSE);

IoSetCompletionRoutine(Irp,

(PIO COMPLETION ROUTINE) MouFilter Complete,

&event,

TRUE,

TRUE,

TRUE); // No need for Cancel

status = IoCallDriver(devExt->TopOfStack, Irp);

if (STATUS PENDING == status) {
KeWaitForSingleObject(

&event,

Executive, // Waiting for reason of a driver

KernelMode, // Waiting in kernel mode

FALSE, // No alert

NULL); // No timeout

}

if (NT SUCCESS(status) && NT SUCCESS(Irp->IoStatus.Status)) {
//

// As we are successfully now back from our start device

// we can do work.

//

devExt->Started = TRUE;

devExt->Removed = FALSE;

devExt->SurpriseRemoved = FALSE;

}

//

// We must now complete the IRP, since we stopped it in the

// completion routine with MORE PROCESSING REQUIRED.

//

Irp->IoStatus.Status = status;

Irp->IoStatus.Information = 0;

IoCompleteRequest(Irp, IO NO INCREMENT);

break;

push 1

push 1

push 1

lea ecx, dword ptr [ebp + var 1C]

push ecx

push sub 1002270

mov edx, dword ptr [ebp + arg 4]

push edx

call dword ptr [sdv IoSetCompletionRoutine@24]

mov edx, dword ptr [ebp + arg 4]

mov eax, dword ptr [ebp + var 4]

mov ecx, dword ptr [eax + 8]

call dword ptr [@IofCallDriver@8]

mov dword ptr [ebp + var 20], eax

cmp dword ptr [ebp + var 20], 103h

jnz loc 10013E1

push 0

push 0

push 0

push 0

lea ecx, dword ptr [ebp + var 1C]

push ecx,

call dword ptr [sdv KeWaitForSingleObject@20]

loc 10013E1:

cmp dword ptr [ebp + var 20], 0

jl loc 1001405

mov edx, dword ptr [ebp + arg 4]

cmp dword ptr [edx + 18h], 0

jl loc 1001405

mov eax, dword ptr [ebp + var 4]

mov byte ptr [eax + 30h], 1

mov ecx, dword ptr [ebp + var 4]

mov byte ptr [ecx + 32h], 0

mov edx, dword ptr [ebp + var 4]

mov byte ptr [edx + 31h], 0

loc 1001405:

mov eax, dword ptr [ebp + arg 4]

mov ecx, dword ptr [ebp + var 20]

mov dword ptr [eax + 18h], ecx

mov edx, dword ptr [ebp + arg 4]

mov dword ptr [edx + 1Ch], 0

push 0

mov eax, dword ptr [ebp + arg 4]

push eax

call dword ptr [sdv IoCompleteRequest@8]

jmp loc 10014B0

(a) (b)

Fig. 20. (a) SDV trace; (b) DDA/x86 trace. The three shaded areas in (b) correspond to those
in (a).

A skeptic might question how well an analysis technique can perform on a
stripped executable. §6.2 presents some quantitative results about how well the
answers obtained by DDA/x86 compare to those obtained by SDV; here we will
just give one example that illustrates the ability of DDA/x86 to provide informa-
tion that is qualitatively comparable to the information obtained by SDV. Fig. 20
shows fragments of the witness traces reported by SDV (Fig. 20(a)) and DDA/x86
(Fig. 20(b)) for one of the examples in the test suite. Fig. 20 shows that in this
case the tools report comparable information: the three shaded areas in Fig. 20(b)
correspond to those in Fig. 20(a).

Although not illustrated in Fig. 20, because of the WYSINWYX phenomenon it
is possible for DDA/x86 to provide higher-fidelity answers than tools for analyzing
device-driver source code. In particular, compilation effects can be important if
one is interested in better diagnoses of the causes of bugs, or in detecting security
vulnerabilities. For instance, a Microsoft report about writing kernel-mode drivers

WYSINWYX: What You See Is Not What You eXecute · 55

in C++ recommends examining “. . . the object code to be sure it matches your
expectations, or at least will work correctly in the kernel environment” [WHDC
2007].

This section describes the design and implementation of DDA/x86, and presents
a case study in which we used it to find problems in Windows device drivers by
analyzing the drivers’ stripped executables. The key idea that allows DDA/x86 to
achieve a substantial measure of success was to combine VSA with the path-sensitive
method of interpreting property automata from ESP [Das et al. 2002]. The resulting
algorithm explores an over-approximation of the set of reachable states, and hence
can verify correctness by determining that all error configurations are unreachable.
The contributions of the work include

—DDA/x86 can analyze stripped device-driver executables, and thus provides a
capability not found in previous tools for analyzing device drivers [Ball and Ra-
jamani 2000; Henzinger et al. 2002].

—Our case study shows that this approach is viable. DDA/x86 was able to iden-
tify some known bugs (previously discovered by source-code-based analysis tools)
along with useful error traces, while having a reasonably low false-positive rate:
On a corpus of 17 device-driver executables, 10 were found to pass the Pended-
CompletedRequest rule (definitely no bug), 5 false positives were reported, and 2
were found to have real bugs—for which DDA/x86 supplied feasible error traces.

—We developed a novel, low-cost mechanism for instrumenting a dataflow-analysis
algorithm to provide witness traces.

One of the challenges that we faced was to find ways of coping with the differences
that arise when property checking is performed at the machine-code level, rather
than on an IR created from source code. In particular, the domains of discourse—
the alphabets of actions to which the automata respond—are different in the two
situations. This issue is discussed in §6.2.

6.1 Property Checking in Executables using VSA

This section describes the extensions that we made to our IR-recovery algorithm
to perform path-sensitive property checking. Fig. 21 shows an FSM that checks for
violations of the memory-safety property “pointer p should not be dereferenced if
its value is NULL”. One approach to determining if there is a null-pointer dereference
in the executable is to start from the initial state (UNSAFE) at the entry point
of the executable, and find an over-approximation of the set of reachable states at
each statement in the executable. This can be done by determining the states for
the successors at each statement based on the transitions in the FSM that encodes
the memory-safety property.

Another approach is to use abstract interpretation to determine the abstract
memory configurations at each statement in the routine, and use the results to
check the memory-safety property. For executables, we could use the information
computed by the IR-recovery algorithms of CodeSurfer/x86. For instance, for each
instruction I in an executable, VSA determines an over-approximation of the set
of memory addresses and numeric values held in each register and variable when I
executes.

56 · G. Balakrishnan and T. Reps

UNSAFE

SAFE

ERROR

p ≠ NULLp = NULL

*p

*

p ≠ NULL

p = NULL

Fig. 21. An FSM that encodes the rule that pointer p should not be dereferenced if it is NULL.

Suppose that we have the results of VSA and want to use them to check the
memory-safety property; the property can be checked as follows:

If the abstract set of addresses and numeric values computed for p possibly
contains NULL just before a statement, and the statement dereferences p, then
the memory-safety property is potentially violated.

Unfortunately, the approaches described above would result in a lot of false pos-
itives because they are not path-sensitive. To overcome the limitations of the
two approaches described above, DDA/x86 follows Das et al. [2002] and Fischer
et al. [2005], who showed how to obtain a degree of path-sensitivity by combining
the propagation of automaton states with the propagation of abstract-state values
during abstract interpretation. Let State denote the set of property-automaton
states. The path-sensitive VSA algorithm [Balakrishnan 2007; Balakrishnan and
Reps 2008] associates each program point with an AbsMemConfigps-cs value:

AbsMemConfigps-cs = CallStringk × State × State → AbsEnv⊥
' CallStringk → (State × State → AbsEnv⊥)

In the pair of property-automaton states at a node n, the first component refers to
the state of the property automaton at the enter node of the procedure to which
node n belongs, and the second component refers to the current state of the property
automaton at node n. If an AbsEnv entry for the pair 〈cs, s0, scur〉 exists at node n,
then n is possibly reachable from call-context suffix cs with the property automaton
in state scur from a memory configuration at the enter node of the procedure in
which the property automaton was in state s0.

In addition to distinguishing AbsEnvs at a node based on the call-string suffix, the
path-sensitive context-sensitive VSA algorithm also distinguishes AbsEnvs accord-
ing to the states of the property automaton. Technically, the extension amounts to
using reduced cardinal power [Cousot and Cousot 1979] of the edges in the transi-
tive closure of the automation’s transition relation and the original VSA domain;
i.e., we perform context-sensitive interprocedural value-set analysis (§3.7), but use
the domain (State× State → AbsEnv⊥) in place of AbsEnv⊥ (see also Balakrishnan
[2007] and Balakrishnan and Reps [2008]).

6.2 Experiments

This section presents a case study in which we used DDA/x86 to analyze the ex-
ecutables of Windows device drivers. The study was designed to test how well

WYSINWYX: What You See Is Not What You eXecute · 57

different extensions of the VSA algorithm could detect problems in Windows de-
vice drivers by analyzing device-driver executables—without accessing source code,
symbol-tables, or debugging information. In particular, if DDA/x86 were success-
ful at finding the bugs that the Static Driver Verifier (SDV) [Ball et al. 2006; Ball
and Rajamani 2001] tool finds in Windows device drivers, that would be powerful
evidence that our approach is viable—i.e., that it will be possible to find previously
undiscovered bugs in device drivers for which source code is not available, or for
which compiler/optimizer effects make source-code analysis unsafe. We selected
a subset of drivers from the Windows Driver Development Kit (DDK) [Windows
DDK 2003] release 3790.1830 for the case study. For each driver, we obtained an
executable by compiling the driver source code along with the harness and the OS
environment model [Ball et al. 2006] of the SDV toolkit. (Thus, as in SDV and
other source-code-analysis tools, the harness and OS environment models are an-
alyzed; however, DDA/x86 analyzes the machine code that the compiler produces
for the harness and the models. This creates certain difficulties, which are discussed
below.)

A device driver is analogous to a library that exports a collection of subroutines.
Each subroutine exported by a driver implements an action that needs to be per-
formed when the OS makes an I/O request (on behalf of a user application or when
a hardware-related event occurs). For instance, when a new device is attached to
the system, the OS invokes the AddDevice routine provided by the device driver;
when new data arrives on a network interface, the OS calls the DeviceRead routine
provided by the driver; etc. For every I/O request, the OS creates a structure called
the “I/O Request Packet (IRP)”, which contains such information as the type of
the I/O request, the parameters associated with the request, etc.; the OS then
invokes the appropriate driver’s dispatch routine. The dispatch routine performs
the necessary actions, and returns a value that indicates the status of the request.
For instance, if a driver successfully completes the I/O request, the driver’s dis-
patch routine calls the IoCompleteRequest API function to notify the OS that the
request has been completed, and returns the value STATUS SUCCESS. Similarly, if
the I/O request is not completed within the dispatch routine, the driver calls the
IoMarkPending API function and returns STATUS PENDING.

A harness in the SDV toolkit is C code that simulates the possible calls to the
driver that could be made by the OS. An application generates requests, which the
OS passes on to the device driver. Both levels are modeled by the harness. For
the drivers used in our experiments, the harness defined in the SDV toolkit acts
as a client that exercises all possible combinations of the dispatch routines that
can occur in two successive calls to the driver. The harness that was used in our
experiments calls the following driver routines (in the order given below):

(1) DriverEntry: initializes the driver’s data structures and the global state.

(2) AddDevice: simulates the addition of a device to the system.

(3) The plug-and-play dispatch routine (called with an IRP MN START DEVICE I/O
request packet): simulates the starting of the device by the OS.

(4) Some dispatch routine, deferred procedure call, interrupt service routine, etc.:
simulates various actions on the device.

58 · G. Balakrishnan and T. Reps

(5) The plug-and-play dispatch routine (called with an IRP MN REMOVE DEVICE I/O
request packet): simulates the removal of the device by the OS.

(6) Unload: simulates the unloading of the driver by the OS.

The OS environment model in the SDV toolkit consists of a collection of functions
(written in C) that conservatively model the API functions in the Windows DDK.
The models are conservative in the sense that they simulate all possible behaviors
of an API function. For instance, if an API function Foo returns the value 0
or 1 depending upon the input arguments, the model for Foo consists of a non-
deterministic if statement that returns 0 in the true branch and 1 in the false
branch. Modeling the API functions conservatively enables a static-analysis tool to
explore all possible behaviors of the API.
Adapting the SDV Harness and OS Models. The harness and OS models
obtained from the SDV toolkit are intended to be used by a particular source-level
analyzer [Ball and Rajamani 2001] whose abstract domain is based on predicate
abstraction [Graf and Säıdi 1997]. Such domains have limitations on their precision,
and hence it is not necessary for SDV to have harnesses and OS models that are
entirely faithful to the source-level semantics. In contrast, we needed a harness and
OS models that could be compiled—and used in compiled form—with the various
different abstract domains incorporated in DDA/x86. DDA/x86’s domains also
have limitations on their precision, but they are different than those of the domain
used by SDV. Consequently, we had to make some changes to the harness and OS
models obtained from SDV.

For instance, each driver has a device-extension structure that is used to maintain
extended information about the state of each device managed by the driver. The
number of fields and the type of each field in the device-extension structure is
specific to a driver. However, in SDV’s OS model, a single integer variable is used
to represent the device-extension object. Therefore, in a driver executable built
using SDV’s models, when the driver writes to a field at offset o of the device-
extension structure, it would appear as a write to the memory address that is offset
o bytes from the memory address of the integer that represents the device-extension
object.

SDV’s OS models use a function named SdvMakeChoice to represent non-
deterministic choice. However, the body of SdvMakeChoice contains just a single
statement: “return 0;”.17 Consequently, instead of exploring all possible behav-
iors of an API function, DDA/x86 would explore only a subset of the behaviors of
the API function. We had to modify SDV’s OS environment model to avoid such
problems.
Case Study. We chose the following “PendedCompletedRequest” rule for our case
study:

A driver’s dispatch routine should not return STATUS PENDING on an I/O Re-
quest Packet (IRP) if it has called IoCompleteRequest on the IRP, unless it
has also called IoMarkIrpPending.

Fig. 22 shows the FSM for this rule.18

17According to T. Ball [2006], the C front end used by SDV treats SdvMakeChoice specially.
18According to the Windows DDK documentation, IoMarkPending has to be called before Io-

WYSINWYX: What You See Is Not What You eXecute · 59

START

PENDING

COMPLETED

PENDING ∧∧∧∧COMPLETED

ERROR

A: “return status ≠≠≠≠ STATUS_PENDING”

A

A,B
A,B

B

B: “return status ==== STATUS_PENDING”

*

C

D C

D

C: IoMarkPending

D: IoCompleteRequest

D C,D

C

Fig. 22. Finite-state machine for the rule PendedCompletedRequest .

Config. A-locs Property Automaton

� IDAPro-based algorithm Fig. 22
} ASI-based algorithm Fig. 22
F ASI-based algorithm Cross-product of the automata in Figs. 22 and 24

Table IV. Variants of the VSA algorithm used in the experiments.

We used the three different variants of the VSA algorithm listed in Tab. IV
for our experiments; Tab. V presents the results. The experiments were carried
out on a Dell Precision 490 Desktop, equipped with a 64-bit Intel Xeon 5160 3.0
GHz dual core processor and 16GB of physical memory, running Windows XP.
(Although the machine has 16GB of physical memory, the size of the per-process
virtual user-address space for a 32-bit application is limited to 4GB.) The column
labeled “Result” indicates whether the VSA algorithm reported that there is some
node n at which the ERROR state in the PendedCompletedRequest FSM is reachable,
when one starts from the initial memory configuration at the entry node of the
executable.

Configuration ‘�’ uses an algorithm that is similar to the one used in IDAPro
to recover variable-like entities. That algorithm does not provide variables of the
right granularity and expressiveness, and therefore, not surprisingly, configuration
‘�’ reports many false positives for all of the drivers.19

Configuration ‘}’, which uses only the PendedCompletedRequest FSM, also re-
ports a lot of false positives. Fig. 23 shows an example that illustrates one of the
reasons for the false positives in configuration ‘}’. As shown in the right column of
Fig. 23, the set of values for status at the return statement (P3) for the property-
automaton state COMPLETED contains both STATUS PENDING and STATUS SUCCESS.
Therefore, VSA reports that the dispatch routine possibly violates the PendedCom-
pletedRequest rule. The problem is as follows: because the state of the PendedCom-
pletedRequest automaton is the same after both branches of the if statement at P1

CompleteRequest ; however, the FSM defined for the rule in SDV is the one shown in Fig. 22. We
used the same FSM for our experiments.
19In this case, a false positive reports that the ERROR state is (possibly) reachable at some node n,
when, in fact, it is never reachable. This is sound (for the reachability question), but imprecise.

60 · G. Balakrishnan and T. Reps

� } F

Feasible Feasible Feasible
Driver Procedures Instructions Result Trace? Result Trace? Result Trace? Time Rounds

src/vdd/dosioctl/krnldrvr 70 2824 FP -
√

-
√

- 14s 2
src/general/ioctl/sys 76 3504 FP -

√
-

√
- 13s 2

src/general/tracedrv/tracedrv 84 3719 FP -
√

-
√

- 16s 2
src/general/cancel/startio 96 3861 FP -

√
-

√
- 12s 2

src/general/cancel/sys 102 4045 FP -
√

-
√

- 10s 2
src/input/moufiltr 93 4175 × No × No × Yes 3m 3s 5
src/general/event/sys 99 4215 FP -

√
-

√
- 20s 2

src/input/kbfiltr 94 4228 × No × No × Yes 2m 53s 5
src/general/toaster/toastmon 123 6261 FP - FP -

√
- 4m 1s 3

src/storage/filters/diskperf 121 6584 FP - FP -
√

- 3m 17s 3
src/network/modem/fakemodem 142 8747 FP - FP -

√
- 11m 6s 3

src/storage/fdc/flpydisk 171 12752 FP - FP - FP - 1h 6m 5
src/input/mouclass 192 13380 FP - FP - FP - 40m 26s 5
src/input/mouser 188 13989 FP - FP - FP - 1h 4m 5
src/kernel/serenum 184 14123 FP - FP -

√
- 19m 41s 2

src/wdm/1394/driver/1394diag 171 23430 FP - FP - FP - 1h33m 5
src/wdm/1394/driver/1394vdev 173 23456 FP - FP - FP - 1h38m 5

Table V. Results of checking the PendedCompletedRequest rule in Windows device drivers. (
√

:
passes rule; ×: a real bug found; FP: false positive.) See Tab. IV for an explanation of �, }, and
F. (For the examples that pass the rule, “Rounds” represents the number of VSA-ASI rounds
required to prove the absence of the bug; for the other examples, the maximum number of rounds
was set to 5.)

int dispatch routine(. . .) {
int status, c = 0;

.

.

.

status = STATUS PENDING;

P1:if(. . .) {
status = STATUS SUCCESS;

c = 1;

}
P2:

.

.

.

if(c == 1) {
IoCompleteRequest(. . .)

}
P3: return status;

}

Information at P3 with the FSM shown in Fig. 22

START:

c 7→ {0, 1}
status 7→ {STATUS SUCCESS, STATUS PENDING}

COMPLETED:

c 7→ {0, 1}
status 7→ {STATUS SUCCESS, STATUS PENDING}

Information at P3 with the FSM shown in Fig. 24

ST PENDING:

c 7→ {0}
status 7→ {STATUS PENDING}

ST NOT PENDING:

c 7→ {1}
status 7→ {STATUS SUCCESS}

Fig. 23. An example illustrating false positives in device-driver analysis.

are analyzed, VSA merges the information from both of the branches, and therefore
the correlation between c and status is lost after the statement at P2.

Fig. 24 shows an FSM that enables VSA to maintain the correlation between c

and status. Basically, the FSM changes the abstraction in use, and enables VSA
to distinguish paths in the executable based on the contents of the variable status.
We refer to a variable (such as status in Fig. 24) that is used to keep track of
the current status of the I/O request in a dispatch routine as the status-variable.
To be able to use the FSM in Fig. 24 for analyzing an executable, it is necessary
to determine the status-variable for each procedure. However, because debugging
information is usually not available, we use the following heuristic to identify the
status-variable for each procedure in the executable:

By convention, eax holds the return value in the x86 architecture. Therefore,
the a-loc (if any) that is used to initialize the value of eax just before returning
from the dispatch routine is considered to be the status-variable.

WYSINWYX: What You See Is Not What You eXecute · 61

Configuration ‘F’ uses the automaton obtained by combining the PendedCom-
pletedRequest FSM and the FSM shown in Fig. 24 (instantiated using the above
heuristic) using a cross-product construction. As shown in Tab. V, for configuration
‘F’, the number of false positives is substantially reduced.

It required substantial manual effort to find an abstraction that had sufficient
fidelity to reduce the number of false positives reported by DDA/x86. To create
a practical tool, it would be important to automate the process of refining the
abstraction based on the property to be checked. The model-checking community
has developed many techniques that could be applicable, although the discussion
above shows that the definition of a suitable refinement can be quite subtle.

As a point of comparison, SDV also found the bugs in both “moufiltr” and
“kbfiltr”, but had no false positives in any of the examples. However, one should
not leap to the conclusion that machine-code-analysis tools are necessarily inferior
to source-code-analysis tools.

—The basic capabilities are different: DDA/x86 can analyze stripped device-driver
executables, which goes beyond the capabilities of SDV.

—The analysis techniques used in SDV and in DDA/x86 are incomparable: SDV
uses predicate-abstraction-based abstractions [Graf and Säıdi 1997], plus abstrac-
tion refinement; DDA/x86 uses a combined numeric-plus-pointer analysis (VSA),
together with a different kind of abstraction refinement (iteration of ASI and
VSA). Thus, there may be examples for which DDA/x86 outperforms SDV.

Moreover, SDV is a multiple man-year effort, with a professional team at Microsoft
devoted to its development. In contrast, the prototype DDA/x86 was created in
only a few man-months (although multiple man-years went into building the un-
derlying CodeSurfer/x86 infrastructure).
Property Automata for the Analysis of Machine Code. Property automata
for the analysis of machine code differ from the automata used for source-level
analysis. In particular, the domain of discourse—the alphabet of actions to which
an automaton responds—is different when property checking is performed at the
machine-code level, rather than on an IR created from source code.

In some cases, it is possible to recognize a source-level action based on information
available in the recovered IR. For instance, a source-code procedure call with actual
parameters is usually implemented as a sequence of instructions that evaluate the
actuals, followed by a call instruction to transfer control to the starting address
of the procedure. The IR-recovery algorithms used in CodeSurfer/x86 will identify
the call along with its arguments.

In other cases, a source-level action is not identifiable. One contributing factor is
that a source-level action can correspond to a sequence of instructions. Moreover,
the instruction sequences for two source-level actions could be interleaved. We
did not have a systematic way to cope with such problems except to rewrite the
automaton of interest based on instruction-level actions.

Fortunately, most of the instruction-level actions that need to be tracked boil
down to memory accesses/updates. Because VSA is precise enough to interpret
many memory accesses (§4.9), it is possible for DDA/x86 to perform property
checking using the extended version of VSA sketched in §6.1 [Balakrishnan 2007;
Balakrishnan and Reps 2008]. In our somewhat limited experience, we found that

62 · G. Balakrishnan and T. Reps

ST_UNKNOWN

ST_PENDING

ST_NOT_PENDING

A: “status : ==== x, where x ≠≠≠≠ STATUS_PENDING”

C

B

B: “status : ==== STATUS_PENDING”

A

C: “status : ==== ?”B
A

C

C

Fig. 24. Finite-state machine that tracks the contents of the variable status.

for many property automata it is possible to rewrite them based on memory ac-
cesses/updates so that they can be used for the analysis of executables.
Finding a Witness Trace. If the VSA algorithm reports that the ERROR state
in the property automaton is reachable, it is useful to find a sequence of instruc-
tions that shows how the property automaton can be driven to ERROR. Rather than
extending the VSA implementation to generate and manage explicitly the informa-
tion required for reporting witness traces, we exploited the fact that the standard
algorithms for solving reachability problems in pushdown systems (PDSs) [Bouaj-
jani et al. 1997; Finkel et al. 1997] provide a witness-trace capability to show how
a given (reachable) configuration is reachable.

The algorithm sketched in §6.1 was augmented to emit the rules of a PDS on-the-
fly. The PDS constructed is equivalent to a PDS that would be obtained by a cross-
product of the property automaton and a PDS that models the interprocedural
control-flow graph, except that, by emitting the PDS on-the-fly as VSA variant ‘F’
is run, the cross-product PDS is pruned according to what the VSA algorithm and
the property automaton both agree on as being reachable. The PDS is constructed
as follows:

PDS rules Control flow modeled
〈q, [n0, s]〉 ↪→ 〈q, [n1, s

′]〉 Intraprocedural CFG edge from node n0 in state s
to node n1 in state s′

〈q, [c, s]〉 ↪→ 〈q, [enterP, s][r, s
′]〉 Call to procedure P from c in state s that returns

〈q[xP,s′], [r, s
′]〉 ↪→ 〈q, [r, s′]〉 to r in state s′.

〈q, [xP, s
′]〉 ↪→ 〈q[xP,s′], ε〉 Return from P at exit node xP in state s′

In our case, to obtain a witness trace, we merely use the witness trace returned by
the PDS reachability algorithm to determine if a PDS configuration 〈q, [n, ERROR]〉—
where n is a node in the interprocedural CFG—is reachable from the configuration
〈q, entermain〉.

Because the PDS used for reachability queries is based on the results of VSA,
which computes an over-approximation of the set of reachable concrete memory
states, the witness traces provided by the reachability algorithm may be infeasible.
In our experiments, only for configuration ‘F’ were the witness traces for kbfiltr
and moufiltr feasible. (Feasibility was checked by hand.)

This approach is not specific to VSA; it can be applied to essentially any worklist-
based dataflow-analysis algorithm when it is extended with a property automaton,
and provides a conceptually low-cost mechanism for augmenting such algorithms
to provide witness traces.

WYSINWYX: What You See Is Not What You eXecute · 63

7. RELATED WORK

To confine the scope of the paper, we have not discussed several additional tech-
niques that are used in CodeSurfer/x86:

—The use of affine relations [Müller-Olm and Seidl 2005] over registers to obtain
more precise value-sets for registers used in a loop. In particular, if VSA iden-
tifies constraints on the value of a register that is used as a loop-index variable,
affine relations over registers can be used to propagate these constraints to other
registers used in the loop (see Lal et al. [2005] and Balakrishnan [2007, Ch. 7,
Sect. 2]).

—The use of affine relations over registers, global a-locs, and local a-locs to find
more precise value-sets for registers, global a-locs, and local a-locs used in a loop.

—A technique, called GMOD-based merging ([Balakrishnan 2007, Ch. 7] and [Reps
and Balakrishnan 2008]), that increases the precision of abstract interpretation
of procedure calls.

—An abstraction of heap-allocated storage, called the recency abstraction [Balakr-
ishnan and Reps 2006]. This involves using more than one memory-region per
call-site on malloc, and overcomes some of the imprecision that arises due to the
need to perform weak updates—i.e., accumulate information via join—on fields
of summary malloc-regions.

Information About Memory Accesses in Executables. There is an exten-
sive body of work on techniques to obtain information from executables by means
of static analysis, including [Amme et al. 2000; Backes 2004; Bergeron et al. 2001;
Bergeron et al. 1999; Cifuentes and Fraboulet 1997a; 1997b; Cifuentes et al. 1998;
Debray et al. 1998; Guo et al. 2005; Larus and Schnarr 1995; Mycroft 1999]. How-
ever, previous work on analyzing memory accesses in executables has dealt with
memory accesses very conservatively: generally, if a register is assigned a value
from memory, it is assumed to take on any value. VSA does a much better job
than previous work because it tracks the integer-valued and address-valued quanti-
ties that the program’s data objects can hold; in particular, VSA tracks the values
of data objects other than just the hardware registers, and thus is not forced to
give up all precision when a load from memory is encountered.

The work that is most closely related to VSA is the alias-analysis algorithm for
executables proposed by Debray et al. [1998]. The basic goal of the algorithm
proposed by Debray et al. is similar to that of VSA: for them, it is to find an
over-approximation of the set of values that each register can hold at each program
point; for us, it is to find an over-approximation of the set of values that each
(abstract) data object can hold at each program point, where data objects include
memory locations in addition to registers. In their analysis, a set of addresses is
approximated by a set of congruence values: they keep track of only the low-order
bits of addresses. However, unlike VSA, their algorithm does not make any effort
to track values that are not in registers. Consequently, they lose a great deal of
precision whenever there is a load from memory.

The two other pieces of work that are closely related to VSA are the algorithm for
data-dependence analysis of assembly code of Amme et al. [2000] and the algorithm
for pointer analysis on a low-level intermediate representation of Guo et al. [2005].

64 · G. Balakrishnan and T. Reps

The algorithm of Amme et al. performs only an intraprocedural analysis, and it is
not clear whether the algorithm fully accounts for dependences between memory
locations. The algorithm of Guo et al. is only partially flow-sensitive: it tracks reg-
isters in a flow-sensitive manner, but treats memory locations in a flow-insensitive
manner. The algorithm uses partial transfer functions [Wilson and Lam 1995] to
achieve context-sensitivity. The transfer functions are parameterized by “unknown
initial values” (UIVs); however, it is not clear whether the algorithm accounts for
the possibility of called procedures corrupting the memory locations that the UIVs
represent.

The xGCC tool [Backes 2004] analyzes XRTL intermediate code with the aim of
verifying safety properties, such as the absence of buffer overflow, division by zero,
and the use of uninitialized variables. The tool uses an abstract domain based on
sets of intervals; it supports an arithmetic on this domain that takes into account
the properties of signed two’s-complement numbers. However, the domain used in
xGCC does not support the notion of strides—i.e., the intervals are strided intervals
with strides of 1. Because on many processors memory accesses do not have to be
aligned on word boundaries, an abstract arithmetic based solely on intervals does
not provide enough information to check for non-aligned accesses.

For instance, a 4-byte fetch from memory where the starting address is in the in-
terval [1020, 1028] must be considered to be a fetch of any of the following 4-byte se-
quences: (1020, . . . , 1023), (1021, . . . , 1024), (1022, . . . , 1025), . . . , (1028, . . . , 1031).
Suppose that the program writes the addresses a1, a2, and a3 into the words at
(1020, . . . , 1023), (1024, . . . , 1027), and (1028, . . . , 1031), respectively. Because the
abstract domain cannot distinguish an unaligned fetch from an aligned fetch, a 4-
byte fetch where the starting address is in the interval [1020, 1028] will appear to
allow address forging: e.g., a 4-byte fetch from (1021, . . . , 1024) contains the three
high-order bytes of a1, concatenated with the low-order byte of a2.

In contrast, if an analysis knows that the starting address of the 4-byte fetch is
characterized by the strided interval 4[1020,1028], it would discover that the set
of possible values is restricted to {a1, a2, a3}. Moreover, a tool that uses intervals
rather than strided intervals is likely to suffer a catastrophic loss of precision when
there are chains of indirection operations: if the first indirection operation fetches
the possible values at (1020, . . . , 1023), (1021, . . . , 1024), . . . , (1028, . . . , 1031), the
second indirection operation will have to follow nine possibilities—including all
addresses potentially forged from the sequence a1, a2, and a3. Consequently, the
use of intervals rather than strided intervals in a tool that attempts to identify
potential bugs and security vulnerabilities is likely to cause a large number of false
alarms to be reported.

Static analysis of machine code is also a key component of tools to bound the
worst-case execution time (WCET) of programs [Wilhelm et al. 2008]. The execu-
tion time of a program depends upon multiple factors, including the time required
for each instruction, the number of times an instruction executes, the structure of
the pipeline in the architecture, the number of cache misses at each instruction,
etc. To bound the WCET of a program as precisely as possible, it is necessary
to gather information about the possible execution behaviors of the program. To
analyze data-cache behavior—in particular, to determine how a given memory ac-
cess in an instruction can change the state of the cache (which is used to determine

WYSINWYX: What You See Is Not What You eXecute · 65

whether an access is always a cache hit or could be a cache miss)—an analyzer
needs information about what concrete addresses could be read from or written to.

Ferdinand et al. [2001] present a value-analysis algorithm to determine the con-
tents of registers and memory locations. Because the algorithm of Ferdinand et
al. needs concrete addresses to be able to track the state of the data cache, their
problem is mostly incompatible with the techniques that we use in the VSA algo-
rithm (§3)—i.e., tracking the values of a-locs (§2.2 and §4) in terms of an abstract
model of memory (§2.1). As discussed in §2.1, the use of concrete memory addresses
instead of a-locs can sometimes be problematic for accesses to local variables.

In Ferdinand et al. [2001], the abstract domain for representing a set of concrete
addresses is based on intervals. As discussed above, an abstract arithmetic based
solely on intervals does not provide enough information to check for non-aligned
accesses, which is why VSA is based on strided intervals (see §3.1 and [Balakrishnan
and Reps 2004; Reps et al. 2006]). Since 2006 [Ferdinand 2009], the aiT tool [aiT]
has used an abstract domain similar to our strided-interval domain [Grewe 2008].

Xu et al. [2000; 2001] created a system that used theorem-proving techniques to
analyze executables in the absence of symbol-table and/or debugging information.
The goal of their system was to establish whether or not certain memory-safety
properties held in SPARC executables. Similarly, there has been other work based
on logic to deal with self-modifying code [Cai et al. 2007], embedded code pointers
[Ni and Shao 2006], aliases [Brumley and Newsome 2006], and stack-based control
abstractions [Feng et al. 2006].
Decompilation. Past work on decompiling assembly code to a high-level lan-
guage [Cifuentes et al. 1998; Chang et al. 2006] is also peripherally related to our
work. However, the decompilers reported in the literature are somewhat limited in
what they are able to do when translating assembly code to high-level code. For
instance, the work of Cifuentes et al. [1998] primarily concentrates on recovery of
(a) expressions from instruction sequences, and (b) control flow. We believe that
decompilers would benefit from the memory-access-analysis method described in
this paper, which can be performed prior to decompilation proper, to recover in-
formation about numeric values, address values, physical types, and definite links
from objects to virtual-function tables [Balakrishnan and Reps 2006]. By providing
methods that expose a rich source of information about the way data is laid out
and accessed in executables, our work raises the bar on what should be expected
from a future best-of-breed decompilation tool.
Analysis of Source Code. Dor et al. [2003] present a static-analysis technique—
implemented for programs written in C—whose aim is to identify string-manipulation
errors, such as potential buffer overruns. In their work, they use a flow-insensitive
pointer analysis followed by a linear-relation analysis [Cousot and Halbwachs 1978]
to identify potential buffer overruns in string-manipulation operations. Rugina and
Rinard [2005] have also used a combination of pointer and numeric analysis to
determine information about a program’s memory accesses.

There are several reasons why these algorithms were not suitable for the problem
that we faced. In our work, we are interested in discovering fine-grained information
about the structure of memory-regions. As already discussed in §3.1, it is important
for the analysis to discover alignment and stride information so that it can interpret
indirect-addressing operations that implement field-access operations in an array

66 · G. Balakrishnan and T. Reps

of structs or pointer-dereferencing operations. Because we need to represent non-
convex sets of numbers, linear-relation analysis is not appropriate. For this reason,
the numeric component of VSA is based on strided intervals, which are capable of
representing certain non-convex sets of integers.

Our analysis combines pointer analysis with numeric analysis, whereas the anal-
yses of Rugina and Rinard [2005] and Dor et al. [2003] use two separate phases:
pointer analysis followed by numeric analysis. An advantage of combining the two
analyses is that information about numeric values can lead to improved tracking of
pointers, and pointer information can lead to improved tracking of numeric values.
In our context, this kind of positive interaction is important for discovering align-
ment and stride information (cf. §3.1). Moreover, additional benefits can accrue to
clients of VSA; for instance, it can happen that extra precision will allow VSA to
identify that a strong update, rather than a weak update, is possible (i.e., an update
can be treated as a kill rather than as a possible kill; cf. case two of Fig. 4). The
advantages of combining pointer analysis with numeric analysis have been studied
by Pioli and Hind [1999]. In the context studied by Pioli and Hind, combining
the two analyses only improves precision. As discussed at the beginning of §3, a
combined analysis is essential because numeric and address-dereference operations
are inextricably intertwined in even simple instructions, such as one that loads a
local variable into a register: mov eax,[ebp-12].
Analysis in the Presence of Additional Information. Several platforms have
been created for manipulating executables in the presence of additional information,
such as source code and debugging information, including ATOM [Srivastava and
Eustace 1994], EEL [Larus and Schnarr 1995], Phoenix [Phoenix], and Vulcan
[Srivastava et al. 2001]. Several people have also developed techniques to analyze
executables in the presence of such additional information [Bergeron et al. 2001;
Bergeron et al. 1999; Rival 2003]. Analysis techniques that assume access to such
information are limited by the fact that it must not be relied on when dealing
with programs such as viruses, worms, and mobile code (even if such information
is present).

Identification of Structures. Aggregate structure identification (ASI) was de-
vised by Ramalingam et al. to partition aggregates according to a Cobol program’s
memory-access patterns [Ramalingam et al. 1999]. A similar algorithm was devised
by Eidorff et al. [1999] and incorporated in the Anno Domini system. The original
motivation for these algorithms was the Year 2000 problem; they provided a way
to identify how date-valued quantities could flow through a program.

In our work, ASI complements VSA: ASI addresses the issue of identifying the
structure of aggregates, whereas VSA addresses the issue of over-approximating the
contents of memory locations. ASI provides an improved method for the variable-
identification facility of IDAPro, which uses only much cruder techniques (and only
takes into account statically known memory addresses and stack offsets). Moreover,
ASI requires more information to be on hand than is available in IDAPro (such as
the range and stride of a memory-access operation). Fortunately, this is exactly the
information that is available after VSA has been carried out, which means that ASI
can be used in conjunction with VSA to obtain improved results: after each round
of VSA, the results of ASI are used to refine the a-loc abstraction, after which VSA
is run again—generally producing more precise results.

WYSINWYX: What You See Is Not What You eXecute · 67

Mycroft gives a unification-based algorithm for performing type reconstruction,
including identifying structures [Mycroft 1999]. For instance, when a register is
dereferenced with an offset of 4 to perform a 4-byte access, the algorithm infers
that the register holds a pointer to an object that has a 4-byte field at offset 4. The
type system uses disjunctive constraints when multiple type reconstructions from
a single usage pattern are possible.

Mycroft points out several weaknesses of the algorithm due to the absence of
information about interprocedural side-effects, strides, and sizes of arrays. Fur-
thermore, Mycroft excludes from consideration programs in which addresses of
local variables are taken. This is a problematic restriction because it is a common
idiom: in C programs, addresses of local variables are frequently used as explicit
arguments to called procedures (when programmers simulate call-by-reference pa-
rameter passing), and C++ and Java compilers can use addresses of local variables
to implement call-by-reference parameter passing. It should be possible to make
use of Mycroft’s techniques in conjunction with those used in CodeSurfer/x86. In
particular, some of the issues discussed above could be addressed using information
obtained by the techniques described in this paper.

Miné [2006] describes a combined data-value and points-to analysis that, at each
program point, partitions the variables in the program into a collection of cells
according to how they are accessed, and computes an over-approximation of the
values in these cells. Miné’s algorithm is similar in flavor to the VSA-ASI itera-
tion scheme in that Miné finds his own variable-like quantities for static analysis.
However, Miné’s partitioning algorithm is still based on the set of variables in the
program (which our algorithm assumes will not be available). His implementation
does not support analysis of programs that use heap-allocated storage. Moreover,
his techniques are not able to infer from loop-access patterns—as ASI can—that
an unstructured cell (e.g., unsigned char z[32] has internal array substructures,
(e.g., int y[8]; or struct {int a[3]; int b;} x[2];).

In Miné’s work, cells correspond to variables. The algorithm assumes that each
variable is disjoint and is not aware of the relative positions of the variables. Instead,
his algorithm issues an alarm whenever an indirect access goes beyond the end of a
variable. Because our abstraction of memory is in terms of memory-regions (which
can be thought of as cells for entire activation records), we are able to interpret an
out-of-bound access precisely in most cases. For instance, suppose that two integers
a and b are laid out next to each other. Consider the sequence of C statements
“p = &a; *(p+1) = 10;”. For the access *(p+1), Miné’s implementation issues an
out-of-bounds access alarm, whereas we are able to identify that it is a write to
variable b. (Such out-of-bounds accesses occur commonly during VSA because the
a-loc-recovery algorithm can split a single source-level variable into more than one
a-loc, e.g., array pts in Ex. 2.1.)
DDA/x86. DDA/x86 is the first known application of program analysis/verification
techniques to stripped industrial executables. Among other techniques, it combines
the IR-recovery algorithms from CodeSurfer/x86 [Balakrishnan 2007; Balakrishnan
and Reps 2004; 2007] with the path-sensitive method of interpreting property au-
tomata from ESP [Das et al. 2002].

A number of algorithms have been proposed in the past for verifying properties
of programs when source code is available [Ball et al. 2006; Ball and Rajamani

68 · G. Balakrishnan and T. Reps

2001; Blanchet et al. 2003; Das et al. 2002; Fischer et al. 2005; Henzinger et al.
2002]. Among these techniques, SDV [Ball et al. 2006; Ball and Rajamani 2001]
and ESP [Das et al. 2002] are closely related to DDA/x86. SDV builds a Boolean
representation of the program using predicate abstraction; it reports a possible
property violation if an error state is reachable in the Boolean model. In con-
trast, DDA/x86 uses value-set analysis [Balakrishnan and Reps 2004; Balakrishnan
2007] (along with property simulation) to over-approximate the set of reachable
states; it reports a possible property violation if the error state is reachable at
any instruction in the executable. To eliminate spurious error traces, SDV uses
counter-example-guided abstraction refinement, whereas DDA/x86 leverages path
sensitivity obtained by combining property simulation and abstract interpretation.
In this respect, DDA/x86 is more closely related to ESP—in fact, the algorithm in
§6.1 was inspired by ESP. However, unlike ESP, DDA/x86 provides a witness trace
for a possible bug, as described in §6.2. Moreover, DDA/x86 uses a different kind
of abstraction refinement (see §4 and §5).

Although combining the propagation of property-automaton states and abstract
interpretation provides a degree of path sensitivity, it was not always sufficient to
eliminate all of the false positives for the examples in our test suite. Therefore, we
also distinguished paths based on the abstract state (using the automaton shown
in Fig. 24) in addition to distinguishing paths based on property-automaton states.
While the results of our experiments are encouraging, it required a lot of manual
effort to reduce the number of false positives: spurious error traces were examined
by hand, and the automaton in Fig. 24 was introduced to refine the abstraction in
use. For DDA/x86 to be usable on a day-to-day basis, it would be important to
automate the process of reducing the number of false positives. Several techniques
have been proposed to reduce the number of false positives in abstract interpreta-
tion, including trace partitioning [Mauborgne and Rival 2005], qualified dataflow
analysis [Holley and Rosen 1981], and the refinement techniques of Fischer et al.
[2005] and Dhurjati et al. [2006]. All of these techniques are potentially applicable
in DDA/x86.
Shared Data Structures. The use of shared data structures to reduce the space
required for program analysis has a long history; it includes applicative shared
dictionaries [Myers 1984; Reps et al. 1983], shared set representations [Pugh 1988],
and binary decision diagrams [Bryant 1986; Burch et al. 1990]. Recent work that
discusses efficient representations of data structures for program analysis includes
Blanchet et al. [2003] and Manevich et al. [2002].

8. CONCLUSIONS

In recent years, the topic of improving programmer productivity and software re-
liability has become one of the main focal points of programming-language and
compiler research. However, most analysis efforts have focused on programs for
which source code is available; the problem of analyzing executables has received
much less attention. The methods presented in this paper help to fill that gap.

The main focus of this paper is on algorithms that recover intermediate repre-
sentations (IRs) from an executable that are similar to the ones that would be
obtained by a compiler if we had started from source code. Just as the IRs cre-
ated by a compiler form the backbone of tools for analyzing source code, the IRs

WYSINWYX: What You See Is Not What You eXecute · 69

recovered using our algorithms form the backbone of tools for performing further
analysis of executables. Moreover, because the IRs recovered by our algorithms are
similar to the IRs created by a compiler, it is also possible to leverage techniques
from source-code analysis to the analysis of executables—making adaptations as
needed.

There are multiple challenges when the goal is to recover suitable IRs from an
executable. In this paper, we outlined the challenges and presented our solutions
that address those challenges. §2 presented an abstract memory model for analyz-
ing executables, and introduced variable-like entities, referred to as a-locs, which
serve as proxies for the program’s actual variables. §3 presented various algorithms
to obtain information about memory accesses in an executable. §4 presented an im-
proved a-loc recovery algorithm. §5 presented an abstraction-refinement algorithm,
which iteratively improves both the set of a-locs in use, as well as the precision of
the results obtained via the algorithms presented in §3. Not all of our techniques
could be presented in this paper; references to enhancements and variations are
given in several places (e.g., see footnote 4 and the list at the beginning of §7).

Overall, the techniques that we developed are reasonably successful at providing
a foundation for performing a variety of analyses on executables. In particular,
the experiments reported on in §4.9 showed that there was substantial agreement
between the a-locs discovered for an executable and the variables of the original
source-level program. With the additional techniques presented elsewhere [Balakr-
ishnan 2007, Ch. 7], we were able to recover information that is useful for static
analysis at over 80% of the indirect memory accesses in an executable.

Moreover, our techniques opened up new opportunities for analyzing executables.
Prior to our work, several analysis problems on executables had not been addressed
using principled static-analysis techniques—only ad-hoc solutions had been pro-
posed. For instance, Cifuentes and Fraboulet [1997b] give an algorithm to identify
an intraprocedural slice of an executable by following the program’s use-def chains.
However, their algorithm makes no attempt to track values that are not in registers,
and hence cuts short the slice when a load from memory is encountered. In contrast,
we used our analyses to create CodeSurfer/x86 [Balakrishnan et al. 2005], the first
program-slicing tool for executables that can help with understanding dependences
across memory updates and memory accesses.

As described in §6, we were able to extend CodeSurfer/x86 to create DDA/x86
[Balakrishnan and Reps 2008], which represents the first automatic program-
verification tool for stripped executables. DDA/x86 allows one to check that a
stripped executable conforms to an API-usage rule specified as a finite-state ma-
chine. The experiments reported on in §6.2 showed that DDA/x86 was able to
verify the absence of bugs for the majority of our test cases. In the test cases
that had real bugs, it was able to find a useful counter-example sequence in the
executable.

The CodeSurfer/x86 platform has been used for a number of other applications
as well, including extracting file formats from executables [Lim et al. 2006] and
determining summaries for library functions [Gopan and Reps 2006]. It has also
been used by other researchers to identify the propagation mechanisms and payloads
of worms [Brown et al. 2007].

Despite these successes, there is room for improvement. When implementing

70 · G. Balakrishnan and T. Reps

the abstract transformers for CodeSurfer/x86’s various static-analysis components
(VSA, ASI, ARA, etc.), it was a major headache to maintain consistency among
the various abstract semantics. Both the size of the x86 instruction set and the
complexity of the abstract domains involved contributed to the problem. Further-
more, to port CodeSurfer/x86 to a new instruction set, for each abstract semantics
it would have been necessary to hand-code new abstract transformers for the new
set of instructions. Overall, to support m abstract domains and n instruction sets
(each of size is, to simplify matters), the amount of work involved is m × n × is.

To address this problem, Lim and Reps [2008] developed the Transformer Specifi-
cation Language (TSL) system. With TSL, one specifies (i) the concrete semantics
of each instruction set (using an ML-like language to write an interpreter for each
instruction set), along with (ii) a description of each abstract domain. From these
inputs, the TSL system generates consistent abstract transformers for each abstract
domain automatically. Therefore, instead of writing m × n × is transformers, the
TSL user need only perform m + n × is work: he must provide n × is concrete
transformers to specify the concrete semantics of n instruction sets, and also write
the specifications of m abstract domains. Consequently, TSL considerably reduces
the effort required to create multiple versions—for different instruction sets—of a
system, like CodeSurfer, that contains multiple analysis components.

Another area in which there is room for improvement concerns the nature of the
VSA domain. Unlike abstract domains such as the polyhedral domain [Cousot and
Halbwachs 1978], the VSA domain does not track inter-variable relationships. One
of the main issues that we faced in our work is the loss of precision due to the
non-relational nature of the VSA domain. We overcame some of the precision loss
by (i) using information from auxiliary analyses, such as affine-relation analysis
[Müller-Olm and Seidl 2005; Lal et al. 2005] and GMOD analysis [Cooper and
Kennedy 1988; Reps and Balakrishnan 2008], and (ii) splitting abstract states at
each program point based on an automaton (see §6.1). However, in all of these cases
it required a lot of manual effort to identify the right combination of analyses and
partitioning of the VSA states to achieve the desired level of precision. It would
be useful to automate the process of tuning the analyzer based on the analysis
problem at hand. Abstraction-refinement techniques, such as those of Henzinger
et al. [2004], Fischer et al. [2005], and Dhurjati et al. [2006], have been successfully
used in source-code-analysis tools. We believe that CodeSurfer/x86 would be even
more useful if such abstraction-refinement techniques are combined with the VSA
algorithm and the other analyses already incorporated in CodeSurfer/x86.

Acknowledgments. We are grateful to our collaborators at Wisconsin—J. Lim,
A. Lal, N. Kidd, and D. Gopan—and at GrammaTech, Inc.—T. Teitelbaum, S.
Yong, R. Gruian, D. Melski, and C.-H. Chen—for their many contributions to the
project. We are also grateful to M. Sagiv, R. Wilhelm, and S. Jha for several helpful
discussions about the work.

REFERENCES

Aigner, G. and Hölzle, U. 1996. Eliminating virtual function calls in C++ programs. In Proc.
European Conf. on Obj.-Oriented Prog.

aiT. aiT Worst-Case Execution Time Analyzer. http://www.AbsInt.com/aiT.

WYSINWYX: What You See Is Not What You eXecute · 71

Amme, W., Braun, P., Zehendner, E., and Thomasset, F. 2000. Data dependence analysis of

assembly code. Int. Journal of Parallel Programming .

Backes, W. 2004. Programmanalyse des xrtl zwischencodes. Ph.D. thesis, Universitaet des
Saarlandes. (In German.).

Bala, V., Duesterwald, E., and Banerjia, S. 2000. Dynamo: A transparent runtime optimiza-
tion system. In Proc. Conf. on Prog. Lang. Design and Implementation.

Balakrishnan, G. 2007. WYSINWYX: What You See Is Not What You eXecute. Ph.D. thesis,
Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI. Tech. Rep. 1603.

Balakrishnan, G., Gruian, R., Reps, T., and Teitelbaum, T. 2005. Codesurfer/x86 – A
platform for analyzing x86 executables, (tool demonstration paper). In Proc. Int. Conf. on
Compiler Construction.

Balakrishnan, G. and Reps, T. 2004. Analyzing memory accesses in x86 executables. In Proc.
Int. Conf. on Compiler Construction. 5–23.

Balakrishnan, G. and Reps, T. 2006. Recency-abstraction for heap-allocated storage. In Proc.
Static Analysis Symp.

Balakrishnan, G. and Reps, T. 2007. DIVINE: DIscovering Variables IN Executables. In Proc.
Verif., Model Checking, and Abs. Interp.

Balakrishnan, G. and Reps, T. 2008. Analyzing stripped device-driver executables. In Proc.
Tools and Algs. for the Construct. and Anal. of Syst.

Balakrishnan, G., Reps, T., Kidd, N., Lal, A., Lim, J., Melski, D., Gruian, R., Yong, S.,
Chen, C.-H., and Teitelbaum, T. 2005. Model checking x86 executables with CodeSurfer/x86
and WPDS++. In Proc. Computer Aided Verif.

Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T. 2007. WYSINWYX: What You
See Is Not What You eXecute. In Proc. IFIP Working Conf. on Verified Software: Theories,
Tools, Experiments.

Ball, T. 2006. Personal communication.

Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek,

B., Rajamani, S., and Ustuner, A. 2006. Thorough static analysis of device drivers. In Proc.
European Conf. on Computer Systems.

Ball, T. and Rajamani, S. 2000. Bebop: A symbolic model checker for Boolean programs. In
Proc. Spin Workshop. Lec. Notes in Comp. Sci., vol. 1885. 113–130.

Ball, T. and Rajamani, S. 2001. The SLAM toolkit. In Proc. Computer Aided Verif.

Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M., Lavoie, Y., and Tawbi, N. 2001.
Static detection of malicious code in executable programs. Int. J. of Req. Eng..

Bergeron, J., Debbabi, M., Erhioui, M., and Ktari, B. 1999. Static analysis of binary code to
isolate malicious behaviors. In Int. Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
and Rival, X. 2003. A static analyzer for large safety-critical software. In Proc. Conf. on Prog.
Lang. Design and Implementation. 196–207.

Bouajjani, A., Esparza, J., and Maler, O. 1997. Reachability analysis of pushdown automata:
Application to model checking. In Proc. CONCUR.

Bourdoncle, F. 1993. Efficient chaotic iteration strategies with widenings. In Int. Conf. on
Formal Methods in Prog. and their Appl. LNCS. Springer-Verlag.

Brown, R., Khazan, R., and Zhivich, M. 2007. AWE: Improving software analysis through

modular integration of static and dynamic analyses. In PASTE.

Brumley, D. and Newsome, J. 2006. Alias analysis for assembly. Tech. Rep. CMU-CS-06-180,
School of Comp. Sci., Carnegie Mellon University, Pittsburgh, PA. Dec.

Bryant, R. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on
Comp. C-35, 6 (Aug.), 677–691.

Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. 1990. Symbolic model checking:
1020 states and beyond. In Proc. Symp. on Logic in Comp. Sci. 428–439.

Bush, W., Pincus, J., and Sielaff, D. 2000. A static analyzer for finding dynamic programming
errors. Software: Practice and Experience 30, 775–802.

72 · G. Balakrishnan and T. Reps

Cai, H., Shao, Z., and Vaynberg, A. 2007. Certified self-modifying code. In Proc. Conf. on

Prog. Lang. Design and Implementation. ACM Press, 66–77.

Chandra, S. and Reps, T. 1999. Physical type checking for C. In Proc. Prog. Analysis for Softw.
Tools and Eng. 66–75.

Chang, B.-Y., Harren, M., and Necula, G. 2006. Analysis of low-level code using cooperating
decompilers. In Proc. Static Analysis Symp.

Chen, H. and Wagner, D. 2002. MOPS: An infrastructure for examining security properties of

software. In Conf. on Comp. and Commun. Sec. 235–244.

Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. 2001. An empirical study of
operating systems errors. In Proc. Symp. on Op. Syst. Principles.

Christodorescu, M., Goh, W.-H., and Kidd, N. 2005. String analysis for x86 binaries. In Prog.
Analysis for Softw. Tools and Eng.

Cifuentes, C. and Fraboulet, A. 1997a. Interprocedural data flow recovery of high-level lan-

guage code from assembly. Tech. Rep. 421, Univ. Queensland.

Cifuentes, C. and Fraboulet, A. 1997b. Intraprocedural static slicing of binary executables.
In Proc. Int. Conf. on Software Maintenance. 188–195.

Cifuentes, C., Simon, D., and Fraboulet, A. 1998. Assembly to high-level language translation.
In Proc. Int. Conf. on Software Maintenance. 228–237.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2000. Counterexample-guided

abstraction refinement. In Proc. Computer Aided Verif. 154–169.

CodeSonar. CodeSonar, GrammaTech, Inc. www.grammatech.com/products/codesonar.

CodeSurfer. CodeSurfer, GrammaTech, Inc. www.grammatech.com/products/codesurfer.

Cooper, K. and Kennedy, K. 1988. Interprocedural side-effect analysis in linear time. In Proc.
Conf. on Prog. Lang. Design and Implementation. 57–66.

Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, and Zheng, H.

2000. Bandera: Extracting finite-state models from Java source code. In Proc. Int. Conf. on
Softw. Eng. 439–448.

Cousot, P. and Cousot, R. 1976. Static determination of dynamic properties of programs. In
Proc. 2nd. Int. Symp on Programming. Paris.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static

analysis of programs by construction of approximation of fixed points. In Proc. Symp. on
Princ. of Prog. Lang. 238–252.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. In Proc.
Symp. on Princ. of Prog. Lang. 269–282.

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear constraints among variables
of a program. In Proc. Symp. on Princ. of Prog. Lang. 84–96.

Cova, M., Felmetsger, V., Banks, G., and Vigna, G. 2006. Static detection of vulnerabilities
in x86 executables. In Proc. Annual Comp. Sec. Applications Conf.

Coverity. Coverity Prevent. www.coverity.com/html/coverity-prevent-static-analysis.html.

Das, M., Lerner, S., and Seigle, M. 2002. ESP: Path-sensitive program verification in polyno-
mial time. In Proc. Conf. on Prog. Lang. Design and Implementation. ACM Press, New York,
NY, 57–68.

De Sutter, B., De Bus, B., De Bosschere, K., Keyngnaert, P., and Demoen, B. 2000. On
the static analysis of indirect control transfers in binaries. In Proc. Int. Conf. on Parallel and
Dist. Processing Techniques and Applications.

Debray, S., Linn, C., Andrews, G., and Schwarz, B. 2004. Stack analysis of x86 executables.
www.cs.arizona.edu/∼debray/Publications/stack-analysis.pdf.

Debray, S., Muth, R., and Weippert, M. 1998. Alias analysis of executable code. In Proc.
Symp. on Princ. of Prog. Lang. 12–24.

Dhurjati, D., Das, M., and Yang, Y. 2006. Path-sensitive dataflow analysis with iterative
refinement. In Proc. Static Analysis Symp. 425–442.

DMCA §1201. §1201. Circumvention of Copyright Protection Systems.
www.copyright.gov/title17/92chap12.html#1201.

WYSINWYX: What You See Is Not What You eXecute · 73

Dor, N., Rodeh, M., and Sagiv, M. 2003. CSSV: Towards a realistic tool for statically detecting

all buffer overflows in C. In Proc. Conf. on Prog. Lang. Design and Implementation. 155–167.

Eidorff, P., Henglein, F., Mossin, C., Niss, H., Sørensen, M., and Tofte, M. 1999. Anno
Domini: From type theory to year 2000 conversion tool. In Proc. Symp. on Princ. of Prog.
Lang. 1–14.

Emmerik, M. V. 2007. Static single assignment for decompilation. Ph.D. thesis, School of Inf.
Tech. and Elec. Eng., Univ. of Queensland, Brisbane, AU.

Engler, D., Chelf, B., Chou, A., and Hallem, S. 2000. Checking system rules using system-
specific, programmer-written compiler extensions. In Proc. Op. Syst. Design and Impl. 1–16.

Feng, X., Shao, Z., Vaynberg, A., Xiang, S., and Ni, Z. 2006. Modular verification of as-
sembly code with stack-based control abstractions. In Proc. Conf. on Prog. Lang. Design and
Implementation. 401–414.

Ferdinand, C. 2009. Personal communication.

Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling, H.,
Thesing, S., and Wilhelm, R. 2001. Reliable and precise WCET determination for a real-life
processor. In Proc. of the First Int. Workshop on Embedded Software (EMSOFT). 469–485.

Finkel, A., B.Willems, and Wolper, P. 1997. A direct symbolic approach to model checking
pushdown systems. Elec. Notes in Theor. Comp. Sci. 9.

Fischer, J., Jhala, R., and Majumdar, R. 2005. Joining dataflow with predicates. In Proc.
Found. of Softw. Eng.

Gopan, D. and Reps, T. 2006. Lookahead widening. In Proc. Computer Aided Verif.

Gopan, D. and Reps, T. 2007. Low-level library analysis and summarization. In Proc. Computer
Aided Verif.

Graf, S. and Säıdi, H. 1997. Construction of abstract state graphs with PVS. In Proc. Computer
Aided Verif. Lec. Notes in Comp. Sci., vol. 1254. 72–83.

Grewe, D. 2008. Static congruence analysis of binaries. Bachelors thesis, Univ. des Saarlandes.

Guo, B., Bridges, M., Triantafyllis, S., Ottoni, G., Raman, E., and August, D. 2005.
Practical and accurate low-level pointer analysis. In 3nd Int. Symp. on Code Gen. and Opt.
291–302.

Havelund, K. and Pressburger, T. 2000. Model checking Java programs using Java PathFinder.
Softw. Tools for Tech. Transfer 2, 4.

Henzinger, T., Jhala, R., Majumdar, R., and McMillan, K. L. 2004. Abstractions from
proofs. In Proc. Symp. on Princ. of Prog. Lang. 232–244.

Henzinger, T., Jhala, R., Majumdar, R., and Sutre, G. 2002. Lazy abstraction. In Proc.
Symp. on Princ. of Prog. Lang. 58–70.

Hind, M. 2001. Pointer analysis: Haven’t we solved this problem yet? In Proc. Prog. Analysis for
Softw. Tools and Eng.

Holley, L. and Rosen, B. 1981. Qualified data flow problems. Trans. on Softw. Eng. 7, 1, 60–78.

Howard, M. 2002. Some bad news and some good news. MSDN, Microsoft Corp.,
msdn2.microsoft.com/en-us/library/ms972826.aspx.

IDAPro. IDAPro disassembler. www.hex-rays.com/idapro/.

Kiriansky, V., Bruening, D., and Amarasinghe, S. 2002. Secure execution via program shep-
herding. In Proc. USENIX Sec. Symp.

Kiss, A., J. Jász, G. L., and Gyimóthy, T. 2003. Interprocedural static slicing of binary exe-
cutables. In Proc. Int. Workshop on Source Code Analysis and Manip.

Kruegel, C., Kirda, E., Mutz, D., Robertson, W., and Vigna, G. 2005. Automating mimicry
attacks using static binary analysis. In Proc. USENIX Sec. Symp.

Kurshan, R. 1994. Computer-Aided Verification of Coordinating Processes. Princeton Univ.
Press.

Lal, A., Reps, T., and Balakrishnan, G. 2005. Extended weighted pushdown systems. In Proc.
Computer Aided Verif.

Larus, J. and Schnarr, E. 1995. EEL: Machine-independent executable editing. In Proc. Conf.
on Prog. Lang. Design and Implementation. 291–300.

74 · G. Balakrishnan and T. Reps

Lim, J. and Reps, T. 2008. A system for generating static analyzers for machine instructions. In

Proc. Int. Conf. on Compiler Construction.

Lim, J., Reps, T., and Liblit, B. 2006. Extracting output formats from executables. In Proc.
Working Conf. on Rev. Eng.

Manevich, R., Ramalingam, G., Field, J., Goyal, D., and Sagiv, M. 2002. Compactly repre-
senting first-order structures for static analysis. In Proc. Static Analysis Symp. 196–212.

Mauborgne, L. and Rival, X. 2005. Trace partitioning in abstract interpretation based static
analyzers. In Proc. European Symp. on Programming.

Miné, A. 2006. Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In Proc. Conf. on Languages, Compilers, and Tools for Embedded Systems.

Müller-Olm, M. and Seidl, H. 2005. Analysis of modular arithmetic. In Proc. European Symp.
on Programming.

Mycroft, A. 1999. Type-based decompilation. In Proc. European Symp. on Programming.

Myers, E. 1984. Efficient applicative data types. In Proc. Symp. on Princ. of Prog. Lang.

Ni, Z. and Shao, Z. 2006. Certified assembly programming with embedded code pointers. In
Proc. Symp. on Princ. of Prog. Lang. 320–333.

Nita, M., Grossman, D., and Chambers, C. 2008. A theory of platform-dependent low-level
software. In Proc. Symp. on Princ. of Prog. Lang.

O’Callahan, R. and Jackson, D. 1997. Lackwit: A program understanding tool based on type
inference. In Proc. Int. Conf. on Softw. Eng.

Oney, W. 2003. Programming the Microsoft Windows Driver Model. Microsoft Press.

Pande, H. and Ryder, B. 1996. Data-flow-based virtual function resolution. In Proc. Static
Analysis Symp. 238–254.

Phoenix. Phoenix software optimization and analysis framework.
http://connect.microsoft.com/phoenix.

Pioli, A. and Hind, M. 1999. Combining interprocedural pointer analysis and conditional constant
propagation. Tech. Rep. RC 21532(96749), IBM T.J. Watson Research Center. Mar.

PREfast 2004. PREfast with driver-specific rules. www.microsoft.com/whdc/archive/PREfast-
drv.mspx.

Pugh, W. 1988. Incremental computation and the incremental evaluation of functional programs.
Ph.D. thesis, Cornell University.

Ramalingam, G., Field, J., and Tip, F. 1999. Aggregate structure identification and its appli-
cation to program analysis. In Proc. Symp. on Princ. of Prog. Lang.

Regehr, J., Reid, A., and Webb, K. 2005. Eliminating stack overflow by abstract interpretation.
In ACM Trans. on Embedded Comp. Systs. 751–778.

Reps, T. and Balakrishnan, G. 2008. Improved memory-access analysis for x86 executables. In
Proc. Int. Conf. on Compiler Construction.

Reps, T., Balakrishnan, G., and Lim, J. 2006. Intermediate-representation recovery from low-
level code. In Proc. Part. Eval. and Semantics-Based Prog. Manip.

Reps, T., Balakrishnan, G., Lim, J., and Teitelbaum, T. 2005. A next-generation platform
for analyzing executables. In Proc. Asian Symp. on Prog. Lang. and Systems.

Reps, T., Teitelbaum, T., and Demers, A. 1983. Incremental context-dependent analysis for

language-based editors. Trans. on Prog. Lang. and Syst. 5, 3 (July), 449–477.

Rival, X. 2003. Abstract interpretation based certification of assembly code. In Proc. Verif.,
Model Checking, and Abs. Interp.

Rugina, R. and Rinard, M. 2005. Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. Trans. on Prog. Lang. and Syst. 27, 2, 185–235.

Sharir, M. and Pnueli, A. 1981. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications, S. Muchnick and N. Jones, Eds. Prentice-
Hall, Englewood Cliffs, NJ, Chapter 7, 189–234.

Siff, M. and Reps, T. 1996. Program generalization for software reuse: From C to C++. In
Proc. Found. of Softw. Eng.

WYSINWYX: What You See Is Not What You eXecute · 75

Srivastava, A., Edwards, A., and Vo, H. 2001. Vulcan: Binary transformation in a distributed

environment. MSR-TR-2001-50, Microsoft Research. Apr.

Srivastava, A. and Eustace, A. 1994. ATOM - A system for building customized program
analysis tools. In Proc. Conf. on Prog. Lang. Design and Implementation.

Swift, M., Annamalai, M., Bershad, B., and Levy, H. 2004. Recovering device drivers. In
Proc. Symp. on Op. Syst. Design and Impl.

Swift, M., Bershad, B., and Levy, H. 2005. Improving the reliability of commodity operating
systems. ACM Trans. Comput. Syst. 23, 1.

van Deursen, A. and Moonen, L. 1998. Type inference for COBOL systems. In Proc. Working
Conf. on Rev. Eng.

Wagner, D., Foster, J., Brewer, E., and Aiken, A. 2000. A first step towards automated
detection of buffer overrun vulnerabilities. In Proc. Network and Dist. Syst. Security.

Wall, D. 1992. Systems for late code modification. In Code Generation – Concepts, Tools,
Techniques, R. Giegerich and S. Graham, Eds. Springer-Verlag.

WHDC 2007. C++ for kernel mode drivers: Pros and cons.
www.microsoft.com/whdc/driver/kernel/KMcode.mspx.

WHQL 2004. Defrauding the WHQL driver certification process.
blogs.msdn.com/oldnewthing/archive/2004/03/05/84469.aspx.

Wikipedia: Enforceability. Software license agreement: Enforceability (in the United States).
en.wikipedia.org/wiki/Software license agreement#Enforceability, Sept. 19, 2009.

Wikipedia: Shrink-Wrap and Click-Wrap Licenses. Software license agreement: Shrink-wrap and
click-wrap licenses. en.wikipedia.org/wiki/Software license agreement#Shrink-wrap and click-
wrap licenses, Sept. 19, 2009.

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschu-

lat, J., and Stenström, P. 2008. The worst-case execution-time problem—overview of meth-
ods and survey of tools. ACM Trans. Embed. Comput. Syst. 7, 3, 1–53.

Wilson, R. and Lam, M. 1995. Efficient context-sensitive pointer analysis for C programs. In
Proc. Conf. on Prog. Lang. Design and Implementation. 1–12.

Windows DDK 2003. Windows Server 2003 DDK. www.microsoft.com/whdc/devtools/ddk.

Xu, Z., Miller, B., and Reps, T. 2000. Safety checking of machine code. In Proc. Conf. on
Prog. Lang. Design and Implementation.

Xu, Z., Miller, B., and Reps, T. 2001. Typestate checking of machine code. In Proc. European
Symp. on Programming.

Zhang, J., Zhao, R., and Pang, J. 2007. Parameter and return-value analysis of binary executa-
bles. In Comp. Softw. and Applications Conf.

