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Abstract

Distributed Information Flow Control (DIFC) systems
enable programmers to express desired information-flow
policies, and enforce the policies via a reference monitor
that restricts interactions between system objects, such as
processes and files. Current research on DIFC systems
focuses on the reference-monitor implementation, and as-
sumes that the application correctly enforces the desired
information-flow policy. The focus of this paper is a semi-
automatic technique to verify that the application does
indeed enforce the (high-level) policy. We perform a source-
to-source transformation on an input C program, and then
ask if the transformed program satisfies an LTL formula
expressing the desired policy. The transformation soundly
abstracts programs with a potentially unbounded number of
processes and communication channels. We implemented our
approach and evaluated it on a set of real-world programs.

1. Introduction

Distributed Information Flow Control (DIFC) systems
[1]–[4] allow application programmers to specify their own
information-flow policies, and then enforce the policy in
the context of the entire operating system. To achieve
this goal, they maintain a mapping from system objects
(processes, files, etc.) to labels—sets of atomic elements
called tags. Each process in the program creates tags, and
gives other processes the ability to control the program’s data
distribution by collecting and discarding the tags. The DIFC
runtime system acts as a reference monitor for all inter-
process communication, deciding whether or not a requested
data transfer is allowed based on the labels of system objects.

For example, consider the diagram of a web server
handling sensitive information given in Fig. 1. A “Handler”
process receives incoming HTTP requests, and spawns a new
“Worker” process to service each request. The Worker code
that services the request may not be available for static anal-
ysis, or may be untrusted. Suppose that the server wants to
enforce a non-interference policy requiring that information
pertaining to one request, and thus in one Worker process,

Figure 1. An inter-process diagram of a typical web-
server

should never flow to another Worker process. This is a non-
trivial policy to implement, especially because two corrupted
processes acting in collusion could write and read data from
a buffer not managed by the Handler. Nevertheless, careful
use of DIFC mechanisms can ensure that the server adheres
to the policy.

In addition to ensuring that the use of DIFC mecha-
nisms enforce a desired security policy, the programmer
must also ensure that the retrofitting of DIFC code to an
existing system does not negatively impact the system’s
functionality. This is because DIFC mechanisms are able
to block potentially any communication between objects. In
the example, the Handler must be able to communicate with
each Worker at all times. In addition, the server may want to
allow each Worker to be able to create, write, and read from
its own independent set of files. An overly restrictive policy
implementation could disallow such behaviors. Our example
thus hints at a fundamental tension between security and
functionality in such systems. A naı̈ve system that focuses
solely on functionality allows information to flow between
all entities. Conversely, a system could be made completely
secure in a trivial way, but could cripple functionality.

Difficulties in reasoning about such properties are exac-
erbated by concurrency, because concurrency tremendously
increases the complexity of manual reasoning. Our proposed
(partial) solution to this problem is to leverage progress in
model checkers for concurrent software [5]–[7] that check



concurrent programs against temporal logic (e.g., linear
temporal logic, or LTL) properties. However, the translation
from arbitrary, multiprocess systems to systems that can be
reasoned about by concurrent model checkers in itself poses
two key non-trivial challenges:

1) The number of processes spawned, communication
channels created, and label values used by the
reference-monitor is unbounded. However, a model
checker will only work on models that use bounded
sets of these entities. Moreover, the models con-
structed from these abstractions must be sound ap-
proximations of the original system in the sense that
if a security or functionality property holds for the
model, then the property must hold for the original
program.

2) Model checkers must address the state-explosion prob-
lem [8], where the state space of a system grows
exponentially with the number of components. A naı̈ve
treatment of concurrency yields an enormous state
space to be searched.

The contributions of this work are as follows:
1) We describe a language for specifying information-

flow properties that can capture common properties
desired for real-world systems.

2) We describe a method for abstracting programs that
potentially create an unbounded number of processes
into a model that consists of a finite number of pro-
cesses. We use random isolation [7] to ensure that the
model is a sound over-approximation. Furthermore,
the abstracted models’ state spaces are greatly reduced
in size from those of a naı̈ve translation.

3) We implemented the abstraction as a program trans-
lation in CIL [9]. The translator accepts a program
written for the API of Flume [3], a DIFC system
executed as a UNIX process that can be used to
monitor information-flow for UNIX programs, and a
desired information flow property. It translates the
program into an abstracted model in C, and uses
the concurrent C model checker Copper [5] to verify
that the model—and thus the program—satisfies the
desired property.

4) We applied this tool to check desired properties for
several real-world programs. We semi-automatically
extracted models of modules of Apache [10],
FlumeWiki [3], ClamAV [11], and OpenVPN [12] in-
strumented with our own label-manipulation code, and
verified the desired properties in times ranging from
a few seconds to about 1.5 hours. The results given
in §5 demonstrate that the high level of abstraction in
inter-process information-flow systems, while coarse,
allows us to construct reasonable, checkable models
from real-world programs.

While there has been prior work [13], [14] in the applica-

tion of formal methods for checking properties of actual
DIFC systems, our work is unique in providing a semi-
automatic method for checking that an application satisfies a
proof of correctness under the rules of a given DIFC system.
Combining our techniques with the recent verification of the
Flume reference monitor implementation [14] defines the
first end-to-end system that is able to verify that a program
implements a high-level information-flow policy.

The rest of this paper is organized as follows: §2 describes
existing work on which our abstraction builds. §3 gives an
informal overview of our techniques. §4 gives the technical
description. §5 describes our experimental evaluation. §6
discusses related work.

2. Preliminaries

We target the Flume [3] DIFC system; however, our
abstraction techniques should work with little modification
for most DIFC systems.

2.1. Flume

Flume is implemented as a reference monitor that runs as
a user-level process, but uses a Linux Security Module [15]
for IPC interposition. Thus, it monitors current Linux pro-
grams with few small modifications to the application code.
We briefly discuss the Flume datatypes and API functions
relevant for information-flow properties of interest, and
direct the reader to [3] for a complete description.
• Tags. A tag is an atomic element created by the mon-

itor. Applications request new tags from the monitor,
and add and remove the ability for other processes to
remove tags to control data distribution.

• Labels. A label is a set of tags.
• Capabilities. A capability is either a positive or nega-

tive attribute of an object that permits label manipula-
tion: t+ denotes that the object may add t to its label,
and t− denotes that it may remove t.

• Tokens. To monitor all IPC calls that send data in
and out of a process, the monitor does not allow
processes to create their own file descriptors. Rather,
if a process wishes to create a pipe, it asks the monitor
for a new channel, and the monitor returns a pair of
tokens. A process may either pass tokens to a spawned
process or exchange tokens for file descriptors from
the monitor. After exchanging a token, the application
treats the resulting descriptor as a standard descriptor
(that may point to a file or one end of a pipe), but
the descriptor in fact points to a channel monitored by
Flume, as described below. Because a token can only
be exchanged for a descriptor, this mechanism ensures
that at most one process may ever own a descriptor.
For generality, we refer to descriptors as endpoints in
the sequel.



For each process, Flume maintains a secrecy label, an
integrity label, and a capability set. For this paper, we restrict
ourselves to a discussion of Flume’s secrecy labels and do
not model the global capability set. We leave the modeling
of both as directions for future work.1 A process has the
ability to:
• Create a new tag t and add or remove t+ and t− from

the global capability set. When a process creates a tag
t, it owns t, t+, and t−.

• Manipulate label variables using set operations.
• Redefine its label. Let C+ denote the positive capa-

bilities of a process and let C− denote the negative
capabilities. The redefinition of a label from l to l′ is
allowed if and only if l′ − l ⊆ C+ and l − l′ ⊆ C−.

• Redefine the labels of endpoints that the process owns
with the same restrictions that apply to its own label.

• Exchange a token to claim sole ownership of the
corresponding endpoint.

• Send and receive data over channels. Suppose that a
process p with label lp attempts to send data over
endpoint e with label le. Before allowing the send, the
monitor ensures that lp ⊆ le. On a receive from e, the
monitor similarly ensures that le ⊆ lp.

• Spawn a new process. Flume provides a single API call
spawn that effectively combines the fork and exec
UNIX system calls. It takes as input the filepath of a
binary and starts a new process that executes the binary
while continuing execution in the current process. The
spawn function takes two additional arguments: the
initial tokens, the initial label, and initial capability set
of the new process. The label must be one that the
process could legally define as its own within the above
restrictions. The capability set must be a subset of the
process’s capabilities. Thus, processes are given tags in
their label without the ability to add or remove the tag
from their label.

Lastly, note that Flume interposes itself on accesses to
the file system, labeling files and checking accesses to them
in a manner directly analogous to channel accesses. Thus
information leakage through the file system is prevented.

Returning to the example from Fig. 1, note the pseudocode
in Fig. 2 that enforces non-interference between Worker
processes. The Handler perpetually polls for a new HTTP
request, and upon receiving one, it prepares a new Worker
process for execution. To do so, it first has Flume create a
new tag which it stores in a singleton label lab, and then
has Flume create a new channel. The Handler then launches
the Worker process, setting its initial secrecy label to lab,
not giving it the capability to add or remove the tag in lab,
and passing it one end of the channel to communicate with
the Handler. Because the Handler does not give permission

1. Modeling integrity in Flume is a dual of problem of modeling secrecy.
Labels are checked using subset comparison but the “opposite direction.”

int Handler() {
Endpoint set S;
int data = 0;
while (*) {

Request r = get next http request();

for (int i = 0; i < 1000; i++)

data = data * crypto func(data);
Label lab = create tag();
Token t0, t1;
create channel(&t0, &t1);
data = recv(claim token(t0));
spawn(”/usr/local/bin/Worker”, { t1 }, lab, { }, r ); } }

Figure 2. Flume pseudocode for how a server can
enforce the same-origin policy. Code removed by slicing
appears in frames.

for other processes to add the tag in lab, no process other
than the Handler or the new Worker can read information
flowing from the new Worker unless the Worker lowers its
label. However, the Worker cannot remove the tag from its
label, so this is impossible.

The above example shows that tags and labels in DIFC
systems allow programmers to control the information flow
of their multi-process programs. Our goal is to leverage
concurrent model checking to automatically prove that these
tag and label manipulations implement the desired security
policy of isolating the information in each Worker process.

2.2. Random Isolation

Random isolation [7] is a technique for establishing
properties about the behavior of an unbounded set of in-
distinguishable objects. The technique randomly selects one
object from the set, and isolates it by attaching to it a
distinguishable name. A program analysis then treats the
randomly-isolated object specially, i.e., as a non-summary
object or a singleton set, which allows the analysis to reason
more precisely about the behavior of the randomly-isolated
object. Finally, because it is chosen randomly from a set of
indistinguishable objects, a proof that a property holds for
the randomly-isolated object applies to each object in the
set.

Our technique applies random isolation to soundly model
the potentially unbounded sets of processes, channels, and
tags. We refer to a distinguished object as a non-summary
object (e.g., a non-summary process), and model the rest
of the objects with a summary object (e.g., one summary
process models all non-distinguishable processes).



2.3. Predicate Abstraction-based Model Checking

In §4.3, we discuss techniques for greatly reducing the
state-space of individual processes and approximating the
effects of an unbounded number of processes with a finite
process with special semantics. Even in the presence of these
techniques, the model-extraction phase typically constructs
models with state spaces on the order of 1025. Thus software
model checking (SMC) is applied to make the verification
of such state spaces feasible. The key idea behind SMC is
to combine predicate abstraction [16] and counterexample-
guided abstraction-refinement [17] to iteratively, and auto-
matically, create models that are precise enough to establish
the properties of interest. In particular, this approach was
implemented on top of the Copper 2 SMC tool.

3. Overview

We now give an informal description of the reduction
from arbitrary multi-process systems to finite models. Recall
from §1 and §2.1 that the DIFC system maintains a label
for every process, file endpoint, and file. This implies an
abstraction at the level of system objects. In other words, a
DIFC system assumes that any data read by a process pr
from a process ps is reflected in the entire memory space
of pr. This contrasts with JFlow [18], in which information
flow is tracked at the level of variables. Because information
is assumed to flow to all variables, we adopt an abstraction
that merges almost all program variables. In other words,
we replace the set of all process variables that do not
denote process spawn points or channel endpoints with a
single taint label that tracks the information reaching the
process. Definitions of the original variables are ignored. If
such variables occur in the predicates that guard flow to
an IPC call, then the guard expression is replaced with a
non-deterministic value. After performing this abstraction,
we are left with simplified programs that perform only the
following significant operations:

1) Processes create channels.
2) Processes send and receive data over channels.
3) Processes perform set operations to manipulate labels.

These operations include generating new tags with
new capabilities and adding them to labels.

4) Processes launch other processes.
This implies that there are three key program entities

that we must model to some degree of accuracy, yet are
unbounded: the set of executing processes, the set of possible
tags and capabilities, and the set of channels.

3.1. Abstracting processes

For a given execution of a system, let G be the set of
all processes that begin execution from the same program

2. http://www.sei.cmu.edu/pacc/copper.html

point. Abstraction must soundly approximate the effect of
all processes in G in the original program with a bounded
set G′ of processes that execute in the model program. To
do so, the abstraction lets G′ consist of two processes. One
of the processes, the non-summary process pnon, behaves
exactly like one of the original processes in G. This process
is assumed to execute under standard, non-summary program
semantics. However, the other process in G′, denoted as
psum, executes under a summary semantics. The summary
semantics ensures that if there is a possible execution of the
system that generates a sequence s of sends and receives,
then psum has an execution that generates a supersequence
of s. §4 contains a proof that this property is sufficient to
ensure that if the system consisting of the processes in G′

is free of any information-flow violations, then so too is the
system consisting of the processes in G.

To implement the summary semantics, we alter the im-
plementation of spawn to non-deterministically launch a
summary process or at most one non-summary process.
Summary semantics differs from non-summary semantics in
two ways:

1) Under non-summary semantics, when a process is
spawned, the parent process passes it an initial set
of tokens, an initial label, and an initial set of ca-
pabilities. In summary semantics, the first call to
spawn that launches the summary process launches
it with the argument token set, label, and capabilities.
However, each subsequent call, instead of launching a
new process, merges its token, label, and capability
arguments into conservative approximations of the
initial token and labels. For the target information-
flow properties, it is sufficient to maintain an over-
approximating set of token values. However, to check
soundly for security and functionality constraints, a
pair of labels that under- and over-approximate the
possible initial label, along with a pair of capability
sets that under- and over-approximate the capabilities
of the summary process, must be maintained.

2) Rather then executing the process code once, the
summary process continuously iterates over its code
segment. Each time that it completes execution of
the code segment, the system re-initializes its token,
label, and capability variables non-deterministically to
values contained in the conservative approximation.

These summary semantics can be modeled in a model C
program, allowing a model checker to verify properties
without changes to its internal algorithm.

For the example in Fig. 1, let G be the unbounded set of
Worker processes. The abstraction set G′ contains one non-
summary process pnon, depicted in Fig. 1 as Worker0; and
then summarizes the remaining processes with a single sum-
mary process psum, depicted with a single frame containing
the remaining Worker processes.



3.2. Abstracting tags

Similar to the abstraction of processes, the set of allocated
tags is abstracted to one non-summary tag and one summary
tag with a non-summary semantics for tag manipulation.
The summary tag changes tag and label manipulation in two
ways:

1) When the model calls create_tag, the function
non-deterministically returns the summary tag tsum or
the non-summary tag tnon. The latter is done at most
once.

2) Suppose that we wish to check if a label l is a
subset of a label m. This is similar to standard subset
comparison except in the case where l contains the
summary tag and is a subset of m. To see this, note
that the summary tag tsum is allocated in place of
multiple concrete tags. Thus, its occurrence in l may
summarize an entirely different set of concrete tags in
l than the occurrence in m. Thus, while the normal
subset comparison employed for label checking maps
to Boolean values, the subset operation over non-
summary and summary tags maps to a three-valued
domain and in the case given above, evaluates to
“unknown.” In the model, subset comparison returns
a non-deterministic value in the above case.

Returning to the example in Fig. 1, whenever Handler
invokes create_tag, it may return the summary tag tsum.
Furthermore, on at most one invocation it may return the
non-summary tag tnon.

3.3. Abstracting channels

Finally, the set of channels is abstracted to a bounded
set containing a singleton channel and a summary channel.
The summary channel affects channel manipulation in the
following ways:

1) When the model code invokes create_channel,
the function non-deterministically returns the sum-
mary channel csum or it returns the non-summary
channel cnon. It will return the non-summary channel
at most once.

2) If a process updates the labels of an endpoint of a
summary channel, we perform a weak update of the
label value and maintain an under-approximation and
over-approximation of the label value.

3) Suppose that a process wishes to send data over
endpoint e of the summary channel. To determine con-
servatively if the send may succeed, we check the label
of the process against the over-approximation of the
endpoint label. Similarly, to determine conservatively
if the send may fail, we check the label of the process
against the under-approximation of the endpoint label.

Consider again the example in Fig. 1.
Whenever Handler invokes create_channel,

create_channel may return the endpoints of the
summary channel (e0sum, e

1
sum). Furthermore, on at most one

invocation it may return (e0non, e
1
non), the endpoints of the

non-summary channel.

3.4. Potential Loss of Precision

We now analyze the effect of all of these techniques
in concert to see how the abstraction handles the running
example. In Fig. 1, we wish to prove that the Handler
configures and launches each Worker process in such a
way that information from no Worker process can reach a
different Worker process. The model program produced from
abstraction spawns at most one singleton Worker process
and a single summary Worker process. The model program
creates at most one singleton tag and one summary tag,
and similarly for channels. When a model checker checks
the model program, it attempts to find a path of execution
that allows one process to send data to the other. One such
execution of the model that it finds proceeds essentially as
follows:

1) The Handler asks for a tag, receives tsum, and launches
the non-summary process with this as an initial label.

2) The Handler asks for a tag, receives tsum again, and
launches the summary process with initial tag tsum.

3) The non-summary process opens a file on the filesys-
tem modeled as a channel and writes data to it.

4) The summary process opens the same channel and
reads data from it.

The model checker thus concludes that a violation is pos-
sible. However, the original code correctly marked each
Worker with a unique tag that each could not remove,
enforcing isolation between Workers. The counterexample
is thus spurious.

3.5. Choosing Randomly-Isolated Objects

Without compensating for the loss of precision introduced
by abstraction, the tool may not be able to verify that the
desired flow policy has been implemented correctly. The key
insight behind our approach is that we are able to effectively
choose which objects are randomly isolated, and thus ignore
many spurious counterexamples—especially those involving
only summary processes like that described above.

Random isolation is a technique for adding one bit of
instrumentation for each type of object, where the bit is
only set for one object of each object type (e.g., only one
process can have the instrumentation bit set). Consider a
concrete execution trace π of the program such that no
instrumentation bits are set for any object type, and π
violates the flow policy. An equivalence class Π of traces
is defined by π, where the only distinguishing characteristic
between two traces π1 and π2 in Π is which objects are



randomly isolated. To verify that the program adheres to the
flow policy, it is sufficient to consider only one representative
trace π ∈ Π because every trace in Π has the same concrete
behavior (the only difference being which objects have the
instrumentation bit set). Thus, when model checking the
program, for each equivalence class of traces, the trick is
to choose the trace π that is most “advantageous” from
the standpoint of retaining enough precision to establish or
refute the property of interest.

Because the properties of interest are always of the form,
“Can information flow from a process of type G to a process
of type H?”, it is desirable to choose the representative
trace π such that if π violates the flow policy, then in
the abstraction of π, the illegal flow originated from a
sufficiently-concrete process. A sufficiently-concrete process
is one whose initial token set, label, and capability set
are not solely summary objects (e.g., the (abstract) label
cannot be the set {tsum}). This is accomplished by inserting
instrumentation predicates in the model so that the model
checker only considers (abstractions of) concrete execution
traces where the property is violated and flow began from a
sufficiently-concrete process.

Returning to the example in Fig. 1, one can see how the
model checker can verify that the model does not violate
the desired flow property:

1) For a violation to occur, the model checker only
considers executions in which the Handler asks for
and receives the non-summary tag tnon, and launches
a non-summary process with tnon in its initial label.

2) Due to the program abstraction, all other Worker
processes are modeled by a summary process whose
labels consist of the summary tag.

3) Because no other Worker label contains tnon, an illegal
flow is impossible.

4. Program Abstraction

We now give a formal definition of our program-and-
specification transformation. The overall goal is to take an
original program written for the Flume API with minimal
annotations, along with a high-level specification of correct-
ness, and produce either a proof that the program adheres to
the specification, or a (potentially spurious) execution trace
demonstrating that it does not.

4.1. Inputs

4.1.1. Subject programs. For discussion purposes, we as-
sume that the analysis works over a simple imperative
language with assignments, function calls, and if and while
statements for control flow. Expressions are constructed
from integers, symbols denoting process-entry points, and
the types TFlume provided by the Flume API: tags, labels,
capabilities, tokens and endpoints. For expressions with

Flume types, only equality comparisons are allowed, and
the standard binary operations are allowed over integers.

The semantics of our language is standard with a few
exceptions for modeling Flume semantics 3:
• Consider the call statement spawn(f, T, L, C).

Here, f is a function in the code, T is a set of
tokens, L is a label, and C is a set of capabilities.
The call to spawn causes a fresh process to begin
execution in the function f with an argument storing the
initial set of channel tokens T . The model maintains a
mapping label, which maps each process and endpoint
to its label. The call to spawn updates label with
label := label[p 7→ L]. Similarly, the model maintains
a mapping cap from each process to its capability.
The call to spawn updates the mapping with cap :=
cap[p 7→ C]. The process’s input configuration is the
triple (T, L,C).

• Consider the assignment statement
(t, t’) = create_chan(). This yields two
tokens. Throughout execution, Flume maintains a map
endp from each token to the endpoint for which it
may be claimed.

• Consider the statement e = claim(t) called by
a process p. This returns the endpoint endp(t). The
model also maintains a mapping owner from each end-
point to the process that owns it. This assignment up-
dates the owner with owner := owner[endp(t) 7→ {p}].
For a non-summary endpoint enon, the set owner(e)
is a singleton set, but this restriction does not ap-
ply for the summary endpoints as defined later.
The owner mapping is lifted to channels with
owner(chan(e0, e1)) = owner(e0) ∪ owner(e1).

• Suppose that a process p calls set proc label(L). Let
C+
p and C−p denote the capabilities of p to add and

remove tags, respectively. The model then checks that
L − label(p) ⊆ C+

p and label(p) − L ⊆ C−p . If both
of these relations hold, then it performs the update
label := label[p 7→ L].

• If a process p calls set endp label(e, L), then the
model performs the update label := label[e 7→ L].

• Calls to send and recv directly affect the trace
semantics defined in §4.2.

Let FFlume be the set of functions defined by Flume
(create_tag, create_chan, etc.).

4.1.2. Specification. Tags are modeled as a set T of atomic
elements and labels are modeled as elements in 2T . A non-
summary endpoint is denoted by enon(i, L), where i ∈ {0, 1}
denotes which “end” of the channel the endpoint refers
to, and L is a label. A channel is modeled as a term

3. The updates that bind summary processes to values are strong, but
sound. The possible initial states of the summary process are updated
weakly, ensuring soundness.



chan(e0, e1) constructed directly from its endpoints. Each
endpoint belongs to exactly one channel; let chan(e) denote
the channel to which an endpoint e belongs.

Let a specification be a (possibly empty) list of security
properties along with a (possibly empty) list of functionality
properties. Let a non-summary process be a term proc(f, i)
where f is the entry point of the process in the code and
i is a unique index among processes with the same entry
point. Let a process group be any set of processes that have
the same entry point (and thus unique indices) and denote
the common entry point of a group G as entry(G). Let G
denote the set of all process groups. A security property is
of the form G 6→∗ H where G,H are process groups. This
property implies that information from a given process in
G must never reach a process in H . The property G 6→∗ G
means that information from a process in G does not reach a
different process in G. Such a property where G = Worker
encodes the same-origin policy from Fig. 1.

For process groups G,H , let a functionality property be
denoted as G → H and interpret it to mean that whenever
a process in G attempts to send data through endpoint e0

over channel chan(e0, e1), where owner(e1) ∈ H , then the
send must be successful.

An information flow property is either a security property
or a functionality property.

4.2. Trace Semantics

We now define our program abstractions, and prove that
they are sound with respect to our information-flow proper-
ties. At a high level, the structure of the proof is as follows:

1) The trace of an execution of a program P is the
sequence of actions it performs that are relevant to
the flow properties.

2) We define a set of renaming functions that transform a
trace defined over one set of processes and channels,
into a trace defined over a different set with certain
restrictions. If an original trace violates some property,
then there exists at least one renaming function that
produces a trace that also violates the property.

3) We define an abstracted program A(P ) that executes
over a finite set of system objects.

4) We prove that for each trace from P renamed to be
over objects in A(P ), there exists one trace in A(P )
that contains it as a subsequence. From this it follows
that A(P ) soundly approximates P .

Whether or not a program satisfies an information flow
property is determined by the interprocess sends and
recvs executed by the program. Let both of these events
be actions. A program generates a send action send(p, c)
when process instance p successfully executes the call
send(e), where chan(e) = c, and generates an action
blocked send(p, c) when the call is blocked by Flume.

Symmetrically, a receive action recv(c, p), is generated when
a process instance p successfully calls recv(e), where
chan(e) = c, and an action blocked recv(c, p) is generated
when Flume blocks the call. A trace is a sequence of actions.
If a trace σ is a subsequence of a trace τ , this is denoted
by σ � τ . The number of actions in a trace σ is denoted by
|σ|.

Definition 1 (Transfer). A trace σ transfers from process
group G to group H if there exists τ � σ of the form:

(send(p0, c0), recv(c0, p1), send(p1, c1), . . . ,
recv(c |τ|

2 −1
, p |τ|

2
))

where the following holds for τ :

p0 ∈ G ∧ p |τ|
2
∈ H ∧ p0 6= p |τ|

2

This is denoted with the relation transfers(G,H, σ).

Definition 2 (Blocking). A trace σ blocks from a process
group G to process group H if there exists τ � σ such that

(τ =(blocked send(p0, c0)) ∧ p0 ∈ G
∧ owner(c0) ∩H 6= ∅)

∨ (τ =(blocked recv(c1, p1)) ∧ p1 ∈ H
∧ owner(c1) ∩G 6= ∅)

This is denoted by blocks(G,H, σ).

Satisfaction of formulas is now defined for traces and
programs.

Definition 3 (Trace satisfaction). A trace σ violates a secu-
rity property ϕ = G 6→∗ H if and only if transfers(G,H, σ).
Trace σ violates a functionality property ϕ = G → H iff
blocks(G,H, σ). Trace σ satisfies ϕ, denoted as σ |= ϕ, if
it does not violate ϕ. Trace violation is denoted by σ 6|= ϕ.

Definition 4 (Program satisfaction). Let P be a program
that can generate a set of traces Tr(P ) and let ϕ be a flow
property. Program P satisfies ϕ, denoted by P |= ϕ, if for
all σ ∈ Tr(P ), it is the case that σ |= ϕ. The program P
violates ϕ, denoted as P 6|= ϕ, if it does not satisfy ϕ.

The program abstractions restructure programs that may
operate over unbounded sets of system objects to operate
over bounded sets of objects. We thus need a notion of
translating a trace over one set of system objects into a trace
over a different set of objects and for defining when such
a translation preserves sufficient structure in the new trace.
This notion is captured by defining renaming functions over
system objects, actions, and finally traces. The following
condition helps capture the structure expected of such a
translation.

Definition 5 (One-to-one modulo U ). Let f : S → T ∪ U
be a function where T ∩ U = ∅. f is one-to-one modulo U
if f restricted to all elements that map to T is one-to-one.



Well-formed renaming functions over system objects are
now defined. First, let T1, T2 be sets of tags. A function
ht : T1 → T2 is a well-formed tag-renaming function
if there exists some ts ∈ T2 such that ht is one-to-one
modulo {ts}. Intuitively, ts corresponds to the summary
tag. Lift a tag-renaming function ht to a label-renaming
function hl with hl(l) = {ht(t) | t ∈ l}. Similarly, let
C1, C2 be sets of channels. A function hc : C1 → C2 is a
well-formed channel-renaming function if there exists some
cs ∈ C2 such that hc is one-to-one modulo {cs}. Intuitively,
cs corresponds to the summary channel. Finally, for each
process group of size n, let there be some element i ∈ Zm,
m ≤ n, such that there exists a function hn : Zn → Zm
that is one-to-one modulo {i}. Intuitively, i corresponds
to the index of the summary process of a group. A well-
formed renaming function over sets of process instances
P1, P2 is then any function hp : P1 → P2 of the form
hp(proc(F, i)) = proc(F, hn(i)).

The renaming functions for renaming tags, channels, and
processes can be lifted to functions for renaming actions
and traces. Observe that an alphabet of actions can be
constructed directly from a set of channels and a set of
process instances. For an action alphabet A, this is denoted
by A = (C,P ). Let A1, A2 be action alphabets. A function
ha : A1 → A2 is a well-formed action-renaming function
if there exists a well-formed channel-renaming function
hc and a well-formed process-renaming function hp such
that if a = send(p, c), then ha(a) = send(hp(p), hc(c))
and similarly for the recv, block send, block recv actions.
Finally, let A1, A2 be action alphabets. A function hs is a
well-formed trace-renaming function from traces over A1 to
traces over A2 if there exists a well-formed action renaming
function ha : A1 → A2 such that hs(a0, a1, . . . an) =
(ha(a0), ha(a1), . . . , ha(an)).

Renaming functions preserve relevant properties of traces:

Lemma 1 (Trace preservation). Let σ be a trace over
an action alphabet A = (C,P ) where the process in-
stances are partitioned into groups G0, G1, . . . , Gn. Let
A′ = (C ′, P ′) be a distinct action language with process
instances partitioned into groups G′0, G

′
1, . . . , G

′
n such that

entry(Gi) = entry(G′i) and |G′i| = min(|Gi|, 2). If there
exists some flow property ϕ such that σ 6|= ϕ, there exists
some hs : S → S′ such that hs(σ) 6|= ϕ′ where ϕ′ is ϕ
replaced with the corresponding process groups.

Proof: See the Appendix.
Furthermore, property violation is preserved across sub-

sequence containment.

Lemma 2 (Subsequence preservation). Let σ 6|= ϕ and let
σ � σ′. Then it is the case that σ′ 6|= ϕ.

Proof: Suppose that σ contains some subsequence τ
that violates a flow property. It is immediate that σ′ contains
τ as a subsequence, thus violating the property.

4.3. Code Abstraction

The code-abstraction translation is based on the insight
that because DIFC systems assume that all variables in the
memory space of a process contain the same information,
aggressive but accurate abstractions can be performed by
removing all variables that do not directly affect the flow of
information across system objects. To perform this abstrac-
tion, let an IPC instruction be any statement of the form
x := f(. . .) where f ∈ FFlume. An IPC statement is defined
recursively to be any of the following:
• An IPC instruction.
• A control-flow statement containing an IPC statement.
• A call to a function whose body contains at least one

IPC statement.
Given a program P , code abstraction yields a program P ′

that contains only the IPC statements of P and only func-
tions that contain at least one IPC statement. A statement
that defines a non-Flume variable is removed entirely. If the
guard of a control-flow statement contains any variable of
non-Flume type, then the entire guard is replaced with code
that produces a fresh non-deterministic value each time that
the point in the code is reached.

Note that while Flume is implemented as an API for C
programs, the target language is assumed not to contain
pointers. We treat the analysis of pointers independently and
assume that transformations similar to those performed in
[19] have been performed, translating pointer accesses to
conditional control-flow structures over integers.

The code abstraction described above is sound with re-
spect to the information-flow properties.

Lemma 3 (Soundness of code abstraction). Let P be an
original program and let C(·) perform the code abstraction
defined in §4.3. Then for any flow property ϕ, if C(P ) |= ϕ
then P |= ϕ.

Proof: See the Appendix.

4.4. Finite Object Abstraction

To allow a concurrent model checker to verify properties
about the executions of a model, the model must operate
over a finite set of system objects. After performing code
abstraction, there remain three unbounded system objects
left to abstract: tags (and thus labels and capabilities),
channels, and executing processes.

4.4.1. Finite tag abstraction. We now define a program
transformation that transforms programs to execute over a
finite set of tags. For a model to describe soundly pro-
grams that may generate an unbounded number of tags,
the outcome of any comparison based on the state of tags
in the original program must be approximated in the new
model. To achieve this, the model of the Flume API function



create_tag checks if it already has allocated the non-
summary tag. If not, it yields the summary tag and if so, it
non-deterministically yields the summary tag or the non-
summary tag. Let this new version of create_tag be
named create_tagα. Equipped with such a function,
programs may create labels that are collections of the non-
summary tag and the summary tag. It is easy to construct ex-
amples that demonstrate that the application of the standard
set-difference (“−”) or subset comparison (“⊆”) operators
over such labels in the model program would lead to an
unsound approximation of the original program.

The standard label-difference operator “−” can be ex-
tended to one that operates over such labels to yield an
approximation. It is defined as:

l −α m = (l −m) ∪ (l ∩ {ts})

The operator ⊆ is then extended to ⊆α, a subset operator
over labels that may contain abstract tags:

l ⊆α m =

 {1} if l ⊆ m ∧ ts 6∈ l
{0} if l 6⊆ m
{0, 1} otherwise

To support this abstraction, we assume that the model
checker has the ability to represent a set of boolean values
and test the set in a manner that conservatively approximates
the set of behaviors possible. In Copper, the third case of ⊆α
is implemented as a non-deterministic value. Copper then
considers executions in which the non-deterministic value is
0 as well as executions for which the value is 1.

4.4.2. Finite channel abstraction. Similar to the finite tag
abstraction, we now define a program transformation that
abstracts a program to operate over a finite set of channels.
The function create_chan is translated to a new function
create_chanα that non-deterministically returns the pair
of summary-channel endpoints or returns a fresh pair of
endpoints for the non-summary channel at most once. The
model of non-summary endpoints is given in §4.1.2. A
summary endpoint is modeled as a term esum(i, U,O) where
i is defined as in the non-summary case, and U,O are labels
that simultaneously under- and over-approximate the label of
an endpoint. When a process p claims the endpoint, labels U
and O are initialized with U = O = label(p). The summary
channel is then a channel constructed as chan(e0sum, e

1
sum)

from the two summary endpoints. Flume operations that
depend on endpoints now have the following semantics:
• claim_token(t). Let this function be called

by a process p. For the non-summary token
tnon, the model updates the owners mapping
as owners := owners[endp(t) 7→ {p}] and
returns the endpoint endp(t). For the summary
token tsum, the model performs a weak update
of the set of owners of endp(t) denoted as:

owners := owners[endp(t) 7→ owners(endp(t)) ∪ {p}].
It then returns the endpoint endp(t).

• set_endp_label(e, L’). If e = enon(i, L)
is a non-summary endpoint, then this
transitions e from enon(i, L)⇒ enon(i, L′). If
it is a summary endpoint, then the effect is
esum(i, U, L)⇒ esum(i, U ∩ L′, O ∪ L′).

• send(e). Let send be called by a process p. Sup-
pose that e = enon(i, l) is a non-summary endpoint.
If 1 ∈ (label(p) ⊆α label(e)), then this call generates
the action send(p, c). If 0 ∈ (label(p) ⊆α label(e)),
then the call generates the action send blocked(p, c).
If (label(p) ⊆α label(e)) = {0, 1}, then the call non-
deterministically generates both actions. Now suppose
that e = esum(c, i, U,O) is a summary endpoint. The set
of guard Boolean values G =

⋃
L∈U,O(label(p) ⊆α L)

approximates whether or not Flume will allow the
communication. 4 Actions are then generated based on
the values in G in the same manner as the values of
⊆α are checked in the non-summary case.

• recv(e). Let recv be called by process p. The
generation of recv and block recv actions from this
call is entirely symmetric to the case of send.
The only significant difference is that when receiv-
ing data from a summary endpoint esum(e, U,O), the
set that over-approximates the success of recv is:⋃
L∈U,O L ⊆α label(p).

4.4.3. Finite process abstraction. Finally, we define an
abstraction that transforms a program P into a program P ′

that executes over a bounded number of processes. To do
so, for a process p we construct a summary process psum

such that if P launches an unbounded set of instances of
p, then P ′ launches psum in place of the unbounded set.
The summary semantics of psum maintain that P ′ is a sound
approximation of P . The summary process is constructed
from the following transformations to the program:

1) Consider the semantics of a call
spawn(f, T, L, C) in the original program.
This call launches a new process starting execution
in function f with the initial set of tokens T ,
label L, and capabilities C. The function spawn
is replaced with a function spawnα that may
non-deterministically launch a summary process or
may launch a non-summary process at most once.
The summary process psum maintains not only a
label, but an under-over approximation pair of labels
(Ul, Ol) that approximates all labels with which
it has ever been initialized, with a similar pair
(Uc, Oc) for capabilities. It also maintains an initial
token set Tp that over-approximates all endpoints

4. Casewise, if (label(p) ⊆α U) = {1}, then the send is definitely
successful. If (label(p) ⊆α O) = {0}, then the send is definitely not
successful. Otherwise, the analysis assumes both may happen.



with which it has ever been initialized. The first
call to spawn with label L and capabilities C
initializes the approximations as Ul = Ol = L and
Uc = Oc = C. Each subsequent call to spawnα
then performs a weak update of these initialization
fields. In other words, spawnα(f, T, L,C) causes
Ul ← Ul ∩ L, Ol ← Ol ∪ L (similarly for Uc and
Oc), and Tp ← Tp ∪ T . The summary process begins
execution on only the first call to spawnα that
chooses to launch the summary process.

2) When the summary process psum executes, it iterates
an unbounded number of times over the code segment
of p. At the beginning of each execution, it non-
deterministically initializes its fields based on the
current bounds held in the approximations of the initial
state. In particular, it initializes its set of endpoint
tokens to some T such that T ⊆ Tp, its label to some
L such that Ul ⊆ L ⊆ Ol, and its capabilities to some
C such that Uc ⊆ C ⊆ Oc.

For psum to be a sound approximation, it is assumed
that exists some path of execution through the code of
psum. Given that we replace every loop guard with a non-
deterministic value, this can only not be the case when all
paths contain a call to a function that is unconditionally
infinitely recursive. In reality, this is not a serious concern as
even if such a case does arise, the transformation can apply
a simple code transformation that inserts a non-deterministic
return at the beginning of the problematic functions.

4.5. Proof of Soundness

We now show that the above transformations applied to a
Flume program result in a program is a sound approximation
of the original program. Let P be a program that is the result
of code abstraction, and let Tr(P ) denote the set of all traces
that can be generated by P . Let P have action alphabet A
and let A(P ) have action alphabet A′, where A(P ) is the
result of applying the code and finite object abstractions to
P . Let H be the set of all well-formed renaming functions
from traces defined over A to traces defined over A′. It
has already been shown that if some trace σ over A is a
violation, then there will exist some h ∈ H such that h(σ)
is a violation. To show that A(P ) is a sound approximation
of P , it will thus be sufficient to show the following:

Lemma 4. Let P , A(P ), and H be as defined above. For
every trace σ ∈ Tr(P ) and every renaming function h ∈ H
from the objects of P to those of A(P ), there exists some
σ′ ∈ Tr(A(P )) that contains h(σ) as a subsequence.

Proof: Sketch. Use induction on the length of the trace
h(σ). For any execution in P that generates σ, there is a
corresponding execution in A(P ) that executes the same
sequence of Flume statements. Any mapping of channel
values performed by some well-formed renaming function h

is simulated by an allocation of channels in A(P ). The result
of any label comparison, and thus the success of any action
in the execution in P , is approximated by a corresponding
action in the execution of A(P ). For the full proof, see the
Appendix.

Soundness of the abstraction then follows:

Theorem 1. Let P be a program with abstraction A(P ). If
A(P ) |= ϕ, then P |= ϕ.

Proof: We prove the contrapositive. Suppose that P 6|=
ϕ. Then there exists some σ ∈ Tr(P ) such that σ 6|= ϕ.
Now, let A,A′ be the action languages of P and A(P ) and
let H be the set of renaming functions from A to A′. By
Lem. 1, there exists some h ∈ H such that h(σ) 6|= ϕ and by
Lem. 4, there exists some σ′ ∈ Tr(A(P )) that contains h(σ)
as a subsequence. Thus by Lem. 2, σ′ 6|= ϕ and A(P ) 6|= ϕ.
Restated, if A(P ) |= ϕ, then it must be the case that P |= ϕ.

4.6. Implementing Sufficiently-Concrete

Recall from §3.5 that the heuristic for selecting the most
“advantageous” concrete execution trace π was to make
the selection so that in the abstraction of π, the illegal
information-flow began from a sufficiently-concrete process.
We now define the instrumentation predicates that are added
to the model so that the model checker will only consider
such abstract traces.

Let exclusively summary label be a unary
predicate over a label L defined as L = {ts}.
Let exclusively summary cap be defined similarly
over capabilities C as (C 6= ∅ ∧ C ⊆ {t−s , t+s }).
Let exclusively summary token set be a unary
predicate over a set of tokens T defined
as (endp(T ) 6= ∅ ∧ endp(T ) ⊆ {e0s, e1s}). Let
non summary(p) be a unary predicate over a process
that evaluates to true if p is a non-summary process. Let
sufficiently concrete be defined as follows:

sufficiently concrete(p, (T, L,C)) =
non summary(p)
∧ ¬exclusively summary token set(T )
∧ ¬exclusively summary label(L)
∧ ¬exclusively summary cap(C).

The analysis instruments the program model to maintain
the sufficiently-concrete mapping Msc, which is a mapping
from processes to their sufficient concreteness. Msc is up-
dated at the spawn of a process p with spawn(f,T,L,C)
as Msc :=Msc[p 7→ sufficiently concrete(p, (T, L,C))].5

5. When p is a summary process, sufficiently concrete(p, (T, L, C))
is always false; hence, a strong update is sound.



5. Experiments

We implemented the described abstractions as a source-
to-source translation using CIL [9], a front-end and analysis
framework for C. The implementation takes as input a
program written against the Flume API with type annotations
that allow the code-abstraction translation to determine what
variables are relevant to IPC flow. To analyze preexisting
programs, we only needed to make a few minor mod-
ifications manually, including marking file descriptors as
channels and translating calls to fork into equivalent calls
to spawn. These changes were performed by hand for all
programs discussed below except FlumeWiki.

The CIL transformation implements the code abstraction,
finite-object abstraction, and sufficiently-concrete instrumen-
tation on the input program. The information-flow properties
are translated into an LTL formula over (abstract) executions
of the model.

We applied the tool to three application modules—the
request handler for FlumeWiki, the Apache multi-process
module, and the scanner module of the ClamAV virus
scanner—as well as the entire VPN client, OpenVPN.
FlumeWiki. FlumeWiki [3] is a Wiki based on the Moin-
Moin Wiki engine [20], but redesigned and implemented for
the Flume API to ensure desired information-flow properties.
A simplification of the design architecture for FlumeWiki
serves as the basis for the running example in Fig. 1.
FlumeWiki is unique among the test cases in that it is a
rare application available for study with preexisting code
written against the Flume API. We thus verified that the
preexisting code for launching processes to service requests
upholds the desired security and functionality properties.
Our results, given in Tab. 1, demonstrate that we are able to
verify properties for systems that operate over an unbounded
number of processes, and do so in a reasonable amount of
time.

FlumeWiki is implemented to ensure many information-
flow properties. We focused on verifying the following:
• Security: Information from a Worker process that

handles one request should never reach a process that
handles another request.

• Functionality: A Worker process should always be
able to send data to the Handler process.

We made the following noteworthy modifications to model
the dispatch module of FlumeWiki:
• We modeled a requester that continuously loops,

launching a Handler process to eventually launch a
Worker to service a new request.

• We modeled each Worker as a compromised process
that tries to create endpoints and send data to and
receive data from all channels in the system. This
models scenarios in which a malicious Worker attempts
to create a channel and send data to it while another
Worker attempts to read data from the same channel.

Apache. The Apache [10] webserver is structured so that
a single module, the multi-process module, is responsible
for launching processes for servicing requests. Apache can
be configured to use as a multi-process module any of a
handful of modules, each designed to take advantage of
features of the host system and expected workload. We chose
a module that implements a preforking scheme that preemp-
tively launches a set of worker processes, each with its own
channel for receving requests. We verified information-flow
properties for the chosen multi-process module. While the
properties are similar to those of FlumeWiki, our results
indicate that our approach scales reasonably well, allowing
us to analyze properties over unbounded processes for large-
scale programs. We chose to verify the following properties
for the module:
• Security: Information from a process that handles

one request should never reach a process that handles
another request.

• Functionality: A Worker process should always be
able to send data to the source of the request.

Given that there is no preexisting Flume code for Apache,
we wrote label manipulation code by hand and then verfied
it automatically. Similar to FlumeWiki, we modeled Worker
processes as compromised.

The analysis of Apache takes significantly longer than
the analysis of programs whose model does not contain
a summary process, and longer than FlumeWiki as well.
We hypothesize that this is due to the fact that even the
sliced form of Apache contains a more complicated control
flow structure than FlumeWiki, complicating the verification
problem for the model checker.
ClamAV. ClamAV [11] is a virus detection tool that peri-
odically scans the file of a user, checking for the presence
of viruses by checking the files against a database of virus
signatures. We verified flow properties over the module that
ClamAV uses to scan private files. Our results demonstrate
that we are able to express and check a policy, export
protection, that is significantly different from the policy
checked for the server models. Furthermore, the results show
that flow policies specified for systems executing over a
bounded set of processes can be checked very quickly.

The checked properties are as follows:
• Security: ClamAV should never be able to send private

information out over the network.
• Functionality: ClamAV should always be able to read

data from private files.
To model this, we made the following manual changes to

ClamAV:
• We constructed channels that represented a private

file and the network. We instrumented open to non-
deterministically open these files for access.

• We inserted points at which the ClamAV scanner non-
deterministically becomes compromised.



Table 1. Results of abstraction and model checking.

Program Property Verified? Stmts. Vars Num procs Processes in model Model Extraction Model Checking
Orig. Sliced Orig. Sliced (runtime) Non-sum. Sum.

FlumeWiki
√

110 34 61 39 unbounded 4 1 0.168s 36m 58s
Apache

√
596 149 327 39 unbounded 2 1 0.392s 1h 28m 45s

ClamAV
√

3427 1826 1377 695 2 2 0 1.135s 25s
OpenVPN

√
29494 8304 10933 3047 3 3 0 16.738s 59s

• The ClamAV scanner was wrapped similarly to as
described in [2]. The wrapper creates and manipulates
labels such that ClamAV is able to read the private files
but not distribute them over an untrusted sink.

OpenVPN. OpenVPN [12] is an open-source VPN client.
As described in [2], because VPNs act as a bridge between
networks on both sides of a firewall, they represent a serious
security risk. Similar to ClamAV, OpenVPN is a program
that manipulates sensitive data using a bounded number of
processes. The results of checking OpenVPN again demon-
strate that the checker is able to verify properties over
such programs very quickly. Moreover, they demonstrate
that strong slicing allows us to perform whole-program
analysis of real-world programs that rely on only a few key
manipulations of relevant structures.

In particular, we checked OpenVPN against the following
flow properties:
• Security property: Information from a private network

should never be able to reach an outside network unless
it passes through OpenVPN. Conversely, data from the
outside network should never reach the private network
without going through OpenVPN.

• Functionality property: OpenVPN should always be
able to access data from both networks.

We wrote a small manager that labeled channels rep-
resenting each network and gave OpenVPN the ability to
read data from each network. We then checked the flow
properties against a system consisting of a manager process
that launches OpenVPN.

6. Related Work

Our research builds on pre-existing work mainly from
two topics: information-flow and software model check-
ing. Much work has been done in developing interpro-
cess information-flow systems, including the systems As-
bestos [21], Hi-Star [2], and Flume [3]. While the mecha-
nisms of these systems all differ, they all provide powerful
low-level mechanisms based on comparison over a partially
ordered set of labels with the goal of implementing interpro-
cess data secrecy and integrity. Our approach can be viewed
as a tool to provide application developers with assurance
that code written for these systems adheres to a high-level
security policy.

There has been previous work in the static verification
of information-flow systems. Multiple systems [18], [22]
have been proposed for reasoning about finite domains of
security classes at the level of variables. These systems
analyze information flow at a granularity that does not match
with that enforced by interprocess DIFC systems, and they
do not aim to reason about concurrent processes. The work
that perhaps most closely resembles our own is that of EON
[13] and [14]. EON analyzes secrecy and integrity control-
systems by modeling them in an expressive but decidable
extension of Datalog and translating questions about the
presence of an attack into a query. Although the authors
analyze a model of an Asbestos web-server, there is no
discussion regarding the extraction of the model. The work
in [14] analyzes the Flume system itself and formally proves
a property of non-interference. In contrast, our approach
focuses on automatically extracting and checking models
of applications written for the Flume system and is based
on predicate abstraction and model checking. It concerns
verifying a different portion of the system stack and can be
viewed as directly complementing that work.

Jaeger et. al. [23] present an approach to analyzing
integrity protection in the SELinux example policy. Guttman
et. al. [24] present a systematic way based on model
checking to determine the information-flow security goals
achieved by systems running Security-Enhanced Linux. The
goal of these researchers was to verify the policy. Our work
reasons at the code-level whether an application satisfies its
security goal.

Zhang et. al. [25] describe an approach to the verication of
LSM authorization hook placement using CQUAL, a type-
based static-analysis tool.

We apply a model checker for concurrent C pro-
grams [26] that applies counter-example-guided predicate
abstraction [17]. Furthermore, we improve the precision of
concurrent model checking by soundly refining our model
using the technique of random isolation [7]. There, ran-
dom isolation was used to check atomic-set serializability
problems. In this work, we use it to improve precision in
reasoning about DIFC objects.
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Appendix

Trace preservation. Let σ be a trace over an action alpha-
bet A = (C,P ) where the process instances are partitioned
into groups G0, G1, . . . , Gn. Let A′ = (C ′, P ′) be a distinct
action language with process instances partitioned into
groups G′0, G

′
1, . . . , G

′
n such that entry(Gi) = entry(G′i)

and |G′i| = max(|Gi|, 2). If there exists some flow property
ϕ such that σ 6|= ϕ, there exists some hs : S → S′ such that
hs(σ) 6|= ϕ′ where ϕ′ is ϕ replaced with the corresponding
process groups.

Proof: We consider casewise the violations that σ may
perform:
• Suppose that σ violates some security property
G 6→∗ H . Because the channel-renaming function from
which hs is constructed is well-defined, the equality
conditions over channels in subsequent actions in the
trace are preserved. By our conditions for a well-formed
process-renaming function, the groups of processes
are preserved, so if G 6= H , then any well-formed
renaming function hs over traces will be such that
hs(σ) violates the same security property. Now suppose
that G = H , let pi be the process instance that
performs the initial send in the trace, and let pf be
the process that performs the final receive. In order
for transfer(G,H, σ) to be true, it must be the case
that pi 6= pf , so |H| ≥ |H ′| = 2. Thus there must
exist some renaming hd that maps the initial and final
processes in σ to distinct processes in hd(σ).

• Suppose that σ violates some functionality property
G→ H . Because every well-formed process renaming
function preserves process groups, any such hs will be
such that hs(σ) violates the property.

Soundness of code abstraction. Let P be an original
program and let C(·) perform the code abstraction defined
in §4.3. Then for any flow property ϕ, if C(P ) |= ϕ then
P |= ϕ.

Proof: We will prove the contrapositive. Suppose that
for some property ϕ, it is the case that P 6|= ϕ. Let an
execution of P be represented as a sequence of statements.
There must exist some σ ∈ Tr(P ) generated by some
execution E such that σ 6|= ϕ. In transforming P to C(P ), if
we change a control-flow guard, then we weaken it to a non-
deterministic value. Thus there is an execution E′ through
C(P ) that executes the same Flume statements executed by
P . Furthermore, the manipulation of tags, labels, endpoints,
and channels in C(P ) is unchanged from P . Thus the success
of any send or recv is identical and E′ generates a trace
identical to σ, violating the flow property.

Lemma A.1. Let L,M be labels over a set S of non-
summary tags, let T be an independent set of tags that may

contain at most one non-summary tag and one summary tag
tsum. Let ht : S → T be one-to-one modulo {tsum} and let
hl be the label-renaming function lifted from ht. The result
of the comparison L ⊆M is contained in hl(L) ⊆α hl(M).

Proof: For L ⊆M and hl(L) ⊆α hl(M), consider the
cases in the definition of ⊆α. If either of the first two cases
hold, then L ⊆α M = L ⊆M and (L ⊆M) ∈ {L ⊆α M}.
If the third case holds, then hl(L) ⊆α hl(M) = {0, 1} and
it still must be the case that (L ⊆ M) ∈ hl(L) ⊆α hl(M).

Lemma 4. Let P , A(P ), and H be as defined above. For
every trace σ ∈ Tr(P ) and every renaming function h ∈ H
from the objects of P to those of A(P ), there exists some
σ′ ∈ Tr(A(P )) that contains h(σ) as a subsequence.

Proof: Define an execution E of P to be a serialized list
of the statements obtained by interleaving the executions of
all concurrent processes and let σ be the trace of E. Let the
action alphabet of P be constructed as A = (C,P ), let the
action alphabet of A(P ) be constructed as A′ = (C ′, P ′),
and let hs : S → S′ be a well-formed renaming function
from the trace language of the concrete program to that of
the abstract program. Consider the renamed trace hs(σ). We
will prove by induction on the length of hs(σ) that there
exists a trace σ′ ∈ Tr(A(P )) such that hs(σ) � σ′. Although
it is a stronger claim than what we need for the final result,
we prove by induction that every action generated by a
process pi at a program point ppj is generated by hp(pi)
at ppj as well.
• |h(σ)| = 0. In the trivial case, any execution of A(P )

generates a trace that contains h(σ) as a subsequence.
• |h(σ)| = n > 0. In the inductive case, assume that

there exists at least one execution that generates the
prefix of h(σ) of length n− 1. We now want to show
that one of these executions generates the next action
in h(σ). Let pi be the process instance in P , renamed
to hp(pi) in the renamed trace, that performs the next
action in σ by reaching program point pp0.

Part I. First, suppose that hp(pi) is a non-summary
process. We first show that there exists an execution in
A(P ) that can reach pp0 in its code segment. When
E executed in P , it reached pp0 and performed the
last action in σ. Previously, it was either at a program
point pp1 where it performed its prior action or no such
action existed and we define pp1 to be the program
point at the beginning of execution. In either case, the
inductive hypothesis ensures that the process hp(pi)
reached pp1. We have supposed that hp(pi) is a non-
summary process derived from pi by code abstraction.
It can thus execute any path through the code segment
that pi can and thus reach the program point pp0

from the program point pp1. Let E0 be the set of all



executions where hp(pi) does so.

Part II. We have thus established that for any execution
in P , there is a non-empty set of executions in A(P )
that traverses in the same order all Flume statements
retained from P . Each of these executions may vary
in the values of its labels and endpoints, so we now
need only prove that the Flume values of one of
these executions cause its trace to match hs(σ). To
see this, first note that the execution of E in P in-
duces a one-to-one correspondence from invocations of
create_channel to channel values, denoted as hE .
Furthermore, hs is a well-formed renaming function
over traces, and as such is constructed from a well-
formed channel renamer hc. It must be the case that hc
is one-to-one modulo {cm} for some cm. Thus hc ◦hE
is a function from invocations of create_channel
to C ′ that is one-to-one modulo {cm}.
Now consider that an execution in E0 induces a map-
ping from invocations of create_channel to the
set of channel values C ′ that is one-to-one modulo
{csum} if csum is the summary channel. Furthermore,
because the allocation of non-summary channels is non-
deterministic, the set of executions in E0 induces all
such mappings. Thus there exists a non-empty set of
executions that induce the same mapping as hc ◦ hE .
Denote this set as E1.
We next consider whether, if the next action generated
by the original program was a successful action or
unsucessful, there exists an execution in the abstracted
program with the same outcome. Let the call executed
by p at program point pp0 generate a generic action
action(e) acting over an endpoint e. The success of
this action depends completely on the comparison per-
formed on label(e) and label(p). Note that each execu-
tion in P induces a one-to-one correspondence hp from
each concrete tag to the invocation of create_tag
that creates it. Meanwhile, each execution in A(P ) in-
duces a mapping ha from invocations of create_tag
to the tags that they return. This mapping is one-to-
one modulo {tsum} where tsum is the summary tag.
Thus the composition ha ◦ hp that maps the concrete
tags used in P to the tags used in A(P ) is itself one-
to-one modulo {tsum}. Thus by Lemma A.1, every
label comparison l ⊆ m occuring in the execution
E is soundly approximated by a corresponding label
comparison l ⊆α m for any execution in E1. The
success of any action is determined completely by
comparison over labels. Thus for any next action in
hs(σ), there exists some execution in E1 that generates
the same action.

Part III. We have established the inductive step in the
case where the next action is generated by a process

mapped to a non-summary process in A(P ). The case
where the next action is to be performed by a summary
process is similar. Again, we must determine that pp0 is
reachable by the summary process given that it has pre-
viously reached pp1. However, pp0 is certainly reach-
able from pp1 given that the summary process may
iterate over the program code an unbounded number
of times. We now reason about the label and channel
values at the program point. Suppose that the next
action was executed originally by a process instance
pi with entry point f and given initial configuration
c by spawn. In A(P ) there exist executions where
the corresponding call to spawnα(f, c) merges c with
the approximation of all initial configurations. Thus ac-
cording to the semantics described in §4.4.3, there will
exist some iteration of the summary process that non-
deterministically picks the same initial configuration c
and executes under it. The success of every action in
the execution of the process is completely determined
by its initial configuration and the paths under which
it executes. Given that there is an execution of A(P )
that starts with the same initial configuration as pi
and can thus execute any path that it may execute, we
conclude that the action executed by pi is executed by
the summary process as well.


