
Bilateral Algorithms for Symbolic Abstraction

Aditya Thakur1, Matt Elder1, and Thomas Reps1,2

1 University of Wisconsin; Madison, WI, USA
2 GrammaTech, Inc.; Ithaca, NY, USA

Abstract. Given a concrete domain C, a concrete operation τ : C → C,
and an abstract domain A, a fundamental problem in abstract interpre-
tation is to find the best abstract transformer τ# : A → A that over-
approximates τ . This problem, as well as several other operations needed
by an abstract interpreter, can be reduced to the problem of symbolic

abstraction: the symbolic abstraction of a formula ϕ in logic L, denoted
by α̂(ϕ), is the best value in A that over-approximates the meaning of ϕ.
When the concrete semantics of τ is defined in L using a formula ϕτ that
specifies the relation between input and output states, the best abstract
transformer τ# can be computed as α̂(ϕτ).
In this paper, we present a new framework for performing symbolic

abstraction, discuss its properties, and present several instantiations for
various logics and abstract domains. The key innovation is to use a bilat-

eral successive-approximation algorithm, which maintains both an over-
approximation and an under-approximation of the desired answer. The
advantage of having a non-trivial over-approximation is that it makes
the technique resilient to timeouts.

1 Introduction

For several years, we have been investigating connections between abstract inter-
pretation and logic—in particular, how to harness decision procedures to obtain
algorithms for several fundamental primitives used in abstract interpretation.
This paper presents new results on this topic.

Like several previous papers [24, 16, 11, 31], this paper concentrates on the
problem of developing an algorithm for symbolic abstraction: the symbolic ab-
straction of a formula ϕ in logic L, denoted by α̂(ϕ), is the best value in a given
abstract domain A that over-approximates the meaning of ϕ [24]. To be more
precise, given a formula ϕ ∈ L, let [[ϕ]] denote the meaning of ϕ—i.e., the set of
concrete states that satisfy ϕ. Then α̂(ϕ) is the unique value a ∈ A such that
(i) [[ϕ]] ⊆ γ(a), and (ii) for all a′ ∈ A for which [[ϕ]] ⊆ γ(a′), a ⊑ a′. In this
paper, we present a new framework for performing symbolic abstraction, discuss
its properties, and present several instantiations for various logics and abstract
domains.

Several key operations needed by an abstract interpreter can be reduced to
symbolic abstraction. For instance, one use of symbolic abstraction is to bridge
the gap between concrete semantics and an abstract domain. Cousot and Cousot
[5] gave a specification of the most-precise abstract interpretation of a concrete
operation τ that is possible in a given abstract domain:

2 Aditya Thakur, Matt Elder, and Thomas Reps

Given a Galois connection C −−−→←−−−α
γ
A, the best abstract transformer,

τ# : A → A, is the most precise abstract operator possible that over-
approximates τ . τ# can be expressed as follows: τ# = α ◦ τ ◦ γ.

The latter equation defines the limit of precision obtainable using abstraction
A. However, the definition is non-constructive; it does not provide an algorithm,
either for applying τ# or for finding a representation of the function τ#. In
particular, in many cases, the explicit application of γ to an abstract value would
yield an intermediate result—a set of concrete states—that is either infinite or
too large to fit in computer memory.

In contrast, it is often convenient to use a logic L to state the concrete se-
mantics of transformer τ as a formula ϕτ ∈ L that specifies the relation between
input and output states. Then, using an algorithm for symbolic abstraction, a
representation of τ# can be computed as α̂(ϕτ).

To see how symbolic abstraction can yield better results than conventional
approaches to the creation of abstract transformers, consider an example from
machine-code analysis: the x86 instruction “add bh,al” adds al, the low-order
byte of 32-bit register eax, to bh, the second-to-lowest byte of 32-bit register ebx.
The semantics of this instruction can be expressed in quantifier-free bit-vector
(QFBV) logic as

ϕI
def

= ebx′ =

(
(ebx & 0xFFFF00FF)
| ((ebx+ 256 ∗ (eax & 0xFF)) & 0xFF00)

)
∧ eax′ = eax, (1)

where “&” and “|” denote bitwise-and and bitwise-or, respectively. Eqn. (1)
shows that the semantics of the instruction involves non-linear bit-masking op-
erations.

Now suppose that abstract domain A is the domain of affine relations
over integers mod 232 [11]. For this abstract domain, α̂(ϕI) is (216ebx′ =
216ebx + 224eax) ∧(eax′ = eax), which captures the relationship between the
low-order two bytes of ebx and the low-order byte of eax. It is the best over-
approximation to Eqn. (1) that can be expressed as an affine relation. In contrast,
a more conventional approach to creating an abstract transformer for ϕI is to use
operator-by-operator reinterpretation of Eqn. (1). The resulting abstract trans-
former would be (eax′ = eax), which loses all information about ebx. Such loss in
precision is exacerbated when considering larger loop-free blocks of instructions.

Motivation. Reps, Sagiv, and Yorsh (RSY) [24] presented a framework for
computing α̂ that applies to any logic and abstract domain that satisfies certain
conditions. King and Søndergaard [16] gave a specific α̂ algorithm for an abstract
domain of Boolean affine relations. Elder et al. [11] extended their algorithm to
affine relations in arithmetic modulo 2w—i.e., for some bit-width w of bounded
integers. (When the generalized algorithm is applied to ϕI from Eqn. (1), it finds
the α̂(ϕI) formula indicated above.) Because the generalized algorithm is similar
to the Boolean one, we refer to it as KS. We use RSY[AR] to denote the RSY
framework instantiated for the abstract domain of affine relations modulo 2w.

The RSY[AR] and KS algorithms resemble one another in that they both
find α̂(ϕ) via successive approximation from “below”. However, the two algo-

Bilateral Algorithms for Symbolic Abstraction 3

rithms are not the same. As discussed in §2, although both the RSY[AR] and
KS algorithms issue queries to a decision procedure, compared to the RSY[AR]
algorithm, the KS algorithm issues comparatively inexpensive decision-procedure
queries. Moreover, the differences in the two algorithms cause an order-of-
magnitude difference in performance: in our experiments, KS is approximately

ten times faster than RSY[AR].
These issues motivated us to (i) investigate the fundamental principles un-

derlying the difference between the RSY[AR] and KS algorithms, and (ii) seek a
framework into which the KS algorithm could be placed, so that its advantages
could be transferred to other domains. A third motivating issue was that nei-
ther the RSY framework nor the KS algorithm are resilient to timeouts. Because
the algorithms maintain only under-approximations of the desired answer, if the
successive-approximation process takes too much time and needs to be stopped,
they must return ⊤ to be sound. We desired an algorithm that could return a
nontrivial (non-⊤) value in case of a timeout.

The outcome of our work is a new framework for symbolic abstraction that
– is applicable to any abstract domain that satisfies certain conditions (similar

to the RSY algorithm)
– uses a successive-approximation algorithm that is parsimonious in its use of

the decision procedure (similar to the KS algorithm)
– is bilateral ; that is, it maintains both an under-approximation and a (non-

trivial) over-approximation of the desired answer, and hence is resilient to
timeouts: the procedure can return the over-approximation if it is stopped
at any point (unlike the RSY and KS algorithms).

The key concept used in generalizing the KS algorithm is an operation that we
call AbstractConsequence (Defn. 1, §3). We show that many abstract domains
have an AbstractConsequence operation that enables the kind of inexpensive
decision-procedure queries that we see in the KS algorithm (Thm. 2, §3).

Our experiments show that the bilateral algorithm for the AR domain im-
proves precision at up to 15% of a program’s control points (i.e., the beginning
of a basic block that ends with a branch), and on average is more precise for
3.1% of the control points (computed as the arithmetic mean).

Contributions. The contributions of the paper can be summarized as follows:
– We show how the KS algorithm can be modified into a bilateral algorithm

that maintains sound under- and over-approximations of the answer (§2).
– We present a framework for symbolic abstraction based on a bilateral algo-

rithm for computing α̂ (§3).
– We give several instantiations of the framework (§3 and §4).
– We compare the performance of various algorithms (§2 and §5).
§6 discusses related work. Some additional technical material is given in Apps. A,
B, and C.

2 Towards a Bilateral Algorithm

In this section, we compare the performance of the RSY[AR] and KS algorithms,
and motivate the need for designing a “KS-like” framework for symbolic ab-

4 Aditya Thakur, Matt Elder, and Thomas Reps

Algorithm 1: α̂↑
RSY〈L,A〉(ϕ)

1 lower← ⊥
2

3 while true do

4

5 S ← Model(ϕ ∧ ¬γ̂(lower))
6 if S is TimeOut then

7 return ⊤
8 else if S is None then

9 break // ϕ⇒ γ̂(lower)
10 else // S 6|= γ̂(lower)
11 lower← lower ⊔ β(S)

12 ans← lower

13 return ans

Algorithm 2: α̂↑
KS(ϕ)

1 lower← ⊥
2 i← 1

3 while i ≤ rows(lower) do

4 p← Row(lower,−i) // p ⊒ lower

5 S ← Model(ϕ ∧ ¬γ̂(p))
6 if S is TimeOut then

7 return ⊤
8 else if S is None then

9 i← i+ 1 // ϕ⇒ γ̂(p)
10 else // S 6|= γ̂(p)
11 lower← lower ⊔ β(S)

12 ans← lower

13 return ans

straction. We then show how the KS algorithm can be modified to be a bilateral
algorithm, which provides insight on the generalized framework presented in §3.

Alg. 1 shows the general RSY algorithm (α̂↑
RSY〈L,A〉) [24], which is param-

eterized on logic L and abstract domain A. Alg. 2 shows the KS algorithm
(α̂↑

KS) [16, 11], which is specific to the QFBV logic and the affine-relations (AR)
domain. The following notation is used in the algorithms:

– The operation of symbolic concretization (line 5 of Algs. 1 and 2), denoted
by γ̂, maps an abstract value a ∈ A to a formula γ̂(a) ∈ L such that a and
γ̂(a) represent the same set of concrete states (i.e., γ(a) = [[γ̂(a)]]).

– Given a formula ψ ∈ L, Model(ψ) returns (i) a satisfying model S if a decision
procedure was able to determine that ψ is satisfiable in a given time limit,
(ii) None if a decision procedure was able to determine that ψ is unsatisfiable
in a given time limit, and (iii) TimeOut otherwise.

– The representation function β (line 11 of Algs. 1 and 2) maps a singleton
concrete state S ∈ C to the least value in A that over-approximates {S}.

An abstract value in the AR domain is a conjunction of affine equalities, which
can be represented in a normal form as a matrix in which each row expresses
a non-redundant affine equality [11]. (Rows are 0-indexed.) Given a matrix m,
rows(m) returns the number of rows of m (line 3 in Alg. 2), and Row(m,−i),
for 1 ≤ i ≤ rows(m), returns row (rows(m)− i) of m (line 4 in Alg. 2).

Both algorithms have a similar overall structure. Both are successive approxi-
mation algorithms: they compute a sequence of successively “larger” approxima-
tions to the set of states described by ϕ. Both maintain an under-approximation
of the final answer in the variable lower, which is initialized to ⊥ on line 1. Both
call a decision procedure (line 5), and having found a model S that satisfies the
query, the under-approximation is updated by performing a join (line 11).

The differences between Algs. 1 and 2 are highlighted in gray. The key dif-
ference is the nature of the decision-procedure query on line 5. α̂↑

RSY uses all

of lower to construct the query, while α̂↑
KS uses only a single row from lower

Bilateral Algorithms for Symbolic Abstraction 5

(a) (b)

Fig. 1. (a) Scatter plot showing of the number of decision-procedure queries during each
pair of invocations of α̂↑

RSY and α̂↑
KS, when neither invocation had a decision-procedure

timeout. (b) Log-log scatter plot showing the times taken by each pair of invocations
of α̂↑

RSY and α̂↑
KS, when neither invocation had a decision-procedure timeout.

Fig. 2. Total time taken by all invocations of α̂↑
RSY compared to that taken by α̂↑

KS

for each of the benchmark executables. The running time is normalized to the corre-
sponding time taken by α̂↑

RSY; lower numbers are better.

(line 4)—i.e., just a single affine equality, which has two consequences. On the

one hand, α̂↑
KS could issue a larger number of queries compared to α̂↑

RSY. Suppose
that the value of lower has converged to the final answer via a sequence of joins
performed by the algorithm. To discover that convergence has occurred, α̂↑

RSY

has to issue just a single decision-procedure query, whereas α̂↑
KS has to confirm

it by issuing rows(lower)− i number of queries, proceeding row-by-row. On the

other hand, each individual query issued by α̂↑
KS is simpler than the ones issued

by α̂↑
RSY. Thus, a priori, it is not clear which algorithm will perform better in

practice.

6 Aditya Thakur, Matt Elder, and Thomas Reps

Algorithm 3: α̂↑
KS(ϕ)

1

2 lower← ⊥
3 i← 1
4 while i ≤ rows(lower) do
5 p← Row(lower,−i)
// p ⊒ lower

6 S ← Model(ϕ ∧ ¬γ̂(p))
7 if S is TimeOut then

8 return ⊤
9 else if S is None then

// ϕ⇒ γ̂(p)
10 i← i+ 1

11 else // S 6|= γ̂(p)
12 lower← lower ⊔ β(S)

13 ans← lower

14 return ans

Algorithm 4: α̃
l
KS+(ϕ)

1 upper← ⊤
2 lower← ⊥
3 i← 1
4 while i ≤ rows(lower) do
5 p← Row(lower,−i)
// p ⊒ lower, p 6⊒ upper

6 S ← Model(ϕ ∧ ¬γ̂(p))
7 if S is TimeOut then

8 return upper

9 else if S is None then

10 upper← upper ⊓ p // ϕ⇒ γ̂(p)
i← i+ 1

11 else // S 6|= γ̂(p)
12 lower← lower ⊔ β(S)

13 ans← lower

14 return ans

We compared the time for α̂↑
RSY (instantiated for QFBV and the AR domain)

and α̂↑
KS to compute basic-block transformers for a set of x86 executables. There

was no overall timeout imposed on the invocation of the procedures, but each
invocation of the decision procedure (line 5 in Algs. 1 and 2) had a timeout of 3
seconds. (Details of the experimental setup are described in §5.) Fig. 1(a) shows a

scatter-plot of the number of decision-procedure calls in each invocation of α̂↑
RSY

versus the corresponding invocation of α̂↑
KS, when neither of the procedures had

a decision-procedure timeout. We see that α̂↑
RSY issues fewer decision-procedure

queries: on average (computed as an arithmetic mean), α̂↑
KS invokes 42% more

calls to the decision procedure. Fig. 1(b) shows a log-log scatter-plot of the total

time taken by each invocation of α̂↑
RSY versus the time taken by α̂

↑
KS. As we

can see, α̂↑
KS is much faster than α̂↑

RSY. Fig. 2 shows the total time taken by all

invocations of α̂↑
RSY compared to that taken by α̂↑

KS for each of the benchmark
executables. The running time is normalized to the corresponding time taken
by α̂↑

RSY; lower numbers are better. Overall, α̂↑
KS is about ten times faster than

α̂
↑
RSY.
The order-of-magnitude speedup can be attributed to the fact that each

decision-procedure query is less expensive in α̂↑
KS compared to α̂↑

RSY. At line 4

in α̂↑
KS, p is a single constraint; consequently, the decision-procedure query con-

tains the single conjunct ¬γ̂(p) (line 5). In contrast, at line 5 in α̂
↑
RSY, lower

is a conjunction of constraints, and consequently the decision-procedure query
contains ¬γ̂(lower), which is a disjunction of constraints.

Neither α̂↑
RSY nor α̂↑

KS is resilient to timeouts. A decision-procedure query—
or the cumulative time for α̂↑—might take too long, in which case the only safe
answer that can be returned is ⊤ (line 6 in Algs. 1 and 2). To remedy this

Bilateral Algorithms for Symbolic Abstraction 7

Fig. 3. Abstract Conse-
quence: For all a1, a2 ∈ A
such that γ(a1) (γ(a2),
a = AbstractConsequence(a1, a2)
implies γ(a1) ⊆ γ(a) and γ(a) 6⊇
γ(a2).

Algorithm 5: α̃l〈L,A〉(ϕ)

1 upper← ⊤
2 lower← ⊥
3 while lower 6= upper do

// lower � upper

4 p← AbstractConsequence(lower, upper)
// p ⊒ lower, p 6⊒ upper

5 S ← Model(ϕ ∧ ¬γ̂(p))
6 if S is TimeOut then

7 return upper

8 else if S is None then // ϕ⇒ γ̂(p)
9 upper← upper ⊓ p

10 else // S 6|= γ̂(p)
11 lower← lower ⊔ β(S)

12 ans← upper

13 return ans

situation, we show how α̂
↑
KS can be modified to maintain a non-trivial over-

approximation of the desired answer. Alg. 4 is such a bilateral algorithm that
maintains both an under-approximation and over-approximation of α̂(ϕ). The

original α̂↑
KS is shown in Alg. 3 for comparison; the differences in the algorithms

are highlighted in gray. (Note that line numbers are different in Algs. 2 and 3.)

The α̃
l
KS+ algorithm (Alg. 4) initializes the over-approximation (upper) to ⊤

on line 1. At any stage in the algorithm ϕ⇒ γ̂(upper). On line 10, it is sound
to update upper by performing a meet with p because ϕ⇒ γ̂(p). Progress is
guaranteed because p 6⊒ upper. In case of a decision-procedure timeout (line 7),
Alg. 4 returns upper as the answer (line 8). We use “ ˜ ” to emphasize the fact

that α̃
l
KS+(ϕ) can return an over-approximation of α̂(ϕ) in case of a timeout.

However, if the loop exits without a timeout, then α̃
l
KS+(ϕ) returns α̂(ϕ).

3 A Parametric Bilateral Algorithm

Like the original KS algorithm, α̃
l
KS+ applies only to the AR domain. The re-

sults presented in §2 provide motivation to generalize α̃
l
KS+ so that we can take

advantage of its benefits with domains other than AR. In this section, we present
the bilateral framework we developed, which applies to any abstract domain that
satisfies the interface defined below.

We first introduce the abstract-consequence operation, which is the key op-
eration in our generalized algorithm:

Definition 1. An operation AbstractConsequence(·, ·) is an acceptable

abstract-consequence operation iff for all a1, a2 ∈ A such that a1 � a2,

a = AbstractConsequence(a1, a2) implies a1 ⊑ a and a 6⊒ a2. ⊓⊔

Fig. 3 illustrates Defn. 1 graphically, using the concretizations of a1, a2, and a.

8 Aditya Thakur, Matt Elder, and Thomas Reps

Algorithm 6: AbstractConsequence(a1, a2) for conjunctive domains

1 if a1 = ⊥ then return ⊥
2 Let Ψ ⊆ Φ be the set of formulas such that γ̂(a1) =

∧
Ψ

3 foreach ψ ∈ Ψ do

4 a← µα̂(ψ)
5 if a 6⊒ a2 then return a

Alg. 5 presents the parametric bilateral algorithm α̃l〈L,A〉(ϕ), which per-
forms symbolic abstraction of ϕ ∈ L for abstract domain A. The differences
between Alg. 5 and Alg. 4 are highlighted in gray.

The assumptions placed on the logic and the abstract domain are as follows:

1. There is a Galois connection C −−−→←−−−α
γ
A between A and concrete domain C.

2. Given a1, a2 ∈ A, there are algorithms to evaluate a1 ⊔ a2 and a1 ⊓ a2, and
to check a1 = a2.

3. There is a symbolic-concretization operation γ̂ that maps an abstract value
a ∈ A to a formula γ̂(a) in L.

4. There is a decision procedure for the logic L that is also capable of returning
a model satisfying a formula in L.

5. The logic L is closed under conjunction and negation.
6. There is an acceptable abstract-consequence operation for A (Defn. 1).

The abstract value returned by AbstractConsequence (line 4 of Alg. 5) is
used to generate the decision-procedure query (line 5).

Theorem 1. [Correctness of Alg. 5] Suppose that L and A satisfy require-

ments 1–6, and ϕ ∈ L. Let a ∈ A be the value returned by α̃l〈L,A〉(ϕ). Then
1. a over-approximates α̂(ϕ); i.e., α̂(ϕ) ⊑ a.
2. If A has neither infinite ascending nor infinite descending chains and

α̃l〈L,A〉(ϕ) returns with no timeout, then a = α̂(ϕ).

Proof. See App. B. ⊓⊔

Defn. 1 allows AbstractConsequence(a1, a2) to return any a ∈ A as long
as a satisfies a1 ⊑ a and a 6⊒ a2. Thus, for a given abstract domain A there
could be multiple implementations of the AbstractConsequence operation. In
particular, AbstractConsequence(a1, a2) can return a1, because a1 ⊑ a1 and
a1 6⊒ a2. If this particular implementation of AbstractConsequence is used,
then Alg. 5 reduces to the RSY algorithm (Alg. 1). However, as illustrated in
§2, the decision-procedure queries issued by the RSY algorithm can be very
expensive.

Conjunctive domains.We now define a class of conjunctive domains, for which
AbstractConsequence can be implemented by the method presented as Alg. 6.
The benefit of Alg. 6 is that it causes Alg. 5 to issue the kind of inexpensive
queries that we see in α̂↑

KS. Let Φ be a given set of formulas expressed in L. A
conjunctive domain over Φ is an abstract domain A such that:
– For any a ∈ A, there exists a finite subset Ψ ⊆ Φ such that γ̂(a) =

∧
Ψ .

Bilateral Algorithms for Symbolic Abstraction 9

– For any finite Ψ ⊆ Φ, there exists an a ∈ A such that γ(a) = J∧ΨK.
– There is an algorithm µα̂(ϕ) (“micro-α̂”) that, for each singleton formula
ϕ ∈ Φ, returns aϕ ∈ A such that α̂(ϕ) = aϕ.

– There is an algorithm that, for all a1, a2 ∈ A, checks a1 ⊑ a2.3

Many common domains are conjunctive domains. For example, using v, vi for
program variables and c, ci for constants:

Domain Φ

Interval domain inequalities of the form c1 ≤ v and v ≤ c2
Octagon domain [20] inequalities of the form ±v1 ± v2 ≤ c
Polyhedral domain [7] linear inequalities over reals or rationals
KS domain [16, 11] linear equalities over integers mod 2w

Theorem 2. When A is a conjunctive domain over Φ, Alg. 6 is an acceptable

abstract-consequence operation.

Proof. See App. B. ⊓⊔

If there are also algorithms for join and meet in A, and a decision procedure
for the logic L that supplies models for satisfiable formulas, then A satisfies the
bilateral framework, and therefore supports the α̃l algorithm.

Discussion. We can weaken part 2 of Thm. 1 to allow A to have infinite de-
scending chains by modifying Alg. 5 slightly. The modified algorithm has to
ensure that it does not get trapped updating upper along an infinite descending
chain, and that it exits when lower has converged to α̂(ϕ). Suppose that, for
some fixed N , N consecutive iterations of the loop on lines 3–11 update upper

(line 9) without updating lower (line 11). If this situation occurs, in the next
iteration the algorithm can set p to lower so that the decision-procedure query
at line 5 becomes Model(ϕ∧¬γ̂(lower))—i.e., we force the algorithm to perform
the basic iteration-step from the RSY algorithm. In this way, we force lower to
be updated at least once every N iterations. Moreover, if on such an RSY-step
the model S returned from the decision procedure is None, then we know that
lower has converged to α̂(ϕ) and the algorithm can return. A version of Alg. 5
that implements this strategy is presented as Alg. 7 (see App. C).

As presented, Alg. 5 exits and returns the value of upper the first
time the decision procedure times out. We can improve the precision of
Alg. 5 by not exiting after the first timeout, and instead trying other
abstract consequences. The algorithm will exit and return upper only if
it cannot find an abstract consequence for which the decision-procedure
terminates within the time bound. For conjunctive domains, Alg. 5 can
be modified to enumerate all conjuncts of lower that are abstract conse-

3 Note that a1 ⊔ a2 = a2 iff a1 ⊑ a2 iff a1 ⊓ a2 = a1, so by Assumption 2 of the
bilateral framework, a comparison test is always available in a conjunctive domain
that satisfies the requirements of the bilateral framework.

10 Aditya Thakur, Matt Elder, and Thomas Reps

quences; to implement this strategy, lines 4–7 of Alg. 5 are replaced with

progress← false // Initialize progress

foreach p such that p = AbstractConsequence(lower, upper) do
S ← Model(ϕ ∧ ¬γ̂(p))
if S is not TimeOut then

progress← true // Can make progress

break

if ¬progress then return upper // Could not make progress

Henceforth, when we refer to α̃l, we mean Alg. 5 with the above two changes.

Relationship of AbstractConsequence to interpolation. To avoid the po-
tential for confusion, we now discuss how the notion of abstract consequence
differs from the well-known concept of interpolation [8]:

A logic L supports interpolation if for all ϕ1, ϕ2 ∈ L such that ϕ1⇒ϕ2,
there exists a formula I such that (i) ϕ1⇒ I, (ii) I⇒ϕ2, and (iii) I uses
only symbols in the shared vocabulary of ϕ1 and ϕ2.

Although condition (i) is part of Defn. 1, the restrictions imposed by conditions
(ii) and (iii) are not part of Defn. 1. To highlight the differences, we restate
Defn. 1 in terms of formulas.

An operation AbstractConsequence(·, ·) is an acceptable abstract-
consequence operation iff for all a1, a2 ∈ A such that γ̂(a1)⇒ γ̂(a2) and
γ̂(a1) : γ̂(a2), a = AbstractConsequence(a1, a2) implies γ̂(a1)⇒ γ̂(a)
and γ̂(a) : γ̂(a2).

From an operational standpoint, condition (iii) in the definition of interpolation
serves as a heuristic that generally allows interpolants to be expressed as small
formulas. In the context of α̃l, we are interested in obtaining small formulas to
use in the decision-procedure query (line 5 of Alg. 5). Thus, given a1, a2 ∈ A, it
might appear plausible to use an interpolant I of γ̂(a1) and γ̂(a2) in α̃

l instead
of the abstract consequence of a1 and a2. However, there are a few problems
with such an approach:
– There is no guarantee that I will indeed be simple; for instance, if the vocab-

ulary of γ̂(a1) is a subset of the vocabulary of γ̂(a2), then I could be γ̂(a1)
itself, in which case Alg. 5 performs the more expensive RSY iteration step.

– Converting the formula I into an abstract value p ∈ A for use in line 9 of
Alg. 5 itself requires performing α̂ on I.

As discussed above, many domains are conjunctive domains, and for conjunctive
domains is it always possible to find a single conjunct that is an abstract conse-
quence (see Thm. 2). Moreover, such a conjunct is not necessarily an interpolant.

4 Instantiations

In this section, we describe instantiations of the bilateral framework for several
abstract domains.

Bilateral Algorithms for Symbolic Abstraction 11

4.1 Herbrand-Equalities Domain

Herbrand equalities are used in analyses for partial redundancy elimination,
loop-invariant code motion [28], and strength reduction [29]. In these analyses,
arithmetic operations (e.g., + and *) are treated as term constructors. Two
program variables are known to hold equal values if the analyzer determines
that the variables hold equal terms. Herbrand equalities can also be used to
analyze programs whose types are user-defined algebraic data-types.

Basic definitions. Let F be a set of function symbols. The function arity : F →
N yields the number of parameters of each function symbol. Terms over F are
defined in the usual way; each function symbol f always requires arity(f) param-
eters. Let T (F , X) denote the set of finite terms generated by F and variable
set X . The Herbrand universe of F is T (F , ∅), the set of ground terms over F .

A Herbrand state is a mapping from program variables V to ground terms
(i.e., a function in V → T (F , ∅)). The concrete domain consists of all sets of

Herbrand states: C
def

= P (V → T (F , ∅)). We can apply a Herbrand state σ to a
term t ∈ T (F ,V) as follows:

σ[t]
def

=

{
σ(t) if t ∈ V

f(σ[t1], . . . , σ[tk]) if t = f(t1, . . . , tk)

The Herbrand-equalities domain. Sets of Herbrand states can be ab-
stracted in several ways. One way is to use conjunctions of equations among
terms (whence the name “Herbrand-equalities domain”). Such systems of equa-
tions can be represented using Equivalence DAGs [28]. A different, but equiv-
alent, approach is to use a representation based on idempotent substitutions :
A = (V → T (F ,V))⊥. Idempotence means that for each σ 6= ⊥ and v ∈ V ,
σ[σ(v)] = σ(v). The meaning of an idempotent substitution σ ∈ A is given by
its concretization, γ : A → C, where γ(⊥) = ∅, and otherwise

γ(σ) = {ρ : V → T (F , ∅) | ∀v ∈ V : ρ(v) = ρ[σ(v)]} . (2)

We now show that the Herbrand-equalities domain satisfies the requirements
of the bilateral framework. We will assume that the logical language L has all
the function symbols and constant symbols from F , equality, and a constant
symbol for each element from V . (In a minor abuse of notation, the set of such
constant symbols will also be denoted by V .) The logic’s universe is the Herbrand
universe of F (i.e., T (F , ∅)). An interpretation maps the constants in V to terms
in T (F , ∅). To be able to express γ̂(p) and ¬γ̂(p) (see item 3 below), we assume
that L contains at least the following productions:

F ::= F ∧ F | ¬F | v = T for v ∈ V | false
T ::= v ∈ V | f(T1, . . . , Tk) when arity(f) = k

(3)

1. There is a Galois connection C −−−→←−−−α
γ
A:

– The ordering on C is the subset relation on sets of Herbrand states.
– γ(σ) is given in Eqn. (2).
– α(S) =

d
{a | γ(a) ⊇ S}.

12 Aditya Thakur, Matt Elder, and Thomas Reps

– For a, b ∈ A, a ⊑ b iff γ(a) ⊆ γ(b).
2. Join is anti-unification of substitutions, meet is unification of substitutions,

and equality checking is described by Lassez et al. [19].
3. γ̂: γ̂(⊥) = false; otherwise, γ̂(σ) is

∧
v∈V v = σ(v).

4. A decision procedure for L, with models, is given by Lassez et al. [19]. In
practice, one can obtain a decision procedure for L formulas using the built-
in datatype mechanism of, e.g., Z3 [9] or Yices [10], and obtain the necessary
decision procedure using an existing SMT solver.

5. L is closed under conjunction and negation.
6. AbstractConsequence: The domain is a conjunctive domain, as can be seen

from the definition of γ̂.
Thm. 1 ensures that Alg. 5 returns α̂(ϕ) when abstract domain A has nei-

ther infinite ascending nor infinite descending chains. The Herbrand-equalities
domain has no infinite ascending chains [19, Lem. 3.15]. The domain described
here also has no infinite descending chains, essentially because every right-hand
term in every Herbrand state has no variables but those in V .4

A pair of worked examples of α̃l (Alg. 5) for the Herbrand-equalities domain
is given in App. A.

4.2 Polyhedral Domain

An element of the polyhedral domain [7] is a convex polyhedron, bounded by hy-
perplanes. It may be unbounded in some directions. The symbolic concretization
of a polyhedron is a conjunction of linear inequalities. The polyhedral domain is
a conjunctive domain:
– Each polyhedron can be expressed as some conjunction of linear inequalities

(“half-spaces”) from the set F =
{∑

v∈V cvv ≥ c
∣∣ c, cv are constants

}
.

– Every finite conjunction of facts from F can be represented as a polyhedron.
– µα̂: Each formula in F corresponds to a simple, one-constraint polyhedron.
– There is an algorithm for comparing two polyhedra [7].

In addition, there are algorithms for join, meet, and checking equality.
The logic QF LRA (quantifier-free linear real arithmetic) supported by SMT

solvers provides a decision procedure for the fragment of logic that is required to
express negation, conjunction, and γ̂ of a polyhedron. Consequently, the poly-
hedral domain satisfies the bilateral framework, and therefore supports the α̃l

algorithm. The polyhedral domain has both infinite ascending chains and in-
finite descending chains, and hence Alg. 5 is only guaranteed to compute an
over-approximation of α̂(ϕ).

Because the polyhedral domain is a conjunctive domain, if lower � upper,
then some single constraint p of lower satisfies p 6⊒ upper. For instance, if lower

4 One can instead define a domain of Herbrand equalities in which fresh variables may
occur in the terms of an idempotent substitution’s range. Everything said in this
section remains true of this alternative domain, except that it has infinite descending
chains, and so Alg. 5 is only guaranteed to return an over-approximation of α̂(ϕ).
However, as discussed in §3, Alg. 7, presented in App. C, is a version of Alg. 5 that
converges to α̂(ϕ), even when the abstract domain has infinite descending chains.

Bilateral Algorithms for Symbolic Abstraction 13

upper
lower

(a) (b) (c)

p

Fig. 4. Abstract consequence on polyhedra. (a) Two polyhedra: lower ⊑ upper. (b)
p = AbstractConsequence(lower, upper). (c) Result of upper← upper ⊓ p.

and upper are the polyhedra shown in Fig. 4(a), then the region p above the
dotted line in Fig. 4(b) is an acceptable abstract consequence. Fig. 4(c) shows
the result after upper← upper ⊓ p is performed at line 9 of Alg. 5.

5 Experiments

In this section, we compare two algorithms for performing symbolic abstraction
for the affine-relations (AR) domain [16, 11]:

– the α̂↑
KS procedure of Alg. 2 [11].

– the α̃l〈AR〉 procedure that is the instantiation of Alg. 5 for the affine-
relations (AR) domain and QFBV logic.

Although the bilateral algorithm α̃l〈AR〉 benefits from being resilient to time-
outs, it maintains both an over-approximation and an under-approximation.
Thus, the experiments were designed to understand the trade-off between per-
formance and precision. In particular, the experiments were designed to answer
the following questions:

1. How does the speed of α̃l〈AR〉 compare with that of α̂↑
KS?

2. How does the precision of α̃l〈AR〉 compare with that of α̂↑
KS?

To address these questions, we performed affine-relations analysis (ARA)
on x86 machine code, computing affine relations over the x86 registers. Our
experiments were run on a single core of a quad-core 3.0 GHz Xeon computer
running 64-bit Windows XP (SP2), configured so that a user process has 4GB of
memory. We analyzed a corpus of Windows utilities using the WALi [15] system

for weighted pushdown systems (WPDSs). For the α̂↑
KS-based (α̃l〈AR〉-based)

analysis we used a weight domain of α̂↑-generated (α̃l〈AR〉-generated) ARA
transformers. The weight on each WPDS rule encodes the ARA transformer for
a basic block B of the program, including a jump or branch to a successor block.
A formula ϕB is created that captures the concrete semantics of B, and then the
ARA weight for B is obtained by performing α̂(ϕB). We used EWPDS merge
functions [18] to preserve caller-save and callee-save registers across call sites.
The post* query used the FWPDS algorithm [17].

14 Aditya Thakur, Matt Elder, and Thomas Reps

Performance (x86) Better

Prog. Measures of size α̂
↑
KS α̃l〈AR〉 α̃l〈AR〉

name instrs procs BBs brs WPDS t/o WPDS precision

finger 532 18 298 48 104.0 4 138.9 6.3%

subst 1093 16 609 74 196.7 4 214.6 0%
label 1167 16 573 103 146.1 2 171.6 0%
chkdsk 1468 18 787 119 377.2 16 417.9 0%
convert 1927 38 1013 161 287.1 10 310.5 0%
route 1982 40 931 243 618.4 14 589.9 2.5%

logoff 2470 46 1145 306 611.2 16 644.6 15.0%

setup 4751 67 1862 589 1499 60 1576 1.0%

Fig. 5. WPDS experiments. The columns show the number of instructions (instrs); the
number of procedures (procs); the number of basic blocks (BBs); the number of branch
instructions (brs); the times, in seconds, for α̂↑

KS and α̃l〈AR〉 WPDS construction;
the number of invocations of α̂↑

KS that had a decision procedure timeout (t/o); and
the degree of improvement gained by using α̃l〈AR〉-generated ARA weights rather
than α̂

↑
KS weights (measured as the percentage of control points whose inferred one-

vocabulary affine relation was strictly more precise under α̃l〈AR〉-based analysis).

Fig. 5 lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches).5 Prior research [11] shows that the calls
to α̂ during WPDS construction dominate the total time for ARA. Although the
overall time taken by α̂ is not limited by a timeout, we use a 3-second timeout
for each invocation of the decision procedure (as in Elder et al. [11]). Column

7 of Fig. 5 lists the number invocations of α̂↑
KS that had a decision-procedure

timeout, and hence returned ⊤.
Columns 6 and 8 of Fig. 5 list the time taken, in seconds, for α̂↑

KS and α̃l〈AR〉
WPDS construction. We observe that on average α̃l〈AR〉 is about 10% slower

than α̂↑
KS (computed as the geometric mean), which answers question 1.

To answer question 2 we compared the precision of the WPDS analysis when
using α̂↑

KS with the precision obtained using α̃l〈AR〉. In particular, we compare

the affine-relation invariants computed by the α̂
↑
KS-based and α̃l〈AR〉-based

analyses for each control point—i.e., the beginning of a basic block that ends
with a branch. The last column of Fig. 5 shows the percentage of control points
for which the α̃l〈AR〉-based analysis computed a strictly more precise affine re-
lation. We see that the α̃l〈AR〉-based analysis improves precision at up to 15%
of control points, and, on average, the α̃l〈AR〉-based analysis is more precise for
3.1% of the control points (computed as the arithmetic mean), which answers
question 2.

6 Related Work

6.1 Related Work on Symbolic Abstraction
Previous work on symbolic abstraction falls into three categories:

5 Due to the high cost of the ARA-basedWPDS construction, all analyses excluded the
code for libraries. Because register eax holds the return value from a call, library func-
tions were modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.

Bilateral Algorithms for Symbolic Abstraction 15

1. algorithms for specific domains [23, 3, 2, 16, 11]
2. algorithms for parameterized abstract domains [12, 32, 26, 22]
3. abstract-domain frameworks [24, 31].

What distinguishes category 3 from category 2 is that each of the results cited
in category 2 applies to a specific family of abstract domains, defined by a
parameterized Galois connection (e.g., with an abstraction function equipped
with a readily identifiable parameter for controlling the abstraction). In contrast,
the results in category 3 are defined by an interface; for any abstract domain
that satisfies the requirements of the interface, one has a method for symbolic
abstraction. The approach presented in this paper falls into category 3.

Algorithms for specific domains. Regehr and Reid [23] present a method
that constructs abstract transformers for machine instructions, for interval and
bitwise abstract domains. Their method does not call a SAT solver, but instead
uses the physical processor (or a simulator of a processor) as a black box. To
compute the abstract post-state for an abstract value a, the approach recursively
divides a until an abstract value is obtained whose concretization is a singleton
set. The concrete semantics are then used to derive the post-state value. The
results of each division are joined as the recursion unwinds to derive the abstract
post-state value.

Brauer and King [3] developed a method that works from below to derive
abstract transformers for the interval domain. Their method is based on an
approach due to Monniaux [22] (see below), but they changed two aspects:

1. They express the concrete semantics with a Boolean formula (via “bit-
blasting”), which allows a formula equivalent to ∀x.ϕ to be obtained from ϕ

(in CNF) by removing the x and ¬x literals from all of the clauses of ϕ.
2. Whereas Monniaux’s method performs abstraction and then quantifier elim-

ination, Brauer and King’s method performs quantifier elimination on the
concrete specification, and then performs abstraction.

The abstract transformer derived from the Boolean formula that results is
a guarded update: the guard is expressed as an element of the octagon domain
[20]; the update operation is expressed as an element of the abstract domain of
rational affine equalities [14]. The abstractions performed to create the guard
and the update are optimal for their respective domains. The algorithm they
use to create the abstract value for the update operation is essentially the King-
Søndergaard algorithm for α̂ [16, Fig. 2], which works from below (see Alg. 2).
Brauer and King show that optimal evaluation of such transfer functions requires
linear programming. They give an example that demonstrates that an octagon-
closure operation on a combination of the guard’s octagon and the update’s
affine equality is sub-optimal.

Barrett and King [2] describe a method for generating range and set ab-
stractions for bit-vectors that are constrained by Boolean formulas. For range
analysis, the algorithm separately computes the minimum and maximum value
of the range for an n-bit bit-vector using 2n calls to a SAT solver, with each
SAT query determining a single bit of the output. The result is the best over-
approximation of the value that an integer variable can take on (i.e., α̂).

16 Aditya Thakur, Matt Elder, and Thomas Reps

Algorithms for parameterized abstract domains. Graf and Säıdi [12]
showed that decision procedures can be used to generate best abstract trans-
formers for predicate-abstraction domains. Other work has investigated more
efficient methods to generate approximate transformers that are not best trans-
formers, but approach the precision of best transformers [1, 4].

Yorsh et al. [32] developed a method that works from above to perform
α̃(ϕ) for the kind of abstract domains used in shape analysis (i.e., “canonical
abstraction” of logical structures [25]).

Template Constraint Matrices (TCMs) are a parametrized family of linear-
inequality domains for expressing invariants in linear real arithmetic. Sankara-
narayanan et al. [26] gave a parametrized meet, join, and set of abstract trans-
formers for all TCM domains. Monniaux [22] gave an algorithm that finds the
best transformer in a TCM domain across a straight-line block (assuming that
concrete operations consist of piecewise linear functions), and good transform-
ers across more complicated control flow. However, the algorithm uses quan-
tifier elimination, and no polynomial-time elimination algorithm is known for
piecewise-linear systems.

Abstract-domain frameworks. As discussed in §3, the bilateral framework
reduces to the RSY framework when using a particular (trivial) implementa-
tion of AbstractConsequence. Unlike the RSY framework, to compute α̃(ϕ)
the bilateral framework does not impose the requirement that the abstract do-
main have no infinite ascending chains. As shown in part 1 of Thm. 1, even
when there are infinite ascending chains, the bilateral framework can return a
non-trivial over-approximation of α̂(ϕ). In contrast, RSY gives no such guaran-
tees. Consequently, compared to the RSY framework, the bilateral framework is
applicable to a larger class of abstract domains.

Thakur and Reps [31] recently discovered a new framework for perform-
ing symbolic abstraction from “above”: α̃↓. The α̃↓ framework builds upon the
insight that St̊almarck’s algorithm for propositional validity checking [27] can
be explained using abstract-interpretation terminology [30]. The α̃↓ framework
adapts the same algorithmic components of this generalization to perform sym-
bolic abstraction. Because α̃↓ maintains an over-approximation of α̂, it is resilient
to timeouts.

The α̃↓ framework is based on much different principles from the RSY and bi-
lateral frameworks. The latter frameworks use an inductive-learning approach to
learn from examples, while the α̃↓ framework uses a deductive approach by using
inference rules to deduce the answer. Thus, they represent two different classes of
frameworks, with different requirements for the abstract domain. In contrast to
the bilateral framework, which uses a decision procedure as a black box, the α̃↓

framework adopts (and adapts) some principles from St̊almarck’s decision pro-
cedure. However, the instantiation of the α̃↓ framework for affine-relations over
integers mod 2w is not guaranteed to compute α̂—unlike the bilateral framework,
which (by part 2 of Thm. 1) is guaranteed to compute α̂.

Bilateral Algorithms for Symbolic Abstraction 17

6.2 Other Related Work

Cover algorithms. Gulwani and Musuvathi [13] defined what they termed the
“cover problem”, which addresses approximate existential quantifier elimination:

Given a formula ϕ in logic L, and a set of variables V , find the strongest
quantifier-free formula ϕ in L such that [[∃V : ϕ]] ⊆ [[ϕ]].

They presented cover algorithms for the theories of uninterpreted functions and
linear arithmetic, and showed that covers exist in some theories that do not
support quantifier elimination.

The notion of a cover has similarities to the notion of symbolic abstraction,
but the two notions are distinct. Although we defined symbolic abstraction as
mapping between a logic L and an abstract domain A, it may help to think of A
as a logic fragment L′: L′ is defined by the image of γ̂: L′ = {γ̂(a) | a ∈ A}. L′

is often an impoverished fragment of L. Thus, in purely logical terms, symbolic
abstraction addresses the following problem of performing an over-approximating

translation to an impoverished fragment :

Given a formula ϕ in logic L, find the strongest formula ψ in logic-
fragment L′ such that [[ϕ]] ⊆ [[ψ]].

For instance, in the programs considered in our ARA experiments (§5), each ϕ
in L is written in (arbitrary) quantifier-free bit-vector arithmetic, whereas ψ is
restricted to the fragment consisting of “conjunctions of literals in quantifier-free
bit-vector affine arithmetic”.

Both cover and symbolic abstraction (deliberately) lose information from a
given formula ϕ, and hence both result in over-approximations of [[ϕ]]. In general,
however, they yield different over-approximations of [[ϕ]].
1. The information loss from the cover operation only involves the removal of

variable set V from the vocabulary of ϕ. The resulting formula ϕ is still
allowed to be an arbitrarily complex L formula; ϕ can use all of the (inter-
preted) operators and (interpreted) relation symbols of L.

2. The information loss from symbolic abstraction involves finding a formula
ψ in the fragment L′: ψ must be a restricted L formula; it can only use
the operators and relation symbols of L′, and must be written using the
syntactic restrictions of L′.
One of the uses of 2 is to bridge the gap between the concrete semantics

and an abstract domain. In particular, it may be necessary to use the full power
of logic L to state the concrete semantics of a transformer τ . However, the
corresponding abstract transformer τ# must be expressed in L′. When L′ is not
just the restriction of L to a sub-vocabulary, cover is not guaranteed to return
an answer in L′, and thus does not yield a suitable abstract transformer.

Consider the machine-code example from §1. Note that α̂(ϕI) is a relation
over the same set of variables that appear in ϕI : {eax, ebx, eax′, ebx′}. The
only formulas that can be obtained from ϕI via cover are ones in which one or
more of the variables is quantified out. Only the trivial cover with respect to
the empty set of variables would be an input/output relation that retains all

18 Aditya Thakur, Matt Elder, and Thomas Reps

the variables; however, that result—namely, ϕI itself—is not expressed in the
desired logic fragment, and hence is not a suitable abstract transformer in the
abstract domain of affine relations over integers mod 232.

Logical abstract domains. Cousot et al. [6] define a method of abstract inter-
pretation based on using particular sets of logical formulas as abstract-domain
elements (so-called logical abstract domains). They face the problems of (i) per-
forming abstraction from unrestricted formulas to the elements of a logical ab-
stract domain [6, §7.1], and (ii) creating abstract transformers that transform
input elements of a logical abstract domain to output elements of the domain
[6, §7.2]. Their problems are particular cases of α̂(ϕ). They present heuristic
methods for creating over-approximations of α̂(ϕ).

Connections to machine-learning algorithms. In [24], a connection was
made between symbolic abstraction (in abstract interpretation) and the problem
of concept learning (in machine learning). In machine-learning terms, an abstract
domain A is a hypothesis space; each domain element corresponds to a concept. A
hypothesis space has an inductive bias, which means that it has a limited ability
to express sets of concrete objects. In abstract-interpretation terms, inductive
bias corresponds to the image of γ on A not being the full power set of the
concrete objects—or, equivalently, the image of γ̂ on A being only a fragment
of L. Given a formula ϕ, the symbolic-abstraction problem is to find the most
specific concept that explains the meaning of ϕ.

α̂
↑
RSY (Alg. 1) is related to the Find-S algorithm [21, Section 2.4] for concept

learning. Both algorithms start with the most-specific hypothesis (i.e., ⊥) and
work bottom-up to find the most-specific hypothesis that is consistent with posi-
tive examples of the concept. Both algorithms generalize their current hypothesis
each time they process a (positive) training example that is not explained by
the current hypothesis. A major difference is that Find-S receives a sequence of
positive and negative examples of the concept (e.g., from nature). It discards
negative examples, and its generalization steps are based solely on the posi-
tive examples. In contrast, α̂↑

RSY already starts with a precise statement of the
concept in hand, namely, the formula ϕ, and on each iteration, calls a decision
procedure to generate the next positive example; α̂↑

RSY never sees a negative
example.

A similar connection exists between α̃l (Alg. 5) and a different concept-
learning algorithm, called the Candidate-Elimination algorithm [21, Section 2.5].
Both algorithms maintain two approximations of the concept, one that is an
over-approximation and one that is an under-approximation.

Bilateral Algorithms for Symbolic Abstraction 19

References

1. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian abstraction for
model checking C programs. In Tools and Algs. for the Construct. and Anal. of

Syst., pages 268–283, 2001.

2. E. Barrett and A. King. Range and set abstraction using SAT. Electr. Notes

Theor. Comp. Sci., 267(1), 2010.

3. J. Brauer and A. King. Automatic abstraction for intervals using Boolean formulae.
In Static Analysis Symp., 2010.

4. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI-C programs using SAT. Formal Methods in System Design, 25(2–3), 2004.

5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Princ. of Prog. Lang., pages 269–282, 1979.

6. P. Cousot, R. Cousot, and L. Mauborgne. Logical abstract domains and interpre-
tations. In The Future of Software Engineering, 2011.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In Princ. of Prog. Lang., pages 84–96, 1978.

8. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Sym. Logic, 22(3), Sept. 1957.

9. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Int. Conf. on Tools

and Algs. for the Construction and Analysis of Systems, 2008.

10. B. Dutertre and L. de Moura. Yices: An SMT solver, 2006.
http://yices.csl.sri.com/.

11. M. Elder, J. Lim, T. Sharma, T. Andersen, and T. Reps. Abstract domains of
affine relations. In Static Analysis Symp., 2011.

12. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Computer

Aided Verif., volume 1254 of Lec. Notes in Comp. Sci., pages 72–83, 1997.

13. S. Gulwani and M. Musuvathi. Cover algorithms and their combination. In Prog.

Lang. and Systems, 2008.

14. M. Karr. Affine relationship among variables of a program. Acta Inf., 6:133–151,
1976.

15. N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.
www.cs.wisc.edu/wpis/wpds/download.php.

16. A. King and H. Søndergaard. Automatic abstraction for congruences. In Verif.,

Model Checking, and Abs. Interp., 2010.

17. A. Lal and T. Reps. Improving pushdown system model checking. In Computer

Aided Verif., 2006.

18. A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In
Computer Aided Verif., 2005.

19. J. Lassez, M. Maher, and K. Marriott. Unification revisited. In Foundations of

Logic and Functional Programming, volume 306, pages 67–113. Springer, 1988.

20. A. Miné. The octagon abstract domain. In Working Conf. on Rev. Eng., pages
310–322, 2001.

21. T. Mitchell. Machine Learning. WCB/McGraw-Hill, Boston, MA, 1997.

22. D. Monniaux. Automatic modular abstractions for template numerical constraints.
Logical Methods in Comp. Sci., 6(3), 2010.

23. J. Regehr and A. Reid. HOIST: A system for automatically deriving static analyz-
ers for embedded systems. In Architectural Support for Prog. Lang. and Op. Syst.,
2004.

20 Aditya Thakur, Matt Elder, and Thomas Reps

24. T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.
In Verif., Model Checking, and Abs. Interp., pages 252–266, 2004.

25. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
Trans. on Prog. Lang. and Syst., 24(3):217–298, 2002.

26. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In Verif., Model Checking, and Abs. Interp.,
2005.

27. M. Sheeran and G. St̊almarck. A tutorial on St̊almarck’s proof procedure for
propositional logic. Formal Methods in System Design, 16(1):23–58, 2000.

28. B. Steffen, J. Knoop, and O. Rüthing. The value flow graph: A program represen-
tation for optimal program transformations. In ESOP, 1990.

29. B. Steffen, J. Knoop, and O. Rüthing. Efficient code motion and an adaption to
strength reduction. In TAPSOFT ’91, pages 394–415, 1991.

30. A. Thakur and T. Reps. A Generalization of St̊almarck’s Method. TR 1699, Comp.
Sci. Dept., Univ. of Wisconsin, Madison, WI, Oct. 2011.

31. A. Thakur and T. Reps. A method for symbolic computation of precise abstract
operations. In Computer Aided Verif., 2012.

32. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract
operations for shape analysis. In Tools and Algs. for the Construct. and Anal. of

Syst., pages 530–545, 2004.

Bilateral Algorithms for Symbolic Abstraction 21

A Worked Examples: α̂l For Herbrand Equalities

Example 1. Consider the following code fragment, which uses two different meth-
ods for checking the parity of i (i&1 and i << 31 == 0):

int i; cons_tree x, y;

x = (i&1) ? nil : cons (y,x);

if (i << 31 == 0) { // (*) ... }

Suppose that we want an element of the Herbrand-equalities domain that relates
the values of x and y at the fragment’s start to x′ and y′, the values of those
variables at program point (*). A straightforward abstract interpretation of this
program in the Herbrand-equalities domain would yield no information about
x′, because {x′ 7→ nil}⊔ {x′ 7→ cons(y, x)} = {x′ 7→ x′}.

Alg. 5 can do better. First, symbolic execution from the beginning of the
code fragment to (*) yields the formula

ϕ
def

= (x′ = ite(i&1, nil, cons(y, x))) ∧ (y′ = y) ∧ (i≪ 31) = 0),

where ite(·, ·, ·) denotes the if-the-else operator. The values obtained just after
line 5 during each iteration of Alg. 5 are shown in Fig. 6. Each row of Fig. 6
displays, for a given iteration of Alg. 5,
– the values of lower and upper,

lower upper γ̂(p) model, or unsat

⊥ ⊤ false

i 7→ 0
x 7→ nil
x′ 7→ cons(nil,nil)
y 7→ nil
y′ 7→ nil

x 7→ nil
x′ 7→ cons(nil,nil)
y 7→ nil
y′ 7→ nil

⊤ y = nil

i 7→ 0
x 7→ nil
x′ 7→ cons(cons(nil,nil),nil)
y 7→ cons(nil,nil)
y′ 7→ cons(nil,nil)

x 7→ nil
x′ 7→ cons(y,nil)
y 7→ y′

⊤ y = y′ unsatisfiable

x 7→ nil
x′ 7→ cons(y,nil)
y 7→ y′

y 7→ y′ x = nil

i 7→ 0
x 7→ cons(nil,nil)
x′ 7→ cons(nil, cons(nil,nil))
y 7→ nil
y′ 7→ nil

x′ 7→ cons(y, x)
y 7→ y′

y 7→ y′ x′ = cons(y, x) unsatisfiable

x′ 7→ cons(y, x)
y 7→ y′

x′ 7→ cons(y, x)
y 7→ y′

Fig. 6. Iterations of Alg. 5 in Ex. 1. Self-mappings, e.g., y 7→ y, are omitted.

22 Aditya Thakur, Matt Elder, and Thomas Reps

– the value of γ̂(p) computed from AbstractConsequence(lower, upper), and
– the model, if any, of ϕ ∧ ¬γ̂(p) that Z3 returned.

Iterations that find a model increase the next iteration’s lower, when lower ←
lower ⊔ β(S). Iterations that return None decrease the next iteration’s upper,
when upper ← upper ⊓ p. Note that both meet and join in this domain are
maximally precise. In particular, the anti-unification procedure used for join
computes the most restrictive system of equations between terms in T (F ,V)
that permits its input. In this trial run, each call to Z3 finished in 14 milliseconds
or less. The final result is {x 7→ x, y 7→ y, x′ 7→ cons(y, x), y′ 7→ y}. ⊓⊔

The next example shows that one can use the Herbrand-equalities domain
without having to give every function symbol its Herbrand interpretation. This
approach allows one to more faithfully model the language semantics—and still
use the Herbrand-equalities domain—thereby increasing the set of equalities that
the analysis is capable of detecting.

Example 2. Consider the following program fragment, which is in the same pro-
gramming language as the fragment from Ex. 1, extended with selectors car and
cdr:

bool a; cons_tree x, y;

x = a ? cons(y,x) : cons(x,y);

y = cdr(x);

x = car(x);

if (a) { // (**) ... }

Suppose that we would like an element of the Herbrand-equalities domain that
relates the values of x and y at the fragment’s start to x′ and y′ at program point
(**). To reach (**), a must be true; in this case, the code swaps the values of
x and y.

lower upper γ̂(p) model, or unsat

⊥ ⊤ false
a 7→ true
x 7→ cons(nil,nil) x′ 7→ nil
y 7→ nil y′ 7→ cons(nil, nil)

x 7→ cons(nil,nil)
x′ 7→ nil
y 7→ nil
y′ 7→ cons(nil,nil)

⊤ y = nil
a 7→ true
x 7→ nil x′ 7→ cons(nil, nil)
y 7→ cons(nil,nil) y′ 7→ nil

x′ 7→ y

x 7→ y′
⊤ x′ = y unsatisfiable

x′ 7→ y

x 7→ y′
x′ 7→ y x = y′ unsatisfiable

x′ 7→ y

x 7→ y′
x′ 7→ y

x 7→ y′

Fig. 7. Iterations of Alg. 5 in Ex. 2. Self-mappings, e.g., y 7→ y, are omitted.

Bilateral Algorithms for Symbolic Abstraction 23

As in Ex. 1, a straightforward abstract interpretation of the path to (**)

in the Herbrand-equalities domain yields ⊤. As shown in Fig. 7, symbolic ab-
straction, using the Herbrand-equalities domain, of the formula obtained from
symbolic execution results in an abstract value that captures the swap effect.

In this example, the set of function symbols F over which we define the

Herbrand universe T (F , ∅) is F
def

= {nil, cons}, not F
def

= {nil, cons, car, cdr}. The
functions car and cdr are not given their Herbrand interpretation; instead, they
are interpreted as the deconstructors that select the first and second components,
respectively, of a cons-term.

Symbolic execution from the beginning of the code fragment to (**) yields
the following formula:

ϕ
def

= x′ = car (ite (a, cons(y, x), cons(x, y)))

∧ y′ = cdr (ite (a, cons(y, x), cons(x, y)))

∧ a

As in Ex. 1, Fig. 7 shows the values obtained just after line 5 on each iteration
of Alg. 5, applied to ϕ. Each Model query completes without evident delay; each
invocation was 10 milliseconds or less. The final result is x′ = y and x = y′,
which captures the fact that, when the program reaches (**), it has swapped
the values of x and y. ⊓⊔

B Proofs

Theorem 1. [Correctness of Alg. 5] Suppose that L and A satisfy require-

ments 1–6, and ϕ ∈ L. Let a ∈ A be the value returned by α̃l〈L,A〉(ϕ). Then
1. a over-approximates α̂(ϕ); i.e., α̂(ϕ) ⊑ a.
2. If A has neither infinite ascending nor infinite descending chains and

α̃l〈L,A〉(ϕ) returns with no timeout, then a = α̂(ϕ).

Proof. To prove part 1, we show that at each stage of Alg. 5 lower ⊑ α̂(ϕ) ⊑
upper holds. This invariant is trivially true after upper and lower are initialized
in lines 1 and 2, respectively.

If control reaches line 4, then lower 6= upper and timeout is false.
Hence, at line 4, lower � upper. Thus, the precondition for the call to
AbstractConsequence(lower, upper) is satisfied, and the abstract value p re-
turned is such that lower ⊑ p and p 6⊒ upper (by Defn. 1).

A Galois connection C −−−→←−−−α
γ
A obeys the adjointness condition

for all c ∈ C, a ∈ A : c ⊑ γ(a) iff α(c) ⊑ a. (4)

The counterpart of Eqn. (4) for symbolic abstraction is

for all ϕ ∈ L, a ∈ A : ϕ⇒ γ̂(a) iff α̂(ϕ) ⊑ a. (5)

24 Aditya Thakur, Matt Elder, and Thomas Reps

If control reaches line 9, then ϕ∧¬γ̂(p) is unsatisfiable (Fig. 8(a)), which means
that ϕ⇒ γ̂(p) holds. Consequently, by Eqn. (5), we know that α̂(ϕ) ⊑ p holds. By
properties of meet (⊓), we can combine the latter inequality with the invariant
α̂(ϕ) ⊑ upper to obtain α̂(ϕ) ⊑ upper ⊓ p. Hence it is safe to update upper by
performing a meet with p; that is, after the assignment upper ← upper ⊓ p on
line 9, the invariant α̂(ϕ) ⊑ upper still holds.

On the other hand, if ϕ ∧ ¬γ̂(p) is satisfiable (Fig. 8(b)), then at line 11
S |= ϕ. Thus, β(S) ⊑ α̂(ϕ). By properties of join (⊔), we can combine the
latter inequality with the invariant lower ⊑ α̂(ϕ) to obtain lower⊔β(S) ⊑ α̂(ϕ).
Hence it is safe to update lower by performing a join with β(S); that is, after
the assignment lower← lower⊔β(S) on line 11, the invariant lower ⊑ α̂(ϕ) still
holds.

In both cases, lower ⊑ α̂(ϕ) ⊑ upper holds, and thus lower ⊑ α̂(ϕ) ⊑ upper

holds throughout the loop on lines 3–11.

On exiting the loop, we have α̂(ϕ) ⊑ upper. At line 12, ans is assigned the
value of upper, which is the value returned by Alg. 5 at line 13. This finishes the
proof of part 1.

We now prove part 2 of the theorem.

– At line 9, because p 6⊒ upper, upper⊓p does not equal upper; that is, upper⊓
p � upper.

– At line 11, S 6|= γ̂(p). Because p ⊒ lower, S 6|= γ̂(p) implies that S 6|=
γ̂(lower), and hence β(S) 6⊑ lower. Therefore, lower ⊔ β(S) is not equal to
lower; that is, lower ⊔ β(S) � lower.

Consequently, progress is made no matter which branch of the if-then-else on
lines 8–11 is taken, and hence Alg. 5 makes progress during each iteration of the
while-loop.

By part 1, lower ⊑ α̂(ϕ) ⊑ upper. Consequently, if A has neither infinite
ascending nor infinite descending chains, then eventually lower will be equal to
upper, and both lower and upper will have the value α̂(ϕ) (provided the loop exits
without a timeout). Thus, for a run of Alg. 5 on which the loop exits without a
timeout, the answer returned is α̂(ϕ). ⊓⊔

S

(b)(a)

Fig. 8. The two cases arising in Alg. 5: ϕ ∧ ¬γ̂(p) is either (a) unsatisfiable, or (b)
satisfiable with S |= ϕ and S 6|= γ̂(p). (Note that although lower ⊑ α̂(ϕ) ⊑ upper and
[[ϕ]] ⊆ γ(upper) are invariants of Alg. 5, γ(lower) ⊆ [[ϕ]] does not necessarily hold, as
depicted above.)

Bilateral Algorithms for Symbolic Abstraction 25

Theorem 2. When A is a conjunctive domain over Φ, Alg. 6 is an acceptable

abstract-consequence operation.

Proof. Suppose that a1 � a2, and let γ̂(a1) =
∧
Ψ , where Ψ ⊆ Φ. If for each

ψ ∈ Ψ we have γ̂(a2) ⇒ ψ, then γ̂(a2) ⇒
∧
{ψ}, or equivalently γ̂(a2) ⇒

∧
Ψ ;

i.e., γ̂(a2) ⇒ γ̂(a1), or equivalently a2 ⊑ a1, which contradicts a1 � a2. Thus,
there must exist some ψ ∈ Ψ such that γ̂(a2) ; ψ. The latter is equivalent to
ψ : γ̂(a2), which can be written as a 6⊒ a2 (where a = µα̂(ψ)). Therefore, Alg. 6
will return some a ∈ A such that a1 ⊑ a and a 6⊒ a2. ⊓⊔

C A bilateral algorithm for abstract domains with

infinite descending chains

Algorithm 7: α̃
l
+〈L,A〉(ϕ)

1 upper← ⊤
2 lower← ⊥
3 k ← 0 // initialize k

4 while lower 6= upper do

// lower � upper

5 if k < N then

6 p← AbstractConsequence(lower, upper)
7 else

8 p← lower

// p ⊒ lower, p 6⊒ upper

9 S ← Model(ϕ ∧ ¬γ̂(p))
10 if S is TimeOut then

11 return upper

12 else if S is None then // ϕ⇒ γ̂(p)
13 upper← upper ⊓ p
14 k ← k + 1 // increment k

15 else // S 6|= γ̂(p)
16 lower← lower ⊔ β(S)
17 k ← 0 // reset k

18 ans← upper

19 return ans

Theorem 3. If abstract domain A does not have infinite ascending chains, and

Alg. 7 does not timeout, then Alg. 7 terminates and returns α̂(ϕ).

Proof. The proof of Thm. 1 carries over, except that we must additionally argue
that if A has infinite descending chains, Alg. 7 does not get trapped refining
upper along an infinite descending chain, and that the algorithm returns α̂(ϕ)
after lower has converged to α̂(ϕ).

Suppose that N consecutive iterations of the loop on lines 3–11 update upper
(line 13) without updating lower (line 16). In the next iteration, the algorithm
can set p to lower (line 8 so that the decision-procedure query at line 9 becomes

26 Aditya Thakur, Matt Elder, and Thomas Reps

Model(ϕ∧¬γ̂(lower))—i.e., we force the algorithm to perform the basic iteration-
step from the RSY algorithm. In this way, we force lower to be updated at least
once every N iterations.

Consequently, because A has no infinite ascending chains, lower must even-
tually be set to α̂(ϕ). After that happens, within the next N iterations of the
loop body, Alg. 7 must execute line 8, which sets p to lower (i.e., p = α̂(ϕ)).
The model S returned from calling Model(ϕ ∧ ¬γ̂(p)) in line 9 must be None.
As argued in the proof of Thm. 1, lower ⊑ α̂(ϕ) ⊑ upper holds on every itera-
tion of the loop in lines 4–17. Because α̂(ϕ) ⊑ upper and p = α̂(ϕ), the update
upper ← upper ⊓ p on line 13 assigns α̂(ϕ) to upper. Because lower is equal to
upper, the loop exits with upper = α̂(ϕ). At line 18, ans is thus assigned α̂(ϕ),
which is the value returned by Alg. 7 at line 19. ⊓⊔

