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Abstract. In 1979, Cousot and Cousot gave a specification of the best
(most-precise) abstract transformer possible for a given concrete trans-
former and a given abstract domain. Unfortunately, their specification
does not lead to an algorithm for obtaining the best transformer. In fact,
algorithms are known for only a few abstract domains.

This paper presents a parametric framework that, for a given abstract
domain A and logic L, computes successively better A values that over-
approximate the set of states defined by an arbitrary formula in L. Be-
cause the method approaches the most-precise A value from “above”, if
it is taking too much time, a safe answer can be returned at any time. For
certain combinations of A and L, the framework is complete—i.e., with
enough resources, it computes the most-precise abstract value possible.

1 Introduction

Abstract interpretation [7] is a well-known technique for automatically proving
certain kinds of program properties. The work described in this paper addresses
the question of how to create abstract interpreters that, for some abstract do-
mains, enjoy the best possible precision for a given abstraction, given sufficient
resources. In addition to providing insight on fundamental limits, the algorithm
presented in the paper also has good performance: our experiments showed a 3.5-
fold speedup over a competing method [36, 23, 14] while finding dataflow facts
that are equally precise or more precise at 96.8% of a program’s basic blocks.

Cousot and Cousot [8] gave a specification of the most-precise abstract in-
terpretation of a concrete operation that is possible in a given abstract domain.

Suppose that G = C −−−→←−−−α
γ
A is a Galois connection defined by abstraction

function α : C → A and concretization function γ : A → C. Given G, the
“best transformer”, or best abstract post operator for transition τ , denoted by
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P̂ost[τ ] : A → A, is the most precise abstract operator possible for the concrete

post operator for τ , Post[τ ] : C → C. P̂ost[τ ] can be expressed in terms of α, γ,

and Post[τ ], as follows [8]: P̂ost[τ ] = α ◦ Post[τ ] ◦ γ.

This equation defines the limit of precision obtainable using abstraction A.
However, it is non-constructive; it does not provide an algorithm, either for apply-
ing P̂ost[τ ] or for finding a representation of the function P̂ost[τ ]. In particular,
in many cases, the explicit application of γ to an abstract value would yield an
intermediate result—a set of concrete states—that is either infinite or too large
to fit in computer memory.

Symbolic Abstract Operations. P̂ost[τ ] is one of three inter-related symbolic
operations that form the core repertoire at the heart of an abstract interpreter.

1. α̂(ϕ): Given a formula ϕ in logic L, let [[ϕ]]L denote the meaning of ϕ in L—
i.e., the set of concrete states that satisfy ϕ. Given ϕ, α̂(ϕ) returns the best
value in A that over-approximates [[ϕ]]L [36]. In particular, α̂(ϕ) = α([[ϕ]]L).

2. Âssume[ϕ](A): Given ϕ ∈ L and A ∈ A, Âssume[ϕ](A) returns the best value
in A that over-approximates the meaning of ϕ in concrete states described

by A. That is, Âssume[ϕ](A) equals α([[ϕ]] ∩ γ(A)).

3. Creation of a representation of P̂ost[τ ]: Some intraprocedural [16] and many
interprocedural [39, 24] dataflow-analysis algorithms operate on instances of
an abstract datatype T that (i) represents a family of abstract functions
(or relations), and (ii) is closed under composition and join. By “creation

of a representation of P̂ost[τ ]”, we mean finding the best instance in T that
over-approximates Post[τ ].

α̂ (item 1) can be reduced to Âssume (item 2) as follows: α̂(ϕ) = Âssume[ϕ](>).
Item 3 can be reduced to item 1. The concrete post operator Post[τ ] is a tran-
sition relation between input states and output states. For item 3, the instances
of abstract datatype T represent abstract-domain elements that denote sets of
transition relations. In this case, we can create the best instance in T that over-
approximates Post[τ ] by performing α̂(Post[τ ]).

Heretofore, algorithms for performing best abstract operations have been
known for only a few abstract domains [15, 36, 43, 38, 23, 30, 14]. Moreover, there
is a gap in current technology for performing best abstract operations: an algo-
rithm is known for performing α̂ for affine-relation analysis (ARA) [23, 14], and
can be used to compute best ARA transformers. However, the algorithm makes
repeated calls to an SMT (Satisfiability Modulo Theories) solver, and is ∼185x
slower [14] than a compositional, syntax-directed method for creating sound, but
not necessarily best, ARA transformers.

This paper presents a parametric framework that, for some abstract domains,
is capable of performing most-precise abstract operations in the limit. Because
the method approaches its result from “above”, if the computation takes too
much time it can be stopped to yield a safe result—i.e., an over-approximation to
the best abstract operation—at any stage. Thus, the framework provides a tun-
able algorithm that offers a performance-versus-precision trade-off. In contrast,
some other existing methods approach the result from ”below” by maintaining
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an under-approximation to the best abstract operation at any stage [36, 23, 14].
We replace “̂ ” with “˜ ” to denote over-approximating operators—e.g., α̃(ϕ),

As̃sume[ϕ](A), and P̃ost[τ ](A).3

In [41], we showed how abstract interpretation can provide insight on
St̊almarck’s method [40], an algorithm for validity checking of propositional
formulas. In the present paper, we describe new ways in which ideas from
St̊almarck’s method can be adopted for use in program analysis. However, it
is important to understand that the methods described in this paper are quite
different from the huge amount of recent work that uses decision procedures in
program analysis. It has become standard to reduce program paths to formulas
by encoding a program’s actions in logic (e.g., by symbolic execution) and calling
a decision procedure to determine whether a given path through the program is
feasible. In contrast, the techniques described in this paper do not reduce the
problem of computing best abstract operations to St̊almarck’s method; instead,
the key ideas from St̊almarck’s method are adopted—and adapted—to create
new algorithms for key program-analysis operations.

Organization. §2 presents our framework at a semi-formal level. §3 presents
the details of the framework. §4 describes two instantiations of it. §5 presents
experimental results. §6 discusses applications to several other symbolic abstract
operations. §7 discusses related work. Proofs can be found in [42].

2 Overview

Key Insight. In [41], we showed how St̊almarck’s method [40] can be explained
using abstract-interpretation terminology—in particular, as an instantiation of a
more general algorithm, St̊almarck[A], that is parameterized by an abstract do-
main A and operations on A. The algorithm that goes by the name “St̊almarck’s
method” is one instantiation of St̊almarck[A] with a certain abstract domain.

Abstract value A′ is a semantic reduction [8] of A with respect to ϕ if (i)
γ(A′) ∩ [[ϕ]] = γ(A) ∩ [[ϕ]], and (ii) A′ v A. At each step, St̊almarck[A] holds
some A ∈ A; each of the so-called “propagation rules” employed in St̊almarck’s
method improves A by finding a semantic reduction of A with respect to ϕ.

The key insight of the present paper is that there is a connection between

St̊almarck[A] on the one hand and α̂A, ÂssumeA, and P̂ost[τ ]A on the other.
In particular, to check whether a formula ϕ is valid, St̊almarck[A] performs a
one-sided test of whether ϕ is falsifiable by checking whether α̂A(¬ϕ) equals
⊥A. If the test succeeds, it establishes that [[¬ϕ]] ⊆ γ(⊥A) = ∅, and hence
that ϕ is valid. In this paper, we adopt the same algorithmic structure used in
St̊almarck[A], and employ it in an algorithm that implements the three symbolic

abstract operations α̂, Âssume, and P̂ost[τ ]. Moreover, this paper goes beyond
the classical setting of St̊almarck’s method, which works with propositional logic,

3 P̃ost[τ ] is used by Graf and Säıdi [15] to mean a different state transformer from the

one that P̃ost[τ ] denotes in this paper. Throughout the paper, we use P̃ost[τ ] solely

to mean an over-approximation of P̂ost[τ ]; thus, our notation is not ambiguous.
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and assumes that we have a more expressive logic L, such as quantifier-free linear
rational arithmetic (QF LRA) or quantifier-free bit-vector arithmetic (QF BV).
Because we are working with more expressive logics, our algorithm uses several
ideas that go beyond what is used in St̊almarck’s method [40] as well as what is
used in St̊almarck[A] [41].

Two Examples. We now illustrate the key points of our technique using two
simple examples. The first shows how our technique applies to computing ab-
stract transformers; the second describes its application to satisfiability checking.

Example 1. Consider the following x86 assembly code

L1: cmp eax, 2 L2: jz L4 L3: ...

The instruction at L1 sets the zero flag (zf) to true if the value of register eax
equals 2. At instruction L2, if zf is true the program jumps to location L4 (not
seen in the code snippet) by updating the value of the program counter (pc)
to L4; otherwise, control falls through to program location L3. The transition
formula that expresses the state transformation from the beginning of L1 to the
beginning of L4 is thus ϕ = (zf⇔(eax = 2)) ∧ (pc′ = ITE(zf, L4, L3)) ∧ (pc′ =
L4) ∧ (eax′ = eax). (ϕ is a QF BV formula.)

Let A be the abstract domain of affine relations over the x86 registers. Let
A0 = >A, the empty set of affine constraints over input-state and output-
state variables. We now describe how we compute P̃ost[ϕ] = As̃sume[ϕ](A0),
which represents a sound abstract transformer for use in affine-relation analysis
(ARA) [32, 23, 14]. First, the ITE term in ϕ is rewritten as (zf⇒(pc′ = L4)) ∧
(¬zf⇒(pc′ = L3)). Thus, the transition formula becomes ϕ = (zf⇔(eax =
2)) ∧ (zf⇒(pc′ = L4)) ∧ (¬zf⇒(pc′ = L3)) ∧ (pc′ = L4) ∧ (eax′ = eax).

Next, propagation rules are used to compute a semantic reduction with re-
spect to ϕ, starting from A0. The main feature of the propagation rules is that
they are “local”; that is, they make use of only a small part of formula ϕ to
compute the semantic reduction.
1. Because ϕ has to be true, we can conclude that each of the conjuncts of ϕ

are also true; that is, zf⇔(eax = 2), zf⇒(pc′ = L4), ¬zf⇒(pc′ = L3),
pc′ = L4, and eax′ = eax are all true.

2. Suppose that we have a function µα̃A such that for a literal l ∈ L, A′ =
µα̃A(l) is a sound overapproximation of α̂(l). Because the literal pc′ = L4

is true, we conclude that A′ = µα̃A(pc
′ = L4) = {pc′ − L4 = 0} holds, and

thus A1 = A0 u A′ = {pc′ − L4 = 0}, which is a semantic reduction of A0.
3. Similarly, because the literal eax′ = eax is true, we obtain A2 = A1 u
µα̃A(eax

′ = eax) = {pc′ − L4 = 0, eax′ − eax = 0}.
4. We know that ¬zf⇒(pc′ = L3). Furthermore, µα̃A(pc

′ = L3) = {pc′−L3 =
0}. Now {pc′−L3 = 0}uA2 is⊥, which implies that [[pc′ = L3]]∩γ({pc′−L4 =
0, eax′ − eax = 0}) = ∅. Thus, we can conclude that ¬zf is false, and hence
zf is true. This value of zf, along with the fact that zf⇔(eax = 2) is true,
enables us to determine that A′′ = µα̃A(eax = 2) = {eax − 2 = 0} must
hold. Thus, our final semantic-reduction step produces A3 = A2 u A′′ =
{pc′ − L4 = 0, eax′ − eax = 0, eax− 2 = 0}.
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Fig. 1. (a) Inconsistent inequalities in the (unsatisfiable) formula used in Ex. 2. (b)
Application of the Dilemma Rule to abstract value (P0, A0). The dashed arrows from
(Pi, Ai) to (P ′

i , A
′
i) indicate that (P ′

i , A
′
i) is a semantic reduction of (Pi, Ai).

Abstract value A3 is a set of affine constraints over the registers at L1 (input-
state variables) and those at L4 (output-state variables), and can be used for
affine-relation analysis using standard techniques (e.g., see [21] or [14, §5]). ut

The above example illustrates how our technique propagates truth values
to various subformulas of ϕ. The process of repeatedly applying propagation
rules to compute As̃sume is called 0-assume. The next example illustrates the
Dilemma Rule, a more powerful rule for computing semantic reductions.

Example 2. Let L be QF LRA, and let A be the polyhedral abstract domain
[11]. Consider the formula ψ = (a0 < b0)∧ (a0 < c0)∧ (b0 < a1∨c0 < a1)∧ (a1 <
b1) ∧ (a1 < c1) ∧ (b1 < a2 ∨ c2 < a2) ∧ (a2 < a0) ∈ L (see Fig. 1(a)). Suppose
that we want to compute As̃sume[ψ](>A).

To make the communication between the truth values of subformulas
and the abstract value explicit, we associate a fresh Boolean variable with
each subformula of ψ to give a set of integrity constraints I. In this case,
Iψ = {u1⇔

∧8
i=2 ui, u2⇔(a0 < b0), u3⇔(a0 < c0), u4⇔(u9 ∨ u10), u5⇔(a1 <

b1), u6⇔(a1 < c1), u7⇔(u11 ∨ u12), u8⇔(a2 < a0), u9⇔(b0 < a1), u10⇔(c0 <
a1), u11⇔(b1 < a2), u12⇔(c1 < a2)}. We occasionally use I as a formula, in
which case it denotes the conjunction of the individual integrity constraints. The
integrity constraints encode the structure of ψ via the set of Boolean variables
U = {u1, u2, . . . , u12}.

We now introduce an abstraction over U ; in particular, we use the Cartesian
domain P = U → {0, 1, ∗} in which ∗ denotes “unknown” and each element in
P represents a set of assignments in P(U → {0, 1}). We denote an element of the
Cartesian domain as a mapping, e.g., [u1 7→ 0, u2 7→ 1, u3 7→ ∗], or [0, 1, ∗] if u1,
u2, and u3 are understood. We represent the “single-point” partial assignments
that set variable v to 0 and 1 as >P [v 7→ 0] and >P [v 7→ 1], respectively.

Consider the single-point partial assignment in which the value of u1 is 1,
i.e., >P [u1 7→ 1]. Because u1 represents the root of ψ, >P [u1 7→ 1] corresponds
to the assertion that ψ is satisfiable. In fact, the models of ψ are closely related
to the concrete values in [[I]] ∩ γ(>P [u1 7→ 1]). For every concrete value in
[[I]] ∩ γ(>P [u1 7→ 1]), its projection onto {ai, bi, ci | 0 ≤ i ≤ 1} ∪ {a2} gives
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us a model of ψ; that is, [[ψ]] = ([[I]] ∩ γ(>P [u1 7→ 1]))|({ai,bi,ci|0≤i≤1}∪{a2}).

By this means, the problem of computing As̃sume[ψ](>A) is reduced to that
of computing As̃sume[I]((>P [u1 7→ 1],>A)), where (>P [u1 7→ 1],>A) is an
element of the cross product of P and A.

Because u1 is true in >P [u1 7→ 1], the integrity constraint u1⇔
∧8
i=2 ui

implies that u2 . . . u8 are also true, which refines the abstract value>P [u1 7→ 1] to
P0 = [1, 1, 1, 1, 1, 1, 1, 1, ∗, ∗, ∗, ∗]. Now because u2 is true and u2⇔(a0 < b0) ∈ I,
>A can be refined using µα̃A(a0 < b0) = {a0 − b0 < 0}. Doing the same for
u3, u5, u6, and u8, refines >A to A0 = {a0 − b0 < 0, a0 − c0 < 0, a1 − b1 <

0, a1− c1 < 0, a2− a0 < 0}. These steps refine (>P [u1 7→ 1],>A) to (P0, A0) via
0-assume.

To increase precision, we need to use the Dilemma Rule, a branch-and-merge
rule, in which the current abstract state is split into two (disjoint) abstract
states, 0-assume is applied to both abstract values, and the resulting abstract
values are merged by performing a join. The steps of the Dilemma Rule are
shown schematically in Fig. 1(b) and described below.

In our example, the value of u9 is unknown in P0. Let B ∈ P be >P [u9 7→ 0];
then B, the abstract complement ofB, is>P [u9 7→ 1]. Note that γ(B)∩γ(B) = ∅,
and γ(B) ∪ γ(B) = γ(>). The current abstract value (P0, A0) is split into

(P1, A1) = (P0, A0) u (B,>) and (P2, A2) = (P0, A0) u (B,>).

Now consider 0-assume on (P1, A1). Because u9 is false, and u4 is true, we can
conclude that u10 has to be true, using the integrity constraint u4⇔(u9 ∨ u10).
Because u10 holds and u10⇔(c0 < a1) ∈ I, A1 can be refined with the constraint
c0 − a1 < 0. Because a0 − c0 < 0 ∈ A1, a0 − a1 < 0 can be inferred. Similarly,
when performing 0-assume on (P2, A2), a0−a1 < 0 is inferred. Call the abstract
values computed by 0-assume (P ′

1, A
′
1) and (P ′

2, A
′
2), respectively. At this point,

the join of (P ′
1, A

′
1) and (P ′

2, A
′
2) is taken. Because a0−a1 < 0 is present in both

branches, it is retained in the join. The resulting abstract value is (P3, A3) =
([1, 1, 1, 1, 1, 1, 1, 1, ∗, ∗, ∗, ∗], {a0 − b0 < 0, a0 − c0 < 0, a1 − b1 < 0, a1 − c1 <

0, a2−a0 < 0, a0−a1 < 0}. Note that although P3 equals P0, A3 is strictly more
precise than A0 (i.e., A3 @ A0), and hence (P3, A3) is a semantic reduction of
(P0, A0) with respect to ψ.

Now suppose (P3, A3) is split using u11. Using reasoning similar to that
performed above, a1 − a2 < 0 is inferred on both branches, and hence so is
a0 − a2 < 0. However, a0 − a2 < 0 contradicts a2 − a0 < 0; consequently, the
abstract value reduces to ⊥ on both branches. Thus, As̃sume[ψ](>A) = ⊥, which
means that ψ is unsatisfiable. In this way, As̃sume instantiated with the polyhe-
dral domain can be used to decide the satisfiability of a QF LRA formula. ut

The process of repeatedly applying the Dilemma Rule is called 1-assume.
That is, repeatedly some variable u ∈ U is selected whose truth value is unknown,
the current abstract value is split using B = >P [u 7→ 0] and B = >P [u 7→ 1],
0-assume is applied to each of these values, and the resulting abstract values
are merged via join (Fig. 1(b)). Different policies for selecting the next variable
on which to split can affect how quickly an answer is found; however, any fair
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selection policy will return the same answer. The efficacy of the Dilemma Rule
is partially due to case-splitting; however, the real power of the Dilemma Rule
is due to the fact that it preserves information learned in both branches when a

case-split is “abandoned” at a join point.
The generalization of the 1-assume algorithm is called k-assume: repeatedly

some variable u ∈ U is selected whose truth value is unknown, the current
abstract value is split using B = >P [u 7→ 0] and B = >P [u 7→ 1]; (k–1)-assume
is applied to each of these values; and the resulting values are merged via join.
However, there is a trade-off: higher values of k give greater precision, but are
also computationally more expensive.

For certain abstract domains and logics, As̃sume[ψ](>A) is complete—i.e.,
with a high-enough value of k for k-assume, As̃sume[ψ](>A) always computes
the most-precise A value possible for ψ. However, our experiments show that
As̃sume[ψ](>A) has very good precision with k = 1 (see §5)—which jibes with
the observation that, in practice, with St̊almarck’s method for propositional
validity (tautology) checking “a formula is either [provable with k = 1] or not a
tautology at all!” [20, p. 227].

3 Algorithm for As̃sume[ϕ](A)

As discussed in §2, the top-level, overall goal of St̊almarck’s method can be
understood in terms of the operation α̂(ψ). However, St̊almarck’s method is re-
cursive (counting down on parameter k), and the operation performed at each re-

cursive level is the slightly more general operation Âssume[ψ](A). Consequently,
this section presents our algorithm for computing As̃sume[ϕ](A) in abstract do-
main A, for ϕ in logic L. The assumptions of our framework are as follows:

1. There is a Galois connection C −−−→←−−−α
γ
A between A and concrete domain C.

2. There is an algorithm to perform the join of arbitrary elements of A; that
is, for all A1, A2 ∈ A, there is an algorithm that produces A1 t A2.

3. There is an algorithm to perform the meet of arbitrary elements of A; that
is, for all A1, A2 ∈ A, there is an algorithm that produces A1 u A2.

4. Given a literal l ∈ L, there is an algorithm µα̃ to compute a safe (overap-
proximating) “micro-α̃”—i.e., A′ = µα̃(l) such that γ(A′) ⊇ [[l]].

Note that A is allowed to have infinite descending chains; because As̃sume works
from above, it is allowed to stop at any time, and the value in hand is an over-
approximation of the most precise answer.

Alg. 1 presents the algorithm that computes As̃sume[ϕ](A) for ϕ ∈ L and
A ∈ A. Line (1) calls the function integrity, which converts ϕ into integrity
constraints I by assigning a fresh Boolean variable to each subformula of ϕ, using
the rules described in Fig. 2. The variable uϕ corresponds to formula ϕ. We use
U to denote the set of Boolean variables created when converting ϕ to I. Alg. 1
also uses a second abstract domain, the Cartesian domain P = U → {0, 1, ∗},
each of whose elements represents a set of Boolean assignments in P(U → {0, 1}).

On line (2) of Alg. 1, an element of P is created in which uϕ is assigned the
value 1, which asserts that ϕ is true. Alg. 1 is parameterized by the value of k
(where k ≥ 0). Let γI((P,A)) denote γ((P,A)) ∩ [[I]]. The call to k-assume on
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Algorithm 1: As̃sumebdϕce(A)

1 〈I, uϕ〉 ← integrity(ϕ)
2 P ← >P [uϕ 7→ 1]

3 (P̃ , Ã)← k-assume[I]((P,A))

4 return Ã

Algorithm 2: 0-assumebdIce((P,A))

1 repeat

2 (P ′, A′)← (P,A)
3 foreach J ∈ I do

4 if J has the form u⇔ ` then

5 (P,A)← LeafRule(J, (P,A))
6 else

7 (P,A)← InternalRule(J, (P,A))

8 until ((P,A) = (P ′, A′)) ‖ timeout

9 return (P,A)

Algorithm 3: k-assumebdIce((P,A))

1 repeat

2 (P ′, A′)← (P,A)
3 foreach u ∈ U such that P (u) = ∗ do
4 (P0, A0)← (P,A)

5 (B,B)← (>P [u 7→ 0],>P [u 7→ 1])
6 (P1, A1)← (P0, A0) u (B,>)

7 (P2, A2)← (P0, A0) u (B,>)
8 (P ′

1, A
′
1)← (k–1)-assume[I]((P1, A1))

9 (P ′
2, A

′
2)← (k–1)-assume[I]((P2, A2))

10 (P,A)← (P ′
1, A

′
1)t (P ′

2, A
′
2)

11 until ((P,A) = (P ′, A′)) ‖ timeout

12 return (P,A)

ϕ := ` ` ∈ literal(L)

uϕ⇔ ` ∈ I
Leaf

ϕ := ϕ1op ϕ2

uϕ⇔(uϕ1
op uϕ2

) ∈ I
Internal

Fig. 2. Rules used to convert a formula ϕ ∈ L into a set of integrity constraints I. op
represents any binary connective in L, and literal(L) is the set of atomic formulas and
their negations.

line (3) returns (P̃ , Ã), which is a semantic reduction of (P,A) with respect to I;

that is, γI((P̃ , Ã)) = γI((P,A)) and (P̃ , Ã) v (P,A). In general, the greater the
value of k, the more precise is the result computed by Alg. 1. The next theorem
states that Alg. 1 computes an over-approximation of Assume[ϕ](A).

Theorem 1 ([42]). For all ϕ ∈ L, A ∈ A, if Ã = As̃sume[ϕ](A), then γ(Ã) ⊇

[[ϕ]] ∩ γ(A), and Ã v A. ut

Alg. 3 presents the algorithm to compute k-assume, for k ≥ 1. Given the in-
tegrity constraints I, and the current abstract value (P,A), k-assume[I]((P,A))
returns an abstract value that is a semantic reduction of (P,A) with respect to
I. The crux of the computation is the inner loop body, lines (4)–(10), which
implements an analog of the Dilemma Rule from St̊almarck’s method [40].

The steps of the Dilemma Rule are shown schematically in Fig. 1(b). At
line (3) of Alg. 3, a Boolean variable u whose value is unknown is chosen. B =
>P [u 7→ 0] and its complement B = >P [u 7→ 1] are used to split the current
abstract value (P0, A0) into two abstract values (P1, A1) = (P,A) u (B,>) and
(P2, A2) = (P,A) u (B,>), as shown in lines (6) and (7).

The calls to (k–1)-assume at lines (8) and (9) compute semantic reductions
of (P1, A1) and (P2, A2) with respect to I, which creates (P ′

1, A
′
1) and (P ′

2, A
′
2),

respectively. Finally, at line (10) (P ′
1, A

′
1) and (P ′

2, A
′
2) are merged by performing

a join. (The result is labeled (P3, A3) in Fig. 1(b).)
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J = (u1⇔(u2 ∨ u3)) ∈ I P (u1) = 0

(P u >[u2 7→ 0, u3 7→ 0], A)
Or1

J = (u1⇔(u2 ∧ u3)) ∈ I P (u1) = 1

(P u >[u2 7→ 1, u3 7→ 1], A)
And1

Fig. 3. Boolean rules used by Alg. 2 in the call InternalRule(J, (P,A)).

J = (u⇔ l) ∈ I P (u) = 1

(P,A u µα̃A(l))
PtoA-1

J = (u⇔ l) ∈ I P (u) = 0

(P,A u µα̃A(¬l))
PtoA-0

J = (u⇔ `) ∈ I A u µα̃A(l) = ⊥A

(P u >[u 7→ 0], A)
AtoP-0

Fig. 4. Rules used by Alg. 2 in the call LeafRule(J, (P,A)).

The steps of the Dilemma Rule (Fig. 1(b)) are repeated until a fixpoint is
reached, or some resource bound is exceeded. The correctness condition for Alg. 3
is stated as follows:

Theorem 2 ([42]). For all P ∈ P and A ∈ A, if (P ′, A′) =
k-assume[I]((P,A)), then γI((P

′, A′)) = γI((P,A)) and (P ′, A′) v (P,A). ut

Alg. 2 describes the algorithm to compute 0-assume: given the integrity con-
straints I, and an abstract value (P,A), 0-assume[I]((P,A)) returns an abstract
value (P ′, A′) that is a semantic reduction of (P,A) with respect to I. It is
in this algorithm that information is passed between the component abstract
values P ∈ P and A ∈ A via propagation rules, like the ones shown in Figs. 3
and 4. In lines (4)–(7) of Alg. 2, these rules are applied by using a single integrity
constraint in I and the current abstract value (P,A).

Given J ∈ I and (P,A), the net effect of applying any of the propagation
rules is to compute a semantic reduction of (P,A) with respect to J ∈ I. The
propagation rules used in Alg. 2 can be classified into two categories:

1. Rules that apply on line (7) when J is of the form p⇔(q op r), shown in
Fig. 3. Such an integrity constraint is generated from each internal subfor-
mula of formula ϕ. These rules compute a non-trivial semantic reduction
from P with respect to J by only using information from P . For instance,
rule And1 says that if J is of the form p⇔(q ∧ r), and p is 1 in P , then
we can infer that both q and r must be 1. Thus, P u >[q 7→ 1, r 7→ 1] is a
semantic reduction of P with respect to J . (See Ex. 1, step 1.)

2. Rules that apply on line (5) when J is of the form u⇔ `, shown in Fig. 4. Such
an integrity constraint is generated from each leaf of the original formula ϕ.
This category of rules can be further subdivided into
(a) Rules that propagate information from abstract value P to abstract value

A; viz., rules PtoA-0 and PtoA-1. For instance, rule PtoA-1 states
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that given J = u⇔ l, and P (u) = 1, then A u µα̃(l) is a semantic
reduction of A with respect to J . (See Ex. 1, steps 2 and 3.)

(b) Rule AtoP-0, which propagates information from abstract value A to
abstract value P . RuleAtoP-0 states that if J = (u⇔ `) and Auµα̃(l) =
⊥A, then we can infer that u is false. Thus, the value of P u>[u 7→ 0] is
a semantic reduction of P with respect to J . (See Ex. 1, step 4.)

Alg. 2 repeatedly applies the propagation rules until a fixpoint is reached, or
some resource bound is reached. The next theorem states that 0-assume com-
putes a semantic reduction of (P,A) with respect to I.

Theorem 3 ([42]). For all P ∈ P , A ∈ A, if (P ′, A′) = 0-assume[I]((P,A)),
then γI((P

′, A′)) = γI((P,A)) and (P ′, A′) v (P,A). ut

4 Instantiations

In this section, we describe instantiations of our framework for two logical-
language/abstract-domain pairs: QF BV/KS and QF LRA/Polyhedra. For each
instantiation, we describe the µα̃ operation.

We say that the As̃sume algorithm is complete for an abstract domain A

and logic L if it is guaranteed to compute the best value Âssume[ϕ](A) given
A ∈ A, ϕ ∈ L, and a sufficiently large value of k for k-assume (where k ≤ |ϕ|).
We state completeness results for the two instantiations.

Bitvector Affine-Relation Domain (QF BV/KS). King and Søndergaard
[23] gave an algorithm for α̂ for an abstract domain of Boolean affine relations.
Elder et al. [14] extended the algorithm to affine relations in arithmetic modulo
2w (i.e., for some bit-width w of bounded integers). Both algorithms work from
below, making repeated calls on a SAT solver (King and Søndergaard) or an
SMT solver (Elder et al.) and performing joins to incorporate more and more
of the concrete state space into the current approximation of the final answer.
Because the generalized technique is essentially the same as the Boolean case,
we call both kinds of domains KS, and call the algorithm α̂

↑
KS.

Logic L in this case is QF BV. Given a literal l ∈ QF BV, we compute
µα̃KS(l) by invoking α̂↑

KS(l). That is, for QF BV/KS we harness α̂↑
KS in service

of As̃sumeKS, but only for µα̃KS, which means that α̂↑
KS is only applied to literals

(i.e., small formulas). In practice, if the invocation of α̂↑
KS does not return an

answer within a specified time limit, we use >KS.
The As̃sume algorithm is not complete for QF BV/KS. Let x be a 2-bit-wide

bitvector, and ϕ be the formula (x 6= 0∧x 6= 1∧x 6= 2). Thus, Âssume[ϕ](>KS) =
{x − 3 = 0}. The KS abstract domain is not expressive enough to represent
disequalities. For instance, if c is a constant, µα̃(x 6= c) equals >KS. Thus,
because the As̃sume algorithm considers only a single integrity constraint at a
time, we get As̃sume[ϕ](>KS) = µα̃(x 6= 0) u µα̃(x 6= 1) u µα̃(x 6= 2) = >KS.

The current approach can be made complete for QF BV/KS by either (i)
making 0-assume consider multiple integrity constraints during propagation (in
the limit, having to call µα̃(ϕ)), or (ii) performing a 2w-way split on the current
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KS abstract value, where w is the bitvector length, each time a disequality is
encountered; effectively rewriting x 6= 0 to (x = 1 ∨ x = 2 ∨ x = 3). Both
of these approaches would be prohibitively expensive. Our current approach,
though theoretically not complete, works very well in practice (see §5).

Polyhedral Domain (QF LRA/Polyhedra). The second instantiation that
we implemented is for the logic QF LRA and the polyhedral domain [11]. Because
a QF LRA disequality t 6= 0 can be normalized to (t < 0∨t > 0), every literal l in
a normalized QF LRA formula is merely a half-space in the polyhedral domain.
Consequently, µα̃Polyhedra(l) is exact, and easy to compute. Furthermore, because
of this precision, the As̃sume algorithm is complete for QF LRA/Polyhedra. In
particular, if k = |ϕ|, then k-assume is sufficient to guarantee that As̃sume[ϕ](A)

returns Âssume[ϕ](A). The QF LRA/Polyhedra instantiation uses the Parma
Polyhedra Library [34].

5 Experiments

Bitvector Affine-Relation Analysis. In this section, we compare two meth-
ods for computing the abstract transformers for the KS domain for affine relation
analysis (ARA) [23]:
– the α̂↑-based procedure described in Elder et al. [14].
– the α̃-based procedure described in this paper (“α̃↓”), instantiated for KS.

Our experiments were designed to answer the following questions:
1. How does the speed of α̃↓ compare with that of α̂↑?
2. How does the precision of α̃↓ compare with that of α̂↑?
To address these questions, we performed ARA on x86 machine code, computing
affine relations over the x86 registers. Our experiments were run on a single core
of a quad-core 3.0 GHz Xeon computer running 64-bit Windows XP (SP2),
configured so that a user process has 4GB of memory. We analyzed a corpus of
Windows utilities using the WALi [22] system for weighted pushdown systems
(WPDSs). For the baseline α̂↑-based analysis we used a weight domain of α̂↑-
generated KS transformers. The weight on each WPDS rule encodes the KS
transformer for a basic block B of the program, including a jump or branch to a
successor block. A formula ϕB is created that captures the concrete semantics of
B, and then the KS weight for B is obtained by performing α̂↑(ϕB) (cf. Ex. 1).
We used EWPDS merge functions [26] to preserve caller-save and callee-save
registers across call sites. The post* query used the FWPDS algorithm [25].

Fig. 5 lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches) along with the times for constructing
abstract transformers and running post*.4 Col. 6 of Fig. 5 shows that the calls
to α̂↑ during WPDS construction dominate the total time for ARA.

Each call to α̂↑ involves repeated invocations of an SMT solver. Although the
overall time taken by α̂↑ is not limited by a timeout, we use a 3-second timeout

4 Due to the high cost of the KS-based WPDS construction, all analyses excluded the
code for libraries. Because register eax holds the return value from a call, library func-
tions were modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.
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Prog. Measures of size α̂↑ Performance

name instrs CFGs BBs brs WPDS t/o post* query

finger 532 18 298 48 110.9 4 0.266 0.015
subst 1093 16 609 74 204.4 4 0.344 0.016
label 1167 16 573 103 148.9 2 0.344 0.032
chkdsk 1468 18 787 119 384.4 16 0.219 0.031
convert 1927 38 1013 161 289.9 9 1.047 0.062
route 1982 40 931 243 562.9 14 1.281 0.046
logoff 2470 46 1145 306 621.1 16 1.938 0.063
setup 4751 67 1862 589 1524.7 64 0.968 0.047

Fig. 5.WPDS experiments (α̂↑). The columns show the number of instructions (instrs);
the number of procedures (CFGs); the number of basic blocks (BBs); the number of
branch instructions (brs); the times, in seconds, for WPDS construction with α̂

↑
KS

weights, running post*, and finding one-vocabulary affine relations at blocks that end
with branch instructions (query). The number of basic blocks for which α̂

↑
KS

-weight
generation timed out is listed under “t/o”.

(a) (b)

Fig. 6. (a) Performance: α̃↓ vs. α̂↑. (b) Precision: % of control points at which α̃↓ has
as good or better precision as α̂↑; the lighter-color lower portion of each bar indicates
the % of control points at which the precision is strictly greater for α̃↓.

for each invocation of the SMT solver (as in Elder et al. [14]). Fig. 5 lists the
number of such SMT solver timeouts for each benchmark. In case the invocation
of the SMT solver times out, α̂↑ is forced to return >KS in order to be sound.
(Consequently, it is possible for α̃↓ to return a more precise answer than α̂↑.)

The setup for the α̃↓-based analysis is the same as the baseline α̂↑-based
analysis, except that we call α̃↓ when calculating the KS weight for a basic block.
We use 1-assume in this experiment. Each basic-block formula ϕB is rewritten
to a set of integrity constraints, with ITE-terms rewritten as illustrated in Ex. 1.
The priority of a Boolean variable is its postorder-traversal number, and is used
to select which variable is used in the Dilemma Rule. We bound the total time
taken by each call to α̃↓ to a fixed timeout T. Note that even when the call to
α̃↓ times out, it can still return a sound non->KS value. We ran α̃↓ using T = 1
sec, T = 0.7 secs, and T = 0.4 secs.
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(a) (b)

Fig. 7. (a) Log-log scatter plot of transformer-construction time. (b) Semilog plot of
Z3 vs. α̃↓ on χd formulas.

Fig. 6(a) shows the normalized time taken for WPDS construction when
using α̃↓ with T = 1 sec, T = 0.7 secs, and T = 0.4 secs. The running time is
normalized to the corresponding time taken by α̂↑; lower numbers are better.
WPDS construction using α̃↓ with T = 1 sec. is about 3.5 times faster than α̂↑

(computed as the geometric mean), which answers question 1.

Decreasing the timeout T makes the α̃↓ WPDS construction only slightly
faster. To understand this behavior better, we show in Fig. 7(a) a log-log scatter-
plot of the times taken by α̂↑ versus the times taken by α̃↓ (with T = 1 sec.),
to generate the transformers for each basic block in the benchmark suite. As
shown in Fig. 7(a), the times taken by α̃↓ are bounded by 1 second. (There are a
few calls that take more than 1 second; they are an artifact of the granularity of
operations at which we check whether the procedure has timed out.) Most of the
basic blocks take less than 0.4 seconds, which explains why the overall time for
WPDS construction does not decrease much as we decrease T in Fig. 6(a). We
also see that the α̂↑ times are not bounded, and can be as high as 50 seconds.

To answer question 2 we compared the precision of the WPDS analysis when
using α̃↓ with T equal to 1, 0.7, and 0.4 seconds with the precision obtained
using α̂↑. In particular, we compare the affine relations computed by the α̃↓-
based and α̂↑-based analyses for each control point—i.e., the beginning of a
basic block that ends with a branch. Fig. 6(b) shows the percentage of control
points for which the α̃↓-based analysis computes a better or equally good affine
relation. When using T= 1 sec, α̃↓ computes as good a result as α̂↑ at 96.8% of
the control points (geometric mean). Interestingly, α̃↓ often computes an answer
that is more precise compared to that computed by α̂↑. That is not a bug in our
implementation; it happens because α̂↑ has to return >KS when the call to the
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SMT solver times out. In Fig. 6(b), the lighter-color lower portion of each bar
shows the percentage of control points for which α̃↓ provides strictly more precise
answers when compared to α̂↑. Furthermore, as expected, when the timeout for
α̃↓ is reduced, the precision decreases.

Satisfiability Checking. The formula used in Ex. 2 is just one instance of a
family of unsatisfiable QF LRA formulas [28]. Let χd = (ad < a0) ∧

∧d−1
i=0 ((ai <

bi)∧ (ai < ci)∧ ((bi < ai+1)∨ (ci < ai+1))). The formula ψ in Ex. 2 is χ2; that is,
the number of “diamonds” is 2 (see Fig. 1(a)). We used the QF LRA/polyhedra
instantiation of our framework to check whether α̃(χd) = ⊥ for d = 1 . . . 25
using 1-assume. We ran this experiment on a single processor of a 16-core 2.4
GHz Intel Zeon computer running 64-bit RHEL Server release 5.7. The semilog
plot in Fig. 7(b) compares the running time of α̃↓ with that of Z3, version
3.2 [12]. The time taken by Z3 increases exponentially with d, exceeding the
timeout threshold of 1000 seconds for d = 23. This corroborates the results of a
similar experiment conducted by McMillan et. al [28], where the reader can also
find an in-depth explanation of this behavior.

On the other hand, the running time of α̃↓ increases linearly with d taking
0.78 seconds for d = 25. The cross-over point is d = 12. In Ex. 2, we saw
how two successive applications of the Dilemma Rule suffice to prove that ψ is
unsatisfiable. That explanation generalizes to χd: d applications of the Dilemma
Rule are sufficient to prove unsatisfiability of χd. The order in which Boolean
variables with unknown truth values are selected for use in the Dilemma Rule has
no bearing on this linear behavior, as long as no variable is starved from being
chosen (i.e., a fair choice-schedule is used). Each application of the Dilemma
Rule is able to infer that ai < ai+1 for some i.

We do not claim that α̃↓ is better than mature SMT solvers such as Z3.
We do believe that it represents another interesting point in the design space of
SMT solvers, similar in nature to the GDPLL algorithm [28] and the k-lookahead
technique used in the DPLL(t) algorithm [4].

6 Applications to Other Symbolic Operations

The operation of symbolic concretization, denoted by γ̂, maps an abstract value
A ∈ A to a formula γ̂(A) such that A and γ̂(A) represent the same set of
concrete states (i.e., γ(A) = [[γ̂(A)]]). Experience shows that the assumption
that A supports symbolic concretization is not a significant restriction because
it is easy to write the γ̂ function for most abstract domains.

In contrast with γ(A), γ̂(A) produces a finite-sized formula that can be ma-
nipulated in computer memory. Thus, the problem raised in §1 about γ(A) pro-
ducing a result that is either infinite or too large to fit in computer memory
can be side-stepped by using γ̂ and performing subsequent operations on the
formulas that γ̂ produces. However, one must now work with symbolic represen-
tations of sets of states (i.e., formulas), and for each of the operations needed
in abstract interpretation the challenge is to develop an algorithm that operates
on formulas. §3 has shown how As̃sume, and hence α̃, can be implemented.
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The symbolic operations of γ̂ and α̂ can be used to implement a number of
other useful operations, as discussed below. In each case, over-approximations
result if α̂ is replaced by α̃.

– The operation of containment checking, A1 v A2, which is needed by anal-
ysis algorithms to determine when a post-fixpoint is attained, can be imple-
mented by checking whether α̂(γ̂(A1) ∧ ¬γ̂(A2)) equals ⊥.

– Suppose that there are two Galois connections G1 = C −−−→←−−−α
γ
A1 and G2 =

C −−−→←−−−α
γ
A2, and one wants to work with the reduced product ofA1 and A2 [8,

§10.1]. The semantic reduction of a pair (A1, A2) can be performed by letting
ψ be the formula γ̂1(A1) ∧ γ̂2(A2), and creating the pair (α̂1(ψ), α̂2(ψ)).

– Given A1 ∈ A1, one can find the most-precise value A2 ∈ A2 that over-
approximates A1 in A2 as follows: A2 = α̂2(γ̂1(A1)).

– Given a loop-free code fragment F , consisting of one or more blocks of pro-
gram statements and conditions, one can obtain a representation of its best
transformer by symbolically executing F to obtain a transition formula ψF ,
and then performing α̂(ψF ).

7 Related Work

Extensions of St̊almarck’s Method. Björk [3] describes extensions of
St̊almarck’s method to first-order logic. (Björk credits St̊almarck with making
the first extension of the method in that direction, and mentions an unpublished
manuscript of St̊almarck’s.) Like Björk, our work goes beyond the classical
setting of St̊almarck’s method [40] (i.e., propositional logic) and extends the
method to more expressive logics, such as QF LRA or QF BV. However, Björk
is concerned solely with validity checking, and—compared with the propositional
case—the role of abstraction is less clear in his method. Our algorithm not only
uses an abstract domain as an explicit datatype, the goal of the algorithm is to
compute an abstract value A′ = As̃sume[ϕ](A).

Our approach was influenced by Granger’s method of using (in)equation
solving as a way to implement semantic reduction and Assume as part of his
technique of local decreasing iterations [17]. Granger describes techniques for per-
forming reductions with respect to (in)equations of the form x1 on F (x1, . . . , xn)
and (x1 ∗ F (x1, . . . , xn)) on G(x1, . . . , xn), where on stands for a single relational
symbol of L, such as =, 6=, <, ≤, >, ≥, or ≡ (arithmetical congruence). Our
framework is not limited to literals of these forms; all that we require is that for a
literal l ∈ L, there is an algorithm to compute an overapproximating value µα̃(l).
Moreover, Granger has no analog of the Dilemma Rule, nor does he present any
completeness results (cf. §4).

A variant of the Dilemma Rule is used in DPLL(t), and allows the theory
solver in a lazy DPLL-based SMT solver to produce joins of facts deduced along
different search paths. However, as pointed out by Bjørner et al. [4, §5], their
system is weaker than St̊almarck’s method, because St̊almarck’s method can
learn equivalences between literals.
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Another difference between our work and Bjørner et al. is the connection
presented in this paper between St̊almarck’s method and the computation of
best abstract operations for abstract interpretation.

In [41], we studied St̊almarck’s method from the perspective of abstract in-
terpretation, and gave an account in which we explained each of its key compo-
nents in terms of well-known abstract-interpretation techniques. We then used
those insights to devise a framework for propositional-logic validity-checking al-
gorithms that is parametrized by an abstract domain and operations on the
domain. The algorithm that goes by the name “St̊almarck’s method” is one
particular instantiation of our framework with a certain abstract domain. The
work reported in [41] shows how abstract interpretation offers insight on the
design of decision procedures for propositional logic. In contrast, the present
paper describes ways in which ideas from St̊almarck’s method can be adopted
for use in symbolic abstract operations, such as α̃(ϕ) and As̃sume[ϕ](A), as well

as creating a representation of P̃ost[τ ]. On the other hand, the more expres-
sive Boolean abstraction domains described in [41] can be used instead of the
Cartesian abstraction domain in the As̃sume algorithm [42].

We recently became aware that Haller and D’Silva [19] are (jointly) engaged
in research with similar goals to ours, but in a somewhat different domain. They
have given an abstract-interpretation-based account of Conflict-Driven Clause
Learning (CDCL) SAT solvers [31]. Our work and that of Haller and D’Silva
were performed independently and contemporaneously. Recently, they have also
lifted their technique from a propositional SAT solver to a floating-point decision
procedure that makes use of floating-point intervals [13].

Best Abstract Operations. Several papers about best abstract operations
have appeared in the literature [15, 36, 43, 23, 14]. Graf and Säıdi [15] showed
that decision procedures can be used to generate best abstract transformers
for predicate-abstraction domains. Other work has investigated more efficient
methods to generate approximate transformers that are not best transformers,
but approach the precision of best transformers [1, 6].

Several techniques work from below [36, 23, 14]—performing joins to incorpo-
rate more and more of the concrete state space—which has the drawback that
if they are stopped before the final answer is reached, the most-recent approx-
imation is an under-approximation of the desired value. The issue is all the
more problematic because the technique makes repeated calls to an SMT solver,
and thus if one sets a timeout threshold for the solver, there must be a backup
strategy invoked whenever the timeout threshold is exceeded. In contrast, our
technique works from above, performing meets to eliminate more and more of
the concrete state space. It can stop at any time and return a safe answer.

Yorsh et al. [43] developed a method that works from above to perform
As̃sume[ϕ](A) for the kind of abstract domains used in shape analysis (i.e.,
“canonical abstraction” of logical structures [37]). Their method has a splitting
step, but no analog of the join step performed at the end of an invocation of the
Dilemma Rule. In addition, their propagation rules are much more heavyweight.
As discussed in §2, our propagation rules are local: they make use of only a single



A Method for Symbolic Computation of Abstract Operations 17

integrity constraint. In contrast, the step that corresponds to propagation in the
method of Yorsh et al. repeatedly passes the entire formula ϕ to the theorem
prover.

Template Constraint Matrices (TCMs) are a parametrized family of linear-
inequality domains for expressing invariants in linear real arithmetic. Sankara-
narayanan et al. [38] gave a parametrized meet, join, and set of abstract trans-
formers for all TCM domains. Monniaux [30] gave an algorithm that finds the
best transformer in a TCM domain across a straight-line block (assuming that
concrete operations consist of piecewise linear functions), and good transform-
ers across more complicated control flow. However, the algorithm uses quan-
tifier elimination, and no polynomial-time elimination algorithm is known for
piecewise-linear systems.

Brauer and King [5] developed a method that works from below to derive
abstract transformers for the interval domain. Their method is based on Mon-
niaux’s general approach, but they changed two aspects:

1. They express the concrete semantics with a Boolean formula (via “ bit-
blasting”), which allows a formula equivalent to ∀x.ϕ to be obtained from ϕ

(in CNF) by removing the x and ¬x literals from all of the clauses of ϕ.
2. Whereas Monniaux’s method performs abstraction and then quantifier elim-

ination, Brauer and King’s method performs quantifier elimination on the
concrete specification and then abstraction.

The abstract transformer derived from the Boolean formula that results is
a guarded update: the guard is expressed as an element of the octagon domain
[29]; the update operation is expressed as an element of the abstract domain of
rational affine equalities [21]. The abstractions performed to create the guard
and the update are optimal for their respective domains. The algorithm they
use to create the abstract value for the update operation is essentially the King-
Søndergaard algorithm for α̂ [23, Fig. 2], which works from below, as discussed
earlier. Brauer and King show that optimal evaluation of such transfer functions
requires linear programming. They give an example that demonstrates that an
octagon-closure operation on a combination of the guard’s octagon and the up-
date’s affine equality is sub-optimal.

Barrett and King [2] describe a method for generating range and set ab-
stractions for bit-vectors that are constrained by Boolean formulas. For range
analysis, the algorithm separately computes the minimum and maximum value
of the range for an n-bit bit-vector using 2n calls to a SAT solver, with each
SAT query determining a single bit of the output. The result is the best over-
approximation of the value that an integer variable can take on (i.e., α̂).

Regehr and Reid [35] present a method that constructs abstract transformers
for machine instructions, for interval and bitwise abstract domains. Their method
does not call a SAT solver, but instead uses the physical processor (or a simulator
of a processor) as a black box. To compute the abstract post-state for an abstract
value A, the approach recursively subdivides A into A1 and A2, computes the
post-states for A1 and A2, and joins the results. The algorithm tabulates abstract
results for all combinations of abstract inputs. The algorithm keep subdividing
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an abstract input until an abstract value is obtained whose concretization is a
singleton set. The concrete semantics are then used to derive the post-state value.
The different post-state values are joined together as the recursion is unwound.

The approach of subdividing, with an eventual join of the results, is similar
to the split-and-merge steps of the Dilemma Rule used in our approach. How-
ever, the algorithm of Regehr and Reid takes advantage of the subdivision in
a limited way; that is, recursive subdivision is exploited merely to be able to
cache previously computed results. Their goal is to speed up the algorithm by
caching results that have been computed previously, when the process was ap-
plied to other inputs whose recursive subdivision led to the same combination
of abstact values as inputs. In contrast, in our work the split performed by the
Dilemma Rule enables the application of propagation rules. The algorithm of
Regehr and Reid can be seen as an instance of our framework in which—for
n-bit bit-vectors—they use n-assume, and the only propagation rules are for
concrete evaluation of an arithmetic operation.

Cousot et al. [10] define a method of abstract interpretation based on using
particular sets of logical formulas as abstract-domain elements (so-called logical

abstract domains). They face the problems of (i) performing abstraction from
unrestricted formulas to the elements of a logical abstract domain [10, §7.1], and
(ii) creating abstract transformers that transform input elements of a logical
abstract domain to output elements of the domain [10, §7.2]. Their problems

are particular cases of α̂ (or α̃) and P̂ost[τ ] (or P̃ost[τ ]). They present heuristic

methods for creating α̃ and P̃ost[τ ] based on literal elimination and quantifier
elimination.

Work on Combining Abstract Domains. The use of propagation rules to ex-
change information between the P and A components of a paired abstract value
is related to previous research on combining abstract domains. It is also remi-
niscent of the Nelson-Oppen technique for combining decision procedures [33].
However, whereas the Nelson-Oppen technique is limited to sharing equalities,
the propagation rules in our framework can share relations other than equality:
the symbol on in the rules in Fig. 4 can be =, 6=, <, ≤, >, ≥, ≡ (arithmetic
congruence), or other relational symbols of the logic L.

Cousot and Cousot [8] defined the reduced product, which allows abstract
values in different domains to influence each other’s value. In ASTRÉE, Cousot
et al. [9] use a hierarchical organization for communication between multiple
abstract domains to implement an over-approximation of the reduced product.
An analysis can employ multiple hierarchies; each hierarchy uses a fixed com-
munication pattern among domains to implement a partially reduced product.
Gulwani and Tiwari [18] gave a method for combining abstract interpreters,
based on the Nelson-Oppen method. As in Nelson-Oppen, communication be-
tween domains in their framework is solely via equalities. McCloskey et al. [27]
presented a framework for communication between abstract domains that goes
beyond shared equalities: their technique uses a common predicate language in
which shared facts can be quantified predicates expressed in first-order logic with
transitive closure.
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All of the work mentioned above has the common goal that the combined
domain should be more than the sum of it parts—i.e., it should be able infer
facts that the individual domains could not infer alone. Our work has the unique
characteristic that the auxiliary domain P is introduced for the purpose of in-
creasing the precision of computing As̃sume[ϕ](A). This aspect resembles the
“instrumentation predicates” used to control the precision of abstract domains
for shape-analysis [37]. However, P ’s domain of discourse is the structure of the
formula on which As̃sume is performed, rather than another “take” on what
subset of the concrete domain C is being represented. Our use of P was inspired
by the similar component used in St̊almarck’s method (in the simpler context of
propositional-validity checking) to encode the structure of a formula.
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