
Numeric Analysis of Array Operations

Denis Gopan† Thomas Reps† Mooly Sagiv‡

†Comp. Sci. Dept., University of Wisconsin; {gopan,reps}@cs.wisc.edu
‡School of Comp. Sci., Tel-Aviv University; msagiv@post.tau.ac.il

Abstract

We present a numeric analysis that is capable of rea-
soning about array operations. In particular, the anal-
ysis is able to establish that all elements of an array
have been initialized (“an array kill”), as well as to dis-
cover numeric constraints on values of initialized array
elements, and to verify the correctness of comparison-
based sorting algorithms. The analysis is based on the
combination of canonical abstraction and summarizing
numeric domains. We present a prototype implemen-
tation of the analysis and discuss our experience with
applying this prototype to several kernel examples.

1 Introduction

An array is a simple and efficient data structure that is
heavily used. In many cases, to verify the correctness of
programs that use arrays an analysis needs to be able to
discover relationships among values of array elements,
as well as their relationships to scalar variables and con-
stants. For example, in scientific programing, a sparse
matrix is represented with several arrays, and indirect
indexing is used to access matrix elements. In this case,
to verify that all array accesses are in bounds, an anal-
ysis has to discover upper and lower bounds on the el-
ements stored in the index arrays. Mutual-exclusion
protocols, such as the Bakery and Peterson algorithms
[7, 11], use certain relationships among the values stored
in a shared integer array to decide which processes may
enter their critical section. To verify the correctness of
these protocols, an analysis must be capable of captur-
ing these relationships.

Static reasoning about array elements is problem-
atic because of the unbounded nature of arrays. Array

operations tend to be implemented without having a
particular fixed array size in mind. Rather, the code
is parametrized by scalar variables that have certain
numeric relationships to the actual size of the array.
The proper verification of such code requires establish-
ing the desired property for any values of those param-
eters with which the code may be invoked. These sym-
bolic constraints on the size of the array preclude the
analysis from modeling each array element as an in-
dependent scalar variable and using standard numeric
analysis techniques to verify the property.

Alternatively, an entire array may be treated as a
single summary numeric quantity. In this case, numeric
relationships involving the quantity associated with an
array must be shared by all array elements. This ap-
proach, mentioned in [2], resolves the unboundedness
issue. In previous work, we introduced a systematic
way to extend standard numeric domains to be able to
reason about such summary quantities [6]. The problem
with this approach, as with any approach that uses ag-
gregation of this sort, is the inability to perform strong
updates when assigning to individual array elements;1

this can lead to significant precision loss.
In this paper, we present a static-analysis framework

that attempts to combine the good features of the two
approaches sketched above. An analysis partitions a po-
tentially unbounded set of array elements into a bounded
number of disjoint groups. Some groups will contain
only a single array element and will be treated simi-
larly to scalar variables. Others will contain multiple
elements and will be modeled as summary quantities.
To maintain numeric states associated with such par-
titions, the analysis employs summarizing numeric do-
mains, which we introduced in our previous work [6].

Intuitively, the analysis attempts to partition array
elements into groups about which stronger assertions

1A strong update corresponds to a kill of a scalar variable; it
represents a definite change in value to all concrete objects that
the abstract object represents. Strong updates cannot generally
be performed on summary objects because a (concrete) update
only affects one of the summarized concrete objects.



can be established and maintained. For example, if an
array element is assigned to, it is beneficial to have that
element alone in its group, so that a strong update may
be performed. Also, when analyzing array-initialization
code, it is advantageous to keep elements that were al-
ready initialized in a separate group from the unini-
tialized ones. For sorting routines, it makes sense to
separate portions of arrays that have been sorted from
portions that have not, and so on.

The partitioning is done based on numeric relation-
ships among array-element indices and values of scalar
variables. We use the technique of canonical abstrac-
tion [14, 8] to formalize the partitioning. Canonical
abstraction of an unbounded set of concrete objects is
performed by selecting a finite set of unary predicates
whose free variables range over the concrete objects,
and grouping together elements for which all predicates
evaluate to the same values. The number of groups
in each partitioning, as well as the number of possible
partitionings, is guaranteed to be finite.

In essence, canonical abstraction allows us to group
together concrete array elements with similar proper-
ties. As concrete execution progresses, the properties
of the elements change, so a particular element may
travel from group to group, while the partitioning still
remains the same from the point of view of the analy-
sis. To keep track of array elements contained in each
group, our analysis directly models the indices of array
elements. That is, two numeric quantities are associ-
ated with each array element: the actual value of the
element and its index.

The goal of the analysis is to collect an overapprox-
imation of the set of reachable states at each program
point. We use the abstract-interpretation framework
[3] to formalize the analysis. The abstract states that
are obtained for each program point are a set of triples;
each triple consists of an array partition, an element of a
summarizing abstract numeric domain, and a valuation
of auxiliary predicates.

Given a program that uses multiple arrays and non-
array variables, an interesting question is how to parti-
tion each array to verify the desired property. We found
that a simple heuristic of partitioning arrays with re-
spect to variables that are used to them is very effective
for establishing simpler properties, such as discovering
constraints on the values of array elements after an ini-
tialization loop. More complex properties, such as (i)
verifying comparison-based sorting algorithms, and (ii)
establishing that after an array-copy loop the source
and destination arrays are equal element-wise, require
extra care. To this end, in Sect. 4.3, we introduce aux-
iliary predicates that are attached to each abstract par-
tition element and encompass numeric properties that
are beyond the capabilities of summarizing numeric do-

mains. In Sect. 7, we give several examples of such
predicates and and illustrate how such predicates can
be used to establish properties for several challenging
examples.2

To implement a prototype of the analysis, we ex-
tended the TVLA tool [8] to provide it with the capa-
bility to reason about numeric quantities. TVLA uses
three-valued logical structures to describe states of a pro-
gram. We had to associate an element of a summariz-
ing numeric domain with each three-valued structure,
to extend TVLA’s internal machinery to maintain nu-
meric states correctly, and to extend the specification
language to incorporate predicates that include numeric
comparisons. The summarizing numeric domain was
implemented by wrapping the Parma library for poly-
hedral analysis [1] in the manner described in [6]. We
then defined a set of predicates necessary for describing
and partitioning arrays. With this prototype imple-
mentation, we were able to analyze successfully several
kernel examples, including verifying the correctness of
an insertion-sort implementation.

The contributions we make in this paper are:

• We introduce an abstract domain suitable for ana-
lyzing properties of complex array operations.

• More generally, we show how two previously de-
scribed techniques, canonical abstraction and sum-
marizing numeric domains, can be combined to
work together.

• We describe a working prototype of the analysis,
and illustrate it with several non-trivial examples.

The paper is structured as follows: Sect. 2 gives an
overview of the analysis. Sect. 3 discusses concrete se-
mantics. Sect. 4 introduces the abstraction. Sect. 5
details the analysis of the running example. Sect. 6
outlines a prototype analysis implementation. Sect. 7
describes our experiences with the analysis prototype.
Sect 8 surveys related work. Sect. 9 concludes the pre-
sentation.

2 Running example

In this section, we illustrate our technique using a sim-
ple example. The procedure in Fig. 1 copies the con-
tents of array a into array b. Both arrays are of size
n, which is specified as a parameter to the procedure.
Let us assume that the analysis has already determined
some facts about values stored in array a. For instance,
assume that the values of elements in array a range from

2The process of identifying auxiliary predicates and their ab-
stract transformers is not, at present, performed automatically.
Sect. 6.2 discuses some possibilities for carrying out these steps
automatically.
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void array copy(int a[], int b[], int n) {
i ← 0;

while(i < n) {
b[i] ← a[i];

i ← i + 1;

}
}

Figure 1: Array-copy function.

−5 to 5. At the exit of the procedure, we would like to
establish that the values stored in array b also range
from −5 to 5. Furthermore, we would like to establish
this property for any reasonable array size, i.e., for all
values of n greater than or equal to one.

Our technique operates by partitioning the un-
bounded number of concrete array elements into a
bounded number of groups. Each group is represented
by an abstract array element. The partitioning is done
by introducing relations between the indices of array el-
ements and the value of loop variable i. In particular,
for the example in Fig. 1, our technique will group the
elements of the two arrays with indices less than i into
two summary array elements (denoted by a<i and b<i,
respectively). Array elements with indices greater than
i are grouped into two other summary array elements
(a>i and b>i).

Array elements a[i] and b[i] are not grouped with
any other array elements, and are represented by non-
summary abstract array elements ai and bi. Such par-
titioning allows the analysis to perform a strong update
when it processes the assignment statement in the body
of the loop.

Fig. 2(a) shows how the elements of both arrays are
partitioned on the first iteration of the loop. Each of
the abstract array elements ai and bi represents a sin-
gle concrete array element of the corresponding array.
This allows the analysis to conclude that the value of
the concrete array element b[0] that is represented by
bi ranges from −5 to 5 after the assignment b[i] ←
a[i].

As variable i gets incremented, the grouping of con-
crete array elements changes. The element b[0], rep-
resented by bi, moves into the group of the concrete
array elements that are represented by b<i. The ab-
stract element bi represents the array element b[1] that
is extracted from the group of concrete array elements
that is represented by b>i. The elements of array a are
treated similarly. Fig. 2(b) shows how the arrays a and
b are partitioned on the second iteration.

The analysis reflects the change in grouping of array
elements by combining the numeric properties associ-
ated with bi with the numeric properties associated with
b<i. The new numeric properties for the abstract ele-
ment bi are obtained by duplicating the numeric prop-
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Figure 2: Partitioning of the array elements.

erties associated with b>i. As a result at the beginning
of the second iteration the analysis establishes that the
value of the concrete array element represented by b<i

ranges from −5 to 5. Numeric properties associated
with abstract elements of array a are treated similarly.

As the value of i increases with each iteration, more
and more of the concrete array elements of both arrays
move from the two groups, subscripted by “> i”, to the
two groups, subscripted by “i”, and finally, to the two
groups subscripted by “< i”. Fig. 2(c) shows how the
arrays are partitioned on the k-th iteration. The con-
crete array elements that are represented by b<i are the
elements that have been initialized. Suppose that the
analysis has established that the values of the elements
represented by b<i at the beginning of the k-th iteration
range from −5 to 5. After interpreting the assignment
in the body of the loop, the analysis establishes that
the value of the element b[k], represented by bi, also
ranges from −5 to 5. After the increment of variable i,
the numeric properties associated with bi are combined
with the properties associated with b<i. As a result, the
analysis establishes that the values of the concrete ele-
ments represented by b<i in the beginning of the k+1-st
iteration range from −5 to 5.

An important thing to observe is that, even though
the partitions shown in Fig. 2 (b) and (c) describe dif-
ferent groupings of concrete array elements, both par-
titions have the same sets of abstract array elements.
Therefore, from the point of view of the analysis these
partitions are the same. To establish which concrete
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array elements are represented by a particular abstract
element, the analysis directly models the values of in-
dices of array elements in the numeric state associated
with each partition.

Fig. 2(e) shows how the array elements are parti-
tioned after exiting from the loop. We have just shown
that, on each iteration, the analysis established that
the values of the concrete array elements that are rep-
resented by b<i range from −5 to 5. After the loop,
as shown in Fig. 2(e), b<i represents all of the concrete
elements of array b. Therefore, the analysis is able to
conclude that the values stored in b range from −5 to
5.

The analysis is also able to establish a more gen-
eral property that the value of each element of array
b is equal to the value of the element of array a with
the same index. Unfortunately, the numeric domains
that are used by the analysis are not capable of main-
taining the numeric relationships of this kind for the
concrete array elements that have been summarized to-
gether. To capture such relationships, we augment the
abstract state with auxiliary predicates.

The analysis is performed exactly as before. On each
iteration, property δ is established for the pair of con-
crete array elements that are represented by ai and bi.
At the end of the iteration, the array elements repre-
sented by ai and bi move into the groups of concrete
array elements represented by a<i and b<i, for which
property δ has already been established on the previ-
ous iteration. As a result, the analysis establishes that
property δ holds for the concrete elements represented
by a<i and b<i at the end of each iteration. In this
fashion, the analysis establishes that after exiting the
loop, property δ holds for all of the array elements.

3 Concrete semantics

Our goal is to analyze programs that operate on a fixed,
finite set of scalar variables and arrays. A concrete state
of the program assigns a value to each scalar variable.
It also specifies a size for each array and assigns a value
and an index position to each array element.

We denote the set of scalar variables and the set of
arrays used in the program by

Scalar = {v1, ..., vn} and Array = {A1, ..., Ak} ,

respectively. Each array Ai ∈ Array itself denotes a
sequence of elements.

Let V denote a set of possible numeric values (such
as Z or Q). For each concrete state S we define the
following functions:

• V alueS : Scalar → V maps each scalar variable to
its corresponding value,

• SizeS : Array → V maps each array to its size,

• V alueS [Ai] : Ai → V maps an element of an array
Ai ∈ Array to its corresponding value,

• IndexS [Ai] : Ai → V maps an element of an array
Ai ∈ Array to its index position in the array.

Example 1 Let program P operate on two scalar vari-
ables, i and j, and an array B of size 10. Suppose
that at some point in the execution of the program,
the values of variables i and j are 4 and 7, respec-
tively, and the values that are stored in array B are
{1, 3, 8, 12, 5, 7, 4,−2, 15, 6}. We encode the concrete
state of the program, denoted by S as follows:

Scalar = {i, j}, Array = {B}, B = {b0, . . . , b9}

V aluesS = [i 7→ 4, j 7→ 7] , SizeS = [a 7→ 10]

V alueS [B] = [b0 7→ 1, b1 7→ 3, b2 7→ 8, . . . , b9 7→ 6]

IndexS [B] = [b0 7→ 0, b1 7→ 1, b2 7→ 2, . . . , b9 7→ 9]

Following the traditional approach of numeric anal-
ysis, we associate each scalar variable and each array
element with a dimension in a multidimensional space,
and encode a concrete numeric state of the program as
a point in that space. Each scalar variable is associated
with a single dimension, which represents the value of
corresponding variable. Each array is associated with a
dimension that represents its size. Each array element
is associated with two dimensions: one represents its
value and the other represents its index position in the
corresponding array. In general, for a concrete state S
we have

S ∈ Vm, where m = n + k + 2×
∑

Ai∈Array

SizeS(Ai)

Given a concrete state S ∈ Vm, functions V alueS

and SizeS, as well as families of functions V alueS [Ai]
and IndexS [Ai], for each Ai ∈ Array, are defined as
projections of the m-dimensional point S onto the cor-
responding dimensions.

We will denote the set of all possible concrete states
by Σ. There is a somewhat subtle point concerning Σ
that deserves mention: even though each concrete state
is modeled as a point in a space of fixed dimensionality,
different concrete states may require different numbers
of dimensions. For a particular concrete state, none
of the transformers can change its dimensionality3; it
is only the initial state that can have concrete states
of different dimensionalities; as we propagate that set

3This statement applies to programming languages that sup-
port arrays of unchanging length. Our approach can also be used
to analyze programs written in languages that support flexible-
length arrays.
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expr ::= c

| v

| a[v]

| expr � expr

cond ::= expr ./ expr

stmt ::= v ← expr

| a[v]← expr

| if(cond) stmt else stmt

| while(cond) stmt

| stmt; stmt

c ∈ V, v ∈ Scalar, a ∈ Array
� ∈ {+,−,×} , ./ ∈ {<,≤,=,≥,>}

Figure 3: A simple programming language.

through the program, the dimensionality for each con-
crete state does not change. The difference in the num-
ber of dimensions is due to our need to model arrays of
unspecified size. Thus, Σ is a set of points from spaces
with different dimensionality, i.e.,

Σ ⊆ V+, where V+ =

∞
⋃

i=1

Vi

In Fig. 3, we define a simple language suitable for ex-
pressing array operations. The language consists of as-
signment statements, conditional statements, and while
loops. Values can be assigned to both scalar variables
and array elements. The language does not allow ex-
pressions to be used to access elements of arrays. Pro-
grams that use expressions to index elements of an ar-
ray can be trivially transformed into our language by
introducing temporary variables.

We define the program’s concrete collecting seman-
tics as follows. To each program point we attach a set
of concrete states, D. The set transformers shown in
Fig. 4 are used to propagate the sets of concrete states
through the program. Set transformers are defined for
assigning to scalar variables (Assigns) and array ele-
ments (Assigna), interpreting numeric conditionals of
if-statements and while-statements (Cond), and joining
sets of concrete states at control merge points (Join).

The goal of the analysis is to collect the set of reach-
able program states at each program point. Determin-
ing the exact sets of concrete states is, in general, un-
decidable. We use the framework of abstract interpre-
tation [3] to collect at each program point an overap-
proximation of the set of states that may arise there.

4 Abstract domain

In this section, we define the family of abstract do-
mains that is the main contribution of this paper.
The elements of the abstract domains are sets of ab-
stract partitions. Each abstract partition S# is a triple
〈

P#, Ω#, ∆#
〉

, where P# maps each array to an array

Expressions:
[[c]]\(S) = c, where c ∈ V

[[v]]\(S) = V alueS(v), where v ∈ Scalar

[[A[v]]]\(S) =


V alueS [A] (u) if ∃u ∈ A : IndexS [A] (u) = V alueS(v)
⊥ otherwise
where v ∈ Scalar, A ∈ Array

[[expr1 � expr2]]\(S) = [[expr1]]\(S)� [[expr2]]\(S),
where � ∈ {+,−,×}

Conditions:
[[expr1 ./ expr2]]\(S) = [[expr1]]\(S) ./ [[expr2]]\(S),

where ./ ∈ {<,≤, =,≥,>}

Assignments:
[[v ← expr]]\(S) = S

ˆ

v 7→ [[expr]]\(S)
˜

[[a[v]← expr]]\(S) =


S
ˆ

u 7→ [[expr]]\(S)
˜

if ∃u ∈ A : IndexS [A] (u) = V alueS(v)
⊥ otherwise

Errors:
[[.]]\(⊥) = ⊥

Set transformers:
[[v ← expr]]\(D) =

˘

[[v ← expr]]\(S) : S ∈ D
¯

(Assigns)

[[a[v]← expr]]\(D) =
˘

[[a[v]← expr]]\(S) : S ∈ D
¯

(Assigna)

[[cond]]\(D) =
˘

S : S ∈ D and [[cond]]\(S) = true
¯

(Cond)
D1 tD2 = D1 ∪D2 (Join)

Figure 4: Concrete Semantics.

partition, Ω# is the associated numeric state, and ∆#

is the valuation of the auxiliary predicates. We denote
the set of all possible abstract partitions by Σ#.

4.1 Array partitioning

Given an array and a set of scalar variables, the goal
of array partitioning is to separate array elements into
several disjoint groups based on numeric relationships
between the indices of the elements and the values of
the scalar variables. In particular, we would like to
partition the array so that each element whose index is
equal to the value of any of the scalar variables in the
set is a single element in its group. We represent such
groups by non-summary abstract array elements. The
consecutive segments of array elements in between the
indexed elements are grouped together. Such groups
are represented by summary abstract array elements.

We define array partitions by using a fixed set of
partitioning functions, denoted by Π. Each partitioning
function is parameterized by an array and a single scalar
variable. Partitioning functions are defined as follows:

πA,v : Σ→ A→ {−1, 0, 1} ,

where A ∈ Array and v ∈ Scalar. Given a concrete
program state S, partitioning function πA,v is evaluated
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as follows:

πA,v(S)(u) =







−1 if IndexS [A] (u) ≤ V alueS(v) − 1
0 if IndexS [A] (u) = V alueS(v)
1 if IndexS [A] (u) ≥ V alueS(v) + 1

where u ∈ A. The choice of function values is com-
pletely arbitrary as long as the function evaluates to a
different value for each of the three cases. We chose −1,
0, and 1 for convenience. We denote the set of parti-
tioning functions parameterized with array A by ΠA.

For each array A ∈ Array, and a set of partitioning
functions ΠA, we group together elements of A for which
all partitioning functions evaluate to the same values.
If the set ΠA is empty, all of the elements of array A
are grouped together into a single summary element.

Imposing a global ordering on the set ΠA allows us to
uniquely characterize each abstract array element by a
vector of values of partitioning functions of length |ΠA|.
We refer to such vectors as canonical names of abstract
array elements. Such naming gives us an effective pro-
cedure for testing equality between partitions. We say
that two partitions are equal if for every abstract array
element in one partition there is an abstract element
with the same canonical name in the other partition,
and vice versa. We use the notation cn(u) to refer to
the canonical name of abstract array element u.

We identify abstract array elements as summary or
non-summary as follows: if the canonical name for the
abstract array element contains a value 0, the element
is non-summary; otherwise, it is summary.

Example 2 Assume the same situation as in Ex. 1.
Let the ordered set of partitioning functions Π be
(πB,i, πB,j). The elements of array B are partitioned
into five groups, each of which is represented by an ab-
stract array element (the subscript of each abstract ar-
ray element corresponds to its canonical name):
(i) {b0, b1, b2, b3}, represented by b(−1,−1);
(ii) {b4}, represented by b(0,−1);
(iii) {b5, b6}, represented b(1,−1);
(iv) {b7}, represented by b1,0;
(v) {b8, b9}, represented by b1,1.

The abstract array elements b(0,−1) and b(1,0) are non-
summary, while b(−1,−1), b(1,−1), and b(1,1) are sum-
mary.

Formally, a partition P # is defined as a mapping
from Array to individual array partitions:

P# =
[

A 7→ P#
A : A ∈ Array

]

,

where each P#
A denotes the set of abstract elements of

array A. We define the equality of two individual array

partitions as follows:

P#
A = Q#

A ⇐⇒ ∧
∀u ∈ P#

A ∃t ∈ Q#
A [cn(u) = cn(t)]

∀u ∈ Q#
A ∃t ∈ P#

A [cn(u) = cn(t)]

The equality of two global partitions is defined as fol-
lows:

P# = Q# ⇐⇒ ∀A ∈ Array
[

P#
A = Q#

A

]

Given a set of partitioning functions ΠA, the el-
ements of array A may be partitioned into at most
2 × |ΠA| + 1 groups. Therefore, each abstract state
has a finite number of abstract elements. The number
of possible ways to partition an array is finite, although
combinatorially large. However, our observations show
that only a small fraction of these partitions actually
occur in practice.

4.2 Numeric states

To keep track of the numeric information associated
with an array partition, we attach to each partition
an element of a summarizing numeric domain. Non-
summary dimensions of the summarizing numeric do-
main are used to model scalar variables, array sizes, and
values and indices of non-summary abstract array ele-
ments. Summary dimensions are used to model values
and indices of summary abstract array elements. The
element of the summarizing numeric domain associated
with the partition is constructed by folding together the
dimensions associated with the concrete array elements
represented by the same abstract element.

We use the following notations to refer to the di-
mensions of the summarizing numeric domain. Let
A ∈ Array denote an arbitrary array, let P #

A denote

the partition of array A, and let u ∈ P #
A denote an

abstract element of an array A. Then, v denotes the di-
mension that represents the values of scalar variable v;
A.size denotes the dimension that represents the size of
an array A; u.value denotes the dimension that repre-
sents the value of abstract array element u; and u.index
denotes the dimension that represents the index of ab-
stract array element u.

Example 3 Assume the same situation as in Ex. 2.
The partition of array B is

P# =
[

B 7→
{

b(−1,−1), b(0,−1), b(1,−1), b(1,0), b(1,1)

}]

.

The numeric state associated with P # is described by
the following set of constraints (we assume that the em-
ployed summarizing numeric domains are based on poly-
hedra):

i = 4, j = 7, B.size = 10
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0 ≤ b(−1,−1).index ≤ 3 1 ≤ b(−1,−1).value ≤ 12
b(0,−1).index = 4 b(0,−1).value = 5

5 ≤ b(1,−1).index ≤ 6 4 ≤ b(1,−1).value ≤ 7
b(1,0).index = 7 b(1,0).value = −2

8 ≤ b(1,1).index ≤ 9 6 ≤ b(1,1).value ≤ 15

To manipulate numeric states, we use abstract trans-
formers defined in [6]. Given two numeric states, de-

noted Ω#
1 and Ω#

2 , we say that Ω#
1 v Ω#

2 if both nu-
meric states are defined on the same set of dimensions
and Ω#

1 ⊆ Ω#
2 . Note, that both numeric states are de-

fined on the same set of dimensions if and only if they
are associated with the same array partition. The defi-
nition of the join operation for a summarizing numeric
domain depends on the implementation of the domain.
In case of a polyhedral domain, the join is performed
by taking a convex hull of both numeric states.

4.3 Beyond summarizing domains

Summarizing numeric domains can be used to reason
about collective numeric properties of summarized ar-
ray elements. However, the relationships among quan-
tities that are summarized together are lost. This pre-
cludes summarizing numeric domains from being able
to express certain properties of interest, e.g., it is im-
possible to express the fact that a set of array elements
that are summarized together are in sorted order. In
Ex. 3, the numeric state S# is only able to capture the
property that the values of the concrete array elements
represented by b(−1,−1) range from 1 to 12, but not that
those elements are sorted in ascending order.

To capture properties that are beyond the capabili-
ties of summarizing numeric domains, we introduce an
auxiliary set of predicates, denoted by ∆. The predi-
cate values are attached to the abstract array elements.
We specify the semantics of the predicates in ∆ by sup-
plying a formula over concrete states. Each predicate is
parameterized by an array. Let A ∈ Array; a predicate
δA ∈ ∆ has the type

δA : Σ→ A→ {0, 1} .

Generally, in each concrete state, δA maps each ele-
ment of array A to either 1 or 0, depending on whether
the corresponding property holds for that array element
or not. When the elements of A are summarized in the
abstract state, we join the values to which δA evaluates
on the array elements that are summarized together.
The join is performed in a 3-valued logic lattice.4 The

4In 3-valued logic, an extra value, denoted by 1/2, is added to
the set of Boolean values {0, 1}. The order is defined as follows:

l1 v l2 iff l1 = l2 or l2 = 1/2

Thus,
1/2 t 0 = 1/2 t 1 = 0 t 1 = 1/2.

resulting value is attached to the corresponding abstract
array element.

Let P#
A denote the partition of array A, and let Γ#

denote the set of all possible abstract valuations of pred-
icates in ∆. We extract predicate values associated with
abstract elements of A by using a function δ#

A of type:

δ#
A : Γ# → P#

A → {0, 1, 1/2}

If δ#
A (∆#)(u) evaluates to 1 for some abstract array el-

ement u ∈ P#
A , then the property holds for each of the

concrete elements of A that are represented by u. Simi-
larly, the value 0 means that the property does not hold
for each of the concrete elements of A that are repre-
sented by u. The value 1/2 implies that the property
holds for some concrete elements that are represented
by u and does not hold for the rest of the elements that
are represented by u.

Example 4 Assume the same situation as in Ex. 3.
We introduce a predicate δB that evaluates to 1 for array
elements that are in ascending order, and to 0 for the
elements that are not:

δB(S)(u) =∀t ∈ B

IndexS [B](t) < IndexS [B](u)⇒

V alueS[B](t) ≤ V alueS[B](u)

In the concrete state shown in Ex. 1, δB evaluates to
1 for the elements b0, b1, b2, b3, and b8; and to 0 for
the remaining elements. The values associated with the
abstract array elements are constructed as follows:
δ#
B (b(−1,−1)) =

⊔3
i=0 δB(bi) = 1 t 1 t 1 t 1 = 1

δ#
B (b(0,−1)) = δB(b4) = 0

δ#
B (b(1,−1)) = δB(b5) t δB(b6) = 0 t 0 = 0

δ#
B (b(1,0)) = δB(b7) = 0

δ#
B (b(1,1)) = δB(b8) t δB(b9) = 1 t 0 = 1/2

Given two abstract valuations of auxiliary predicates
∆#

1 and ∆#
2 , which are associated with the same array

partition P#, we say that ∆#
1 v ∆#

2 iff

∀δA ∈ ∆ ∀u ∈ P#(A)
[

δ#
A (∆#

1 )(u) v δ#
A (∆#

2 )(u)
]

.

The join operation for the abstract valuations of aux-
iliary predicates is defined as follows: we say that
∆#

1 t ∆#
2 = ∆#, where for all δA ∈ ∆ and for all

u ∈ P#(A)

δ#
A (∆#)(u) = δ#

A (∆#
1 )(u) t δ#

A (∆#
2 )(u).

For more information see, for instance, [14].
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4.4 Abstract states

In Ex. 2, 3, and 4, we showed how to construct an ab-
stract partition that represents a given concrete state.
We define the abstraction function β that maps a sin-
gle concrete state to the corresponding abstract state
as follows: we say that β maps a concrete state S ∈ Σ
to a singleton set containing the abstract partition that
represents state S.

Let S#
1 and S#

2 denote two abstract partitions. We
define a partial-order relation for the abstract partitions
as follows:

S#
1 v S#

2 ⇐⇒ P#
1 = P#

2 ∧ Ω#
1 v Ω#

2 ∧∆#
1 v ∆#

2

The join operation is only defined for the abstract par-
titions that partition arrays similarly, i.e., P #

1 = P#
2 =

P#. The resulting abstract partition is defined by

S# = S#
1 t S#

2 =
〈

P#, Ω#
1 t Ω#

2 , ∆#
1 t∆#

2

〉

Given the join operation, shown above, we define
the abstraction function for the set of concrete states
as follows: let D ⊆ Σ denote the set of concrete states

α(D) =
⊔

S∈D

β(S).

Next, let us define partial-order relation and join op-
eration for the abstract states. Let D#

1 , D#
2 ⊆ Σ# de-

note two abstract states. The partial-order relation is
defined by:

D#
1 v D#

2 ⇐⇒ ∀S#
1 ∈ D#

1 ∃S
#
2 ∈ D#

2

[

S#
1 v S#

2

]

To join two abstract states we union together the sets of
abstract partitions. The abstract state cannot contain
multiple abstract partitions with the same P #’s. Thus,
the abstract partitions with matching P #’s are joined
together.

Given the partial-order for the abstract states, we
define the concretization function as follows: let D# ⊆
Σ# denote an abstract state

γ(D#) =
{

S : ∃S# ∈ D# s.t. β(S) v S#
}

.

5 Running example revisited

In this section, we flesh out the schematic illustration
of the analysis that was given in Sect. 2. The analysis
is applied to the code shown in Fig. 1. We depict the
abstract partitions that arise in the course of the anal-
ysis as follows. At the top the partition of the array is
shown graphically: solid boxes represent non-summary

ai

bi

ai a>i

bi b>i

n = 1, i = 0,
ai.index = 0

−5 ≤ ai.value ≤ 5
bi.index = 0

n ≥ 2, i = 0,
ai.index = bi.index = 0
1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5

1 ≤ b>i.index ≤ n− 1

δ#

b
= [bi 7→ 1/2] δ#

b
= [bi 7→ 1/2, b>i 7→ 1/2]

S#
0,1 S#

0,2

Figure 5: The abstract state before the loop.

abstract array elements; dashed boxes represent sum-
mary abstract array elements. Below, the numeric state
is shown as a set of constraints. At the bottom, we show
the values of the auxiliary predicates for each abstract
array element.

Consider the program in Fig. 1. The set of scalar
variables and the set of arrays are defined as follows:
Scalar = {i, n} and Array = {a, b}. We define the
following set of partitioning predicates: Π = {πa,i, πb,i}.
The property that for any index k, the value of b[k]
is equal to the value of a[k] are equal, is beyond the
capabilities of summarizing numeric domains alone. We
introduce an auxiliary predicate δb, which is defined by

δb(S)(u) = ∃t ∈ a
[

IndexS [b](u) = IndexS [a](t) ∧

V alueS[b](u) = V alueS[a](t)
]

to capture this property.
Fig. 5 shows the abstract state before entering the

loop. The value of variable i is zero. The abstract
state contains two abstract partitions: S#

0,1 and S#
0,2.

Abstract partition S#
0,1 represents the degenerate case

when each array contains only one element. This parti-
tion contains only one abstract array element for each
array, namely ai and bi. The indices of both ai and bi

are equal to zero, and the value of ai ranges from −5 to
5.

Abstract partition S#
0,2 represents the concrete states

in which both arrays are of length greater than or equal
to two. In these situations, each array is partitioned
into two abstract elements: ai and bi represent the first
elements of the corresponding arrays, while a>i and b>i

represent the remaining elements. The numeric state
associated with this partition indicates that the indices
of the concrete array elements represented by ai and
bi are equal to zero, the indices of the concrete array
elements represented by a>i and b>i range from 1 to
n − 1, and the values of all concrete elements of array
a range from −5 to 5.
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ai

bi

ai a>i

bi b>i

ai

b<i

a<i

bi

ai a>i

b>ibib<i

a<i

1-st
iteration

i = 0, n = 1,
ai.index = 0

−5 ≤ ai.value ≤ 5
bi.index = 0

i = 0, n ≥ 2,
ai.index = bi.index = 0
1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5

1 ≤ b>i.index ≤ n− 1

δ#

b = [bi 7→ 1/2] δ#

b = [bi 7→ 1/2, b>i 7→ 1/2]

S#
1,1 S#

1,2

2-nd
iteration

same as above same as above

i = 1, n = 2,
ai.index = bi.index = 1

a<i.index = 0
−5 ≤ ai.value ≤ 5
−5 ≤ a<i.value ≤ 5

b<i.index = 0
b<i.value = a<i.value

i = 1, n ≥ 3,
ai.index = bi.index = 1
2 ≤ a>i.index ≤ n− 1

a<i.index = 0
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5

2 ≤ b>i.index ≤ n− 1
b<i.value = a<i.value

δ#

b
= [b<i 7→ 1, bi 7→ 1/2] δ#

b
= [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S#
2,3 S#

2,4

3-rd
iteration

same as above same as above

i = 2, n = 3
ai.index = bi.index = 2

0 ≤ a<i.index ≤ 1
−5 ≤ ai.value ≤ 5
−5 ≤ a<i.value ≤ 5
0 ≤ b<i.index ≤ 1
−5 ≤ b<i.value ≤ 5

i = 2, n ≥ 4
ai.index = bi.index = 2

0 ≤ a<i.index ≤ 1
3 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5
0 ≤ b<i.index ≤ 1

3 ≤ b>i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

δ#

b
= [b<i 7→ 1, bi 7→ 1/2] δ#

b
= [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S#
3,3 S#

3,4

after
joining

N/A N/A

1 ≤ i ≤ 2
n = i + 1

ai.index = i
0 ≤ a<i.index ≤ i− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a<i.value ≤ 5

bi.index = i
0 ≤ b<i.index ≤ i− 1
−5 ≤ b<i.value ≤ 5

1 ≤ i ≤ 2
i = ai.index = bi.index
0 ≤ a<i.index ≤ i− 1

i + 1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ i− 1
i + 1 ≤ b>i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

δ#

b = [b<i 7→ 1, bi 7→ 1/2] δ#

b = [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S#
J,3 S#

J,4

after
widening

N/A N/A

1 ≤ i
n = i + 1

ai.index = i
0 ≤ a<i.index ≤ i− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a<i.value ≤ 5

bi.index = i
0 ≤ b<i.index ≤ i− 1
−5 ≤ b<i.value ≤ 5

1 ≤ i
i = ai.index = bi.index
0 ≤ a<i.index ≤ i− 1

i + 1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ i− 1
i + 1 ≤ b>i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

δ#

b
= [b<i 7→ 1, bi 7→ 1/2] δ#

b
= [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S#
W,3 S#

W,4

Figure 6: Abstract states at the begining of each iteration of the loop in Fig. 1.
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after 1-st iteration after 2-nd iteration after 3-rd iteration final state

b<i

a<i

n = 1, i = n,
a<i.index = 0

−5 ≤ a<i.value ≤ 5
b<i.index = 0

b<i.value = a<i.value

n = 2, i = n,
0 ≤ a<i.index ≤ n− 1
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

n ≥ 2, i = n
0 ≤ a<i.index ≤ n− 1
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

n ≥ 1, i = n
0 ≤ a<i.index ≤ n− 1
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

δ#

b
= [b<i 7→ 1] δ#

b
= [b<i 7→ 1] δ#

b
= [b<i 7→ 1] δ#

b
= [b<i 7→ 1]

S#
1,5 S#

2,5 S#
3,5 S#

E,5

Figure 7: The abstract partitions that reach the program point just after the end of the loop for the first, second,
and third iterations. The last column shows the combined abstract state at the end of the loop.

The auxiliary predicate δ#
b evaluates to 1/2 for all

abstract array elements in the abstract partitions S#
0,1

and S#
0,2. This means that, in the concrete states rep-

resented by S#
0,1 and S#

0,2, the values of the concrete
elements of array b may either be equal to the values of
the corresponding elements of array a or not.

Fig. 6 shows the abstract states that the analysis en-
counters at the beginning of each iteration. The top row
shows four of the abstract partitions that arise during
the analysis. The remaining rows show numeric states
associated with these partitions on the first, second, and
third iteration of the analysis. After widening is per-
formed on the third iteration, a fixed point is reached
and the analysis terminates. Fig. 7 shows the abstract
partitions that reach the exit of the loop after each it-
eration.

The analysis proceeds as follows. Both S#
0,1 and S#

0,2

satisfy the loop condition and are propagated into the
body of the loop. The abstract state at the begin-
ning of the first iteration contains abstract partitions
S#

1,1 and S#
1,2, which are equal to S#

0,1 and S#
0,2, re-

spectively. After the assignment “b[i] ← a[i]”, two
changes happen to both abstract partitions: (i) the con-
straint ai.value = bi.value is added to their numeric
states, and (ii) the value of auxiliary predicate δ#

b (bi)
changes to 1.

As variable i is incremented, partition S#
1,1 is trans-

formed into partition S1,5. The loop condition does not

hold in S#
1,5, and this partition is propagated to the

program point after the exit of the loop. Partition S1,2,
after the i gets incremented, gives rise to two new par-
titions: S#

2,3 and S#
2,4. These partitions, along with the

partitions S#
1,1 and S#

1,2, form the abstract state at the
beginning of the second iteration.

At the end of the second iteration, the abstract parti-
tion S#

2,3 is transformed into the abstract partition S#
2,5,

which is propagated to the program point after the exit
of the loop. The abstract partition S#

2,4 is transformed

into two abstract partitions: S#
3,3 and S#

3,4. Because the

abstract state accumulated at the head of the loop al-
ready contains similar abstract partitions, the numeric
states and the values of the auxiliary predicate δ#

b for
these partitions are joined. In particular, the abstract
partition S#

2,3 is joined with the abstract partition S#
3,3

to produce partition S#
J,3. Similarly, the abstract par-

tition S#
2,4 is joined with the abstract partition S#

3,4,

resulting in S#
J,4. Furthermore, a widening operation

is applied: the abstract partition S#
J,3 is widened with

respect to the abstract partition S#
2,3, producing S#

W,3;

and the abstract partition S#
J,4 is widened with respect

to the abstract partition S#
2,4, resulting in S#

W,4.
At the end of the third iteration, the abstract par-

tition S#
3,5, resulting from S#

W,3, is propagated to the
program point just after the exit of the loop. The ab-
stract partition S#

W,4 is transformed into two partitions,
which are propagated into the body of the loop. These
partitions are equal to S#

W,3 and S#
W,4, which the anal-

ysis has encountered before. Thus, the analysis reaches
a fixed point after the third iteration.

All of the abstract partitions that reach the exit of
the loop are joined together to produce the abstract
state at the exit of the loop. The abstract state con-
tains a single abstract partition: S#

E,5. It is easy to see
that this abstract partition represents only the concrete
states in which (i) the values stored in the array b range
from −5 to 5 (follows from the numeric state); and (ii)
the value of each element of array b is equal to the value
of the element of array a with the same index (because
predicate δb evaluates to 1 for each element of b).

6 Abstract Semantics

To make the abstraction domains described in previous
sections usable, we have to define the abstract coun-
terparts for the concrete state transformers shown in
Fig. 4.

In [4], it is shown that for a Galois connection defined
by abstraction function α and concretization function γ,
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the best abstract transformer for a concrete transformer
τ , denoted by τ ], can be expressed as: τ ] = α ◦ τ ◦ γ.
This defines the limit of precision obtainable using a
given abstract domain; however, it is a non-constructive
definition: it does not provide an algorithm for finding
or applying τ ].

We implemented a prototype of our analysis using
the TVLA tool [8], and defined overapproximations for
the best abstract state transformers by using TVLA
mechanisms. Space considerations preclude us from giv-
ing a full account of the modifications that needed to be
applied to TVLA, and the exact definitions of the pred-
icates needed to support array operations. In the rest
of this section, we give a brief overview of TVLA, and
sketch the techniques for modeling arrays and defining
abstract transformers.

6.1 An extension of TVLA

TVLA models concrete states by first-order logical
structures. The elements of a structure’s universe rep-
resent the concrete objects. Predicates encode relation-
ships among the concrete objects. The abstract states
are represented by three-valued logical structures, which
are constructed by applying canonical abstraction to the
sets of concrete states. The abstraction is performed by
identifying a set of abstraction predicates and repre-
senting the concrete objects for which these abstraction
predicates evaluate to the same values by a single ele-
ment in the universe of a three-valued structure. In the
rest of the paper, we refer to these abstract elements as
nodes. A node that represents a single concrete object
is called non-summary node, and a node that represent
multiple concrete objects is called summary node.

TVLA distinguishes between two types of predi-
cates: core predicates and instrumentation predicates.
Core predicates are the predicates that are necessary to
model the concrete states. Instrumentation predicates,
which are defined in terms of core predicates, are in-
troduced to capture properties that would otherwise be
lost due to abstraction.

An abstract state transformer is defined in TVLA as
a sequence of (optional) steps:

• A focus step replaces a three-valued structure by a
set of more precise three-valued structures that rep-
resent the same set of concrete states as the original
structure. Usually, focus is used to “materialize”
a non-summary node from a summary node. The
structures resulting from a focus are not necessar-
ily images of canonical abstraction, in the sense
that they may have multiple nodes for which the
abstraction predicates evaluate to the same values.

• A precondition step filters out the structures for
which a specified property does not hold from the

set of structures produced by focus. Generally,
preconditions are used to model conditional state-
ments.

• An update step transforms the structures that sat-
isfy the precondition, to reflect the effect of an as-
signment statement. This is done by changing the
interpretation of core and instrumentation predi-
cates in each structure.

• A coerce step is a cleanup operation that “sharp-
ens” updated three-valued structures by making
them comply with a set of globally defined integrity
constraints.

• A blur step restores the “canonicity” of coerced
three-valued structures by applying canonical ab-
straction to them, i.e., merging together the nodes
for which the abstraction predicates evaluate to the
same values.

We extended TVLA with the capability to reason
about numeric quantities. In particular, we added the
facilities to associate a set of numeric quantities with
each concrete object, and equipped each three-valued
logical structure with an element of a summarizing nu-
meric domain to represent the values of these quantities
in abstract states. Each node in a three-valued struc-
ture is associated with a dimension of a summarizing
numeric domain. TVLA specification language was ex-
tended to permit using numeric comparisons in logical
formulae, and to specify numeric updates.

The extended abstract states are transformed as fol-
lows. Numeric comparison and numeric updates are
performed directly on the numeric domain element as-
sociated with the structure by using the corresponding
numeric domain operations. Node merging and node
duplicating which are essential for the implementation
of focus and blur operations are implemented by expand
and fold operations of summarizing numeric domain.
The coerce operation is extended to handle numeric in-
tegrity constraints.

6.2 Modeling arrays

We encode concrete states of a program as follows. Each
scalar variable and each array element corresponds to an
element in the universe of the first-order logical struc-
ture. We define a core unary predicate for each scalar
variable and for each array. These predicates evaluate
to 1 on the elements of the first-order structure that
represent the corresponding scalar variable or the ele-
ment of corresponding array, and to 0 for the rest of
the elements. Each element in the universe is associ-
ated with a numeric quantity that represents its value.
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Each array element is associated with an extra numeric
quantity that represents its index position in the array.

To model the array structure in TVLA correctly, ex-
tra predicates are required. We model the adjacency
relation among array elements by introducing a binary
instrumentation predicate for each array. This predi-
cate evaluates to 1 when evaluated on two adjacent el-
ements of an array. To model the property that indices
of array elements are contiguous and do not repeat, we
introduce a unary instrumentation predicate for each
array that encodes transitive closure of the adjacency
relation.

Partitioning functions are defined by unary instru-
mentation predicates. Since a partitioning function
may evaluate to three different values, whereas a pred-
icate can only evaluate to 0 or 1, we use two predi-
cates to encode each partitioning function. Auxiliary
predicates directly correspond to unary instrumentation
predicates.

To perform the abstraction, we select a set of ab-
straction predicates that contains the predicates cor-
responding to scalar variables and arrays, the predi-
cates that encode the transitive closure of adjacency
relations for each array, and the predicates that imple-
ment the partitioning functions. The auxiliary predi-
cates are non-abstraction predicates. Resulting three-
valued structures directly correspond to the abstract
partitions we defined in Sect. 4.

The transformers for the statements that do not re-
quire array repartitioning, e.g., conditional statements,
and assignments to array elements and to scalar vari-
ables that are not used to index array elements, are
modeled trivially. The transformers for the statements
that cause a change in array partitioning, e.g., updates
of scalar variables that are used to index array elements,
are defined as follows: focus is applied to the structure
to materialize the array element that will be indexed
by the variable after the update; then, the value of the
scalar variable, and the interpretation of the partition-
ing predicates are updated; finally, blur is used to merge
the array element, which was indexed by the variable
previously, into the appropriate summary node.

To update the interpretation of auxiliary predicates,
the programmer must supply incremental predicate-
maintenance formulas for each statement that may
change the values of those predicates. Also, to re-
flect the numeric properties, encoded by the auxiliary
predicates, in the numeric state as the grouping of the
concrete array elements changes, a set of integrity con-
straints implied by the auxiliary predicates must be sup-
plied.

Aside from the integrity constraints and predicate-
maintenance formulas for the auxiliary predicates, the
conversion of an arbitrary program into TVLA specifi-

int a[n], i, n;

i ← 0;

while(i < n) {
a[i] ← 2 × i + 3;

i ← i + 1;

}

Figure 8: Array-initialization loop.

cation language can be performed fully automatically.
In the future, we plan to extend the technique for dif-
ferencing logical formulas, described in [12], with the
capability to handle numeric formulas. Such an exten-
sion will allow us to automatically compute safe ab-
stract transformers for the auxiliary predicates. An-
other technique that may help to fully automate the
analysis involves the use of decision procedures to sym-
bolically compute best abstract transformers [13, 16].

7 Experiments

In this section, we describe the application of the anal-
ysis prototype to a handful of kernel examples. We
used a simple heuristic to obtain the set of partitioning
functions for each array in the analyzed examples. In
particular, for each occurrence a[i] in the program we
added a partitioning function πa,i to the set Π. This ap-
proach worked well for all of the examples, except for an
insertion-sort implementation, which required the addi-
tion of an extra partitioning function.

7.1 Array initialization

Fig. 8 shows a piece of code that initializes array a of
size n. Each array element is assigned a value equal
to twice its index position in the array plus 3. The
analysis established that after the code is executed the
values stored in array a range from 3 to 2× n + 3.

The array-partitioning heuristic produces a single
partitioning function πa,i for this example. No auxil-
iary predicates are required. Thus, the analysis is able
to handle this example fully automatically.

7.2 Partial array initialization

Fig. 9 contains a more complex array initialization ex-
ample. In this example, the indices for which elements
of arrays a and b are equal to each other are written
into the initial segment of array c. The number of el-
ements of array c that are initialized depends on the
values stored in arrays a and b. It may be that (i) none
of the elements are initialized; (ii) several consecutive
elements in the beginning of the array are initialized;
(iii) all of the elements are initialized. We would like to
establish an invariant that after the code executes, the
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int a[n], b[n], c[n], i, j, n;

i ← 0;

j ← 0;

while(i < n) {
if(a[i] == b[i]) {

c[j] ← i;

j ← j + 1;

}
i ← i + 1;

}

Figure 9: Partial array initialization.

values stored in elements of array c whose indices are
less than the value of j range from 0 to the value of n.
The goal of this example is to illustrate how the anal-
ysis handles multiple loops and partial initialization of
an array.

The array partitioning heuristic derives a set of three
partitioning functions for this example, one for each ar-
ray: Π = {πa,i, πb,i, πc,j} . Again, no auxiliary predi-
cates are necessary.

The abstract state that reaches the exit of the loop
contains four abstract partitions. The first abstract par-
tition represents the concrete states in which none of
array c elements have been initialized. The value of j,
in this abstract partition, is equal to zero, and the array
partition of array c does not contain the abstract array
element c<j .

The second and third abstract partitions represent
the concrete states in which only the initial segment of c
was initialized. The reason that two different partitions
are required to describe this case is that the analysis
distinguishes the case of j indexing an element in the
middle of the array from the case of j indexing the
last element of the array. The array c is represented
by abstract elements c<j , cj , and c>j in the second
abstract partition, and by abstract elements c<j and cj

in the third abstract partition.
The last abstract partition represents the concrete

states in which all elements of array c were initialized.
In this partition the value of j is equal to the value of
n, and all elements of array c are represented by the ab-
stract array element c<j . The numeric states associated
with the second, third, and fourth partitions establish
that the values of concrete array elements represented
by c<j range from 0 to the value of n.

7.3 Insertion sort

Fig. 10 shows the procedure that implements the inser-
tion sort of an array. Parameter n specifies the size of
array a. The invariant for the outer loop is that array a

is sorted up to the i-th element. The inner loop inserts
the i-th element into the sorted portion of the array.

void sort(int a[], int n) {
int i, j, k, t;

i ← 1;

while(i < n) {
j ← i;

while(j > 0) {
k ← j - 1;

if(a[j] ≥ a[k]) break;

t ← a[j];

a[j] ← a[k];

a[k] ← t;

j ← j - 1;

}
i ← i + 1;

}
}

Figure 10: Insertion-sort procedure.

An interesting detail about this implementation is that
elements are inserted into the sorted portion of the ar-
ray in reverse order. To verify this implementation, the
analysis needs to establish that the inner loop preserves
the invariant of the outer loop.

A subtle issue arises in this example. We would like
to use variable i to partition the array: this would sep-
arate the sorted segment of the array from the unsorted
segment. But, since i is never explicitly used to index
array elements, our array partitioning heuristic fails to
add πa,i to the set of partitioning functions. To success-
fully analyze this example, we had to manually inject
πa,i into Π, resulting in Π = {πa,i, πa,j} .

Summarizing numeric domains are not able to cap-
ture “sortedness” of summarized array elements. An
auxiliary predicate, defined similarly to the predicate δB

in Ex. 4, is necessary for the analysis to succeed. Our
prototype implementation requires user interaction to
specify the explicit update formulas for the predicate
for each of the program statements. For virtually all
statements, supplying the update formula is trivial, be-
cause these statements do not affect the value of the
predicate. The only non-trivial case is the assignment
to an array element. But, even in this case, it required
only an insignificant effort to supply the correct update
formula.

7.4 Results

Fig. 11 shows the time it took the analysis prototype to
analyze the examples presented in this section. We ran
the analysis on an Intel-based Linux machine equipped
with a Pentium 4, 2.4Ghz processor and 512Mb of mem-
ory.

The analysis times are severely affected by our choice
of implementing the analysis prototype in TVLA. Be-
cause TVLA is a general framework, the structure of
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Example Time (in seconds)
Array initialization 1.6
Partial initialization 135.8
Array copy 370.1
Insertion sort 49.7

Figure 11: Results of the analysis.

an array has to be modeled explicitly by introducing
a number of predicates and integrity constraints. The
majority of the analysis time is spent on ensuring that
the array structure is preserved. Building a dedicated
analysis implementation, in which the abstract state
transformers are array-aware, would greatly improve
the analysis time.

Another factor that slows down the analysis is our
use of the polyhedral numeric domain. While offering a
superior precision, the polyhedral numeric domain does
not scale well as the number of dimensions grow. This
property is particularly apparent when a polyhedron
that represents the abstract state is a multidimensional
hypercube. In the array copy example, the constraints
on the values of elements of both arrays form a 10-
dimensional hypercube, which provides an explanation
of why the analysis takes over 6 minutes. If the con-
straints on the values of array a are excluded from the
initial abstract state, the analysis takes merely 8 sec-
onds.

Observation of the numeric constraints that arise
in the course of the analysis led us to believe that
using less precise, but more efficient weakly-relational
domains[10], may speed up the analysis of the above
examples without sacrificing precision. We reran the
analysis of the array copy example, using a summarizing
extension of a weakly-relational domain. The analysis
was able to verify the desired properties in 40 seconds,
which is a significant improvement over the time it takes
to perform the analysis with a polyhedral domain.

8 Related Work

The problem of reasoning about values stored in arrays
has been addressed in previous research. Here we re-
view some of the related approaches that we are aware
of. Masdupuy, in his dissertation [9], shows how his nu-
meric domains can be used to represent values stored in
a statically initialized array, and how that information
can be retrieved during analysis. In contrast, our ap-
proach allows arrays to be partitioned dynamically into
disjoint segments, and values stored in each segment
are represented separately. Such dynamic array par-
titioning, along with the simple partitioning schemes
illustrated in this paper, allows our approach to handle

certain cases of dynamic array initialization.
A team of French researchers, while building a

special-purpose static program analyzer [2], recognized
the need for handling values of array elements. They
proposed two practical approaches: (i) array expansion,
i.e., introducing an abstract element for each index in
the array; and (ii) array smashing, i.e., using a single
abstract element to represent all array elements. Array
expansion is precise, but in practice can only be used
for arrays of small size, and is not able to handle un-
bounded arrays. Array smashing allows handling arbi-
trary arrays efficiently, but suffers precision losses due
to the need to perform weak updates. Our approach
combines the benefits of both array expansion and ar-
ray smashing by expanding only the elements that are
read or written to so as to avoid weak updates, and
smashing together the remaining elements.

Flanagan and Qadeer used predicate abstraction to
infer universally-quantified loop invariants [5]. To han-
dle unbounded arrays, they used predicates over Skolem
constants, which are synthetically introduced variables
with unconstrained values. These variables are then
quantified out from the inferred invariants. Our ap-
proach is different in that we model the values of all
array elements directly and use summarization to han-
dle unbounded arrays. Also, our approach uses abstract
numeric domains to maintain the numeric state of the
program, which obviates the need for calls to a theorem
prover.

Černý, in unpublished work [15], uses parametric
predicate abstraction to define problem-specific abstract
domains, which he uses to verify array kills and cor-
rectness of comparison-based sorting algorithms. His
technique augments standard numeric domains by in-
troducing extra numeric quantities that do not corre-
spond to any variables in the program and that de-
scribe segments of an array for which certain properties
of interest hold. Abstract transformers are then defined
for the augmented numeric domain. In contrast, our
approach directly separates array segments for which
properties of interest hold from the remaining elements,
and uses numeric domains to track numeric properties
for each group of elements. For instance, in the case of
an array initialization, our approach not only detects
an array kill, but also automatically discovers the con-
straints on the initialized values.

Canonical abstraction [14, 8] was first introduced for
the purpose of determining “shape invariants” for pro-
grams that perform destructive updating on dynami-
cally allocated storage. However, it lacked the ability
to represent numeric quantities. Also, [6] introduced
a method for extending existing numeric domains with
the capability of reasoning about unbounded collections
of numeric quantities. However, static partitioning of
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numeric quantities was assumed. Our work combines
these techniques and shows how their combination can
be used for verifying properties of array operations.

9 Conclusions

Canonical abstraction is a powerful technique that al-
lows static analysis to represent a (potentially un-
bounded) set of concrete objects with a bounded num-
ber of abstract objects. The partitioning imposed on
the set of the concrete objects is dynamic in a sense that
the same abstract object may represent different groups
of the concrete objects within the same abstract state.
The net result is an ability to avoid performing weak
updates, which greatly improves the precision of the
analysis. In this paper, we explore the possibilities for
combining canonical abstraction with existing numeric
analyses and applications of the combined analysis to
the problem of analyzing array operations.

The analysis we define in this paper is capable of
automatically establishing interesting array properties;
in particular, we show how it is able to capture numeric
constraints on the values of array elements after an
array-initialization loop. More sophisticated properties,
such as verifying the implementation of comparison-
based sorting algorithms, require some human inter-
vention to define necessary auxiliary predicates along
with their abstract transformers. The auxiliary pred-
icates that are introduced are problem-specific, rather
then program-specific, which allows them to be reused
for the analysis of other programs.

The prototype implementation of the analysis, al-
though not very efficient, can be used to analyze inter-
esting array operations in reasonable times.
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