
A Relational Approach to Interprocedural Shape Analysis

Bertrand Jeannet
�
, Alexey Loginov

�
, Thomas Reps

�
, and Mooly Sagiv

�
�

IRISA; Bertrand.Jeannet@irisa.fr�
Comp. Sci. Dept., Univ. of Wisconsin;

�
alexey,reps � @cs.wisc.edu�

School of Comp. Sci., Tel-Aviv Univ.; msagiv@post.tau.ac.il

Abstract. This paper addresses the verification of properties of imperative programs with
recursive procedure calls, heap-allocated storage, and destructive updating of pointer-valued
fields—i.e., interprocedural shape analysis. It presents a way to apply some previously
known approaches to interprocedural dataflow analysis—which in past work have been ap-
plied only to a much less rich setting—so that they can be applied to programs that use
heap-allocated storage and perform destructive updating.

1 Introduction

This paper concerns techniques for static analysis of recursive programs that manipulate
heap-allocated storage and perform destructive updating of pointer-valued fields. The
goal is to recover shape descriptors that provide information about the characteristics
of the data structures that a program’s pointer variables can point to. Such information
can be used to help programmers understand certain aspects of the program’s behavior,
to verify properties of the program, and to optimize or parallelize the program.

The work reported in the paper builds on past work by several of the authors on static
analysis based on � -valued logic [20, 12, 16]. In this setting, two related logics come
into play: an ordinary 	 -valued logic, as well as a related � -valued logic. A memory
configuration, or store, is modeled by what logicians call a logical structure, which
consists of a predicate (i.e., a relation of appropriate arity) for each predicate symbol
of a vocabulary
 . A store is modeled by a 	 -valued logical structure; a set of stores is
abstracted by a (finite) set of bounded-size � -valued logical structures. An individual of
a � -valued structure’s universe either models a single memory cell or, in the case of a
summary individual, a collection of memory cells.

The constraint of working with limited-size descriptors entails a loss of information
about the store. Certain properties of concrete individuals are lost due to abstraction,
which groups together multiple individuals into summary individuals: a property can
be true for some concrete individuals of the group but false for other individuals. It
is for this reason that � -valued logic is used; uncertainty about a property’s value is
captured by means of the third truth value, ���	 .

One of the opportunities for scaling up this approach is to exploit the compositional
structure of programs. In interprocedural dataflow analysis, one avenue for accomplish-
ing this is to create a summary transformer for each procedure � , and use the summary
transformer at each call site at which � is called. Each summary transformer must
capture (an over-approximation of) the net effect of a call on � . To be able to create
summary transformers, the abstract transformers for individual transitions must have
a “composable representation”; that is, given the representations of two abstract trans-
formers, it must be possible to represent their composition as an object of roughly the
same size. One then carries out a fixed-point-finding procedure on a collection of equa-
tions in which each variable in the equation set has a transformer-valued value—i.e., a
value drawn from the domain of transformers—rather than a dataflow value proper.

A number of approaches to interprocedural dataflow analysis based on summary
transformers are known [4, 21, 11, 15, 19, 17]. However, not all program-analysis prob-
lems have abstract transformers that have a composable representation.

For some problems, it is possible to address this issue by working pointwise, tabulat-
ing composed transformers as sets of pairs of input/output values [15, 19, 2]. However,
for interprocedural shape analysis, this approach fails to produce useful information.
The � -valued-logic approach to shape analysis is a storeless one: individuals, which
model memory cells, do not have fixed identities; they are identified only up to their
“distinguishing characteristics”, namely, their values for a specific set of unary predi-
cates. Because these “distinguishing characteristics” can change during the course of
a procedure call, there is no way to identify individuals in an input abstract structure
with their corresponding individuals in the output abstract structure. In essence, a pair
of input/output � -valued structures loses track of the correlations between the input and
output values of an individual’s unary predicates. Consequently, an approach based on
tabulating composed transformers as sets of pairs of � -valued structures is not promis-
ing: the representation provides only a weak characterization of a procedure’s net effect.

All is not lost, however: instead of “abstracting and then pairing” (as discussed
above), the solution is to “pair and then abstract”.

Observation 1. By using � -valued structures over a doubled vocabulary
��
�� , where

������
	����	��
�� and � denotes disjoint union, one obtains a finite abstraction that
relates the predicate values for an individual at the beginning of a transition to the
predicate values for the individual at the end of the transition.

This abstraction provides a way to create much more accurate composable represen-
tations of transformers, and hence much more accurate summary transformers, for a
broad class of problems. Moreover, by extending the abstract domain of � -valued log-
ical structures [20] with some new operations, it is possible to perform abstract inter-
pretation of call and return statements without losing too much precision (see � 4). We
have used these ideas to create a context-sensitive shape-analysis algorithm for recur-
sive programs that manipulate heap-allocated storage and perform destructive updating.

Context-sensitive interprocedural shape analysis was also studied in [18]. A major
difference is that [18] augments the store to include the runtime stack as an explicit
data structure (an idea proposed in [10, 6]); the storage abstraction used in [18] is an
abstraction of the store augmented in this fashion. In contrast, in our work the stack is
not materialized as an explicit data structure; our approach is based on the creation of
summary transformers, in the style of [4, 21, 11].

The contributions of our work include the following:

– It provides a method to create a summary transformer for each procedure � , which
can be used at each call site at which � is called.

– Our analysis obtains more general information than that obtained in [18]:� In [18], the result of the analysis for the exit node ��� of a procedure � is (an
approximation of) the reachable memory configurations that can arise at the
end of � .� In this paper, the result for ��� is (an approximation of) the relation between the
input memory configurations at the start node ��� of � and the configurations
at ��� , restricted to the memory configurations that are reachable at ��� .

Because of the different nature of the information obtained, our analysis is able to
verify that reversing a list twice restores the original list, whereas the method of

2

[18] would only show that it yields a list with the same head and the same set of
memory cells (in some order).

– We have been able to apply our methods successfully to a richer set of programs. In
particular, [18] only studied how to perform interprocedural analysis for recursive
list-manipulation programs. The methods described in this paper were capable of
handling certain programs that manipulate binary trees. (While list-manipulation
programs can often be implemented in tail-recursive fashion—and hence can be
converted easily into loop programs—tree-manipulation programs are much less
easily converted to non-recursive form.)

The remainder of the paper is organized as follows: � 2 describes the features of
the language to which our analysis applies. � 3 reviews the abstract domain of � -valued
logical structures [20]. � 4 describes how abstractions of logical structures over a dou-
bled vocabulary are used to create summary transformers and perform interprocedural
analysis. � 5 discusses experimental results. � 6 discusses related work and conclusions.
App. A describes a more efficient implementation of one of the operations used in our
system. App. B presents an algorithm for the shape-analysis method described in � 4.1.

2 Programs and Memory Configurations

typedef struct node{
struct node *n;
int data;

} *List;

List res;
void main(List l){
res = rev(l);

}

List rev(List x){
List y, z;
z = x->n;
x->n = NULL;
if (z != NULL){

y = rev(z);
z->n = x;

}
else y = x;
return y;

}

Fig. 1. Recursive list-reversal program.

The analysis applies to pro-
grams written in a simple im-
perative programming language
in which (i) it is forbidden
to take the address of a lo-
cal variable, global variable, or
parameter; and (ii) parameters
are passed by value. These two
features prevent direct alias-
ing among variables; thus, only
heap-allocated structures can be
aliased. (Both JAVA and ML fol-
low these conventions.)

The running example used in the paper is the list-reversal program of Fig. 1.

2.1 Program Syntax

smain

srev

erev

call rev

return site call rev

return site

if(z==NULL)

emain

z
=
=
N
U
L
L

z!=NULL

y
=
x

z-
>n
=x

x->n=NULL

z=x->n

�c
a
l
l

r
e
s
=
r
e
v
(
l
)
�

�r
e
t

r
e
s
=
r
e
v
(
l
)
�

�call y=rev(z)
�

�ret
y=re

v(z)
�

Fig. 2. Interprocedural CFG of the list-
reversal program.

A program is defined by a set of proce-
dures ��� , ������� 	 . Each procedure has
a set of local variables, and has a num-
ber of formal input parameters and output
parameters that define its input/output be-
havior. To simplify our notation, we will
assume that each procedure has only one
input (resp. output) parameter and one lo-
cal variable; the generalization to multiple
parameters and local variables is straight-
forward. We also assume that an input pa-
rameter is not modified during the execu-
tion of the procedure. (This assumption is
made solely for convenience, and involves

3

no loss of generality because it is always
possible to copy input parameters to addi-
tional local variables.) Thus, a procedure
� � ��������� �	� ����
 �	��
�� � ��� ��� is defined by its input parameter ����� � , its output parameter
����
 � , its local variable �
�� � , and � � , its intraprocedural control flow graph (CFG).

A program is represented by a directed graph ��� ����� ��������� called an interproce-
dural CFG. ��� consists of a collection of intraprocedural CFGs � � ��� � �! � � !���#" , one
of which, � main, represents the program’s main procedure. Each CFG � � contains ex-
actly one start node � � and exactly one exit node � � . The other nodes of a CFG represent
individual statements and branches of a procedure in the usual way,4 except that a pro-
cedure call is represented by two nodes, a call node and a return-site node. For $ �%� � ,
proc �&$ � denotes the (index of the) procedure that contains $. In addition to the ordinary
intraprocedural edges that connect the nodes of the individual flowgraphs in �'� , each
procedure call, represented by call-node (and return-site node) , has two edges:

– A call-to-start edge from (to the start node of the called procedure.
– An exit-to-return-site edge from the exit node of the called procedure to) .

The functions call and ret record matching call and return-site nodes: call ��) � �*(and
ret �+(� �,) .
2.2 Representing Memory Configurations with Logical Structures

Predicate Intended Meaning-/.�0�1 �/2 1 �/3 Do 1 � and 1 � denote the same memory cell?.�0�1 3 Does pointer variable q point to memory cell 1 ?450�1 � 2 1 � 3 Does the n-field of 1 � point to 1 � ?6�7 -80�1 �/2 1 �/3 Is the data-field of 1 �:9 the data-field of 1 � ?
Table 1. Core predicates used for representing the stores
manipulated by programs that use type List. (We write
predicate names in italics and code in typewriter
font.)

As in the static-analysis
framework defined in
[20], concrete memory
configurations—or stores—
are modeled by logical
structures. A logical struc-
ture is associated with
a vocabulary of predicate
symbols (with given arities):

 � � eq � 	 � �! � ! � 	<; � is a
finite set of predicate symbols, where
�= denotes the set of predicate symbols of arity>

(and eq �
 �). A logical structure supplies a predicate for each of the vocabulary’s
predicate symbols. A concrete store is modeled by a 	 -valued logical structure for
a fixed vocabulary of core predicates, ? . Core predicates are part of the underlying
semantics of the language to be analyzed; they record atomic properties of stores.
For instance, Tab. 1 lists the predicates that would be used to represent the stores
manipulated by programs that use type List from Fig. 1, such as the store shown in
Fig. 3. 	 -valued logical structures represent memory configurations: the individuals
are the set of memory cells; a nullary predicate represents a Boolean variable of the
program; a unary predicate represents either a pointer variable or a Boolean-valued
field of a record; and a binary predicate represents a pointer field of a record.5

4 Alternatively, nodes can represent basic blocks.
5 To simplify matters, our examples do not involve modeling numeric-valued variables and

numeric-valued fields (such as data). It is possible to do this by introducing other predi-
cates, such as the binary predicate

6�7 - (which stands for “data less-than-or-equal-to”) listed
in Tab. 1;

6�7 - captures the relative order of two nodes’ data values. Alternatively, numeric-
valued entities can be handled by combining abstractions of logical structures with previously
known techniques for creating numeric abstractions [9].

4

NULL
x

y
5 2 39

Fig. 3. A possible store, consisting of a four-
node linked list pointed to by x and y.

The 	 -valued structure � , shown in
the left-hand side of Fig. 4, encodes
the store of Fig. 3. � ’s four individu-
als, � � , � � , � � , and ��� , represent the
four list cells.

The following graphical notation is used for depicting 	 -valued logical structures:

– An individual is represented by a circle with its name inside.

– A unary predicate 	 is represented by having a solid arrow from 	 to each individual
� for which 	 ��� � � � , and by the absence of a 	 -arrow to each individual � � for
which 	:��� � � � � . (If 	 is

�
for all individuals, the predicate name 	 is not shown.)

– A binary predicate � is represented by a solid arrow labeled � between each pair
of individuals � � and ��� for which ����� � � ��� � � � , and by the absence of a � -arrow
between pairs � �� and � �� for which ����� �� � � �� � � � .

Thus, in structure � , pointer variables x and y point to individual � � , whose n-field
points to individual � � ; pointer variables t and e do not point to any individual.

binary preds. unary preds.
n �
	 ��� �� ���
�
	 � � � �
��� � � � ��� � � � �� � � � � �

indiv. � � � �
�
	 � � � �
��� � � � ��� � � � �� � � � � �

eq �
	 ��� �� ���
�
	 � � � �
� � � � � ��� � � � ���� � � � �

x // GFED@ABC�
	�� // GFED@ABC����� // GFED@ABC���� // GFED@ABC���
� y

OO

abstracts
to�����������

binary preds. unary preds.
n � ���
� � �! !"
��� � �! !"

indiv. � � � �
� � � � �
��� � � � �

eq � ���
� � �
��� � �! !" x // ?>=<89:;� � // ONMLHIJKGFED@ABC� �

���

y

OO

Fig. 4. The abstraction of 	 -valued structure � to � -valued structure $ when we use
�&% �(' �*)/� � � -abstraction.

Often we only want to use a restricted class of logical structures to encode stores; to
exclude structures that do not represent admissible stores, integrity constraints can be
imposed. For instance, the predicate % ��+ � of Fig. 4 captures whether pointer variable x
points to memory cell + ; % would be given the attribute “unique”, which imposes the
integrity constraint that %:��+ � can hold for at most one individual in any structure.

The concrete operational semantics of a programming language is defined by spec-
ifying a structure transformer for each kind of edge � that can appear in a control-flow
graph. Formally, the structure transformer ,.- for edge � is defined using a collection of
predicate-update formulas, (���+ � �� � ! �� +�= � � ,
/(0 - ��+ � �� � ! � +�= � , one for each core predi-
cate ((e.g., see [20]). These formulas define how the core predicates of a logical struc-
ture � that arises at the source of � are transformed by � to create a logical structure
� � at the target of � ; typically, they define the value of predicate (in ��� as a function
of (’s value in � . Edge � may optionally have a precondition formula, which filters out
structures that should not follow the transition along � . (In Fig. 2, edges are labeled
with statements and conditions of the programming language, rather than with such
collections of predicate-update formulas.)

The set of all 	 -valued structures over vocabulary
 is denoted by 1 �32
54 .

5

3 The Abstract Domain of � -Valued Logical Structures
To create abstractions of 	 -valued logical structures (and hence of the stores that they
encode), we use the related class of � -valued logical structures over the same vocab-
ulary. In � -valued logical structures, a third truth value, denoted by � ��	 , is introduced
to denote uncertainty: in a � -valued logical structure, the value 	 ���� � of predicate 	 on
a tuple of individuals �� is allowed to be � � 	 . The set of all � -valued structures over
vocabulary
 is denoted by 1 � 2
54 .
Definition 1. The truth values

�
and � are definite values; � � 	 is an indefinite value.

For � � � � � ��� � � � ��	 � � � , the information order is defined as follows: � ��� � � iff � � ��� �
or � � � � � 	 . The symbol � denotes the least-upper-bound operation with respect to � .

The abstract stores used for program analysis are � -valued logical structures that, by
the construction discussed below, are a priori of bounded size. In general, each � -valued
logical structure corresponds to a (possibly infinite) set of 	 -valued logical structures.
Members of these two families of structures are related by canonical abstraction.

The principle behind canonical abstraction is illustrated in Fig. 4, which shows how
	 -valued structure � is abstracted to � -valued structure $. The abstraction function
is determined by a subset � of the unary predicates. The predicates in � are called
the abstraction predicates. Given � , the act of applying the corresponding abstrac-
tion function is called � -abstraction. The canonical abstraction illustrated in Fig. 4 is
�&% �(' �*)/� � � -abstraction.

Abstraction is driven by the values of the “vector” of abstraction predicates for
each individual 	 —i.e., for � , by the values % �
	 � , ' �
	 � ,) ��	 � and ����	 � , for 	 �
�&� � � � � � � � � ����� —and, in particular, by the equivalence classes formed from the indi-
viduals that have the same vector of values for their abstraction predicates. In � , there
are two such equivalence classes: (i) �
� � � , for which % , ' ,) , and � are � , � , � , and
�
, respectively, and (ii) �&� � � � � � ����� , for which % , ' ,) , and � are all

�
. (The boxes in

the table of unary predicates for � show how individuals of � are grouped into two
equivalence classes.) All of the members of each equivalence class are mapped to the
same individual of the � -valued structure. Thus, all members of �
� � � � � � � � � from � are
mapped to the same individual in $, called � � ;6 similarly, all members of �
� � � from �
are mapped to the same individual in $, called � .

For each non-abstraction predicate 	� of 	 -valued structure � , the corresponding
predicate 	�� in � -valued structure $ is formed by a “truth-blurring quotient”. The value
for a tuple ���� in 	�� is the join (�) of all 	 � tuples that the equivalence predicate on
individuals maps to �� � . For instance,

– In � , $ � ��� � � � � � equals
�
. Therefore, in $ the value of $�� ��� � � � is

�
.

– In � , $ � ��� � � � � � , $ � ��� � � � � � , and $ � ��� � � � � � all equal
�
. Therefore, in $ the value

of $� ��� � � � � is
�
.

– In � , $ � ��� � � � � � and $ � ��� � � � � � both equal
�
, whereas $ � ��� � � � � � equals � ; there-

fore, in $ the value of $�� ��� � � � � is � � 	 (� � � �).
– In � , $ � ��� � � � � � and $ � ��� � � � � � both equal � , whereas $ � ��� � � � � � , $ � ��� � � ��� � ,
$ � ��� � � � � � , $ � ��� � � � � � , $ � ����� � � � � , $ � ����� � � � � , and $ � ��� � � ��� � all equal

�
; there-

fore, in $ the value of $�� ��� � � � � � is � ��	 (� � � �).
6 The names of individuals are completely arbitrary: what distinguishes ��� is the value of its

vector of abstraction predicates.

6

In Fig. 4, the boxes in the tables for the $ predicate indicate these four groupings.
In a 	 -valued structure, the � � predicate represents the equality relation on indi-

viduals. In general, under canonical abstraction some individuals “lose their identity”
because of uncertainty that arises in the � � relation. For instance, �
� � ��� � � � � � be-
cause � in $ represents a single individual of � . On the other hand, � � represents three
individuals of � and the quotient operation causes � � � ��� � � � � � to have the value ���	 .
An individual like � � is called a summary individual.

A � -valued logical structure $ is used as an abstract descriptor of a set of 	 -valued
logical structures. In general, a summary individual models a set of individuals in each
of the 	 -valued logical structures that $ represents. The graphical notation for � -valued
logical structures (cf. structure $ of Fig. 4) is derived from the one for 	 -valued struc-
tures, with the following additions:

– Individuals are represented by circles containing their names. (In Fig. 5, discussed
in � 4.1, we also place non-

�
-valued unary predicates that do not correspond to

pointer-valued program variables inside the circles.)
– A summary individual is represented by a double circle.
– Unary and binary predicates with value � � 	 are represented by dotted arrows.

Thus, in every concrete structure �� that is represented by abstract structure $ of Fig. 4,
pointer variables x and y definitely point to the concrete node of ��� that � represents.
The n-field of that node may point to one of the concrete nodes that � � represents; � � is
a summary individual, i.e., it may represent more than one concrete node in � � . Possibly
there is an n-field in one or more of these concrete nodes that points to another of the
concrete nodes that � � represents, but there cannot be an n-field in any of these concrete
nodes that points to the concrete node that � represents.

Note that � -valued structure $ also represents

– the acyclic lists of length � ,
�
, � , etc. that are pointed to by x and y.

– the cyclic lists of length � or more that are pointed to by x and y, such that the
backpointer is not to the head of the list, but to the second, third, or later element.

– some additional memory configurations with a cyclic or acyclic list pointed to by x
and y that also contain some garbage cells that are not reachable from x and y.

Thus, $ is a finite abstract structure that captures an infinite set of (possibly cyclic)
concrete lists, which may also be accompanied by some unreachable cells. Later in this
section, we discuss options for fine-tuning an abstraction. For instance, it is possible to
use canonical abstraction to define abstractions in which the acyclic lists and the cyclic
lists are mapped to different � -valued structures (and in which the presence or absence
of unreachable cells is readily apparent).

Canonical abstraction ensures that each � -valued structure has an a priori bounded
size, which guarantees that a fixed-point will always be reached by an iterative static-
analysis algorithm. Another advantage of using 	 - and � -valued logic as the basis for
static analysis is that the language used for extracting information from the concrete
world and the abstract world is identical: every syntactic expression—i.e., every logical
formula—can be interpreted either in the 	 -valued world or the � -valued world. 7

7 Formulas are first-order formulas with transitive closure: a formula over the vocabulary ����
eq 2�� � 2	�
�	� 2���� � is defined by

�� �� Formulas1 Variables

����� ��������� � 0�1 � 2��	�	� 2 1�� 3
� 0���� � 3 � 0�� �! � � 3 � 0�� �!" � � 3 � 0�#�1$�%� � 3 � 0'&�1(��� � 3
� �*) 0�1 �/2 1 �/3

7

The consistency of the 	 -valued and � -valued viewpoints is ensured by a basic the-
orem that relates the two logics, which eliminates the need for the user to write the
usual proofs required with abstract interpretation—i.e., to demonstrate that the abstract
descriptors that the analyzer manipulates correctly model the actual heap-allocated data
structures that the program manipulates. Thanks to a single meta-theorem (the Em-
bedding Theorem [20, Theorem 4.9]), which shows that information extracted from a
� -valued structure $ by evaluating a formula � is sound with respect to the value of
� in each of the 	 -valued structures that $ represents, an abstract semantics falls out
automatically from a specification of the concrete semantics (which has to be provided
in any case whenever abstract interpretation is employed). In particular, the formulas
that define the concrete semantics when interpreted in 	 -valued logic define a sound
abstract semantics when interpreted in � -valued logic. Soundness of all instantiations
of the analysis framework is ensured by the Embedding Theorem.

Instrumentation predicates. Unfortunately, unless some care is taken in the design
of an analysis, there is a danger that as abstract interpretation proceeds, the indefinite
value � � 	 will become pervasive. This can destroy the ability to recover interesting
information from the � -valued structures collected (although soundness is maintained).
A key role in combating indefiniteness is played by instrumentation predicates, which
record auxiliary information in a logical structure. They provide a mechanism for the
user to fine-tune an abstraction: an instrumentation predicate, which is defined by a
logical formula over the core predicate symbols, captures a property that each tuple of
nodes may or may not possess. In general, adding additional instrumentation predicates
refines the abstraction, defining a more precise analysis that is prepared to track finer
distinctions among stores. This allows more properties of the program’s stores to be
identified during analysis.
� ���������
	���	�������
����� ���
��� 4���0�1 �2 1 �/3 Is 1 � reachable from 1 � along n-fields? 4) 0�1 �/2 1 �/3
� � 4 2 .��+0�1 3 Is 1 reachable from pointer variable q along n-fields? � 1 � � . 0�1 � 3�� ��� 4���0�1 � 2 1 3
 � 4��+0�1 3 Is 1 on a directed cycle of n-fields? � 1 � � 4 0�1 � 2 1 3�� �!� 4���0�1 2 1 � 3

Table 2. Defining formulas of some commonly used instrumentation predicates. Typi-
cally, there is a separate predicate) 2 $ � �
4 for every pointer-valued variable q.

The introduction of unary instrumentation predicates that are then used as abstrac-
tion predicates provides a way to control which concrete individuals are merged to-
gether into an abstract individual, and thereby control the amount of information lost
by abstraction. Instrumentation predicates that involve reachability properties, which
can be defined using transitive closure, often play a crucial role in the definitions of ab-
stractions. For instance, in program-analysis applications, reachability properties from
specific pointer variables have the effect of keeping disjoint sublists or subtrees sum-
marized separately. This is particularly important when analyzing a program in which
two pointers are advanced along disjoint sublists. Tab. 2 lists some instrumentation
predicates that are important for the analysis of programs that use type List. Each
instrumentation predicate 	 of arity

>
is defined by a formula " " ��+ � �! � � �� +�= � .

From the standpoint of the concrete semantics, instrumentation predicates represent
cached information that could always be recomputed by reevaluating the instrumenta-

�) 0�1 ��2 1 �/3 stands for the reflexive transitive closure of � 0�1 �/2 1 �/3 .

8

tion predicate’s defining formula in the local state. From the standpoint of the abstract
semantics, however, reevaluating a formula in the local (� -valued) state can lead to a
drastic loss of precision. To gain maximum benefit from instrumentation predicates,
an abstract-interpretation algorithm must obtain their values in some other way. This
problem, the instrumentation-predicate-maintenance problem, is solved by incremen-
tal computation; the new value that instrumentation predicate 	 should have after a
transition via abstract state transformer , from state � to � � is computed incrementally
from the known value of 	 in � . An algorithm that uses , and 	 ’s defining formula
" " ��+ � �� ! � !� + = � to generate an appropriate incremental predicate-maintenance formula
for 	 is presented in [16].

A companion submission [13] addresses the problem of automatically identifying
appropriate instrumentation predicates, using a process of abstraction refinement. In
that paper, the input required to specify a program analysis consists of (i) a program,
(ii) a characterization of the inputs, and (iii) a query (i.e., a formula that characterizes
the intended output). That work, along with [16], has removed essentially all of the user-
level obligations for which the TVLA system has been criticized in the past. Although
the abstraction-refinement mechanism was not available for the experiments reported
on in the present paper, we believe that it will work equally well when applied to the
analysis of programs with recursive procedure calls. In particular, we have observed that
the abstraction-refinement mechanism is capable of generating instrumentation predi-
cates that record in/out relationships: most of the experiments described in [13] involved
	 -vocabulary structures similar to those used in the present paper, and several of the in-
strumentation predicates identified relate pairs of predicates 	 2 � $ 4 � 	 2 � �) 4 .
Other operations on logical structures. Thanks to the fact that the Embedding The-
orem applies to any pair of structures for which one can be embedded into the other,
most operations on � -valued structures need not be constrained to manipulate � -valued
structures that are images of canonical abstraction. Thus, it is not necessary to per-
form canonical abstraction after the application of each abstract structure transformer.
To ensure that abstract interpretation terminates, it is only necessary that canonical ab-
straction be applied as a widening operator somewhere in each loop, e.g., at the target
of each backedge in the CFG.

Several additional operations on logical structures help prevent an analysis from
losing precision:

– Focus is an operation that can be invoked to elaborate a � -valued structure—allowing
the structure to be replaced by a collection of more precise structures (not necessar-
ily images of canonical abstraction) that represent the same set of concrete stores.

– Coerce is a clean-up operation that may “sharpen” a � -valued logical structure by
setting an indefinite value (���) to a definite value (

�
or �), or discard a structure

entirely if the structure exhibits some fundamental inconsistency (e.g., it cannot
represent any possible store).

4 The Use of Logical Structures for Interprocedural Analysis
Given a set of initial states

� � , the goal of the analysis method is to compute—for each
control point of each procedure—an overapproximation to the set of values for the local
variables and the heap that can arise at that point.

To simplify the presentation, in � 4.1 we will assume that the language does not
support either parameter passing or local variables. In � 4.2, we extend the approach to
handle local variables and parameters.

9

4.1 Exploiting the Compositional Structure of Programs

The goal is to compute a summary transformer �:�&$ � for each node $, whose value is
the “join-over-valid-paths” value:

JOVP �&$ � � ���� ValidPaths ��� main 0 ;	�
pf � � � � �/�

where ValidPaths � � main � $ � denotes the set of paths from � main to $ in which the call-to-
start and exit-to-return-site edges in path � form a string in which each exit-to-return-site
edge is balanced by a preceding call-to-start edge, and pf � is the composition, in order,
of the dataflow transformers for the edges of � .

Let Id �
 denote the identity transformer restricted to inputs in � . For dataflow trans-
formers that distribute over � , the JOVP solution can be obtained by finding the least
solution to the following set of equations:

�:� � main � � Id �
 � is the set of initial states at � main (1)

� � � "�� � Id �
 � " � StartNodes, 	�� main, and (2)

� � �
� /(0 ��� � � CallToStartEdges

range ���:�+(�	�
�:�&$ � � �

��� 0 ;	� �����
, � 0 ;����:��� � for $ �%� � , $��� � ReturnSites � StartNodes � (3)

�:�&$ � ���:� � � � ���:� call �&$ ��� for $ � ReturnSites, and call �&$ � calls � (4)

Eqns. (1)–(4) can be understood as a variant of the “functional approach” of Sharir and
Pnueli [21]; in [21], this is expressed with two fixed-point-finding phases: one propa-
gates transformer-valued values; one propagates dataflow values proper. Eqns. (1)–(4)
combine these into a single phase that propagates transformer-valued values only. Each
summary transformer � ��$ � is a partial function: the domain of �:�&$ � overapproximates
the set of reachable states at � proc � ;	� from which it is possible to reach $; the range of� ��$ � overapproximates the set of reachable states at $.

To implement Eqns. (1)–(4), we follow Observation 1 and represent each � ��$ �
transformer as a set of 	 -vocabulary � -valued structures. As described below, suitable
operations on � -valued structures provide a way to compose such transformers.

The composition operation �:� � � � ���:� call ��$ �	� in Eqn. (4), which represents an
interprocedural-propagation step, involves transformers represented by two sets of 	 -
vocabulary � -valued structures. Intuitively, this involves collecting up a set of structures,
where each structure is the “natural join” of two structures—one from each argument
set. Below, we define the operation $ � � $ � for a single pair, $ � and $ � .

In fact, to do this really requires three vocabularies: for each original predicate 	 ,
we use three predicates 	 2 � $ 4 , 	 2 � �) 4 , and 	 2) � 	�4 . A two-vocabulary � -valued structure
uses only 	 2 � $ 4 and 	 2 � �) 4 —or rather, the values of the 	 2) � 	 4 predicates are “irrel-
evant”. (When a predicate 	 is irrelevant, then 	 � �� � evaluates to � � 	 for every tuple
of individuals �� .) Another obstacle is to reconcile the values of the predicates in the
different 	 -vocabulary � -valued structures. The solution has several parts:

– We need an operation to move predicates in one vocabulary to predicates in another
vocabulary. The notation $ 2) � 	 � � �)"! � �) � ���	.4 denotes the (simultaneous)

10

transformation on structure $ in which the 	 2 � �) 4 predicates are moved to 	 2) � 	 4 ,
and the 	 2 � �) 4 predicates are all set to � � 	 . For instance, to perform the composition
$ � � $ � , we use $ � 2) � 	 � � �)"! � �) � � � 	 4 and $ � 2) � 	 � � $! � $ � � � 	 4 .

– We need structures that have the same sets of individuals. Because the individuals
in � -valued structures are identified by the values they have for the (unary) abstrac-
tion predicates, we use the operation ���������	�
������������ 1 ����� � 1 � � , which refines a
� -valued structure $ into a set of structures—each member of which is in the im-
age of canonical abstraction—such that the set describes the same set of concrete
structures as $ [23].

– We define the meet of two � -valued structures that have the same set of individuals.
Let � � ����� ��� � � and � � ����� ��� � � be two logical structures with the same universe� and vocabulary
 . The interpretations � � ��� � map each relation symbol 	 �
 =
to a

>
-ary truth-valued function: � ��� 	 � � � = � � � � ���	 � ��� . For convenience, we

implicitly add a bottom element � to the lattice � � � � � � ���	 � � � � of Def. 1. The
meet operator � � � � � is defined as

� � � � �"!$#�%� & ��� ��� � � � � � if � � � � � ��'�� otherwise
where

� �(� � � !)#�%� *+ , � if � � � 	 � � �� � � � � � 	 � � �� � �'�
for some 	 �
 = and ����-� =. 	 �
 = . �� �/� = �� � � 	 � ���� � � � � � 	 � � �� � otherwise

Note that if a predicate is irrelevant in � � , then its value in � � � � � is defined by its
value in � � .

– We extend the previous definition to any 3-valued structures by

� � � � � � � � �� � � �� � � �� � �����0��1�
�����2���$� � � � �43 � �� � ����0��1�
����������� � � � � � (5)

With this notation, the composition of transformers $ � � $ � , where $ � and $ � are 	 -
vocabulary � -valued structures (which are really � -vocabulary � -valued structures) is
expressed as follows:

$ � � $ � def�65 $ �.2) � 	 � � �)"! � �) � � ��	.4 � $ � 2) � 	 � � $! � $ � � ��	.487 2) � 	 � ���	.4
(6)

The effect is to perform a natural join on the 	 2) � 	 4 predicates to create structures that
have $ � ’s 	 2 � $ 4 predicates, $ � ’s 	 2 � �) 4 predicates, and common 	 2) � 	 4 predicates. The
	 2) � 	�4 predicates are then eliminated by setting them to � ��	 .8

The composition operation is extended to sets of structures in the usual way:

SS � � SS � � � � � � � � � � � � SS � 3 � � � SS � �

8 A different view of this step is that making the � � ��9 � � predicates irrelevant corresponds to ex-
istentially quantifying them out. If expressed by means of a formula, the operation of making� � ��9 � � irrelevant would involve second-order quantification over � � ��9 � � ; however, the oper-
ation is performed directly on a logical structure, and hence it is not a problem for us that the
operation cannot be expressed by means of a first-order formula.

11

In contrast, the composition operation , � 0 ; ���:��� � in Eqn. (3), which represents an
intraprocedural-propagation step, is heterogeneous: , � 0 ; is defined using a collection
of predicate-update formulas, (���+ � �! � ! � +�= � � , /(0 ��� 0 ;	� ��+ � �! � ! � +�= � , whereas � � � � is a
set of 	 -vocabulary � -valued structures. Thus, the composition operation in Eqn. (3) can
be implemented merely by performing the standard TVLA intraprocedural-propagation
step for , � 0 ; on the � �) predicates (only) for each of the structures in �:��� � .

In practice, Eqns. (1)–(4) are solved by propagating changes in values, rather than
full values. A differential algorithm for the shape-analysis method described above is
presented in App. B.

4.2 Local Variables and Parameters

Until now, we have assumed that a state of a program is defined by a memory config-
uration, and that relations between states are represented using structures over doubled
vocabularies. Things are actually a bit more complicated: a state of the program also
includes the values of local variables, formal input parameters, and formal output pa-
rameters. The summary transformer at node � ��$ � must thus also relate the value of the
formal input parameter at node � proc � ;	� to the state of the heap and the values of local
variables at node $.

To incorporate local variables and parameters, we merely have to expand the vo-
cabulary to
 loc �
�� 2 � $ 4 �
�� 2 � �) 4 �
�� 2) � 	 4 , where the vocabulary
 loc captures
Boolean-valued and pointer-valued local variables and parameters, and
�� is the tripled
vocabulary from � 4.1. The assumption that formal input parameters are not modified
in the body of a procedure makes it unnecessary to duplicate/triplicate the predicate
symbols for parameters in
 loc.

Eqn. (2) then becomes:

�:� � � � � Id �
 � " � StartNodes, 	�� main, and
� � �

� /(0 � � � � CallToStartEdges
and the call is y:=p(x)

range � ,����	� ��
 �� � � �+(�	� 2 loc
� �!����� " � � ���	 4

(7)
where ,��
 � � denotes the transformer generated by update formulas that correspond to
the assignment in the subscript. Eqn. (7) reflects the binding of the actual parameter x
at node (to the formal input parameter ����� " at node � " . All relations corresponding to
the other local variables and parameters are set to irrelevant at this node.

For a call statement of the form y:=q(x), where $ � ���:� � � � and $ � ���:� call ��$ �	� ,
the transformer-composition operation $ � � $ � used in Eqn. (4) to implement the ab-
stract procedure-return operation can be expressed as

$ � � $ � def�

���� ,��
 � ���	� � ���� � , ���	�
 �� � $ � � 2) � 	 � � �)"! � �) � � � 	 4�
� , �����
 � ���	� ��������
 � ����� � � $ � ���) � 	 � � $! � $ � ���	 !

loc � � � 	 �
 "!!# "!!# �) � 	 � � ��	 !

������� � ����
 � � ���	 �
(8)

where ����� and ����
 are fresh unary core predicates (not in
 loc or
 �) that are used to
impose parameter-passing constraints as follows: ����� is bound to the value of the actual
input parameter x of $ � ; ����� is also bound to the value of formal input parameter ����� � of
$ � ; and ����
 is bound to the value of formal output parameter ����
 � of $ � . In particular,

12

the ����� relation and all of the) � 	 relations are common in the meet operation performed
in Eqn. (8). Then, because the local variables in $ � are set to be irrelevant, the values
for the local variables in the structures of the answer set are the values from $ � , with the
exception of the actual output parameter ' , which is assigned the value of ����
 �,����
 � .
4.3 Combinatorial explosion induced by the composition of logical structures.

There are two sources of combinatorial explosion in Eqns. (4), (5), (6), and (8):

1. The number of pairs � � � � � � � ���:� � � ��� �:� call ��$ �	� to consider (quadratic explo-
sion);

2. The cardinality of the sets ����0��1�
����������� � � � � and �����0��1�
�����2���$� � � � � in Eqn. (5)
defining the meet operator � (exponential explosion).

App. A discusses these issues in more detail, and describes the implementation of the
operation actually used in our system, which overapproximates the meet (and hence the
composition) of two structures, but can be implemented much more efficiently.

5 Implementation and Experiments
To perform interprocedural shape analysis by the method that is described in � 4, we
created a modified version of TVLA [12], an existing shape-analysis system, to allow it
to support the following features:

– We replaced the built-in notion of an intraprocedural CFG by the more general
notion of equation systems.

– We designed a more general language of expressions to specify the functions used
in equations.

– We implemented an approximation to the meet operation on � -valued structures
(and hence to the composition operation), as described in App. A.

Fig. 5 shows an example of the kind of summary information that captures the
behavior of the recursive list-reversal procedure of Figs. 1 and 2. The descriptor of the
initial summary transformer at the program’s start node � main was the � -valued structure
� � , shown in Fig. 5(a), which represents (the identity transformation on) all linked lists
of length at least two that are pointed to by program-variable list. The head of the
answer list is pointed to by program-variableres. At the program’s exit node � main, the
summary transformers were the structures � � and � � of Fig. 5(b)–(c), which represent
the transformations that reverse lists of length two, and all lists of length greater than
two, respectively.

As discussed in � 3, to prevent the loss of essential information, several families of
instrumentation predicates were introduced:

– The unary predicates id succ 2 $ � � � � � � 4 and id pred 2 $ � � � � � � 4 , where � � � � � �
� � $ � � �) � and � � �� � � , record information about the values of different modes
of predicate $, in particular, whether the value of predicate $ 2 � � 4 implies $ 2 � � 4 .
These are defined by

id succ 2 $ � � � � � � 4���+ � � � + � � �&$ 2 � � 4���+ � + � ��� $ 2 � � 4 ��+ � + � ���
id pred 2 $ � � � � � � 4���+ � � � + � � �&$ 2 � � 4���+ � � + ��� $ 2 � � 4 ��+ � � + ���/

The fact that id succ 2 $ � � $ � � �) 4���+ � 3 id succ 2 $ � � �)/� � $ 4���+ � 3 id pred 2 $ � � $ � � �) 4���+ � 3
id pred 2 $ � � �)/� � $ 4���+ � holds globally in �� (cf. Fig. 5(a)) captures the condition that
the $ 2 � $ 4 and $ 2 � �) 4 predicates are identical at the entry node of the procedure. The

13

Const. unary predicates

list

n[in] n[out]

n[in] n[out]

id_succ[n,in,out]
id_succ[n,out,in]
id_pred[n,in,out]
id_pred[n,out,in]

r[n,in,list]
r[n,out,list]

res=1/2
r[n,in,res]=1/2
r[n,out,res]=1/2

reverse_n_succ[in,out]=1/2
reverse_n_succ[out,in]=1/2

Const. unary predicates

list

id_succ[n,out,in]
id_pred[n,in,out]

r[n,out,list]

id_succ[n,in,out]
id_pred[n,out,in]

r[n,in,res]

n[in]

res

n[out]

r[n,in,list]
r[n,out,res]

reverse_n_succ[in,out]
reverse_n_succ[out,in]

Const. unary predicates

list

id_succ[n,out,in]
id_pred[n,in,out]

r[n,out,list]
id_succ[n,in,out]=1/2
id_pred[n,out,in]=1/2

id_succ[n,in,out]=1/2
id_succ[n,out,in]=1/2
id_pred[n,in,out]=1/2
id_pred[n,out,in]=1/2

n[in]

res

id_succ[n,in,out]
id_pred[n,out,in]

r[n,in,res]
id_succ[n,out,in]=1/2
id_pred[n,in,out]=1/2

n[out]

n[out]

n[in]

n[in] n[out]

r[n,in,list]
r[n,out,res]

reverse_n_succ[in,out]
reverse_n_succ[out,in]

(a) � � (b) � � (c) � �
Fig. 5. List-reversal example. (In each structure, unary predicates that have the same
non-

�
value for all individuals are displayed in the box labeled “Const. unary pred-

icates”. In the pictures given above, the values of the “irrelevant” predicates of the
vocabulary are not shown.)

$ 2 � $ 4 predicates serve as an indelible record of the state of the n-links at the entry
node.

– The unary predicates reverse n succ 2 � � � � � 4 , again with � � � � � � � � $ � � �) � and� � ���� � , record whether $ 2 � � 4 is an inverse of $ 2 � � 4 . These are defined by

reverse n succ 2 � � � � � 4���+ � � � + � � �&$ 2 � � 4 ��+ � + � � � $ 2 � � 4���+ � � + �	�
The values for these predicates in � � and � � show that for each n-link $ 2 � $ 4���+ � � + � �
at the entry node � main, we have an n-link $ 2 � �) 4 ��+ � � + � � at the exit node � main. In
other words, the procedure has reversed all the n-links.

In addition, during the composition operation, some additional constraint rules were
needed for the system to be able to deduce a predicate between $ 2 � $ 4 and $ 2 � �) 4 . These
are defined by

id succ 2 $ � � $ �*) � 	 4���+ � 3 reverse n succ 2) � 	 � � �) 4 ��+ ��� reverse n succ 2 � $ � � �) 4���+ �
reverse n succ 2 � $ �*) � 	 4���+ � 3 id pred 2) � 	 � � �) 4 ��+ ��� reverse n succ 2 � $ � � �) 4���+ �

Notice that only the reverse n succ 2 � � � � � 4 predicates and the related constraint rules
are particular to the list-reversal example. The other predicates that appear in Fig. 5 were
already used in previous papers on shape analysis of list-manipulation programs (see
[20]): for instance,) 2 $ � � �)/� � � �) 4���+ � holds the value � for individuals that are reachable
from variable � � �) through a chain of $ 2 � �) 4 links. From the above definitions of the
instrumentation predicates, it should be clear that the set of � -valued structures �.� � � � � �

14

accurately captures the fact that the output list is the reversal of the input list, and that
the result is a list of length at least two.

Our method Method of [18]
Program Number of Time Space Number of Time Space

Structures (sec) (Mb) Structures (sec) (Mb)
reverse 7/3 11 26 � /3 37 17
insert 23/9 188 43 � /2 22 17
delete 32/13 222 43 � /5 25 16

tree exchange 22/10 92 33 —

The experiments were performed on a PC equipped with a 2
GHz Pentium 4 processor and 768 Mb of memory. Time and
Space information were obtained with the time and top com-
mands. The two numbers in each entry of the columns labeled
Number of Structures give the number of structures for the sum-
mary transformer of the recursive procedure and the number of
structures at the end of the main procedure, respectively.

Fig. 6. Experimental results

Our second experiment
involved comparing our re-
sults with [18] on the fol-
lowing examples: (i) list
reversal (as discussed above),
and (ii) non-deterministic
insertion and deletion of
a cell in a list. Results
are shown in Fig. 6. Our
method performs better than
that of [18] for the list-
reversal program, but worse
for the other two programs.
On the other hand, our
method is obtaining much
more precise information,
because we pass the cell to be inserted as an input parameter (in the insert example),
and receive back the deleted cell as an output parameter (in the delete example), which
provides information about where the cell has been inserted (resp. deleted). The slower
execution times in the insertion and deletion examples are at least partly due to the dif-
ferent cases that are distinguished (insertion at the beginning, after the first cell, in the
middle, etc.). Finally, it is important to keep in mind that our method computes a sum-
mary transformer for each procedure, which [18] does not. Each summary transformer� � � � � at an exit node � � is a partial function: the domain of �:� � � � overapproximates
the set of reachable states at � proc � - � � from which it is possible to reach � � ; the range of� � � � � overapproximates the set of reachable states at � � .

Our third experiment was to analyze a procedure that recursively exchanges the
right and left subtrees of a binary tree. This example is interesting because it would
be difficult to implement this operation as a non-recursive procedure. The analysis was
able to establish that after the procedure finishes execution, the subtrees of all cells
reachable from the root have been exchanged, whereas the other cells have not been
modified.

Statistics are given in Fig. 6. More information about the experiments is available
at http://www.irisa.fr/prive/bjeannet/interproctvla/interproctvla.html.

6 Related Work and Conclusions

The analysis described in this paper uses � -valued structures over a doubled vocabu-
lary. A similar approach is standard when concrete transition relations are expressed
by means of formulas. For instance, the semantics of a statement x := y+1; can be
expressed as ��% � � ' � � � 3 � ' ��� '�� . Statements such as x := y+1; can be trans-
formed into composable abstract transformers for programs that manipulate numeric
data, using several numeric lattices (e.g., polyhedra [5], octagons [14], etc.). In con-
trast, Observation 1 provides a way to create composable abstract transformers for the
analysis of programs that support both dynamically-allocated storage and destructive
updating of pointer-valued fields of structures.

15

As mentioned in the introduction, interprocedural shape analysis was also studied
in [18]. Both papers were motivated by the fact that tabulating composed transform-
ers as sets of pairs of input/output � -valued structures loses track of the correlations
between between the input and output values of an individual’s unary predicates, and
consequently does not permit an individual in an input abstract structure to be identified
with its corresponding individual in the output abstract structure. The approach used in
the present paper was inspired by the functional approaches of [4, 21, 11]. In contrast,
the approach used in [18] is more reminiscent of the “call-strings” approach of [21].

In [18], the store is augmented to include the runtime stack as an explicit data struc-
ture. The storage abstraction used in [18] is an abstraction of the store augmented in this
fashion. In essence, the collection of activation records that form the stack are abstracted
using an abstraction for linked lists. This “stack-materialization” approach causes cer-
tain technical complications; they are not insurmountable, but do cause the designer
of an abstract interpretation to have to identify certain invariants that hold between the
state of the stack and the state of the heap during the execution of the program (in par-
ticular, how the heap cells reachable from the visible and invisible instances of local
variables are related).

In our work, the stack is not materialized as an explicit data structure; instead it is an
implicit part of the programming-language semantics. With this approach, the designer
of an abstract interpretation does not need to be concerned with the “shape” of the
runtime stack. Overall, our work provides a method to verify properties of imperative
programs written in a language with a rich set of features—in particular, recursive pro-
cedure calls, heap-allocated storage, and destructive updating of pointer-valued fields.
This is accomplished without direct modeling of the runtime stack, and, as a side ben-
efit, summary transformers are generated that capture over-approximations of the net
effects of calls.

References

1. J. Ahn. A differential evaluation of fixpoint iterations. In Asian Workshop on Prog. Lang.
and Syst., 2001.

2. T. Ball and S.K. Rajamani. Bebop: A path-sensitive interprocedural dataflow engine. In
Workshop on Prog. Analysis for Softw. Tools and Eng., New York, NY, June 2001. ACM
Press.

3. J. Cai and R. Paige. Program derivation by fixed point computation. Sci. of Comp. Program.,
11(3):197–261, 1989.

4. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures.
In E.J. Neuhold, editor, Formal Descriptions of Programming Concepts, (IFIP WG 2.2, St.
Andrews, Canada, August 1977), pages 237–277. North-Holland, 1978.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among variables of
a program. In Symp. on Princ. of Prog. Lang., 1978.

6. A. Deutsch. On determining lifetime and aliasing of dynamically allocated data in higher-
order functional specifications. In Symp. on Princ. of Prog. Lang., 1990.

7. H. Eo and K. Yi. An improved differential fixpoint iteration method for program analysis.
In Asian Workshop on Prog. Lang. and Syst., 2002.

8. C. Fecht and H. Seidl. Propagating differences: An efficient new fixpoint algorithm for
distributive constraint systems. Nordic J. of Comput., (5):304–329, 1998.

9. D. Gopan, F. DiMaio, N.Dor, T. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In Int. Conf. on Tools and Algs. for the Construction and Analysis of Systems,
pages 512–529, 2004.

16

10. N.D. Jones and S.S. Muchnick. A flexible approach to interprocedural data flow analysis
and programs with recursive data structures. In Symp. on Princ. of Prog. Lang., pages 66–
74, 1982.

11. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Int. Conf. on Comp.
Construct., pages 125–140, 1992.

12. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In Static
Analysis Symp., pages 280–301, 2000.

13. A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement for � -valued-logic analysis.
Submitted for publication, April 2004.

14. A. Miné. The octagon abstract domain. In Proc. Eighth Working Conf. on Rev. Eng., pages
310–322, 2001.

15. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In Symp. on Princ. of Prog. Lang., pages 49–61, New York, NY, 1995. ACM
Press.

16. T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static analysis.
In European Symp. on Programming, pages 380–398, 2003.

17. T. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their application to
interprocedural dataflow analysis. In Static Analysis Symp., pages 189–213, 2003.

18. N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive programs. In Int.
Conf. on Comp. Construct., pages 133–149, 2001.

19. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with applica-
tions to constant propagation. Theor. Comp. Sci., 167:131–170, 1996.

20. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst., 24(3):217–298, 2002.

21. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Much-
nick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7,
pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

22. G. Yorsh. Logical characterizations of heap abstractions. Master’s
thesis, School of Computer Science, Tel-Aviv University, Israel, 2003.
http://www.math.tau.ac.il/˜gretay.

23. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations
for shape analysis. In Int. Conf. on Tools and Algs. for the Construction and Analysis of
Systems, pages 530–545, 2004.

17

A An Efficient Implementation of the Meet Operation
Combinatorial explosion induced by the composition of � -valued structures. There
are two sources of combinatorial explosion in Eqns. (4), (5), (6), and (8):

1. The number of pairs � � � � � � � ���:� � � ��� �:� call ��$ �	� to consider (quadratic explo-
sion);

2. The cardinality of the sets ����0��1�
����������� � � � � and �����0��1�
�����2���$� � � � � in Eqn. (5)
defining the meet operator � (exponential explosion).

Point 1 is inherited from the nature of our abstract lattice, which is a powerset domain,
and the fact that we apply a binary operation (composition) to values in the domain. We
do not address this problem here.

Point 2 is specific to our abstract lattice and concerns only the meet operation, espe-
cially when it is used to implement relational composition. Consider a pair of � -valued
structures $ � and $ � for which a composition is performed in Eqn. (4). In $ � , the core
predicates that represent variables of the called procedure � are irrelevant, so they have
the value ���	 . This means that the ����0��1�
����������� operation will enumerate all possi-
ble definite interpretations for these predicates; the number of these interpretations is
exponential in the number of such predicates. A similar situation holds for $ � .

More generally, consider a structure � � ��� � ��� � � with $ irrelevant unary core
predicates; the cost of ���������	�
���������� is � �	� 	�� � � � � ; � . Even if the unary predicates repre-
sent only pointer-valued variables, which means that such predicates may evaluate to 1
on at most one individual, there are still � � � ��� ; � possible interpretations.

In our case, this combinatorial explosion is all the more frustrating because it is
only temporary: the meet � � � � � will reject (by evaluating to �) most of the structures
obtained by enumerating definite interpretations of irrelevant predicates in � � (resp. � �).
Indeed, predicates that are irrelevant in one structure and relevant in the other usually
have definite interpretations in the latter.

A better implementation of the meet of � -valued structures. The approach that we
actually followed in our extended version of TVLA was to implement an approximation
to the meet operation using systems of � -valued constraints [20], which were already
supported by the base TVLA system. In TVLA, there is a global set of constraints

� �
that is used to express integrity constraints on the set of 	 -valued structures that a � -
valued structure represents. For instance, some of the constraints in

� � express the fact
that unary predicates that represent variables of reference type can evaluate to 1 on at
most one individual. For convenience, we will associate a constraint set

� � with each
structure, so that a � -valued structure � is now a triple: ��� � ��� � � � � � . (

� � is generally
� � .)

A set of constraints
�

represents the set of concrete structures that satisfy
�

:

� / � � � !)#�%� � � � 1 � � � � � � � (9)

in the same way that a 3-valued structure � represents the set of concrete structures� � � � � � that can be embedded into � via canonical abstraction [20].
Assume now that we have an operation ������� � 1 � � � ��? � that associates to a given

structure a set of constraints such that for any � , � � � � � �
	 � / � ������� � � ��� . In other
words, constraint set ������� � � � overapproximates � . For any logical structures � � �

18

��� ��� ��� ��� � � ���/� and � � �*��� � � ��� � � � � � � � , we now define the operation � / :
� � � / � � !$#�%� ��� ��� � � ��� � � � � � � � ������ � � � � �

This operator has the following property: � � �.� � � / � � � � � � � � � � � ��� � � � � � � � , with
equality if ������� � � � is exact.

To summarize, the approximate meet operator consists of adding temporarily ������ � � � �
to � � , then performing Focus and Coerce operations to transfer the information that is
initially contained in the additional constraints to the universe � � � and the interpreta-
tion � � � . Afterwards, the additional constraints are removed.

For instance, when we use the meet operation in Eqn. (8), we replace � �� � � �� in
Eqn. (8) by

Coerce � Focus � � �� � / � �� � �!����
 ��+ � � �	�
This allows ����
 to appear with a definite interpretation in structure ���� and be con-
strained by the set ������ � � � � , which represents the summary transformer of the callee.

Converting a � -valued structure to a set of constraints. To achieve this, we adapted a
result from [22], which shows how to characterize a � -valued logical structure that is in
the image of canonical abstraction by means of a formula in first-order logic with tran-
sitive closure. The resulting formula can easily be converted to a set of constraints that
satisfy the restricted syntax given in [20]. However, one of the constraints that would
be generated according to [22] would be too expensive to check from an algorithmic
point of view, so this constraint is dropped, which induces a safe overapproximation.
(Roughly, this constraint captures the fact that any concrete structure represented by the
abstract structure should contain a number of individuals greater than or equal to the
number of individuals in the abstract structure.)

B An Algorithm for Relational Interprocedural Shape Analysis
It has been observed that for some fixed-point-finding problems, it is possible to prop-
agate changes in values (“deltas”), rather than full values [3]. (Subsequent work on dif-
ferential fixed-point evaluation includes [8, 1, 7].) In the case of interprocedural shape
analysis, we work with a power-set domain—namely, � � 1 � 2
 2 � $ 4 4 � 1 � 2
 2 � �) 4 4�
1 � 2
 2) � � 	 4 4 � —so a differential algorithm is very natural: we merely propagate each
� -valued structure independently. Such a differential algorithm for the simplified rela-
tional interprocedural shape analysis discussed in � 4.1 is given in Fig. 7. (The algorithm
is modeled after a dataflow-analysis algorithm given in [2].)

19

Algorithm 1

Input: an interprocedural shape-analysis problem
Output: a mapping � � � � � � � 1 �32
 2 � $ 4 �
 2 � �) 4 4 �

1 � � � � � � � 1 � 2
 2 � $�4 �
 2 � �) 4 4 �
2 workset � � � � � � 1 � 2
 2 � $�4 �
 2 � �) 4 4 �
3
4 procedure propagate($ � � � , � � 1 �32
 2 � $ 4 �
 2 � �) 4 4)
5 begin
6 if � �� �:�&$ � then
7 �:�&$ � � � � ��$ � � � � �
8 workset ��$ � � � workset ��$ � ���.� �
9 end

10
11 for each $ �%� � do �:�&$ � � ��� ! workset �&$ � � ���
12 �:� � main � � � � Id � � � � � � � �
13 workset � � main � � � �:� � main �
14 while there exists � such that workset � � � ���� do
15 select and remove a structure � from workset � � �
16 if � is a call node with return-site node) , where � calls procedure � then
17 propagate � � � � Id � � � , where � � range ��� � � ���
18 for each � � � �:� � � � and � � � � � � � � do propagate �&) � � � � �
19 else if � is the exit node � � of procedure � then
20 for each call node (that calls � , with return-site node) do
21 for each � � � �:��(� and �� � � � � � � do propagate ��) � �� � �
22 else /* � is not a call node or exit node */
23 for each ��� � $ � � ��� and �� � , � 0 ;�� � do propagate ��$ � �� �
24 return

Fig. 7. A differential algorithm for relational interprocedural shape analysis.

20

