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Abstract
Recently, pushdown systems (PDSs) have been extended to weighted PDSs, in which each transition
is labeled with a value, and the goal is to determine the meet-over-all-paths value (for paths that meet
a certain criterion). This paper shows how weighted PDSs yield new algorithms for certain classes of
interprocedural dataflow-analysis problems.

1 Introduction

This paper explores a connection between interprocedural dataflow analysis and model checking of push-
down systems (PDSs). Various connections between dataflow analysis and model checking have been es-
tablished in past work, e.g., [5, 8, 21, 25, 26]; however, with one exception ([8]), past work has shed light
only on the relationship between model checking and bit-vector dataflow-analysis problems, such as live-
variable analysis and partial-redundancy elimination. In contrast, the results presented in this paper apply to
(i) bit-vector problems, (ii) the one non-bit-vector problem addressed in [8], as well as (iii) certain dataflow-
analysis problems that cannot be expressed as bit-vector problems, such as linear constant propagation. In
general, the approach can be applied to any distributive dataflow-analysis problem for which the domain of
transfer functions has no infinite descending chains. (Safe solutions are also obtained for problems that are
monotonic but not distributive.)

The paper makes use of a recent result that extends PDSs to weighted PDSs, in which each transition
is labeled with a value, and the goal is to determine the meet-over-all-paths value (for paths that meet a
certain criterion) [23]. The paper shows how weighted PDSs yield new algorithms for certain classes of
interprocedural dataflow-analysis problems. These ideas are illustrated by the application of weighted PDSs
to linear constant propagation.

The contributions of the paper can be summarized as follows:

� Conventional dataflow-analysis algorithms merge together the values for all states associated with the
same program point, regardless of the states’ calling context. With the dataflow-analysis algorithm
obtained via weighted PDSs, dataflow queries can be posed with respect to a regular language of
stack configurations. Conventional merged dataflow information can also be obtained by issuing
appropriate queries; thus, the new approach provides a strictly richer framework for interprocedural
dataflow analysis than is provided by conventional interprocedural dataflow-analysis algorithms.

� Because the algorithm for solving path problems in weighted PDSs can provide a witness set of paths,
it is possible to provide an explanation of why the answer to a dataflow query has the value reported.

The algorithms described in the paper have been implemented: We have created an extended version
of MOPED [22] (a model checker for pushdown systems) that solves reachability problems for weighted
PDSs. This system was then used to create a prototype implementation of a context-sensitive interprocedural
dataflow-analysis algorithm for linear constant propagation.
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The remainder of the paper is organized as follows: Section 2 introduces terminology and notation used
in the paper, and defines the generalized-pushdown-reachability (GPR) framework. Section 3 presents the
algorithm from [23] for solving GPR problems. Section 4 presents the new contribution of this paper—the
application of the GPR framework to interprocedural dataflow analysis. Section 5 discusses related work.
Appendix A describes an enhancement to the algorithm from Section 3 to generate a witness set for an
answer to a GPR problem. Appendices B and C provide some additional details about the three examples
discussed in Section 4.

2 Terminology and Notation

In this section, we introduce terminology and notation used in the paper.

2.1 Pushdown Systems

A pushdown system is a transition system whose states involve a stack of unbounded length.
Definition 2.1 A pushdown system is a triple ���������
	����� , where � and 	 are finite sets called the
control locations and the stack alphabet, respectively. A configuration of � is a pair ��������� , where �����
and ����	 �

. � contains a finite number of rules of the form ��������� � !#"$���&%������ , where �����'%(�)� , �*��	 ,
and �+��	 �

, which define a transition relation , between configurations of � as follows:
If -.�/���������0� !*"#��� % ����� , then �������1� % �32�4
5�6�7,8"9��� % ���:� % � for all � % �;	 �

.
We write <=, " <>% to express that there exists some rule - such that <?2�4
5�6�7, " <>% ; we omit the index � if �
is understood. The reflexive transitive closure of , is denoted by , �

. Given a set of configurations @ , we
define A'B
C � �D@.��E��GF�<>%IH(JK<��L@MEN<>%O, � <QP and ASR7TVU � �D@W�XE��YF�<>%IH(JK<��Z@[EN<\, � <]%^P to be the sets
of configurations that are reachable—backwards and forwards, respectively—from elements of @ via the
transition relation.

Without loss of generality, we assume henceforth that for every �������_�`� !a����%b���c� we have H �dHfehg ; this
is not restrictive because every pushdown system can be simulated by another one that obeys this restriction
and is larger by only a constant factor; e.g., see [12].

Because pushdown systems have infinitely many configurations, we need some symbolic means to rep-
resent sets of configurations. We will use finite automata for this purpose.
Definition 2.2 Let �+�i�����
	0���� be a pushdown system. A � -automaton is a quintuple ji�/�Dkl�
	0�]!m�n� �
oW�
where k/p#� is a finite set of states, !rqsk�t�	ut`k is the set of transitions, and o/qmk are the final states.
The initial states of j are the control locations � . A configuration ��������� is accepted by j if � vwxw ! �ly
for some final state

y
. A set of configurations of � is regular if it is recognized by some � -automaton. (We

frequently omit the prefix � and simply refer to “automata” if � is understood.)
A convenient property of regular sets of configurations is that they are closed under forwards and back-

wards reachability. In other words, given an automaton j that accepts the set @ , one can construct automata
jWz|{x} � and jWz]~���� � that accept A'B
C � �D@.� and ASR7TVU � �D@W� , respectively. The general idea behind the algorithm
for A1B�C �

[3, 7] is as follows:
Let �Y�G�����
	����� be a pushdown system and j��G�Dkl�
	0�]!#���
���
oW� be a � -automaton accepting a

set of configurations @ . Without loss of generality we assume that j has no transition leading to an initial
state. A1B�C � �D@.� is obtained as the language of an automaton j z|{x} � ���Dkd�
	��]!m�
���
oW� derived from j by a
saturation procedure. The procedure adds new transitions to j according to the following rule:

If ���������0� !����&%������ and �&%hvw�w ! �Oy
in the current automaton, add a transition �������Q� y � .

In [7] an efficient implementation of this procedure is given, which requires ���
H�k�H���H ��H�� time and
���
H�k�H�H �;H���H�!8��H�� space. Moreover, another procedure (and implementation) are presented for constructing
a � -automaton that accepts ASR�T>U � �D@W� . In Section 3, we develop generalizations of these procedures. (We
present these extensions for A'B
C �

; the same basic idea applies to AKR7T>U �
, but is omitted for lack of space.)
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2.2 Weighted Pushdown Systems

A weighted pushdown system is a pushdown system whose rules are given values from some domain of
weights. The weight domains of interest are the bounded idempotent semirings defined in Definition 2.3.
Definition 2.3 A bounded idempotent semiring is a quintuple �������=���d���S��� � , where � is a set, � and �
are elements of � , and � (the combine operation) and � (the extend operation) are binary operators on �
such that

1. ���;���I� is a commutative monoid with � as its neutral element, and where � is idempotent (i.e., for all	 �
� , 	 � 	 � 	 ).

2. ���;���I� is a monoid with the neutral element � .
3. � distributes over � , i.e. for all 	 ��� �
<I�
� we have

	 �$����9<����/� 	 ���V���$� 	 �9<�� and � 	 �������8< �/� 	 �8<|���$����8<|���
4. � is an annihilator with respect to � , i.e., for all 	 ��� , 	 ���.���W����� 	 .

5. In the partial order � defined by: � 	 ���d����� 	 ��� iff 	 ���W� 	 , there are no infinite descending
chains.

Definition 2.4 A weighted pushdown system is a triple � � ���l�! ��"�� such that ��� �����
	����� is a
pushdown system,  8�/���;���=���=���S��� � is a bounded idempotent semiring, and "uE&� !#� is a function that
assigns a value from � to each rule of � .

Let $$�m� �
be a sequence of rules. Using " , we can associate a value to $ , i.e., if $s�&% -('��)�)�)�^��-+*�, ,

then we define -N��$��WE��." ��-/'>�0�1�)�)�2��" ��-+*7� . Moreover, for any two configurations < and < % of � , we let
A 	23!4 ��<7�
<>%b� denote the set of all rule sequences % -2'��)�)�)� ��-+*+, that transform < into <�% , i.e., <�2�4�5 5���f��,76)6)6 2 498>5�>�K�,�<>%
Definition 2.5 Given a weighted pushdown system � �/���l�! :��"�� , where �+�/��� �
	0���� , and a regular set
@ qs�it 	 �

, the generalized pushdown reachability (GPR) problem is to find for each <����it 	 �
:

��: ��<|�OE��<; F�-1��$��:H=$ ��A 	23!4 ��<7�
<>%b�]�
<]%N�[@8P ;
� a witness set of paths >:��<��Oq ?@ACBED A 	23F4 ��<7�
<>%�� such that ;G B+HJIK@ML -1��$�� �

: ��<|� .

Notice that the extender operation � is used to calculate the value of a path. The value of a set of paths
is computed using the combiner operation � . In general, it is enough for >:��<�� to contain only a finite set of
paths whose values are minimal elements of F�-1��$��WHN$9�[A 	23F4 ��<7�
< %��]� <]% �*@*P , i.e., minimal with respect
to the partial order � defined in Definition 2.3(5).

3 Solving the Generalized Pushdown Reachability Problem

This section presents the algorithm from [23] for solving GPR problems.
For the entire section, let � denote a fixed weighted pushdown system: � � ���l�! :��"�� , where �3�

�����
	����� and  � ���;���=���=���S��� � ; let @ denote a fixed regular set of configurations, represented by a
� -automaton j �/�Dkl�
	0�]! � �
� �
oW� such that j has no transition leading to an initial state.

The GPR problem is a multi-target meet-over-all-paths problem on a graph. The vertices of the graph
are the configurations of � , and the edges are defined by � ’s transition relation. The target vertices are the
vertices in @ . Both the graph and the set of target vertices can be infinite, but have some built-in structure
to them; in particular, @ is a regular set.

Because the GPR problem concerns infinite graphs, and not just an infinite set of paths, it differs from
other work on meet-over-all-paths problems. As in the ordinary pushdown-reachability problem [3, 7], the
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infinite nature of the (GPR) problem is addressed by reporting the answer in an indirect fashion, namely, in
the form of an (annotated) automaton. An answer automaton without its annotations is identical to an j z|{x} �
automaton created by the algorithm of [7]. For each <d�[A'B
C � �D@W� , the values of : ��<|� and >:��<|� can be read
off from the annotations by following all accepting paths for < in the automaton; for <��� A'B
C � �D@.� , the values
of : ��<|� and >:��<|� are � and � , respectively.

The algorithm is presented in several stages:

� We first define a language that characterizes the sequences of transitions that can be made by a push-
down system � and an automaton j for @ .

� We then turn to weighted pushdown systems and the GPR problem. We use the language characteri-
zations of transition sequences, together with previously known results on a certain kind of grammar
problem [14, 15] to obtain a solution to the GPR problem.

� However, the solution based on grammars is somewhat inefficient; to improve the performance, we
specialize the computation to our case, ending up with an algorithm for creating an annotated automa-
ton that is quite similar to the A1B�C �

algorithm from [7].

3.1 Languages that Characterize Transition Sequences

In this section, we make some definitions that will aid in reasoning about the set of paths that lead from a
configuration < to configurations in a regular set @ . We call this set the reachability witnesses for <u���9t�	 �

with respect to @ : ReachabilityWitnesses ��<7�]@.��� ? @A BED A 	23F4 ��<^�
<>%b� .
It is convenient to think of PDS � and � -automaton j (for @ ) as being combined in sequence, to create

a combined PDS, which we will call �cj . �cj ’s states are ���8k � k , and its rules are those of � ,
augmented with a rule � y �����0� ! � y %����]� for each transition

y��w ! y % in j ’s transition set ! � .
We say that a configuration <�� ������� '�� � �)�)���
	K� is accepted by �cj if there is a path to a configuration

� y�� ���>� such that
y� �mo . Note that because j has no transitions leading to initial states, �cj ’s behavior

during an accepting run can be divided into two phases—transitions during which �cj mimics � , followed
by transitions during which �cj mimics j : once �cj reaches a state in �Dk w �=� , it can only perform a
sequence of pops, possibly reaching a state in o . If the run of �cj does reach a state in o , in terms of the
features of the original � and j , the second phase corresponds to automaton j accepting some configuration
<>% that has been reached by � , starting in configuration < . In other words, �cj accepts a configuration < iff
<�� A'B
C � �D@.� .

The first language that we define characterizes the pop sequences of �cj . A pop sequence for
y �9k ,

�#�9	 , and
y % � k is a sequence of �cj ’s transitions that (i) starts in a configuration � y ���1��� , (ii) ends in

a configuration � y %b���c� , and (iii) throughout the transition sequence the stack is always of the form �=% � for
some non-empty sequence �u%N��	�� , except in the last step, when the stack shrinks to � . Because � remains
unchanged throughout a pop sequence, we need only consider pop sequences of a canonical form, i.e., those
that (i) start in a configuration � y ���_� , and (ii) end in a configuration � y %����7� . The pop sequences for a given

y
,

� , and
y % can be characterized by the complete derivation trees1 derived from nonterminal PS I���� � � �9AKL , using

the grammar shown in Figure 1.
Theorem 3.1 PDS �cj has a pop sequence for

y
, � , and

y % iff nonterminal PS I���� � � �9A L of the grammar shown
in Figure 1 has a complete derivation tree. Moreover, for each derivation tree with root PS I���� � � � A L , a preorder
listing of the derivation tree’s production instances (where Figure 1 defines the correspondence between
productions and PDS rules) gives a sequence of rules for a pop sequence for

y
, � , and

y % ; and every such
sequence of rules has a derivation tree with root PS I���� � � �9AKL .

1A derivation tree is complete if it has is a terminal symbol at each leaf.
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Production for each
�F� � PS I���� � � � A L ! � y �w ! y %N�;!8�
��g � PS I � � � � �)A L ! � �������_�0� ! ���&%����7�`�;�\�&���;�
� � � PS I � � � � �FL ! PS I �)A � � A � �FL �������_�0� ! ��� % ��� % �`�;���'������� y �[k
��� � PS I � � � � �FL ! PS I � A � � A � � A L PS I�� A � � A A � �FL �������_�0� ! ��� % ��� % � % % � �;���'������� y � y % �[k

Figure 1: A context-free language for the pop sequences of �cj , and the �cj rules that correspond to each
production.

Proof: [Sketch] To shrink the stack by removing the stack symbol on the left-hand side of each rule of �cj ,
there must be a transition sequence that removes each of the symbols that appear in the stack component of
the rule’s right-hand side. In other words, a pop sequence for the left-hand-side stack symbol must involve
a pop sequence for each right-hand-side stack symbol.

The left-hand and right-hand sides of the productions in Figure 1 reflect the pop-sequence obligations
incurred by the corresponding rule of �cj . �

To capture the set ReachabilityWitnesses ����������'�� � �)�)��� 	S�]�]@.� , where @ is recognized by automaton j ,
we define a context-free language given by the set of productions

Accepting % � ' � � �)�)�
� 	 , I � � �!L ! PS I � � � 5 � � 5 L PS I�� 5 � ��� � � � L �)�)� PS I��	��
 5 � � � � �FLfor each
y� �Mkd� for �ce�� e�� w ��� and

y ��o
Accepted % � '�� � �)�)�
�
	/, I �+L ! Accepting % � '�� � �)�)�
� 	/, I � � �9L for each

y ��o
This language captures all ways in which PDS �cj can accept ���Q����'�� � �)�)��� 	S� : the set of reachabil-

ity witnesses for ������� '�� � �)�)��
	K� corresponds to the complete derivation trees derivable from nonterminal
Accepted % � ' � � �)�)�
� 	 , I �+L . The subtree rooted at PS I��	� 
 5 � � � � �	�CL gives the pop sequence that �cj performs to
consume symbol � � . (If there are no reachability witnesses for ������� '�� � �)�)���
	K� , there are no complete deriva-
tion trees with root Accepted % � '�� � �)�)���
	 , I �+L .)
3.2 Weighted PDSs and Abstract Grammar Problems

Turning now to weighted PDSs, we will consider the weighted version of �cj , denoted by �Zj , in which
weighted PDS � is combined with j , and each rule � y ����� � ! � y % ���]� that was added due to transitiony �w ! y % in j ’s transition set ! � is assigned the weight � .

We are able to reason about semiring sums ( � ) of weights on the paths that are characterized by the
context-free grammars defined above using the following concept:
Definition 3.1 [14, 15] Let ���(��� � be a semilattice. An abstract grammar over ���(��� � is a collection of
context-free grammar productions, where each production � has the form

� � !����6� � '|�)�)�)� � � *6���
Parentheses, commas, and ��� (where � is a production) are terminal symbols. Every production � is associ-
ated with a function � �1E!� * !"� . Thus, every string # of terminal symbols derived in this grammar (i.e.,
the yield of a complete derivation tree) denotes a composition of functions, and corresponds to a unique
value in � , which we call $&%�'�(O�)# � (or simply $&%�'��)# � when * is understood). Let +,(O� � � denote the strings
of terminals derivable from a nonterminal

�
. The abstract grammar problem is to compute, for each

nonterminal
�

, the value -
(O� � �OE�� �.NB&/10 I32 L $&%�')(O�)# ���
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Production for each�����
PS ���	� 
�� ���������� ����� ����������� �!�#" �%$���'& ���()�
PS �+* � 
�� * � �,���)- ����� . &0/21 ��4365 �7/21 ����8)3#":9;� 1 "=<
�)->&@? ��.A���BC�

PS �+* � 
�� ���D���)E � PS �+* � � 
 � � �� � . &0/21 ��4365 �7/21 �����4��3#":9�� 1 ":<F���G":H
�)E>&@IKJML ? ��.A�ON J�QP��

PS �+* � 
�� ���D���AR � PS �+* � � 
 � � � � � � PS ��� � � 
 � � � ��� � . &0/21 ��4365 �7/21 �����4�S�4� ��3#":9�� 1 ":<F������� �4"TH
�ARU&@IKJML IMVWL+? �Q.A�ON J N V��X)�

Accepting Y � � � -6LZL[L �]\�^ �+* � ��6�_�)` � PS �S*W� 
Za	� ��ab� � PS ����a�� 
dc�� �ecf� � LZL[L � PS ���egAh�af� 
dg�� �� ��Zi6":H,�
for

�kjmlnjpo=qp�C�
and

�r"ts
�)`>&@IKJ � L+IKJ�-uL[L[L	IvJ \ L J � N J�- N L[LZL N J \��wC�

Accepted Y � � � - L[LZL � \ ^ �+*[�6�_�)x � Accepting Y � � � - L[LZL � \ ^ �+* � �� ���r"=s
�)x>&@IKJML J

Figure 2: An abstract grammar problem for the GPR problem.

Because the complete derivation trees with root Accepted % ��'�� � �)�)��� 	/, I � L encode the transition sequences
by which �Lj accepts ������� '�� � �)�)���
	K� , to cast the GPR as a grammar problem, we merely have to attach
appropriate production functions to the productions so that for each rule sequence $ , and corresponding
derivation tree (with yield) # , we have -N��$��:� $&%�' (`�)# � . This is done in Figure 2: note how functions � � ,�]y , and ��z place " ��-�� at the beginning of the semiring-product expression; this corresponds to a preorder
listing of a derivation tree’s production instances (cf. Theorem 3.1).

To solve the GPR problem, we appeal to the following theorem:
Theorem 3.2 [14, 15] The abstract grammar problem for * and ���(��� � can be solved by an iterative com-
putation that finds the maximum fixed point when the following conditions hold:

1. The semilattice ���(��� � has no infinite descending chains.

2. Every production function � � in * is distributive, i.e.,

�1� ��
5
B�{
5
�)�)�)�^� ��

8
B�{
8
�0� �I �

5
�+|+|+| � �
8
L�B�{
5�}�~+~+~�} { 8

�1��� � 5 �)�)�)� ���
�
8 �

for arbitrary, non-empty, finite index sets � '|�)�)�)�|�d�)* .
3. Every production function � � in * is strict in � in each argument.

The abstract grammar problem given in Figure 2 meets the conditions of Theorem 3.2 because

1. By Definition 2.3, the � operator is associative, commutative, and idempotent; hence ���;���I� is a
semilattice. By Definition 2.3(5), ���;���I� has no infinite descending chains.

2. The distributivity of each of the production functions � ' , �)�)� , �]� over arbitrary, non-empty, finite index
sets follows from repeated application of Definition 2.3(3).

3. Production functions ��y , �)�)� , � � are strict in � in each argument because � is an annihilator with
respect to � (Definition 2.3(4)). Production functions �J' and � � are constants (i.e., functions with no
arguments), and hence meet the required condition trivially.

Thus, one algorithm for solving the GPR problem for a given weighted PDS � , initial configuration
������� '�� � �)�)��� 	S� , and regular set @ (represented by automaton j ) is as follows:
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� Create the combined weighted PDS �Lj .

� Define the corresponding abstract grammar problem according to the schema shown in Figure 2.

� Solve this abstract grammar problem by finding the maximum fixed point using chaotic iteration: for
each nonterminal

�
, the fixed-point-finding algorithm maintains a value ��� � � , which is the current

estimate for
�

’s value in the maximum fixed-point solution; initially, all ��� � � values are set to � ;
��� � � is updated whenever a value �����l� changes, for any � used on the right-hand side of a production
whose left-hand-side nonterminal is

�
.

3.3 A More Efficient Algorithm for the GPR Problem

The approach given in the previous section is not very efficient: for a configuration ������� '�� � �)�)��
	K� , it
takes �l�
H�k�H 	�� ' H o H�� time and space just to create the grammar productions in Figure 2 with left-hand-side
nonterminal Accepting % � '�� � �)�)�
� 	/, I � � �9L . However, we can improve on the algorithm of the previous section
because not all instantiations of the productions listed in Figure 2 are relevant to the final solution; we want
to prevent the algorithm from exploring useless nonterminals of the grammar shown in Figure 2.

Moreover, all GPR questions with respect to a given target-configuration set @ involve the same sub-
grammar for the PS nonterminals. As in the (ordinary) pushdown-reachability problem [3, 7], the informa-
tion about whether a complete derivation tree with root nonterminal PS I���� � � � A L exists (i.e., whether PS I���� � � �9A L
is a productive nonterminal) can be precomputed and returned in the form of an (annotated) automaton of
size ���
H�k�H�H �;H7� H�!9� H�� . Exploring the PS subgrammar lazily saves us from having to construct the entire
PS subgrammar. Productive nonterminals represent automaton transitions, and the productions that involve
any given transition can be constructed on-the-fly, as is done in Algorithm 1, shown in Figure 3.

It is relatively straightforward to see that Algorithm 1 solves the grammar problem for the PS subgram-
mar from Figure 2: ��R�B�� T|C�U contains the set of transitions (PS nonterminals) whose value ��� 3 � has been
updated since it was last considered; in line 8 all values are set to � . A function call update � 3 ��-^�
	c� com-
putes the new value for transition 3 if 3 can be created using rule - and the transitions in the ordered list 	 .
Lines 9–10 process the rules of types (1) and (2), respectively. Lines 11–17 represent the fixed-point-finding
loop: line 13, 15, and 17 simulate the processing of rules of types (3) and (4) that involve transition 3 on
their right-hand side; in particular, line 4 corresponds to invocations of production functions �Oy and ��z . Note
that line 4 can change ��� 3 � only to a smaller value (w.r.t. � ). The iterations continue until the values of all
transitions stabilize, i.e., ��R�B��^T�C|U is empty.

From the fact that Algorithm 1 is simply a different way of expressing the grammar problem for the
PS subgrammar, we know that the algorithm terminates and computes the desired result. Moreover, apart
from operations having to do with � , the algorithm is remarkably similar to the A'B�C �

algorithm from [7]—the
only major difference being that transitions are stored in a workset and processed multiple times, whereas
in [7] each transition is processed exactly once. Thus, the time complexity increases from the ���
H�k H � H ��H��
complexity of the unweighted case [7] by a factor that is no more than the length of the maximal-length
descending chain in the semiring.

Given the annotated A'B
C �
automaton, the value of : ��<|� for any configuration < can be read off from the

automaton by following all paths by which < is accepted—accumulating a value for each path—and taking
the meet of the resulting value set. The value-accumulation step can be performed using a straightforward
extension of a standard algorithm for simulating an NFA (cf. [1, Algorithm 3.4]).

Algorithm 1 is a dynamic-programming algorithm for determining : ��<|� ; Appendix A describes how to
extend Algorithm 1 to keep additional annotations on transitions so that the path set >:��<|� can be obtained.

4 Applications to Interprocedural Dataflow Analysis

This section describes the application of weighted PDSs to interprocedural dataflow analysis, and shows
that the algorithm from Section 3 provides a way to generalize previously known frameworks for interpro-
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Algorithm 1
Input: a weighted pushdown system �?�/���l�! :��"��

where �+�/�����
	����� and  9�/���;���=���=���S��� � ;
a � -Automaton ji�/�Dkd�
	��]!9���
���
oW� that accepts @ such that j has no transitions into � states

Output: a � -automaton j z|{x} � �/�Dkl�
	0�]!m�
� �
oW� that accepts A1B�C � �D@W�
a function � that maps every � y ���Q� y % �`�[! to the value of

-
( � PS I���� � � � A L �

in the abstract grammar problem defined in Figure 2;

1 procedure update( 3 ��-^�
	 )
2 begin
3 ! E�� ! �;F 3 P ;
4 ��� 3 � E�� ��� 3 � �$�" ��-�� � ��� 	=�F� �������)�)�=� ��� 	=�
H 	dH������ �
5 if ��� 3 � changed value then ��R�B�� T�C|UOE�� ��R�B�� T|C�U �;F 3 P
6 end
7
8 !rE�� ! � � � � �1� ��R�B�� T|C�UOE��Z! � ;
9 for all 3 �[!9� do ��� 3 �`E�� � ;

10 for all -I�i�������_�0� ! ���'%������`�;� do �^A � %6U CK���������(���&%x�]��-^� �D��� ;
11 while ��R�B��^T�C|U �� � do
12 select and remove a transition 3 �/� y ���(� y %b� from ��R6B��^T�C�U ;
13 for all -.�/��� ' ��� ' �0� !�� y �����`�;� do �^A � % U CK����� ' ��� ' � y %��]��-7� � 3 ��� ;
14 for all -.�/����'����J'>�0� !�� y ���'� � �`�;� do
15 for all 3 %f�/� y %���� � �

y % % �O�[! do �^A � %6U Cf����� ' ��� ' � y % %x�]��-^� � 3 � 3 %b��� ;
16 for all -.�/����'����J'>�0� !���� % ��� � �_�`�;� do
17 if 3 %f�/���&%���� � �

y � �[! then �^A � %6U CK������'|���J'|� y % �]��-7� � 3 %�� 3 ��� ;
18 return ���Dkd�
	��]!m�
���
oW�]� �D�
Figure 3: An on-the-fly algorithm for solving the grammar problem for the PS subgrammar from Figure 2.

cedural dataflow analysis [20, 24]. The running example used in this section illustrates the application of
the approach to linear constant propagation.

Interprocedural Dataflow Analysis, Supergraphs, and Exploded Supergraphs

Interprocedural dataflow-analysis problems are often defined in terms of a program’s supergraph, an exam-
ple of which is shown in Figure 4. A supergraph consists of a collection of control-flow graphs—one for
each procedure—one of which represents the program’s main procedure. The flowgraph for a procedure p
has a unique enter node, denoted by � z , and a unique exit node, denoted by � z . The other nodes of the flow-
graph represent statements and conditions of the program in the usual way,2 except that each procedure call
in the program is represented in the supergraph by two nodes, a call node and a return-site node (e.g., see the
node-pairs ��� � � �uy � , ��� � � ����� , ����'!'V� �0' � � in Figure 4). In addition to the ordinary intraprocedural edges that
connect the nodes of the individual control-flow graphs, for each procedure call—represented, say, by call
node < and return-site node - —the supergraph contains three edges: an intraprocedural call-to-return-site
edge from < to - ; an interprocedural call-to-enter edge from < to the enter node of the called procedure; an
interprocedural exit-to-return-site edge from the exit node of the called procedure to - .
Definition 4.1 A path of length � from node

-
to node � is a (possibly empty) sequence of � edges, which

will be denoted by %�� ' �	� � �)�)�)� �	�	
), , such that the source of � ' is
-

, the target of ��
 is � , and for all � ,
2The nodes of a flowgraph can represent individual statements and conditions; alternatively, they can represent basic blocks.
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int x;

void main() �
n1: x = 5;

n2,n3: p();
return;�

void p() �
n4: if (...) �

n5: x = x + 1;
n6,n7: p();

n8: x = x - 1;�
n9: else if (...) �

n10: x = x - 1;
n11,n12: p();

n13: x = x + 1;�
return;�

emain

n1: x = 5

n2: call p

n3: ret from p

xmain

ep

n5: x = x+1

n11: call p

n12: ret from p

xp

n10: x = x−1

n13: x = x+1n8: x = x−1

n6: call p

n7: ret from p

n4: if (. . .)

n9: if (. . .)

n14

t

t

f

f

λe.e[x�⊥]

λe.e[x�5]

λe.e[x��] λe.e[x��]λe.e[x��]

λe.e[x�e(x)+1]

λe.e[x�e(x)+1] λe.e[x�e(x)−1]

λe.e[x�e(x)−1]

Figure 4: A program fragment and its supergraph. The environment transformer for all unlabeled edges is� �E� � .

�ce���e � w � , the target of edge � � is the source of edge � � � ' . Path concatenation is denoted by � .
The notion of an (interprocedurally) valid path is necessary to capture the idea that not all paths in a

supergraph represent potential execution paths. A valid path is one that respects the fact that a procedure
always returns to the site of the most recent call. We distinguish further between a same-level valid path—a
path that starts and ends in the same procedure, and in which every call has a corresponding return (and vice
versa)—and a valid path—a path that may include one or more unmatched calls:
Definition 4.2 The sets of same-level valid paths and valid paths in a supergraph are defined inductively
as follows:

� The empty path is a same-level valid path (and therefore a valid path).

� Path ��� %��), is a valid path if either (i) � is not an exit-to-return-site edge and � is a valid path, or
(ii) � is an exit-to-return-site edge and � � ����� %�� @ ,����
	 , where ��	 is a same-level valid path, ��� is a
valid path, and the source node of � @ is the call node that matches the return-site node at the target of
� . Such a path is a same-level valid path if ��� is also a same-level valid path.

Example 4.1 In the supergraph shown in Figure 4, the path

��������=! � ' !�� � ! �Vzd! � z ! ��� !�� '�z ! �fz=!�� y
is a (same-level) valid path; the path

� ������ !��0' !�� � ! � z !��6z !�� �
is a (non-same-level) valid path because the call-to-start edge � � ! � z has no matching exit-to-return-site
edge; the path

� ������ ! �0' !�� � ! � z ! �6z ! � � !��0'�z ! � z !����
9



Λ

Λ

v.vλv.vλv.vλ

x y

x y

Λ

Λ

v.vλ

v.vλλv.7

x y

x y

Λ

Λ

v.vλ v.vλ

x y

x y

v.vλ

Λ

Λ

v.vλ

λv.−2*v+5

v.vλ

x y

x y

(a) I���L � (b) I���L ��Y ���� � ^
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 � � � ��pXW^

Figure 5: The exploded representations of four environment-transformer functions used in linear constant
propagation.

is not a valid path because the exit-to-return-site edge � z ! ��� does not correspond to the preceding call-
to-start edge � � ! �Vz . �

A context-sensitive interprocedural dataflow analysis is one in which the analysis of a called procedure
is “sensitive” to the context in which it is called. A context-sensitive analysis captures the fact that calls on
a procedure that arrive via different calling contexts can cause different sets of execution states to arise on
entry to a procedure. More precisely, the goal of a context-sensitive analysis is to find the meet-over-all-
valid-paths value for nodes of a supergraph [13, 20, 24].

The remainder of this section considers the Interprocedural Distributive Environment (IDE) framework
for context-sensitive interprocedural dataflow analysis [20]. It applies to problems in which the dataflow
information at a program point is represented by a finite environment (i.e., a mapping from a finite set
of symbols to a finite-height domain of values), and the effect of a program operation is captured by an
“environment-transformer function” associated with each supergraph edge. The transformer functions are
assumed to distribute over the meet operation on environments.

Two IDE problems are (decidable) variants of the constant-propagation problem: copy-constant propa-
gation and linear-constant propagation. The former interprets assignment statements of the form �\��� and� �D� . The latter also interprets statements of the form � � w g��>�l��� .

By means of an “explosion transformation”, an IDE problem can be transformed from a path problem
on a program’s supergraph to a path problem on a graph that is larger, but in which every edge is labeled
with a much simpler edge function (a so-called “micro-function”) [20]. Each micro-function on an edge� '=! �

� captures the effect that the value of symbol
� ' in the argument environment has on the value of

symbol
�
� in the result environment. Figure 5 shows the exploded representations of four environment-

transformer functions used in linear constant propagation. Figure 5(a) shows how the identity function
� �/� �

is represented. Figure 5(b)–Figure 5(d) show the representations of the functions
� �/� � % ���!��+, , � �E� � % � �!

�����_�M, , and
� �E� �2% � �! w g�� �����N�_��� , , which are the dataflow functions for the assignment statements �\��� ,� �D� , and � � w g��>�=��� , respectively. (The � vertices are used to represent the effects of a function that

are independent of the argument environment. Each graph includes an edge of the form �i!�� , labeled
with

� -J� - ; these edges are needed to capture function composition properly [20].)
Figure 6 shows the exploded supergraph that corresponds to the program from Figure 4 for the linear

constant-propagation problem.

From Exploded Supergraphs to Weighted PDSs

We now show how to solve linear constant-propagation problems in a context-sensitive fashion by defining
a generalized pushdown reachability problem in which the paths of the (infinite-state) transition system
correspond to valid paths in the exploded supergraph from � � ������ ���O� . To do this, we encode the exploded
supergraph as a weighted PDS whose weights are drawn from a semiring whose value set is the set of
functions

o�� @ �ZF � �9� �WP �;F � �9�x� 	 � �f����� � <.H 	 �"!����O�#!�� and <��"! $% P/�
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emain

n1: x = 5

n2: call p

xmain

ep

n5: x = x+1

xp

n10: x = x−1

n13: x = x+1n8: x = x−1

n4: if (. . .)

n9: if (. . .)

n14

t

t

f

f

ΛΛΛΛ x

ΛΛΛΛ

λl.5
λl.l+1

λl.l+1λl.l−1

λl.l−1

x

n3: ret from p n7: ret from p n12: ret from p

n6: call p n11: call p

λl.⊥

Figure 6: The exploded supergraph of the program from Figure 4 for the linear constant-propagation prob-
lem. The micro-functions are all id, except where indicated.

Every function "[�;o � @ w F � �9� �WP can be represented by a triple � 	 ���^�
<|� , where 	 � ! , �:�"! , <��"! $%
, and

" � � �9�
� � if �����
� 	 � �f����� ��< otherwise

The third component < is needed so that the meet of two functions can be represented. (See [20] for details.)
The semiring value � is

� �9� � ; the semiring value � is the identity function, whose representation is �F�����S� �I� .
We also denote the identity function by id. By convention, a constant function

� �9� � is represented as ���S���^� �I� .
The operations � and � are defined as follows:

� 	 � ��� � �
< � � � � 	 '|���+'|�
< '>�0� ����
���

� 	 '|���+'|�
< ' � < � � if 	 '`� 	 � and �+'`� � �� 	 ' ��� ' �
<|� where < �/� 	 ' � � � ��� ' � � < ' ��< � �
if �x� �i���' w � � ���S� 	 � w 	 '>� �"!

�F�����S�	�I� otherwise

� 	 � ��� � �
< � � � � 	 '|���+'|�
< '>�0�/��� 	 ' � 	 � �]� � 	 '���� � ���+'>�]� ��� 	 '�� < � ���+']� ��< '>�����
Here it is assumed that � ����� � � �*�_� ��� �	�$� �8� � for � ��! $%

and that � �
� ����� �*�
��������s� �M��� for �)� ! %

. The second case for the combiner operator is obtained by equating the
terms 	 ' � � ��� ' and 	 � � � ��� � and taking the solution for � , provided it is integral.

The control locations correspond to the program’s variables (and also to � ). Stack symbols, such as �Uz ,
��� and � � , correspond to nodes of the supergraph.

With one exception, each edge in the exploded supergraph corresponds to one rule of the weighted PDS.
The encoding can be described in terms of the kinds of edges that occur in the supergraph.
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A few of the weighted PDS’s rules for the (exploded) intraprocedural edges are as follows:

Intraprocedural edges in main
� �:� �0'>�0� !�� �:� � � � id
� �:� � ' �0� !������ � � �

� �9� �
� �:� �uy �0� !�� �:��� ������ � id
����� � y ��� !�������� ������S� id

Intraprocedural edges in p
� �:� �6z^�0� !�� �:� ��� � id
���Q� � z �0� !����Q� � � � id
� �:� ��� �0� !�� �:� � � � id
���Q� � � �0� !����Q� �u� � � �9� �f���

In a rule such as
����� ���|�0� !����Q� � � � � � � �f��� (1)

the second component of each tuple implies that the currently active procedure is p, and the rest of the stack
is not changed.

At each call site, each PDS rule that encodes an edge in the exploded representation of a call-to-enter
edge has two stack symbols on its right-hand side. The second symbol is the name of the corresponding
return-site node, which is pushed on the stack:

Transitions for call site � �� �:� � � �0� !�� �:�	� z �uy|� id
���Q� � � �0� !������	��z � y � id

Transitions for call site � �
� �:� � � �0� !�� �:�	� z ����� id
���Q� �u� �0� !������	��z � � � id

Transitions for call site ��'!'
� �:� �0'!'>�0� !�� �:�	� z �0' � � id
���Q� � '!' �0� !������	��z � ' � � id

The process of returning from p is encoded by popping the topmost stack symbols off the stack.

Transitions to return from p
� �:��� z �0� !�� �:���7� id
�������&z �0� !����Q���7� id

The complete weighted PDS for the exploded supergraph from Figure 6 is given in Appendix B.

Obtaining Dataflow Information from the Exploded Supergraph’s Weighted PDS

For linear constant propagation, we are interested in a generalized reachability problem from configuration
� �:�	� ������ � . Thus, to obtain dataflow information from the exploded supergraph’s weighted PDS, we perform
the following steps:

� Define a regular language � for the configurations of interest. This can be done by creating an
automaton for � , and giving each edge of the automaton the weight id.

� Apply Algorithm 1 to create a weighted automaton for A'B
C � ���.� .
� Inspect the A1B�C � ���.� -automaton to find the automaton transition � ������� 	w�wKwfw ! %�
�
]C A1U����� T>U�%6U C . Return

the weight on this transition as the answer.

In the following, we often write ���Q� # � , where # is a regular expression, to mean the set of all configu-
rations ���Q����� where � is in the language of stack contents defined by # .
Example 4.2 For the query A1B�C � �����Q�	� z ���0' � �����

� �uy|��� , the semiring value associated with the configuration
� �:�	� ������ � is

� �9� � , which means that the value of program variable � must be � whenever p is entered with
a stack of the form “ �|z\��� ' � � � �

� � y ”; i.e., main called p, which then called itself recursively an arbitrary
number of times, alternating between the two recursive call sites.

A witness-path set for the configuration � �:�	� ������ � is a singleton set, consisting of the following path:

Semiring value Configuration Rule Rule weight
I��L X /�� � ��������� 3 /�� � ��������� 3u5 � /�� �o � 3 idI��L X /�� �o � 3 /�� �o � 365 � / � ��o - 3 I��L X
id / � �o - 3 / � ��o - 365 � / � � ��� o E 3 id
id / � � ��� o E 3 Configuration accepted by query automaton
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�
Example 4.3 One example of a situation in which the stack is of the form �6z\��� ' � � � �

� � y is when main
calls p at � � ( �uy ); p calls p at � � ( ��� ); and finally p calls p at ��'!' ( ��' � ). In this case, the stack contains
� z �0' � ��� �uy . As expected, for the query A'B�C � �������	� z �0' � ��� �uy|��� , the semiring value associated with the
configuration � �:�	� ������ � is

� �9� � .
In this case, a witness-path set for the configuration � �:�	� ������ � is a singleton set, consisting of the

following path:

Semiring value Configuration Rule Rule weight
I���L X / � � � � ����� 3 / � � � � ����� 365 �7/ � ��o � 3 id
I���L X / � ��o � 3 / � ��o � 365 �7/ � �o - 3 I���L X
id / � �o - 3 / � �o - 365 � / � � � � o E 3 id
id / � � � � o E 3 / � � � � 365 �7/ � �o R 3 id
id / � �o R o E 3 / � �o R 365 � / � �o ` 3 id
id / � �o ` o E 3 / � �o ` 365 � / � �o x 3 I���L � � �
I���L � qp� / � �o x o E 3 / � �o x 365 � / � � ��� o � 3 idI���L � qp� / � � ��� o � o E 3 / � � ��� 365 �7/ � �o R 3 idI���L � qp� / � �o R o � o E 3 / � �o R 365 � / � �o��W3 idI���L � qp� / � �o��#o � o E 3 / � �o��W365 � / � �o ��$ 3 idI���L � qp� / � �o ��$ o � o E 3 / � �o ��$ 365 �7/ � ��o ��� 3 I���L � qp�
id / � �o �f� o � o E 3 / � �o �f� 365 �7/ � � � � o � - 3 id
id / � � � � o � - o � o E 3 Configuration accepted by query automaton

Notice that the witness-path set for the configuration � �:�	� ������ � is more complicated in the case of the
query A'B�C � �������	� z �0' � ��� �uy|��� than in the case of the query A'B
C � �����Q�	� z ���0' � �����

� �uy|��� , even though the
latter involves a regular operator. �
Example 4.4 Conventional dataflow-analysis algorithms merge together (via meet, i.e., � ) the values for
each program point, regardless of calling context. The machinery described in this paper provides a strict
generalization of conventional dataflow analysis because the merged information can be obtained by issuing
an appropriate query.

For instance, the value that the algorithms given in [13, 20, 24] would obtain for the tuple �����	��zS� can
be obtained via the query A1B�C � �����Q�	� z �����`� �0' � �

� �uy|��� . When we perform this query, the semiring value
associated with the configuration � �:�	� ������S� is

� �9� � . This means that the value of program variable �
may not always be the same when � is entered with a stack of the form “ � z �����u� �0' � �

� �uy ”. For this
situation, a witness-path set for the configuration � �:�	� ������ � consists of two paths (which share the first five
configurations):

Semiring value Configuration Rule Rule weight
I��L � /�� � ������� � 3 / � � ��������� 3n5 �7/�� �o � 3 idI��L � /�� �o � 3 / � ��o � 365 �7/ � ��o - 3 I���L XI��L � / � �o - 3 / � ��o - 365 � / � � � � o E 3 idI��L � / � � � � o E 3 / � � � � 365 �7/ � �o R 3 idI��L � / � �o R o E 3

/ � ��o R 365 � / � �o ` 3 id
I��L � � � / � �o ` o E 3 / � ��o ` 365 � / � �o x 3 I���L � � �
id / � �o x o E 3 / � ��o x 365 � / � � � � o � 3 id
id / � � � � o � o E 3 Configuration accepted by query automaton

/ � ��o R 365 � / � �o��W3 idI��L � qm� / � �o��#o E 3 / � ��o���365 � / � �o ��$ 3 idI��L � qm� / � �o ��$ o E 3 / � ��o �b$ 365 �7/ � �o �f� 3 I���L � qm�
id / � �o �f� o E 3 / � ��o ��� 365 �7/ � � ��� o � - 3 id
id / � � ��� o � - o E 3 Configuration accepted by query automaton
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�
The Complexity of the Dataflow-Analysis Algorithm

Let � denote the number of edges in the supergraph, and let � %6B denote the number of symbols in the
domain of an environment. The encoding of an exploded supergraph as a PDS leads to a PDS with � %�B
control locations and H ��H6��� 6�� %6B rules. If � is the regular language of configurations of interest, assume
that � can be encoded by a weighted automaton with H�k�Hf��� ��� %�B states and 3 transitions. Let � denote
the maximal length of a descending chain in the semiring formed by the micro-functions.

The cost of a A'B�C �
query to obtain dataflow information for � is therefore no worse than ����� ��6�� %�B�6	��6

���
� %�B y 6���6���� time and ����� 6�� %6B�6�8��� %�B � 6�� � 3 � space, according to the results of Section 3 and [7].

How Clients of Dataflow Analysis Can Take Advantage of this Machinery

Algorithm 1 and the construction given above provide a new algorithm for interprocedural dataflow analysis.
As demonstrated by Examples 4.2, 4.3, and 4.4, with the weighted-PDS machinery, dataflow queries can be
posed with respect to a regular language of initial stack configurations, which provides a strict generalization
of the kind of queries that can be posed using ordinary interprocedural dataflow-analysis algorithms.

For clients of interprocedural dataflow analysis, such as program optimizers and tools for program un-
derstanding, this offers the ability to provide features that were previously unavailable:

� A program optimizer could make a query about dataflow values according to a possible pattern of
inline expansions. This would allow the optimizer to determine—without first performing an explicit
expansion—whether the inline expansion would produce favorable dataflow values that would allow
the code to be optimized.

� A tool for program understanding could let users pose queries about dataflow information with respect
to a regular language of initial stack configurations.

The first of these possibilities is illustrated by Figure 7, which shows a transformed version of the
program from Figure 4. The transformed program takes advantage of the information obtained from Ex-
ample 4.2, namely, that in Figure 4 the value of � is � whenever p is entered with a stack of the form
“ � z ���0' � �����

� �uy ”. In the transformed program, all calls to p that mimic the calling pattern “ ��� ' � ���V�
� �uy ”

(from the original program) are replaced by calls to A(% . In AN% , a copy of A has been inlined (and simpli-
fied) at the first recursive call site. Whenever the calling pattern fails to mimic “ ��� ' � ���V�

� �uy ”, the original
procedure p is called instead.

5 Related Work

Several connections between dataflow analysis and model checking have been established in past work
[25, 26, 21, 5]. The present paper continues this line of inquiry, but makes two contributions:

� Previous work addressed the relationship between model checking and bit-vector dataflow-analysis
problems, such as live-variable analysis and partial-redundancy elimination. In this paper, we show
how a technique inspired by one developed in the model-checking community [3, 7]—but general-
ized from its original form [23]—can be applied to certain dataflow-analysis problems that cannot be
expressed as bit-vector problems.

� Previous work has used temporal-logic expressions to specify dataflow-analysis problems. This pa-
per’s results are based on a more basic model-checking primitive, namely A'B
C �

. (The approach also
extends to ASR7TVU �

.)

These ideas have been illustrated by applying them to linear constant propagation, which is not expressible
as a bit-vector problem.
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int x;

void main() �
x = 5;
p’();
return;�

void p() �
if (...) �

x = x + 1;
p();
x = x - 1;�

else if (...) �
x = x - 1;
p();
x = x + 1;�

return;�

void p’() �
if (...) �

if (...) � // Inlined call n6,n7
x = 7;
p(); // n6,n7; n6,n7�

else if (...) �
p’(); // n6,n7; n11,n12�

// End inlined call n6,n7�
else if (...) �

x = 4;
p();�

x = 5;
return;�

Figure 7: A transformed version of the program from Figure 4 that takes advantage of the fact that in Figure 4
the value of � is � whenever � is entered with a stack of the form “ � z ���0' � �����

� �uy ”.

The most closely related papers in the dataflow-analysis literature are those that address demand-driven
interprocedural dataflow analysis.

� Reps [17, 16] presented a way in which algorithms that solve demand versions of interprocedural
analysis problems can be obtained automatically from their exhaustive counterparts (expressed as
logic programs) by making use of the “magic-sets transformation” [2], which is a general transforma-
tion developed in the logic-programming and deductive-database communities for creating efficient
demand versions of (bottom-up) logic programs, and/or tabulation [27], which is another method
for efficiently evaluating recursive queries in deductive databases. This approach was used to obtain
demand algorithms for interprocedural bit-vector problems.

� Subsequent work by Reps, Horwitz, and Sagiv extended the logic-programming approach to the class
of IFDS problems [18].3 They also gave an explicit demand algorithm for IFDS problems that does
not rely on the magic-sets transformation [10].

� Both exhaustive and demand algorithms for solving a certain class of IDE problems are presented
in [20]. The relationship between the two algorithms given in that paper is similar to the relationship
between the exhaustive [18] and demand [10] algorithms for IFDS problems.

� A fourth approach to obtaining demand versions of interprocedural dataflow-analysis algorithms was
investigated by Duesterwald, Gupta, and Soffa [6]. In their approach, for each query a collection of
dataflow equations is set up on the flow graph (but as if all edges were reversed). The flow functions
on the reverse graph are the (approximate) inverses of the forward flow functions. These equations
are then solved using a demand-driven fixed-point-finding procedure.

3Logic-programming terminology is not used in [18]; however, the exhaustive algorithm described there has a straightforward
implementation as a logic program. A demand algorithm can then be obtained by applying the magic-sets transformation.
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None of the demand algorithms described above support the ability to answer a query with respect to a user-
supplied language of stack configurations. As with previous work on dataflow analysis, those algorithms
merge together (via meet, i.e., � ) the values for each program point, regardless of calling context. In
addition, past work on demand-driven dataflow analysis has not examined the issue of providing a witness
set of paths to show why the answer to a dataflow query for a particular configuration has the value reported.

The IFDS framework can be extended with the ability to answer a query with respect to a language of
stack configurations by applying the reachability algorithms for (unweighted) PDSs [3, 7] on the graphs
used in [18, 10]; however, that approach does not work for the more general IDE framework. This pa-
per has shown how to extend the IDE framework to answer a query with respect to a language of stack
configurations, using our recent generalization of PDS reachability algorithms to weighted PDSs [23].

It should be noted that, like the algorithms from [20], the algorithm for solving GPR problems given
in Section 3 is not guaranteed to terminate for all IDE problems; however, like the algorithms from [20], it
does terminate for all copy-constant-propagation problems, all linear-constant-propagation problems, and,
in general, all problems for which the set of micro-functions contains no infinite descending chains. The
asymptotic cost of the algorithm in this paper is the same as the cost of the demand algorithm for solving
IDE problems from [20]; however, that algorithm is strictly less general than the algorithm presented here
(cf. Example 4.4).

An application of the theory of PDSs to interprocedural dataflow analysis has been proposed by Esparza
and Knoop [8], who considered several bit-vector problems, as well as the faint-variables problem, which
is an IFDS problem [19, Appendix A]. These problems are solved using certain A'B
C �

and ASR7T>U �
queries.

With respect to that work, the extension of PDSs to weighted PDSs allows our approach to solve a more
general class of dataflow-analysis problems than Esparza and Knoop’s techniques can handle; the witness-
set generation algorithm can also be used to extend their algorithms. (Esparza and Knoop also consider
bit-vector problems for flow-graph systems with parallelism, which we have not addressed.)

Model checking of PDSs has previously been used for verifying security properties of programs [9, 11,
4]. The methods described in this paper should permit more powerful security-verification algorithms to be
developed that use weighted PDSs to obtain a broader class of interprocedural dataflow information for use
in the verification process.
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A Generation of Witness Sets

Section 3.3 gives an efficient algorithm for determining : ��<|� ; this section addresses the question of how to
obtain >:��<|� . It may help to think of this problem as that of examining an infinite graph

�
whose nodes are

pairs ��<7� � � , where < is a configuration and
�

a value from � , and in which there is an edge from ��<N'|� � 'V�
to ��< � �

�
� � labeled with -\�*� if and only if < ' 2 4
5�6��,�< � and " ��-�� � �

� �
� ' . For a given configuration < ,

finding >:��<|� means identifying a set of paths $ '��)�)�)� ��$J* such that path $ � , �[e �le�� , leads from some
��<7� � � � to some ��< � ��� � , where < � �;@ , and ; *��� ' � � � : ��<|� . In other words, >:��<|���ZF+$ ' �)�)�)� ��$ * P proves that: ��<�� really has the value computed by Algorithm 1. We note the following properties:

� In general, � may be larger than � , e.g., we might have a situation where : ��<|� � � '�� �
� because of

two paths with values
� ' and

�
� , but there may be no single path with value

� ' � �
� .

� We want to keep >:��<|� as small as possible. If a witness set contains two paths $�' and $ � , where
-N��$ '>� ��-1��$ � � , then the same set without $ � is still a witness set.

Like : ��<|� , >:��<|� will be given indirectly in the form of another annotation (called � ) on the transitions
of j z|{x} � . We use two data structures for this, called wnode and wstruc. If 3 is a transition, then ��� 3 � holds
a reference to a wnode. (We shall denote a reference to some entity � by %��), .) A wnode is a set of wstruc
items. A wstruc item is of the form � � �+% 3 ,D�+% - ,D��� � where

� ��� , % 3 , is a reference back to 3 , -d�;� is a rule,
and � contains a sequence of references to wnodes. References may be �  ' , indicating a missing reference.

We can now extend Algorithm 1. The idea is that during execution, if ��� 3 �9� % � , , then ��� 3 �9�
; I�� �
	 	�� �
	 4 � � � LB�

�
. An item � � �+% 3 ,D�+% -=,D���M� in � denotes the following: Suppose that � z|{b} � has an accept-

ing path starting with 3 , and < is the configuration accepted by this path. Then, in the pushdown system,
there is a path (or rather, a family of paths) with value

�
from < to some <7%N�[@ , and this path starts with - . An

accepting path (in � z|{b} � ) for a successor configuration can be constructed by replacing 3 with the transitions
associated with the wnodes in � .

The concrete modifications to Algorithm 1 are as follows: In line 8, set � � �  ' . In line 9, create a
wnode � E��+F �F���+% 3 ,D� � �'�� �D���P for every 3 �;!9� and set ��� 3 �OE�� % � , .

Figure 8 shows a revised update procedure. Line 4 of Figure 8 computes the newly discovered value for
transition 3 , and line 5 records how the new path was discovered. In line 6, if ��� 3 � � �

, the update will not
change ��� 3 � and nothing further needs to be done. If

��� ��� 3 � (see line 8), the new addition is strictly smaller
than any path to 3 so far, and ��� 3 � only has to reference the new path. If

�
and ��� 3 � are incomparable, line 10

creates a new set consisting of the previous paths and the new path. Even though
�

is incomparable to ��� 3 � ,�
might approximate ( � ) one or more elements of � . The procedure minimize (not shown) removes these.

It is fairly straightforward to see that the information contained in � allows the reconstruction of a wit-
ness set involving 3 (see above). Moreover, every wnode created during execution contains references only
to wnodes created earlier. Therefore, the process of reconstructing the witness set by decoding wnode/wstruc
information must eventually terminate in a configuration from @ .

During execution of the modified algorithm, several wnodes for the same transition 3 can be created;
only one of them is referenced by 3 at any moment, although the other wnodes may still be referenced by
other transitions. A garbage collector can be used to keep track of the references and remove those nodes to
which there is no longer any chain of references from any transition.
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Algorithm 2
1 procedure update( 3 ��-^�
	 )
2 begin
3 ! E�� ! �;F 3 P ;
4

� E�� " ��-�� � ��� 	=�F� ��� � �)�)�=� ��� 	=�
H 	dH���� ;
5 �IE��/� � �+% 3 ,D�+% -=,D� �&��� 3 % ��H 3 % � 	M��� ;
6 if ��� 3 � � �

then return;
7 if ��� 3 � � �  ' or

��� ��� 3 � then
8 create � E��ZF � P ;
9 else

10 create � E����  � �� �� CS��� �;F � P7� , where ��� 3 � � % � , ;
11 ��� 3 � E�� % � ,��
12 ��� 3 � E�� ��� 3 � � � �
13 ��R6B��^T�C�UOE�� ��R�B��^T�C|U �;F 3 P
14 end

Figure 8: Modified update procedure.

B Weighted PDS for the Exploded Supergraph from Figure 6

Transitions to encode procedure main/�� � ������� � 365 � /�� �o � 3 id/�� � ������� � 365 � / � �o � 3 I���L �/�� �o � 365 � /�� �o - 3 id/�� �o � 365 � / � �o - 3 I���L X/�� �o - 365 � /�� �o E 3 id/�� �o E 365 � /�� � � ������� 3 id/ � �o E 3u5 � / � � � � ����� 3 id

Transitions to return from procedure p
/�� � � � 365 � / � � � � 3 id/ � � ��� 3u5 � / � � ��� 3 id

Transitions for call from main to p/�� �o - 365 � /�� � ��� o E 3 id/ � �o - 3u5 � / � � � � o E 3 id

Transitions for calls from p to itself
/�� �o x 365 � /�� � � � o � 3 id
/ � �o x 3u5 � / � � � � o � 3 id/�� �o �f� 365 � / � � � � o � - 3 id
/ � �o �f� 3u5 � / � � � � o � - 3 id

Transitions to encode procedure p/�� � ��� 3u5 � / � ��o R 3 id/ � � ��� 3u5 � / � ��o R 3 id/�� �o R 3n5 �7/�� �o��Z3
id/ � ��o R 365 � / � ��o � 3 id/�� �o R 3n5 �7/�� �o ` 3 id/ � ��o R 365 � / � ��o ` 3 id/�� �o ` 3n5 �7/�� �o x 3 id

/ � ��o ` 365 � / � ��o x 3 I��L � � �
/�� �o x 3n5 �7/�� �o � 3 id
/�� �o � 3n5 �7/�� �o��Z3

id
/ � ��o � 365 � / � ��o��Z3 id/�� �o � 3n5 �7/�� �o��Z3

id/ � ��o � 365 � / � ��o��Z3 I��L � qm�
/�� �o��Z3n5 �7/�� �o � R 3 id/ � ��o���365 � / � ��o � R 3 id/�� �o��Z3n5 �7/�� �o ��$ 3 id/ � ��o � 365 � / � ��o �b$ 3 id/�� �o ��$ 3u5 � / � ��o ��� 3 id/ � ��o �b$ 365 �7/ � �o �f� 3 I��L � qm�
/�� �o �f� 3u5 � / � ��o � - 3 id
/�� �o � - 3u5 � / � ��o � E 3 id
/ � ��o � - 365 �7/ � �o � E 3 id/�� �o � E 3u5 � / � ��o � R 3 id
/ � ��o � E 365 �7/ � �o � R 3 I��L � � �
/�� �o � R 3u5 � / � � ��� 3 id/ � ��o � R 365 �7/ � � ��� 3 id
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C Weighted Automata for Examples 4.2, 4.3, and 4.4

Weighted automaton for Example 4.2: A'B
C � �������	��z���� ' � � � �
� � y ���

Weighted automaton before:� �
\ �qZq ���������	��
����� ��
	��
	� id� -
\��qZq � � � id� �
\ a�cq�q�q � � - id

� �	�qq � � � id

Weighted automaton after:
�

\��q[q � � � id
�

\��q[q � � � id
�

\��q[q � � - I��L � qm�
�

\��q[q � � id
�

\ a��q�qvq �	� id
�

\ �qZq � � id
�

\��q[q � � � I��L � qm�
�

\��q[q � � - I��L � q%(
�

\��q[q � � I��L � qm�
�

\ a�aq�qvq �	� I��L � � �
�

\��qZq � � id
�

\ a��q�q�q � � id
� �	�qq � � - I��L � qm�
�

\ �q[q � � - I��L � q%(
� �	�qq � � id

�
\ �q[q �	� I���L � qm�

�
���qq � � id

�
\ �q[q � � id

�
\ a�aq�q�q � � id

�
\ �q[q � � - I���L � qm�

�
\��q[q � � - I���L � q%(

�
\ �q[q �	� id

�
\��q[q �	� I���L � qm�

�
\ a�cq�q�q � � I���L � � �

�
\ �q[q � � id

�
\��q[q � � id

�
\ a�cq�q�q � � id

�
\� q[q � � - I���L � qm�

�
\� q[q �	� id

�
\ a �q�q�q � � I���L � � �

�
\� q[q � � id

�
\ a �q�q�q � � id

�
�"!�#%$ &q�qKq�q �'���������(
)���*� �+
���
�� I��L X

�
\ aq[q �����������(
)���*� �+
	��
	� I��L X

�
\ a,�q�q�q � � - I��L � qm�

�
\ a �q�q�q � � id

�
\ a �q�q�q � � id

�
\ cq[q �����������(
)���*� �+
���
�� id

�
\ a�aq�q�q � � - id

� -.�q�q � � id
�

-.�q�q � � id� �
\ �qZq ���������	��
����� �+
	��
	� id� -
\ �qZq � � � id� �
\ aQcq�q�q � � - id

� ���qq � � � id

Weighted automaton for Example 4.3: A'B
C � �������	� z �0' � ��� �uy|���
Weighted automaton before:� E

\ �q[q � accepting state id� -
\��q[q � � E id� �
\ a�cq�qvq � � - id

� ���q�q � � � id

Weighted automaton after:
�

\� qZq � � - I���L � qp�
�

\� qZq � � id
�

\ a �q�q�q �	� I���L � � �
� � �q�q � � E id
�

\ �qZq � � E id
�

\ �qZq � � E id
�

\ �qZq � � - I���L � qp�
�

\ �qZq � � id
�

\ a��q�q�q �	� id
�

\ �qZq � � id
�

\ �qZq � � E I���L � qp�
�

\ �qZq � � - I���L � q (
�

\ �qZq � � I���L � qp�
�

\ a�aq�q�q �	� I���L � � �
�

\ �qZq � � id
�

\ a��q�q�q � � id

� ���q�q � � - I���L � qp�
�

\ �qZq � � - I���L � q (
� � �q�q � � id
�

\��qZq � � I���L � qp�
�

� �q�q � � id
�

\��qZq � � id
�

\ a�aq�q�q � � id
�

\ �qZq � � - I���L � qp�
�

\��qZq � � - I���L � q (
�

\ �qZq � � id
�

\ �qZq � � I���L � qp�
�

\ aQcq�q�q � � I���L � � �
�

\��qZq � � id
�

\ �qZq � � id
�

\ a�cq�q�q � � id

�
\� q[q � � id

�
\ a �q�qvq � � id

�
\ a,�q�qKq � � - I���L � qp�

�
\ a �q�qKq � � id

�
\ a �q�qvq � � id

�
\ a�aq�qKq � � - id

� - �q�q � � id
�

-.�q	q � � id
�

� !�#%$ &q�q�qvq ���������	��
����� �+
	��
	� I���L X
�

\ aq[q �'���������(
)���*� �+
���
�� I���L X
�

\ cq[q �'���������(
)���*� �+
���
�� id� E
\ �q[q ���������	��
����� �+
	��
	� id� -
\ �q[q � � E id� �
\ aQcq�q�q � � - id

� ���qq � � � id
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Weighted automaton for Example 4.4: A'B
C � �������	� z �����0� �0' � �
� �uy|���

Weighted automaton before:� �
\ �qZq ���������	��
����� �+
	��
	� id� �
\��qZq � � � id� �
\ aQcq�q�q � � � id

� � �qq � � � id

Weighted automaton after:
�

\ �q[q � � id
�

\ a,�q�qKq � � id
�

\��q[q � � id
�

\ �q[q � � I��L � qm�
�

\ a�aq�qKq � � I��L � � �
�

\ �q[q � � id
�

\ a,�q�q�q � � id
� ���q	q � � id
�

\��q[q � � I��L � qm�
�

���qfq � � id
�

\��q[q � � id
�

\ a�aq�q�q � � id
�

\��q[q � � � I��L �
�

\��q[q � � � I��L �

�
\ �qZq �	� id

�
\��qZq �	� I���L � qm�

�
\ a�cq�q�q � � I���L � � �

�
\��qZq � � id

�
\ �qZq � � id

�
\ a�cq�q�q � � id

�
\��qZq � � � I���L �

�
\  qZq � � � I���L �

�
\  qZq �	� id

�
\ a �q�q�q � � I���L � � �

�
\  qZq � � id

�
\ a �q�q�q � � id

�
\ �qZq � � � I���L �

�
\ a,�q�q�q � � � I���L �

�
\ a �q�q�q �	� id

�
\ a �q�q�q � � id

�
\ cq[q ���������	��
����� �+
	��
	� I��L �

�
����� i�\q q�q�qvq � ���������(
)���*� �+
���
�� I��L �

�
\ aq[q ���������	��
����� �+
	��
	� I��L �

�
\ �q[q � � � I��L �

�
\ a�aq�q�q � � � I��L �

� -��q[q � � id
�

-��q[q � � id� �
\ �qZq ���������	��
����� ��
	��
	� id� �
\��qZq � � � id� �
\ aQcq�q�q � � � id

� � �qfq � � � I��L �
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