
Computational Divided Differencing
and Divided-Difference Arithmetics

THOMAS W. REPS and LOUIS B. RALL
University of Wisconsin

Tools for computational differentiation transform a program that computes a numerical function F(x) into a related
program that computes F ′(x) (the derivative of F). This paper describes how techniques similar to those used in com-
putational-differentiation tools can be used to implement other program transformations—in particular, a variety of
transformations for computational divided differencing. We discuss how computational divided-differencing tech-
niques could lead to faster and more robust programs in scientific and graphics applications. We also describe how
these ideas relate to the numerical-finite-differencing techniques that motivated Robert Paige’s work on finite differenc-
ing of set-valued expressions in SETL programs.

Dedicated to the memory of Robert Paige, 1947-1999.

1. INTRODUCTION

A variety of studies in the field of programming languages have led to useful, high-level transformations

that manipulate programs in semantically meaningful ways. In very general terms, these tools transform a

program that performs a computation F(x) into a program that performs a related computation F#(x), for a

variety of F#’s of interest.1 (In some cases, an appropriate preprocessing operation h needs to be applied to

the input; in such cases, the transformed program F# is used to perform a computation of the form

F#(h(x)).) Examples of such tools include partial evaluators and program slicers:

• A partial evaluator creates a specialized version of a program when only part of the program’s input has

been supplied [21,10,34]. A partial evaluator transforms a program that performs a computation

F(〈s, d 〉), where F operates on a pair of inputs 〈s, d 〉; when s is known, partial evaluation of the pro-

gram with respect to s results in a program that computes the function F s(d) (= F s(second(〈s, d 〉))),

such that

This work was supported in part by the National Science Foundation under grants CCR-9625667 and CCR-9619219, by the United
States-Israel Binational Science Foundation under grant 96-00337, and by a Vilas Associate Award from the University of Wisconsin.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright no-
tices affixed thereon. The views and conclusions contained herein are those of the authors, and should not be interpreted as necessari-
ly representing the official policies or endorsements, either expressed or implied, of the above government agencies or the U.S. Gov-
ernment.

Authors’ addresses: Thomas W. Reps, Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI
53706; Louis B. Rall, Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706.
E-mail addresses: reps@cs.wisc.edu; rall@math.wisc.edu.
1In this paper, we do not generally make a distinction between programs and procedures. We use “program” both to refer to the pro-
gram as a whole, as well as to refer to individual subroutines in a generic sense. We use “procedure” only in places where we wish to
emphasize that the focus of interest is an individual subroutine per se.

− 2 −

(1.1)F s(d) = F(〈s, d 〉).

(The mnemonic is that s and d stand for the “static” and “dynamic” parts of the input, respectively.)

Partial evaluation is useful for removing interpretive overhead, and can also speed up programs that

have two arguments that change value at different rates (such as ray tracing [48]).

• The slice of a program with respect to a set of program elements S is a projection of the program that

includes only program elements that might affect (either directly or transitively) the values of the vari-

ables used at members of S [67,51,31]. Given a program that computes a function F , one version of the

slicing problem focuses on creating the slice by symbolically composing the original program with an

appropriate projection function π , where π characterizes what part of F’s output should be discarded and

what part should be retained [63]. Program slicing creates a program that computes Fπ , where

(1.2)Fπ (x) = (π F)(x).

Program-slicing tools allow one to find semantically meaningful decompositions of programs, where

the decompositions consist of elements that are not textually contiguous. Slicing, and subsequent manip-

ulation of slices, has applications in many software-engineering tools, including ones for program under-

standing, maintenance [22], debugging [45], testing [6,3], differencing [30,32], specialization [63], reuse

[49], and merging [30].

Less well known in the programming-languages community is the work that has been done by numerical

analysts on tools for computational differentiation (also known as automatic differentiation or algorithmic

differentiation) [68,56,26,5,27]:

• Giv en a program that computes a numerical function F(x), a computational-differentiation tool creates a

related program that computes F ′(x) (the derivative of F).

Applications of computational differentiation include optimization, solving differential equations,

curve fitting, sensitivity analysis, and many others.

Although in each of the cases mentioned above, the appropriate restructuring of the program could be

carried out by hand, hand transformation of a program is an error-prone process. The automated assistance

that the aforementioned tools provide prevents errors from being introduced when these transformations are

applied.

The work described in this paper expands the set of tools that programmers have at their disposal for per-

forming such high-level, semantically meaningful program manipulations. In particular, we describe how

techniques similar to those that have been developed for computational differentiation can be used to trans-

form programs that compute numerical functions into ones that compute divided differences. We also dis-

cuss how computational divided-differencing techniques can be used to create more robust algorithms for

manipulating representations of curves and surfaces.

The specific contributions of the paper are as follows:

• We present a program transformation that, given a numerical function F(x) defined by a program, creates

a program that computes F[x0, x1], the first divided difference of F(x), where

− 3 −

F[x0, x1] =df
F(x0) − F(x1)

x0 − x1
.

Furthermore, we show how computational first divided differencing generalizes computational differenti-

ation.

• We present a second program transformation that permits the creation of higher-order divided differences

of a numerical function defined by a program.

• We present a third program transformation that permits higher-order divided differences to be computed

more efficiently. This transformation does not apply to all programs; however, we show that there is at

least one important situation where this optimization is of use.

• We show how to extend these techniques to handle functions of several variables.

• Finally, we describe how our work on computational differencing relates to the numerical-finite-differ-

encing techniques that motivated Robert Paige’s work on finite differencing of set-valued expressions in

SETL programs [52,53].

These ideas are illustrated by means of numerous examples, and implementations of them in the form of

C++ class definitions (“divided-difference arithmetics”) are sketched.

The divided-differencing problems that are addressed in the paper can be viewed as generalizations of

problems such as differentiation, computation of Taylor coefficients, etc. Consequently, some of the tech-

niques introduced in this paper—in particular, the organization of the divided-difference arithmetic pre-

sented in Section 7—represent new approaches that, with appropriate simplification, can also be applied in

computational-differentiation tools.

The remainder of the paper is organized into eight sections: To make the paper self-contained, Section 2

provides a succinct review of the basic principles of computational differentiation that are relevant to our

work, and of so-called “differentiation arithmetics” [59,60,61]. Section 3 discusses the basic principle

behind computational divided differencing. Section 4 shows how computational divided differencing gen-

eralizes computational differentiation. Section 5 extends the ideas introduced in Section 3 to higher-order

computational divided differencing. Section 6 discusses techniques that apply to a useful special case.

Section 7 extends the ideas from Sections 3, 5, and 6 to functions of several variables. Section 8 describes

how these ideas relate to the numerical-finite-differencing techniques that motivated Robert Paige’s work

on finite differencing of set-valued expressions in SETL programs. Section 9 discusses other related work.

2. BACKGROUND ON COMPUTATIONAL DIFFERENTIATION

In scientific and graphics applications, computations model continuous phenomena. Unfortunately, opera-

tions in computers are discrete: Instead of providing real numbers, computers offer only floating-point

numbers. This leads to two kinds of errors: (i) discretization error, and (ii) round-off error. Discretization

error is well understood by numerical analysts, and there are well-known techniques for addressing it.

However, round-off error is much less well understood, as indicated by the following two statements, made

twenty years apart:

In general, the subject of round-off-error propagation is poorly understood, and very few theoreti-
cal results are available [13, pp. 362].

− 4 −

A convenient fiction is that a computer’s floating-point arithmetic is “accurate enough.”
. . . [This] is naive. Notwithstanding, it is a fiction necessarily adopted throughout most of this
book. To do a good job of answering the question of how roundoff error propagates, or can be
bounded . . . would not be possible: Rigorous analysis of many practical algorithms has never
been made, by us or anyone [55, pp. 889-890].

The crux of the problem is the possibility of catastrophic cancellation—i.e., the result of an operation may

have no significant digits at all.

This problem arises, for instance, in computing values of a function’s derivative. Suppose that you have

a program F(x) that computes a numerical function F(x).2 It is a very bad idea to try to compute F ′(x0),

the value of the derivative of F at x0, by picking a small value delta_x and invoking the following pro-

gram with the argument x0:3

float delta_x = . . . 〈some small value 〉 . . . ;

float F′_naive(float x){
return (F(x + delta_x) − F(x))/delta_x;

}

(2.1)

For a small enough value of delta_x, the values of F(x0+delta_x) and F(x0) will usually be very

close; the catastrophic cancellation that ensues is magnified by dividing by the small quantity delta_x,

yielding a useless result.

One bright spot during the last thirty years with respect to the control of round-off error has been the

emergence of tools for computational differentiation, which transform a program that computes a numerical

function F(x) into a related program that computes the derivative F ′(x).4 We can illustrate computational

differentiation by means of the following example (due to R. Zippel [69]):

EXAMPLE 2.2. Suppose that we have been given a collection of programs fi for the functions fi ,

1 ≤ i ≤ k, together with the program Prod shown below, which computes the function Prod(x) =
k

i=1
Π fi(x).

In addition, suppose that we have also been given programs fi′ for the functions fi ′, 1 ≤ i ≤ k. Finally,

suppose that we wish to obtain a program Prod′ that computes the function Prod ′(x). Row one of the

table given below shows mathematical expressions for Prod(x) and Prod ′(x). Row two shows two C++

procedures: Procedure Prod computes Prod(x); procedure Prod′ is the procedure that a computational-

differentiation system would create to compute Prod ′(x).

2Throughout the paper, Courier Font is used to denote functions defined by programs, whereas Italic Font is used to denote math-
ematical functions. That is, F(x) denotes a function (evaluated over real numbers), whereas F(x) denotes a program (evaluated over
floating-point numbers). We adhere to this convention both in concrete examples that involve C++ code, as well as in more abstract
discussions in order to distinguish between a mathematical function and a program that implements the function.
3The example programs in the paper are all written in C++; however, the ideas described apply to other programming languages—in-
cluding functional programming languages, as well as other imperative languages. (To emphasize the links between mathematical
concepts and their implementations in C++, we take the liberty of sometimes using ′ and/or subscripts on C++ identifiers.)
4Another bright spot has been the application of interval arithmetic to the verification of the accuracy of computed results, for many
basic numerical computations [28,29].

− 5 −

Function Derivative

Mathematical
notation Prod(x) =

k

i=1
Π fi(x) Prod ′(x) =

k

i=1
Σ fi ′(x) *

j /= i
Π f j(x)

Programming
notation

float Prod(float x){
float ans = 1.0;
for (int i = 1; i <= k; i++){

ans = ans * fi(x);
}
return ans;

}

float Prod′(float x){
float ans′ = 0.0;
float ans = 1.0;
for (int i = 1; i <= k; i++){
ans′ = ans′ * fi(x) + ans * fi′(x);
ans = ans * fi(x);

}
return ans′;

}

Notice that program Prod′ resembles program Prod, as opposed to F′_naive (see box (2.1)).

The transformation illustrated above is merely one instance of a general transformation that can be

applied to any program: Given a program G as input, the transformation produces a derivative-computing

program G′. The method for constructing G′ is as follows:

(i) For each variable v of type float used in G, another float variable v′ is introduced.

(ii) Each statement in G of the form “v = exp;”, where exp is an arithmetic expression, is transformed into

“v′ = exp′;v= exp;”, where exp′ is the expression for the derivative of exp. If exp involves calls to a

function g, then exp′ may involve calls to both g and g′.
(iii) Each return statement in G of the form “return v;” is transformed into “return v′;”.

In general, this transformation can be justified by appealing to the chain rule of differential calculus.

EXAMPLE 2.3. For Example 2.2, we can demonstrate the correctness of the transformation by symboli-

cally executing Prod′ for a few iterations, comparing the values of ans′ and ans (as functions of x) at the

start of each iteration of the for-loop:

Value of ans
(as a function of x)Iteration Value of ans′ (as a function of x)

0 0.0 1.0

1 f1′(x) f1(x)

2 f1′(x) * f2(x) +f1(x) * f2′(x) f1(x) * f2(x)

3 f1′(x) * f2(x) * f3(x) +f1(x) * f2′(x) * f3(x) +f1(x) * f2(x) * f3′(x) f1(x) * f2(x) * f3(x)
.

k
k

i=1
Σ fi′(x) *

j /= i
Π fj(x)

k

i=1
Π fi(x)

The loop maintains the invariant that, at the start of each iteration, ans′(x) =
d

dx
ans(x).5

5The value of ans′ on the 3rd iteration would actually be computed with the terms grouped as follows:
(f1′(x) * f2(x) +f1(x) * f2′(x)) *f3(x) +(f1(x) * f2(x)) * f3′(x). Terms have been expanded in the table given above

to clarify how ans′(x) builds up a value equivalent to Prod′(x) =
k

i=1
Σ fi′(x) *

j /= i
Π fj(x).

− 6 −

For the computational-differentiation approach, we did not really need to make the assumption that we

were given programs fi′ for the functions fi ′, 1 ≤ i ≤ k; instead, the programs fi′ can be generated from

the programs fi by applying the same statement-doubling transformation that was applied to Prod.

In languages that support operator overloading, such as C++, Ada, and Pascal-XSC, computational dif-

ferentiation can be carried out by defining a new data type that has fields for both the value and the

derivative, and overloading the arithmetic operators to carry out appropriate manipulations of both fields

[57,58], along the lines of the C++ class definition shown below:

enum ArgDesc { CONST, VAR };

class FloatD {
public:
float val′;
float val;
FloatD(ArgDesc,float);

};

// Constructor to convert a constant
// or a value for the independent
// variable to a FloatD
FloatD::FloatD(ArgDesc a, float v){

switch (a) {
case CONST:

val′ = 0.0;
val = v;

break;
case VAR:

val′ = 1.0;
val = v;

break;
}

}

FloatD operator+(FloatD a, FloatD b){
FloatD ans;
ans.val′ = a.val′ + b.val′;
ans.val = a.val + b.val;
return ans;

}

FloatD operator*(FloatD a, FloatD b){
FloatD ans;
ans.val′ = a.val * b.val′ + a.val′ * b.val;
ans.val = a.val * b.val;
return ans;

}

A class such as FloatD is called a differentiation arithmetic [59,60,61].

The transformation then amounts to changing the types of each procedure’s formal parameters, local

variables, and return value (including those of the fi).

EXAMPLE 2.4. Using class FloatD, the Prod program of Example 2.2 can be handled as follows:

− 7 −

float f1(float x){...} ⇐ FloatD f1(const FloatD &x){...}

. .

. .

float fk(float x){...} ⇐ FloatD fk(const FloatD &x){...}

float Prod(float x){
float ans = 1.0;
for (int i = 1; i <= k; i++){

ans = ans * fi(x);
}
return ans;

}

⇐

FloatD Prod(const FloatD &x){
FloatD ans(CONST,1.0); // ans = 1.0
for (int i = 1; i <= k; i++){
ans = ans * fi(x);

}
return ans;

}

⇐
float Prod′(float x){
FloatD xD(VAR,x);
return Prod(xD).val′;

}

By changing the types of the formal parameters, local variables, and the return values of Prod and the fi

(and making a slight change to the initialization of ans in Prod), the program now carries around

derivative values (in the val′ field) in addition to performing all of the work performed by the original pro-

gram. Because of the C++ overload-resolution mechanism, the fi procedures invoked in the fourth line of

the transformed version of Prod are the transformed versions of the fi (i.e., the fi of type FloatD →
FloatD).

The value of Prod’s derivative at v is obtained by calling Prod′(v).

In a differentiation arithmetic, each procedure in the user’s program, such as Prod and the fi in

Example 2.4, can be viewed as a box that maps two inputs to two outputs, as depicted below:

F F(v)v

F(v)v

w

Computational
Differentation

Differentiating
version of F F’(v)*w

In particular, in each differentiating version of a user-defined or library procedure F, the lower-right-hand

output produces the value F′(v)*w.

An input value v for the formal parameter is treated as a pair (v,1.0). Boxes like the one shown

above “snap together”: when F is composed with G (and the input is v), the output value on the lower-right-

hand side is F′(G(v))*G′(v), which agrees with the usual expression for the chain rule for the first-

derivative operator:

− 8 −

v

v

Computational
Differentation

F

Computational
Differentation

G G(v)

G(v)

F(G(v))

F(G(v))
Differentiating
version of G

Differentiating
version of F1.0 F’(G(v))*G’(v)G’(v)

The computational-differentiation technique summarized above is what is known as forward-mode differ-

entiation. A different computational-differentiation technique, re verse mode [37,65,33,24,25], is generally

preferable when the number of independent variables is much greater than the number of dependent vari-

ables. However, although it is possible to develop a reverse-mode version of computational divided differ-

encing, it does not appear to offer the same potential savings in operations performed that reverse mode

achieves for computational differentiation. Because the forward-mode versions of these operations are

somewhat more intuitive than their reverse-mode counterparts, the remainder of the paper concerns the gen-

eralization of forward-mode computational differentiation to forward-mode computational divided differ-

encing, and hence reverse mode is not summarized here.

The availability of overloading makes it possible to implement (forward-mode) computational differenti-

ation conveniently, by packaging it as a differentiation-arithmetic class, as illustrated above. The alternative

to the use of overloading is to build a special-purpose preprocessor to carry out the statement-doubling

transformation that was illustrated in Examples 2.2 and 2.3. Examples of systems that use the latter

approach include ADIFOR [7,8] and ADIC [9].6

Limitations of Computational Differentiation

The reader should understand that computational differentiation has certain limitations. One limitation

comes from the fact that a program F′(x) that results from computational differentiation can perform addi-

tions and subtractions for which there are no analogues in the original program F(x). For instance, in pro-

gram Prod′, an addition is performed in the statement

ans′ = ans′ * fi(x) + ans * fi′(x);

whereas no addition is performed in the statement

ans = ans * fi(x);

Consequently, the result of evaluating F′(x) can be degraded by round-off error even when F(x) is com-

puted accurately. Howev er, the accuracy of the result from evaluating F′(x) can be verified by performing

6We hav e referred to both computational differentiation and computational divided differencing as “program transformations”, which
may conjure up the image of tools that perform source-to-source rewriting fully automatically. Although such tools are one possible
embodiment, the reader should understand that in this paper we use the term “transformation” more loosely. For us, “transformation”
also includes simpler approaches, including the use of C++ differentiation-arithmetic and divided-difference-arithmetic classes. With
these approaches, rewriting might be carried out by a preprocessor, but might also be performed by hand, since usually only light
rewriting of the program source text is required.

− 9 −

the same computation in interval arithmetic [57,61].

Another problem that arises is that the manner in which a function is programmed influences whether the

results obtained from the derivative program are correct. For instance, for programs that use a conditional

expression or conditional statement in which the condition depends on the independent variable—i.e.,

where the function is defined in a piecewise manner—the derivative program may not produce the correct

answer.

EXAMPLE 2.5 [17]. Suppose that the function F(x) = x2 is programmed using a conditional statement, as

shown below on the left:

float F(float x){
float ans;
if (x == 1.0){

ans = 1.0;
}
else{

ans = x*x;
}
return ans;

}

⇐

float F′(float x){
float ans′;
float ans;
if (x == 1.0){
ans′ = 0.0;
ans = 1.0;

}
else{
ans′ = x+x;
ans = x*x;

}
return ans′;

}

Computational differentiation would produce the program shown above on the right. With this program,

F′(1.0) returns 0.0, rather than the correct value of 2.0 (i.e., correct with respect to the meaning of the

program as the mathematical function F(x) = x2).

The phenomenon illustrated in Example 2.5 has been called the branch problem or the if problem for

computational differentiation. A more important example of the branch problem occurs in Gaussian elimi-

nation code, where pivoting introduces branches into the program [17,4,27]. Some additional problems that

can arise with computational differentiation are identified in [17]. A number of different approaches to

these problems have been discussed in the literature [17,4,64,36,27].

Computational divided differencing has some similar (or even worse) problems. All of these issues are

outside the scope of the present paper; the problem of finding appropriate ways to generalize the aforemen-

tioned techniques to handle the problems that arise with computational divided differencing is left for future

work.

3. COMPUTATIONAL DIVIDED DIFFERENCING

In this paper, we exploit the principle on which computational differentiation is based—namely, that it is

possible to differentiate entire programs, not just expressions—to develop a variety of new computational

divided-differencing transformations. We dev elop several transformations that can be applied to numerical

programs. One of these corresponds to the first-divided-difference operator, denoted by .[x0, x1] and

defined as follows:

− 10 −

(3.1)F[x0, x1] =df
F(x0) − F(x1)

x0 − x1
.

As with the differentiation operator, the problem that we face is that because division by a small value and

subtraction are both operations that amplify accumulated round-off errors, direct use of Eqn. (3.1) may lead

to highly inaccurate results.

In contrast, given a program that computes a numerical function F(x), our technique for computational

first divided differencing creates a related program that computes F[x0, x1], but without directly evaluating

the right-hand side of Eqn. (3.1). As we show below, the program transformation that achieves this goal is

quite similar to the transformation used in computational-differentiation tools. The transformation—

defined below—sidesteps the explicit subtraction and division operations that appear in Eqn. (3.1), while

producing answers that are equivalent (from the standpoint of evaluation in real arithmetic). The program

that results thereby avoids many potentially catastrophic cancellations, and hence retains accuracy when

evaluated in floating-point arithmetic.

There are a number of reasons to be interested in this approach:

• Divided differences are the basis for a wide variety of numerical techniques, including algorithms for

polynomial interpolation, numerical integration, and solving differential equations [13].

• Finite differences on an evenly spaced grid (which can be obtained from divided differences on an evenly

spaced grid) can be used to quickly generate a function’s values at any number of points that extend the

grid. This technique is useful, therefore, for quickly and accurately plotting a function (see [23] and

[53, pp. 403−404]).

In general, the program transformations that we have dev eloped permit the creation of faster and more

robust scientific programs and graphics utilities. (Empirical results presented in Sections 5 and 8 provide

two concrete demonstrations of the advantages of these methods.)

To understand the basis of the idea, consider the case in which F(x) = x2:

(3.2)F[x0, x1] =
F(x0) − F(x1)

x0 − x1
=

x2
0 − x2

1

x0 − x1
= x0 + x1.

That is, the first divided difference can be obtained by evaluating x0 + x1.

Turning to programs, suppose that we are given the following program for squaring a number:

float Square(float x){
return x * x;

}

The above discussion implies that to compute the first divided-difference of Square, we hav e our choice

between the programs Square_1DD_naive and Square_1DD:

float Square_1DD_naive(float x0,float x1){
return (Square(x0) − Square(x1))/(x0 − x1);

}

float Square_1DD(float x0,float x1){
return x0 + x1;

}

− 11 −

However, the round-off-error characteristics of Square_1DD are much better than those of

Square_1DD_naive.

In general, for monomials we have:

F(x) c x x2 x3 . . .

F[x0, x1] 0 1 x0 + x1 x2
0 + x0 x1 + x2

1 . . .

The basis for creating expressions and programs that compute accurate divided differences is to be found

in the basic properties of the first-divided-difference operator, which closely resemble those of the first-

derivative operator, as shown below in Table 3.3:

First Derivative First Divided Difference

c′ = 0. 0 c[x0, x1] = 0. 0

x′ = 1. 0 x[x0, x1] = 1. 0

(c + F)′(x) = F ′(x) (c + F)[x0, x1] = F[x0, x1]

(c * F)′(x) = c * F ′(x) (c * F)[x0, x1] = c * F[x0, x1]

(F + G)′(x) = F ′(x) + G′(x) (F + G)[x0, x1] = F[x0, x1] + G[x0, x1]

(F * G)′(x) = F ′(x) * G(x) + F(x) * G′(x) (F * G)[x0, x1] = F[x0, x1] * G(x1) + F(x0) * G[x0, x1]

F

G

′
(x) =

F ′(x)* G(x) − F(x)* G′(x)

G(x)2

F

G

[x0, x1] =
F[x0, x1]* G(x1) − F(x0)* G[x0, x1]

G(x0)* G(x1)

Table 3.3. Basic properties of the first-derivative and first-divided-difference operators.

The general transformation for computational divided differencing of programs can be explained by

means of an example. (As a running example, the paper uses the evaluation of a polynomial in x via

Horner’s rule; i.e., the evaluation procedure accumulates the answer by repeatedly multiplying by x and

adding in the current coefficient, iterating down from the high-order coefficient. It is well-known that

Horner’s rule can return inaccurate results when it is used to evaluate a polynomial in floating-point arith-

metic [29, pp. 65−67]. Our examples are not meant to illustrate a way to circumvent this shortcoming.

Horner’s rule is used as the basis of our examples solely because of one virtue: it is a very simple proce-

dure, which allows the various different computational-divided-differencing transformations to be illus-

trated in a succinct manner.)

EXAMPLE 3.4. Suppose that we have a C++ class Poly that represents polynomials, and a member func-

tion Poly::Eval that evaluates a polynomial via Horner’s rule (i.e., it accumulates the answer by repeat-

edly multiplying by x and adding in the current coefficient, iterating down from the high-order coefficient):

− 12 −

class Poly {
public:
float Eval(float);

private:
int degree;
// Array coeff[0..degree]
float *coeff;

};

// Evaluation via Horner’s rule
float Poly::Eval(float x){
float ans = 0.0;
for (int i = degree; i >= 0; i− −){

ans = ans * x + coeff[i];
}
return ans;

}

A new member function, Poly::Eval_1DD, to compute the first divided difference can be created by

transforming Poly::Eval as shown below:

class Poly {
public:
float Eval(float);
float Eval_1DD(float,float);

private:
int degree;
// Array coeff[0..degree]
float *coeff;

};

float Poly::Eval_1DD(float x0,float x1){
float ans_1DD = 0.0;
float ans = 0.0;
for (int i = degree; i >= 0; i− −){
ans_1DD = ans_1DD * x1 + ans;
ans = ans * x0 + coeff[i];

}
return ans_1DD;

}

The transformation used to obtain Eval_1DD from (the text of) Eval is similar to the computational-

differentiation transformation used to create the derivative-computing program Eval′:

• Eval_1DD is supplied with an additional formal parameter (and the two parameters are renamed x0 and

x1).

• For each local variable v of type float used in Eval, an additional float variable v_1DD is intro-

duced in Eval_1DD.

• Each statement of the form “v = exp;” in Eval is transformed into “v_1DD = exp[x0,x1]; v = exp0;”,

where exp[x0,x1] is the expression for the divided difference of exp, and exp0 is exp with x0 substituted

for all occurrences of x.

• Each statement of the form “return v” in Eval is transformed into “return v_1DD”.

One caveat concerning the transformation presented above should be noted: the transformation applies only

to procedures that have a certain special syntactic structure—namely, the only multiplication operations

must be multiplications on the right by the independent variable x. Procedure Eval is an example of a

procedure that has this property.

It is possible to give a fully general first-divided-difference transformation; however, this transformation

can be viewed as a special case of the material presented in Section 5. Consequently, we will not pause to

present the general first-divided-difference transformation here.

Alternatively, as with computational differentiation, for languages that support operator overloading,

computational divided differencing can be carried out with the aid of a new class, say Float1DD, for

which the arithmetic operators are appropriately redefined. (We will call such a class a divided-difference

arithmetic.) Computational divided differencing is then carried out by making appropriate changes to the

− 13 −

types of each procedure’s formal parameters, local variables, and return value.

Again, definitions of first-divided-difference arithmetic classes—both for the case of general first divided

differences, as well as for the special case that covers programs like Eval—can be viewed as special cases

of the divided-difference arithmetic classes FloatDD and FloatDDR1 discussed in Sections 5 and 6,

respectively. For this reason, we postpone giving a concrete example of a divided-difference arithmetic

until Sections 5 and 6.

4. COMPUTATIONAL DIVIDED DIFFERENCING AS A GENERALIZATION OF COMPUTA-

TIONAL DIFFERENTIATION

In this section, we explain in what sense computational divided differencing can be said to generalize com-

putational differentiation. First, observe that over real numbers, we have

(4.1)
x1→x0

lim F[x0, x1] =
x1→x0

lim
F(x0) − F(x1)

x0 − x1
= F ′(x0).

However, although
x1→x0

lim
F(x0) − F(x1)

x0 − x1
= F ′(x0) holds over reals, it does not hold over floating-point num-

bers: as x1 approaches x0, because of accumulated round-off errors and catastrophic cancellation, the

quantity
F(x0) − F(x1)

x0 − x1
does not, in general, approach F′(x0).7 This is why derivatives cannot be com-

puted accurately by procedure F′_naive (see box (2.1)).

In contrast, as a floating-point value x1 approaches x0, the result computed by the program obtained via

the computational-divided-differencing transformation approaches the result computed by the program

obtained via the computational-differentiation transformation. That is, letting the terms F[x0,x1] and

F′(x0) stand for these programs, respectively, we hav e

(4.2)x1→x0
lim F[x0,x1] = F′(x0).

EXAMPLE 4.3. To illustrate Eqn. (4.2), consider applying the two transformations to member function

Poly::Eval of our earlier example:

7Note the use of Courier Font here; we are making a statement about quantities computed by programs.

− 14 −

float Poly::Eval_1DD(float x0,float x1){
float ans_1DD = 0.0;
float ans = 0.0;
for (int i = degree; i >= 0; i− −){
ans_1DD = ans_1DD * x1 + ans;
ans = ans * x0 + coeff[i];

}
return ans_1DD;

}

class Poly {
public:
float Eval(float);
float Eval_1DD(float,float);
float Eval′(float);
private:
int degree;
// Array coeff[0..degree]
float *coeff;

};

float Poly::Eval′(float x){
float ans′ = 0.0;
float ans = 0.0;
for (int i = degree; i >= 0; i−−){
ans′ = ans′ * x + ans;
ans = ans * x + coeff[i];

}
return ans′;

}

When formal parameters x0, x1, and x all have the same value—say v—then exactly the same operations

are performed by Eval_1DD(v,v) and Eval′(v).

Because computations are carried out over floating-point numbers, the programs F[x0,x1] and F′(x0)
are only approximations to the functions that we actually desire. That is, F[x0,x1] approximates the

function F[x0, x1], and F′(x0) approximates F ′(x0). The relationships among these functions and pro-

grams are depicted below:

0xF()’ 0 1[]xF ,x()xF’ 0

F()x0

0xF() F()x1−
0x x1−

0xF()

≈

≈

0 1[]F x , x

Computational
Differentation

Computational
Divided Differencing

Standard
Divided Differencingx0 x1−

F()x0 − F()x1

Mathematical Functions
and Operators

d
dx

→x1 x0 →x1 x0 →x1 x0

Programs and
Program Transformations

?

As the discussion above has noted, the interesting feature of this diagram is the relationship between

F[x0,x1] and F′(x0), on the side of the diagram labeled “Programs and Program Transformations”. In

particular, as x1 approaches x0, F[x0,x1] approaches F′(x0). Consequently, a program produced by a

system for computational divided differencing can be used to compute values of derivatives (in addition to

divided differences) by feeding it duplicate actual parameters (e.g., Eval_1DD(v,v)). In contrast, a pro-

gram created by means of computational differentiation can only produce derivatives (and not divided dif-

ferences). In this sense, computational divided differencing can be said to generalize computational differ-

entiation.

Computational divided differencing suffers from one of the same problems that arises with computa-

tional differentiation, namely that the program F[x0,x1] that results from the transformation can perform

additions and subtractions that have no analogues in the original program F(x). Consequently, the result

− 15 −

of evaluating F[x0,x1] can be degraded by round-off error even when F(x) is computed accurately.

However, because of the fact that F[x0,x1] converges to F′(x0) as x1 approaches x0, if F′(x0) returns a

result of sufficient accuracy, then F[x0,x1] will return a result of sufficient accuracy when |x0 −x1| is

small. (In future work, we plan to investigate the use of interval arithmetic for providing interval bounds

for computational divided differencing.)

5. HIGHER-ORDER COMPUTATIONAL DIVIDED DIFFERENCING

In this section, we show that the idea that was introduced in Section 3 can be generalized to define a trans-

formation for higher-order computational divided differencing. To do so, we will define a divided-differ-

ence arithmetic that manipulates divided-difference tables.

Higher-order divided differences are divided differences of divided differences, defined recursively as

follows:

F[xi] =df F(xi) (5.1)

F[x0, x1, . . ., xn−1, xn] =df
F[x0, x1, . . ., xn−1] − F[x1, . . ., xn−1, xn]

x0 − xn
(5.2)

In our context, a divided-difference table for a function F is an upper-triangular matrix whose entries are

divided differences of different orders, as indicated below:8

F(x0) F[x0, x1] F[x0, x1, x2] F[x0, x1, x2, x3]

0 F(x1) F[x1, x2] F[x1, x2, x3]

0 0 F(x2) F[x2, x3]

F(x3)0 0 0

Higher-order divided differences have numerous applications in interpolation and approximation of func-

tions [13].

We occasionally use [xi, j] as an abbreviation for [xi , . . . , x j]. However, the reader should note that

F[x0,2] = F[x0, x1, x2]

=
F[x0, x1] − F[x1, x2]

x0 − x2
,

which is not the same as F[x0, x2]:

F[x0, x2] =
F(x0) − F(x2)

x0 − x2
.

8Other arrangements of F’s higher-order divided differences into matrix form are possible. For example, one could have a lower trian-
gular matrix with the F(xi) running down the first column. However, the use of the arrangement shown above is key to being able to
use simple notation—i.e., ordinary matrix operations—to describe our methods [50].

− 16 −

We use . [x0,...,xn] to denote the operator that yields the divided-difference table for a function with

respect to points x0, . . . , xn. (We use . if the points x0, . . . , xn are clear from the context.)

A method for creating accurate divided-difference tables for rational expressions is found in Opitz [50].

This method is based on the properties of . [x0,...,xn] given in the right-hand column of Table 5.3:

First Divided Difference Divided-Difference Table

c[x0, x1] = 0. 0 c [x0,...,xn] = c * I

x[x0, x1] = 1. 0 x [x0,...,xn] = A[x0,...,xn]

(c + F)[x0, x1] = F[x0, x1] (c + F) [x0,...,xn] = c * I + F [x0,...,xn]

(c * F)[x0, x1] = c * F[x0, x1] (c * F) [x0,...,xn] = c * F [x0,...,xn]

(F + G)[x0, x1] = F[x0, x1] + G[x0, x1] (F + G) [x0,...,xn] = F [x0,...,xn] + G [x0,...,xn]

(F * G)[x0, x1] = F[x0, x1] * G(x1) + F(x0) * G[x0, x1] (F * G) [x0,...,xn] = F [x0,...,xn] * G [x0,...,xn]

F

G

[x0, x1] =
F[x0, x1] * G(x1) − F(x0) * G[x0, x1]

G(x0) * G(x1)

F

G

[x0,...,xn]

=
F [x0,...,xn]

G [x0,...,xn]

Table 5.3. Basic properties of two divided-difference operators.

A few items in Table 5.3 require explanation:

(1) The symbol I denotes the identity matrix.

(2) The symbol A[x0,...,xn] denotes the matrix

x0

0

0

.

.

.

0

0

1

x1

0

.

.

.

0

0

0

1

x2

.

.

.

0

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0

0

.

.

.

xn−1

0

0

0

0

.

.

.

1

xn

(3) In the entry for (F * G) [x0,...,xn], the multiplication operation in F [x0,...,xn] * G [x0,...,xn] is matrix multi-

plication.

(4) In the entry for

F

G

[x0,...,xn]

, the division operation in
F [x0,...,xn]

G [x0,...,xn]
is matrix division (i.e.,

P

Q
= P * Q−1).

The two columns of Table 5.3 can be read as recursive definitions for the operations .[x0, x1] and

. [x0,...,xn], respectively. These have straightforward implementations as recursive programs that walk over

an expression tree.

The reader should be aware that the .[x0, x1] operation defined in the first column of Table 5.3 creates an

expression that computes only the first divided difference of the original expression e(x), whereas the oper-

ation defined in the second column of Table 5.3 creates a (matrix) expression that computes all of the first,

second, ..., nth divided differences with respect to the points x0, x1, ..., xn, as well as n + 1 values of e(x).

− 17 −

In particular, in the matrix that results from evaluating the transformed expression, the values of e(x) evalu-

ated at the points x0, x1, ..., xn are found on the diagonal. For instance, in the case of an expression that

multiplies two subexpressions F(x) and G(x), the elements on the diagonal are F(x0) * G(x0),

F(x1) * G(x1), ..., F(xn) * G(xn).

It is easy to verify (by means of induction) that the first and second columns of Table 5.3 are consistent

with each other: in each case, the quantity e[x0, x1] represents the (0,1) entry of the matrix e [x0,...,xn].

The second column of Table 5.3 has an even more straightforward interpretation:

OBSERVA TION 5.4 [Reinterpretation Principle]. The divided-difference table of an arithmetic expression

e(x) with respect to the n + 1 points x0, . . . , xn can be obtained by reinterpreting e(x) as a matrix expres-

sion, where the matrix A[x0,...,xn] is used at each occurrence of the variable x, and c * I is used at each occur-

rence of a constant c.

That is, the expression tree for e(x) is unchanged—except at its leaves, where A[x0,...,xn] is used in place

of x, and c * I is used in place of c—but the operators at all internal nodes are reinterpreted as denoting

matrix operations. This observation is due to Opitz [50].

With only a slight abuse of notation, we can express this as

e [x0,...,xn] = e(A[x0,...,xn]).

Using this notation, we can show that the chain rule for the divided-difference operator . [x0,...,xn] has the

following particularly simple form:

(5.5)(F G) [x0,...,xn] = (F G)(A[x0,...,xn])

= F(G(A[x0,...,xn]))

= F(G [x0,...,xn]).

Opitz’s idea can be extended to the creation of accurate divided-difference tables for functions defined by

programs by overloading the arithmetic operators used in the program to be matrix operators—i.e., by

defining a divided-difference arithmetic that manipulates divided-difference tables. It is worthwhile giving

a name to this principle:

OBSERVA TION 5.6 [Computational Divided-Differencing Principle]. Rather than computing a divided-

difference table with respect to the points x0, x1, ..., xn by invoking the program n + 1 times and then apply-

ing Eqns. (5.1) and (5.2), we may instead evaluate the program (once) using a divided-difference arithmetic

that overloads arithmetic operations as matrix operations, substituting A[x0,...,xn] for each occurrence of the

formal parameter x, and c * I for each occurrence of a constant c.

The reader should understand that the single invocation of the program using the divided-difference

arithmetic will actually be more expensive than the n + 1 ordinary invocations of the program. The advan-

tage of using divided-difference arithmetic is not that execution is speeded up because the program is only

invoked once (in fact, execution is slower); the advantage is that the result computed using divided-differ-

ence arithmetic is much more accurate.

− 18 −

Because higher-order divided differences are defined recursively in terms of divided differences of lower

order (cf. Eqns. (5.1) and (5.2)), it would be possible to define an algorithm for higher-order computa-

tional-divided-differencing using repeated applications of lower-order computational-divided-differencing

transformations. However, with each application of the transformation for computational first divided dif-

ferencing, the program that results performs three times the number of operations that are performed by the

program the transformation starts with. Consequently, this approach has a significant drawback: the final

program that would be created for computing k th divided differences could be O(3k) times slower than the

original program. In contrast, the slow-down factor with the approach based on Observation 5.6 is O(k3).

We now sketch how a version of higher-order computational divided differencing based on

Observation 5.6 can be implemented in C++. Below, we present highlights of a divided-difference arith-

metic class, named FloatDD. We actually make use of two classes: (i) class FloatDD, the divided-dif-

ference arithmetic proper, and (ii) class FloatV, vectors of xi values. These classes are defined as fol-

lows:

class FloatDD {
public:
int numPts;
float **divDiffTable; // Two-dimensional upper-triangular array

FloatDD(const FloatV &); // Construct a FloatDD from a FloatV
FloatDD(int N); // Construct a zero-valued FloatDD of size N-by-N

FloatDD& operator+ (const FloatDD &) const; // binary addition
FloatDD& operator- (const FloatDD &) const; // binary subtraction
FloatDD& operator* (const FloatDD &) const; // binary multiplication
FloatDD& operator/ (const FloatDD &) const; // binary division

};

class FloatV {
public:
int numPts;
float *val; // An array of values: val[0]..val[numPts−1]

FloatV(int N, ...); // N points
FloatV(float start, int N, float incr); // N equally spaced points

};

The constructor FloatDD(const FloatV &); plays the role of generating a matrix A[x0,...,xn] from a

vector [x0, . . . , xn] of values for the independent variable. It is defined as follows:

− 19 −

// Construct a FloatDD from a FloatV
FloatDD::FloatDD(const FloatV &fv) :

numPts(fv.numPts),
divDiffTable(calloc_ut(numPts)) // allocate upper-triangular matrix of zeros

{
for (int i = 0; i < numPts; i++) {

divDiffTable[i][i] = fv.val[i];
if (i < numPts−1) {

divDiffTable[i][i+1] = 1.0;
}

}
}

The multiplication operator of class FloatDD simply performs matrix multiplication:

FloatDD& FloatDD::operator* (const FloatDD &fdd) const
{

assert(numPts == fdd.numPts);

FloatDD *ans = new FloatDD(numPts);
for (int r = 0; r < numPts; r++) {

for (int c = r; c < numPts; c++) {
float temp = 0.0;
for (int k = r; k <= c; k++) {

temp += divDiffTable[r][k] * fdd.divDiffTable[k][c];
}
ans−>divDiffTable[r][c] = temp;

}
}
return *ans;

}

The division operator of class FloatDD is implemented using back substitution. That is, suppose we wish

to find the value of A/B (call this value X). X can be found by solving the system X * B = A. Because

the divided-difference tables A and B are both upper-triangular matrices, this can be done using back substi-

tution, as follows:

− 20 −

// Use back substitution
FloatDD& FloatDD::operator/ (const FloatDD &fdd) const
{

assert(numPts == fdd.numPts);
assert(NonZeroDiagonal(fdd));

FloatDD *ans = new FloatDD(numPts);
for (int r = 0; r < numPts; r++) {

for (int c = r; c < numPts; c++) {
float temp = 0.0;
for (int k = r; k < c; k++) {

temp += ans−>divDiffTable[r][k] * fdd.divDiffTable[k][c];
}
ans−>divDiffTable[r][c] =

(divDiffTable[r][c] − temp) / fdd.divDiffTable[c][c];
}

}
return *ans;

}

(5.7)

EXAMPLE 5.8. To illustrate these definitions, consider again the function Poly::Eval that evaluates a

polynomial via Horner’s rule. Computational divided differencing is carried out by changing the types of

Eval’s formal parameters, local variables, and return value from float to FloatDD:

// Evaluation via Horner’s rule
float Poly::Eval(float x){

float ans = 0.0;
for (int i = degree; i >= 0; i−−){
ans = ans * x + coeff[i];

}
return ans;

}

// Evaluation via Horner’s rule
FloatDD Poly::Eval(const FloatDD &x){
FloatDD ans(x.numPts); // ans = 0.0
for (int i = degree; i >= 0; i−−){
ans = ans * x + coeff[i];

}
return ans;

}

The transformed procedure can be used to generate the divided-difference table for the polynomial

P(x) = 2. 1 * x3 − 1. 4 * x2 − . 6 * x + 1. 1

with respect to the (unevenly spaced) points 3.0, 3.01, 3.02, 3.05 by performing the following operations:

Poly *P = new Poly(4,2.1,−1.4,−0.6,1.1);
FloatV x(4,3.0,3.01,3.02,3.05);
FloatDD A(x); // Corresponds to A[x0,...,x3]

FloatDD fdd = P−>Eval(A);

Empirical results from calculations of this sort are discussed below.

Empir ical Results: Higher-Order Divided Differencing

We now present some empirical results that illustrate the advantages of the computational-divided-differ-

encing method. In the experiment reported below, we worked with the polynomial

− 21 −

P(x) = 2. 1 * x3 − 1. 4 * x2 − . 6 * x + 1. 1,

and performed computations using single-precision floating-point arithmetic on a Sun SPARCstation 20/61

running SunOS 5.6. Programs were compiled with the egcs-2.91.66 version of g++ (egcs-1.1.2 release)

with optimization at the −O1 level. The experiment compared the standard method for generating divided-

difference tables—namely, the recursive definition given in Eqns. (5.1) and (5.2)—against the overloaded

version of function Poly::Eval from Example 5.8.

In each of the four examples shown below, the values used for the (unevenly spaced) points x0, x1, x2,

and x3 are shown on the left. Note how the standard method for generating divided-difference tables

degrades as the points move closer together. (Places where the results from the two methods differ are indi-

cated in boldface.) In particular, because P is a cubic polynomial whose high-order coefficient is 2.1, the

proper value of P[x0, x1, x2, x3]—the third divided difference of P—is 2.1, not 117,520! (Compare the

two entries in the northeast corners of the bottom two divided-difference tables.)

Computational Divided Differencing Standard Divided Differencing

x0: 3.0 43.4 67.3 23.8 2.1 43.4 67.3 23.8 2.09999
x1: 4.0 110.7 114.9 32.2 110.7 114.9 32.2

x2: 5.0 225.6 211.5 225.6 211.5

x3: 7.0 648.6 648.6

x0: 3.0 43.4 47.8752 17.563 2.1 43.4 47.8749 17.5858 1.59073
x1: 3.01 43.8787 48.2265 17.668 43.8787 48.2266 17.6653
x2: 3.02 44.361 48.9332 44.361 48.9332

x3: 3.05 45.829 45.829

x0: 3.0 43.4 47.7175 17.5063 2.1 43.4 47.7177 15.2886 754.685
x1: 3.001 43.4477 47.7525 17.5168 43.4477 47.7483 19.0621
x2: 3.002 43.4955 47.8226 43.4955 47.8245
x3: 3.005 43.6389 43.6389

x0: 3.0 43.4 47.7017 17.5006 2.1 43.4 47.6945 3.62336 117520
x1: 3.0001 43.4048 47.7052 17.5017 43.4048 47.6952 62.379
x2: 3.0002 43.4095 47.7122 43.4095 47.7202
x3: 3.0005 43.4238 43.4238

Finally, when we set all of the input values to 3.0, we obtain

− 22 −

Computational Divided Differencing Standard Divided Differencing

x0: 3.0 43.4 47.7 17.5 2.1 43.4 NaN NaN NaN
x1: 3.0 43.4 47.7 17.5 43.4 NaN NaN
x2: 3.0 43.4 47.7 43.4 NaN
x3: 3.0 43.4 43.4

With the standard divided-differencing method, division by 0 occurs and yields the exceptional value NaN.

In contrast, computational divided differencing produces values for P’s first, second, and third derivatives.

More precisely, each k th divided-difference entry in the computational-divided-differencing table equals

(5.9)
1

k!

d k P(x)

dxk

x=3.0

The k = 1 case was already discussed in Section 4, where we observed that computational first divided dif-

ferencing could be used to compute first derivatives.

6. A SPECIAL CASE

A divided-difference table for a function F can be thought of as a (redundant) representation of an interpo-

lating polynomial for F . For instance, if you have a divided-difference table T (and also know the appro-

priate vector of values x0, x1, ..., xn), you can explicitly construct the Newton form of the interpolating

polynomial for F according to the following definition [13, pp. 197]:

(6.1)pn(x) =
n

i = 0
Σ F[x0, . . . , xi] *

i − 1

j = 0
Π (x − x j)

Note that to be able to create the Newton form of the interpolating polynomial for F via Eqn. (6.1), only the

first row of divided-difference table T is required to be at hand—i.e., the values F[x0, . . . , xi], for

0 ≤ i ≤ n—together with the values of x0, x1, ..., xn. This observation suggests that we should develop an

alternative divided-difference arithmetic that builds up and manipulates only first rows of divided-difference

tables. We call this divided-difference arithmetic FloatDDR1 (for Divided-Difference Row 1). The moti-

vation for this approach is that FloatDDR1 operations will be much faster than FloatDD ones, because

FloatDD operations must manipulate upper-triangular matrices, whereas FloatDDR1 operations involve

only simple vectors.

To achieve this, we define class FloatDDR1 as follows:

− 23 −

class FloatDDR1 {
friend FloatDDR1& operator+ (const FloatDDR1 &, const float);
friend FloatDDR1& operator+ (const FloatDDR1 &, const FloatV &);
friend FloatDDR1& operator+ (const float, const FloatDDR1 &);
friend FloatDDR1& operator+ (const FloatV &, const FloatDDR1 &);

friend FloatDDR1& operator- (const FloatDDR1 &, const float);
friend FloatDDR1& operator- (const FloatDDR1 &, const FloatV &);
friend FloatDDR1& operator- (const float, const FloatDDR1 &);
friend FloatDDR1& operator- (const FloatV &, const FloatDDR1 &);

friend FloatDDR1& operator* (const FloatDDR1 &, const float);
friend FloatDDR1& operator* (const FloatDDR1 &, const FloatV &);
friend FloatDDR1& operator* (const float, const FloatDDR1 &);
friend FloatDDR1& operator* (const FloatV &, const FloatDDR1 &);

friend FloatDDR1& operator/ (const FloatDDR1 &, const float);
friend FloatDDR1& operator/ (const FloatDDR1 &, const FloatV &);

public:
int numPts;
float *divDiffTable; // One-dimensional array of divided differences

FloatDDR1(int N) // Construct a zero-valued FloatDDR1 of length N
: numPts(N), divDiffTable(new float[numPts])
{ }

FloatDDR1& operator+ (const FloatDDR1 &) const; // binary addition
};

Compared with class FloatDD, class FloatDDR1 is somewhat impoverished: we can add two arbitrary

FloatDDR1’s; howev er, because we do not have full divided-difference tables available, we cannot multi-

ply two arbitrary FloatDDR1’s; nor do we have the full A[x0,...,xn] matrices that are used at each occurrence

of the independent variable. We finesse these difficulties by limiting the operations of class FloatDDR1

to the ones indicated in the class definition given above: (i) addition, subtraction, and multiplication on

either side by a float or a FloatV; (ii) division on the right by a float or a FloatV.

The operations that involve a float argument c have their “obvious” meanings, if one bears in mind

that a float value c serves as a stand-in for a full matrix c*I. For the addition (subtraction) operations,

c is only added to (subtracted from) the divDiffTable[0] entry of the FloatDDR1 argument. For

the multiplication (division) operations, all of the divDiffTable entries are multiplied by (divided by)

c.

In the operations that involve a FloatV argument, the FloatV value serves as a stand-in for a full

A[x0,...,xn] matrix. For instance, the operator for multiplication on the right by a FloatV can be thought of

as performing a form of matrix multiplication—but specialized to produce only the first row of the output

divided-difference table (and to use only values that are available in the given FloatDDR1 and FloatV

arguments):

− 24 −

FloatDDR1& operator* (const FloatDDR1 &fddr1, const FloatV &fv)
{

FloatDDR1 *ans = new FloatDDR1(fddr1.numPts);
ans−>divDiffTable[0] = fddr1.divDiffTable[0] * fv.val[0];
for (int c = 1; c < fddr1.numPts; c++) {

ans−>divDiffTable[c] =
fddr1.divDiffTable[c−1] + fddr1.divDiffTable[c] * fv.val[c];

}
return *ans;

}

It might be thought that the operator for multiplication on the left by a FloatV does not have the proper

values available in the given FloatV and FloatDDR1 arguments to produce the first row of the product

divided-difference table as output. (In particular, the second argument, which is of type FloatDDR1, is a

row vector, yet we want to produce a row vector as the result.) However, it is easy to show that divided-dif-

ference matrices are commutative:

(6.2)F * G = (F * G) = (G * F) = G * F .

Consequently, the operator for multiplication on the left by a FloatV can be treated as if the FloatV

were on the right:

FloatDDR1& operator* (const FloatV &fv, const FloatDDR1 &fddr1)
{

return fddr1 * fv;
}

As with class FloatDD, the division operator is implemented using a form of back substitution—special-

ized here to compute just what is needed for the first row of the divided-difference table:

FloatDDR1& operator/ (const FloatDDR1 &fddr1, const FloatV &fv)
{
FloatDDR1 *ans = new FloatDDR1(fddr1.numPts);
ans−>divDiffTable[0] = fddr1.divDiffTable[0] / fv.val[0];
for (int c = 1; c < fddr1.numPts; c++) {

ans−>divDiffTable[c] =
(fddr1.divDiffTable[c] − ans−>divDiffTable[c−1]) / fv.val[c];

}
return *ans;

}

Because only a limited set of arithmetic operations are available for objects of class FloatDDR1, this

divided-difference arithmetic can only be applied to procedures that have a certain special syntactic struc-

ture, namely ones that are “accumulative” in the independent variable (with only “right-accumulative” quo-

tients). In other words, the procedure must never perform arithmetic on two local variables that both

depend on the independent variable.

EXAMPLE 6.3. The procedure Poly::Eval for evaluating a polynomial via Horner’s rule is an exam-

ple of a procedure of the right form. Consequently, an overloaded version of the function Poly::Eval

using FloatDDR1 arithmetic can be written as shown below on the right:

− 25 −

// Evaluation via Horner’s rule
float Poly::Eval(float x){

float ans = 0.0;
for (int i = degree; i >= 0; i− −){
ans = ans * x + coeff[i];

}
return ans;

}

// Evaluation via Horner’s rule
FloatDDR1 Poly::Eval(const FloatV &x){
FloatDDR1 ans(x.numPts); // ans = 0.0
for (int i = degree; i >= 0; i− −){
ans = ans * x + coeff[i];

}
return ans;

}

In Section 3, Example 3.4 discussed the procedure Poly::Eval_1DD, a transformed version of

Poly::Eval that computes the value of the first divided difference of a polynomial with respect to two

values, x0 and x1. With the way that the overloaded operations are defined for class FloatDDR1, when

the actual parameter supplied for x is a FloatV of length two consisting of x0 and x1, the procedure

FloatDDR1 Poly::Eval(const FloatV &x)

performs essentially the same steps as Poly::Eval_1DD. (One slight difference is that, in addition to

returning the value of the first divided difference, the FloatDDR1 version also returns the results of evalu-

ating the polynomial on x0 and x1.)

If we attempt to use FloatDDR1 arithmetic in a procedure that is not “accumulative” in the independent

variable, with only “right-accumulative” quotients, the overload-resolution mechanism of the C++ compiler

will detect and report a problem.

Some empirical results that illustrate the advantages of FloatDDR1 arithmetic in a useful application

are presented at the end of Section 8.

As with the methods discussed in Sections 3 and 5, FloatDDR1 arithmetic can be used to produce val-

ues of interest for computational differentiation. For instance, suppose we have transformed procedure F:

float F(float x); ⇐FloatDDR1 F(const FloatV &x);

When all of the xi values in the actual parameter supplied for FloatV x are the same value, say x, then

the FloatDDR1 value returned as the output holds the Taylor coefficients for the expansion of F at x (cf.

Formula (5.9)). Thus, the FloatV divided-difference arithmetic generalizes previously known techniques

for producing accurate Taylor coefficients for functions defined by programs [57,58].

7. MULTI-DIMENSIONAL COMPUTATIONAL DIVIDED DIFFERENCING

In this section, we explain how to define a third divided-differencing arithmetic that extends our techniques

to handle multi-dimensional computational divided differencing (i.e., computational divided differencing of

functions of several variables).

7.1. Background Discussion

As background to the material that will be discussed in Section 7.2, let us reiterate a few important points

concerning the divided-difference tables that result from computational divided differencing for functions

of a single variable. In the following discussion, we assume that the divided-difference table in question

− 26 −

has been constructed with respect to some known collection of values x0, x1, ..., xn.

As mentioned at the beginning of Section 6, a divided-difference table can be thought of as a (redundant)

representation of an interpolating polynomial. For instance, if you have a divided-difference table T (and

know the appropriate vector of values x0, x1, ..., xn, as well), you can explicitly construct the interpolating

polynomial in Newton form by using the values in the first row of T in accordance with Eqn. (6.1). One of

the consequences of this point is so central to what follows in Section 7.2 that it is worthwhile to state it

explicitly and to introduce some helpful notation:

OBSERVA TION 7.1 [Representation Principle]. A divided-difference table T is a finite representation of a

function F[[T]] defined by Eqn. (6.1). (Note that if F = F[[T]], then T = F .)

Given two divided-difference tables, T1 and T2, that are defined with respect to the same set of points x0,

x1, ..., xn, the operations of matrix addition, subtraction, multiplication, and division applied to T1 and T2

yield representations of the sum, difference, product, and quotient, respectively, of F[[T1]] and F[[T2]].

It is also worthwhile restating the Computational Divided-Differencing Principle (Observation 5.6),

adding the additional remark that is highlighted below in italics:

OBSERVA TION 7.2 [Computational Divided-Differencing Principle Redux]. Rather than computing a

divided-difference table with respect to the points x0, x1, ..., xn by invoking the program n + 1 times and

then applying Eqns. (5.1) and (5.2), we may instead evaluate the program (once) using a divided-difference

arithmetic that overloads arithmetic operations as matrix operations, substituting A[x0,...,xn] for each occur-

rence of the formal parameter x, and c * I for each occurrence of a constant c. Furthermore, this principle

can be applied to divided-difference tables for functions on any field (because addition, subtraction, multi-

plication, and division operations are required, together with additive and multiplicative identity elements).

7.2. Computational Divided Differencing of Functions of Several Var iables

We now consider the problem of defining an appropriate notion of divided differencing for a function F of

several variables. Observation 7.1 provides some guidance, as it suggests that the generalized divided-dif-

ference table for F that we are trying to create should also be thought of as a representation of a function of

several variables that interpolates F . Such a generalized computational divided-differencing technique will

be based on the combination of Observations 7.1 and 7.2.

Because we have already used the term higher-order to refer generically to second, third, ..., nth divided

differences, we use the term higher-kind to refer to the generalized divided-difference tables that arise with

functions of several variables. In the remainder of this section, we make use of an alternative notation for

the divided-difference operator . [x0,...,xn]:

DD1
[x0,x1,...,xn][[F]] =df F [x0,...,xn].

We use DD1[[F]] when the xi are understood. The notation DD1[[.]] refers to divided-difference tables of

kind 1 (the kind we are already familiar with from Section 5). Below, we use DD2[[.]] to refer to divided-

difference tables of kind 2; in general, we use DDk[[.]] to refer to divided-difference tables of kind k.

− 27 −

To understand the basic principle that underlies our approach, consider the problem of creating a surface

that interpolates a two-variable function F(x, y) with respect to a grid formed by three coordinate values

x0, x1, x2 in the x-dimension, and four coordinate values y0, y1, y2, y3 in the y-dimension. The clearest

way to explain the technique in common programming-language terminology involves currying F . That is,

instead of working with F : float × float → float, we work with F : float → float → float. We can create (a

representation of) an interpolating surface for F by building a divided-difference table (of kind 2) using the

functions F(x0), F(x1), and F(x2), each of which is of type float → float, as the “interpolation points”.

Note that this process requires that we be capable of performing addition, subtraction, multiplication, and

division of functions. Howev er, each of the functions F(x0), F(x1), and F(x2) is itself a one-argument

function for which we can create a representation, namely by building the divided-difference tables

DD1
[y0,3][[F(x0)]], DD1

[y0,3][[F(x1)]], and DD1
[y0,3][[F(x2)]] (with respect to the coordinate values y0, y1, y2,

and y3). By Observation 7.2, the arithmetic operations on functions F(x0), F(x1), and F(x2) needed to cre-

ate DD2
[x0,2],[y0,3][[F]] can be carried out by performing matrix operations on the matrices DD1

[y0,3][[F(x0)]],

DD1
[y0,3][[F(x1)]], and DD1

[y0,3][[F(x2)]]. For instance,

DD1
[y0,3][[F[x0, x1]]] = DD1

[y0,3][[
F(x0) − F(x1)

x0 − x1
]]

(7.3)=
DD1

[y0,3][[F(x0)]] − DD1
[y0,3][[F(x1)]]

x0 − x1
.

In short, the idea is that a divided-difference table of kind 2 for function F is the matrix of matrices

shown below:9

(7.4)DD2
[x0,2],[y0,3][[F]] =

DD1
[y0,3][[F(x0)]] DD1

[y0,3][[F[x0, x1]]]

DD1
[y0,3][[F(x1)]]

DD1
[y0,3][[F[x0, x1, x2]]]

DD1
[y0,3][[F[x1, x2]]]

DD1
[y0,3][[F(x2)]]

=

F(x0)(y0) F(x0)[y0,1]

F(x0)(y1)

F(x0)[y0,2]

F(x0)[y1,2]

F(x0)(y2)

F(x0)[y0,3]

F(x0)[y1,3]

F(x0)[y2,3]

F(x0)(y3)

F[x0,1](y0) F[x0,1][y0,1]

F[x0,1](y1)

F[x0,1][y0,2]

F[x0,1][y1,2]

F[x0,1](y2)

F[x0,1][y0,3]

F[x0,1][y1,3]

F[x0,1][y2,3]

F[x0,1](y3)

F(x1)(y0) F(x1)[y0,1]

F(x1)(y1)

F(x1)[y0,2]

F(x1)[y1,2]

F(x1)(y2)

F(x1)[y0,3]

F(x1)[y1,3]

F(x1)[y2,3]

F(x1)(y3)

F[x0,2](y0) F[x0,2][y0,1]

F[x0,2](y1)

F[x0,2][y0,2]

F[x0,2][y1,2]

F[x0,2](y2)

F[x0,2][y0,3]

F[x0,2][y1,3]

F[x0,2][y2,3]

F[x0,2](y3)

F[x1,2](y0) F[x1,2][y0,1]

F[x1,2](y1)

F[x1,2][y0,2]

F[x1,2][y1,2]

F[x1,2](y2)

F[x1,2][y0,3]

F[x1,2][y1,3]

F[x1,2][y2,3]

F[x1,2](y3)

F(x2)(y0) F(x2)[y0,1]

F(x2)(y1)

F(x2)[y0,2]

F(x2)[y1,2]

F(x2)(y2)

F(x2)[y0,3]

F(x2)[y1,3]

F(x2)[y2,3]

F(x2)(y3)

In what follows, it is convenient to express functions using lambda notation (i.e., in λ z. exp, z is the name

of the formal parameter, and exp is the function body). For instance, λ x. λ y. x denotes the curried two-

9This idea is a specific instance of the very general approach to surface approximation via the tensor-product construction given in
[14, Chapter XVII].

− 28 −

argument function (of type float → float → float) that merely returns its first argument. For our purposes,

the advantage of lambda notation is that it provides a way to express the anonymous one-argument function

that is returned when a curried two-argument function is supplied a value for its first argument (e.g.,

(λ x. λ y. x)(x0) returns λ y. x0).

It is instructive to consider some concrete instances of DD2
[x0,2],[y0,3][[F]] for various F’s:

EXAMPLE 7.5. Consider the function λ x. λ y. x. For 0 ≤ i ≤ 2, we have

DD1
[y0,3][[(λ x. λ y. x)(xi)]] = DD1

[y0,3][[λ y. xi]]

=

xi 0

xi

0

0

xi

0

0

0

xi

and, for 0 ≤ i ≤ 1, we have

DD1
[y0,3][[(λ x. λ y. x)[xi , xi+1]]] = DD1

[y0,3][[
λ y. xi − λ y. xi+1

xi − xi+1
]]

= DD1
[y0,3][[λ y. 1]]

=

1 0

1

0

0

1

0

0

0

1

Consequently,

(7.6)DD2
[x0,2],[y0,3][[λ x. λ y. x]] =

x0 0

x0

0

0

x0

0

0

0

x0

1 0

1

0

0

1

0

0

0

1

x1 0

x1

0

0

x1

0

0

0

x1

0 0

0

0

0

0

0

0

0

0

1 0

1

0

0

1

0

0

0

1

x2 0

x2

0

0

x2

0

0

0

x2

EXAMPLE 7.7. Consider the function λ x. λ y. y. For 0 ≤ i ≤ 2, we have

DD1
[y0,3][[(λ x. λ y. y)(xi)]] = DD1

[y0,3][[λ y. y]]

=

y0 1

y1

0

1

y2

0

0

1

y3

and, for 0 ≤ i ≤ 1, we have

− 29 −

DD1
[y0,3][[(λ x. λ y. y)[xi , xi+1]]] = DD1

[y0,3][[
λ y. y − λ y. y

xi − xi+1
]]

= DD1
[y0,3][[λ y. 0]]

=

0 0

0

0

0

0

0

0

0

0

Consequently, we hav e

(7.8)DD2
[x0,2],[y0,3][[λ x. λ y. y]] =

y0 1

y1

0

1

y2

0

0

1

y3

0 0

0

0

0

0

0

0

0

0

y0 1

y1

0

1

y2

0

0

1

y3

0 0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

y0 1

y1

0

1

y2

0

0

1

y3

Moreover, Observation 7.2 tells us that divided-difference tables for functions of two variables can be

built up by means of a divided-difference arithmetic that operates on matrices of matrices. That is, we can

build up divided-difference tables of kind 2 for more complex functions of x and y by using operations on

matrices of matrices, substituting DD2[[λ x. λ y. x]] for each occurrence of the formal parameter x in the

function, and DD2[[λ x. λ y. y]] for each occurrence of the formal parameter y.

EXAMPLE 7.9. For the function λ x. λ y. x × y, DD2[[λ x. λ y. x × y]] can be created by multiplying the

matrices DD2[[λ x. λ y. x]] and DD2[[λ x. λ y. y]] from Eqns. (7.6) and (7.8), respectively:

(7.10)DD2[[λ x. λ y. x × y]] = DD2[[(λ x. λ y. x) × (λ x. λ y. y)]]

= DD2[[λ x. λ y. x]] × DD2[[λ x. λ y. y]]

− 30 −

=

x0 y0 x0

x0 y1

0

x0

x0 y2

0

0

x0

x0 y3

y0 1

y1

0

1

y2

0

0

1

y3

x1 y0 x1

x1 y1

0

x1

x1 y2

0

0

x1

x1 y3

0 0

0

0

0

0

0

0

0

0

y0 1

y1

0

1

y2

0

0

1

y3

x2 y0 x2

x2 y1

0

x2

x2 y2

0

0

x2

x2 y3

Note that the (0,1) entry in the above matrix, namely

y0 1

y1

0

1

y2

0

0

1

y3

was obtained via the calculation

(7.11)

x0 0

x0

0

0

x0

0

0

0

x0

×

0 0

0

0

0

0

0

0

0

0

+

1 0

1

0

0

1

0

0

0

1

×

y0 1

y1

0

1

y2

0

0

1

y3

+

0 0

0

0

0

0

0

0

0

0

×

0 0

0

0

0

0

0

0

0

0

and not by the use of Eqn. (7.3), which involves a matrix subtraction, a scalar subtraction, and a scalar divi-

sion:

DD1
[y0,3][[(λ x. λ y. x × y)[x0, x1]]] =

DD1
[y0,3][[λ y. x0 × y]] − DD1

[y0,3][[λ y. x1 × y]]

x0 − x1

(7.12)

=

x0 y0 x0

x0 y1

0

x0

x0 y2

0

0

x0

x0 y3

−

x1 y0 x1

x1 y1

0

x1

x1 y2

0

0

x1

x1 y3

x0 − x1

Expressions (7.11) and (7.12) are equivalent over real numbers, but not over floating-point numbers. By

sidestepping the explicit subtraction and division operations in expression (7.12), expression (7.11) avoids

the potentially catastrophic cancellation that can occur with floating-point arithmetic.

The principle illustrated in Example 7.9 gives us the machinery that we need to perform computational

divided differencing for bivariate functions defined by programs. As usual, computational divided differ-

encing is performed by changing the types of formal parameters, local variables, and return values to the

type of an appropriate divided-difference arithmetic.

Furthermore, these ideas can be applied to a function F with an arbitrary number of variables: when F

has k variables, DDk[[F]], F’s divided-difference table of kind k, is a matrix of matrices of ... of matrices

nested to depth k. Currying with respect to the first parameter of F “peels off” one dimension; DDk[[F]] is

− 31 −

a matrix whose entries are divided-difference tables of kind k − 1 (i.e., matrices of matrices of ... of matrices

nested to depth k − 1). For instance, the diagonal entries are the divided-difference tables of kind k − 1 for

the (k − 1)-parameter functions F(x0), F(x1), ..., F(xn) (i.e., DDk−1[[F(x0)]], DDk−1[[F(x1)]], ...,

DDk−1[[F(xn)]]).

To implement this approach in C++, we define two classes and one class template:

• Class template template <int k> class DivDiffArith can be instantiated with a value

k > 0 to represent divided-difference tables of kind k. Each object of class DivDiffArith<k> has

links to sub-objects of class DivDiffArith<k−1>.

• Class DivDiffArith<0> represents the base case; DivDiffArith<0> objects simply hold a single

float.

• Class IntVector, a vector of int’s, is used to describe the number of points in each dimension of the

grid of coordinate points.

Excerpts from the definitions of these classes are shown below:

template <int k> class DivDiffArith {
public:
int numPts;
DivDiffArith<k−1> **divDiffTable; // Two-dimensional upper-triangular array

DivDiffArith(const FloatV &v, const IntVector &grid, int d);
DivDiffArith(float, const IntVector &grid); // constant; shape conforms to grid
DivDiffArith(float, const DivDiffArith<k−1> &dda); // constant; shape conforms to dda

DivDiffArith<k>& operator+ (const DivDiffArith<k> &) const; // binary addition
DivDiffArith<k>& operator− (const DivDiffArith<k> &) const; // binary subtraction
DivDiffArith<k>& operator* (const DivDiffArith<k> &) const; // binary multiplication
DivDiffArith<k>& operator/ (const DivDiffArith<k> &) const; // binary division

};

class DivDiffArith<0> {
public:
float value;

DivDiffArith(float v = 0.0); // Default constructor
DivDiffArith(const FloatV &v, const IntVector &grid, int d);

DivDiffArith<0>& operator+ (const DivDiffArith<0> &) const; // binary addition
DivDiffArith<0>& operator− (const DivDiffArith<0> &) const; // binary subtraction
DivDiffArith<0>& operator* (const DivDiffArith<0> &) const; // binary multiplication
DivDiffArith<0>& operator/ (const DivDiffArith<0> &) const; // binary division

};

− 32 −

class IntVector {
public:
int numPts;
int *val; // An array of values: val[0]..val[numPts−1]

IntVector();
IntVector(int N, ...); // Construct IntVector given N values

IntVector& operator<< (const int i); // left shift
};

The operations of class DivDiffArith<k> are overloaded in a fashion similar to those of class

FloatDD. (Class FloatDD is essentially identical to DivDiffArith<1>.) For instance, the over-

loaded multiplication operator performs matrix multiplication:

template <int k>
DivDiffArith<k>& DivDiffArith<k>::operator* (const DivDiffArith<k> &dda) const
{

assert(numPts == dda.numPts);

DivDiffArith<k> *ans = new DivDiffArith<k>(numPts);
for (int r = 0; r < numPts; r++) {

for (int c = r; c < numPts; c++) {
DivDiffArith<k−1> temp((float)0.0, divDiffTable[r][c]); // temp = 0.0
for (int j = r; j <= c; j++) {

temp += divDiffTable[r][j] * dda.divDiffTable[j][c];
}
ans−>divDiffTable[r][c] = temp;

}
}
return *ans;

}

Class DivDiffArith<k> has two constructors for creating a DivDiffArith<k> object from a

float constant. They differ only in their second arguments (an IntVector versus a DivDif-

fArith<k>), which are used to determine the appropriate dimensions to use at each level in the nesting of

matrices.

Suppose variable z is the independent variable associated with argument position d+1. To generate a

DivDiffArith<k> object for a given set of grid values for z (say z0, ..., zm), a FloatV with the values

of the zi is created, and then passed to the following DivDiffArith<k> constructor:

− 33 −

template <int k>
DivDiffArith<k>::DivDiffArith(const FloatV &v, const IntVector &grid, int d) :

numPts(grid.val[0]),
divDiffTable(calloc_ut< k >(numPts))

{
assert(grid.val[d] == v.numPts);

IntVector tail = grid << 1;
for (int r = 0; r < numPts; r++) {

for (int c = r; c < numPts; c++) {
divDiffTable[r][c] = DivDiffArith<k−1>((float)0.0,tail);

}
}
if (d == 0) {

DivDiffArith<k−1> one((float)1.0, tail);
for (int i = 0; i < numPts; i++) {

divDiffTable[i][i] = DivDiffArith<k−1>(v.val[i],tail);
if (i < numPts − 1) {
divDiffTable[i][i+1] = one;

}
}

}
else {

for (int i = 0; i < numPts; i++) {
divDiffTable[i][i] = DivDiffArith<k−1>(v,tail,d-1);

}
}

}

EXAMPLE 7.13. The following code fragment generates two DivDiffArith<2> values, x and y,

which correspond to the matrices shown in Eqns. (7.6) and (7.8), respectively:

IntVector grid(2,3,4);
FloatV fv_x(3,x0,x1,x2);
DivDiffArith<2> x(fv_x,grid,0); // argument position 1
FloatV fv_y(4,y0,y1,y2,y3);
DivDiffArith<2> y(fv_y,grid,1); // argument position 2

EXAMPLE 7.14. Consider a C++ class BivariatePoly that represents bivariate polynomials, and a

member function BivariatePoly::Eval that evaluates a polynomial via a bivariate version of

Horner’s rule:

− 34 −

class BivariatePoly {
public:
float Eval(float,float);

private:
int degree1,degree2;
// Array coeff[0..degree1][0..degree2]
float **coeff;

};

// Evaluation via bivariate Horner’s rule
float BivariatePoly::Eval(float x,float y){
float ans = 0.0;
for (int i = degree1; i >= 0; i− −){
float temp = 0.0;
for (int j = degree2; j >= 0; j− −){
temp = temp * y + coeff[i][j];

}
ans = ans * x + temp;

}
return ans;

}

Similar to what has been done in Examples 3.4, 4.3, 5.8, and 6.3, computational divided differencing is car-

ried out on this version of Eval by changing the types of its formal parameters, local variables, and return

value from float to DivDiffArith<2>.

// Evaluation via bivariate Horner’s rule
DivDiffArith<2> BivariatePoly::Eval(const DivDiffArith<2> &x, const DivDiffArith<2> &y)
{

DivDiffArith<2> ans(0.0,x); // ans = 0.0
for (int i = degree1; i >= 0; i−−){
DivDiffArith<2> temp(0.0,y); // temp = 0.0
for (int j = degree2; j >= 0; j−−){

temp = temp * y + coeff[i][j];
}
ans = ans * x + temp;

}
return ans;

}

To use this procedure to create a divided-difference table of kind 2 for a given variable P of type Bivari-

atePoly*, with respect to the 3-by-4 grid {x0,x1,x2 } × {y0,y1,y2,y3 }, we would generate the

IntVector grid and DivDiffArith<2> values x and y as shown in Example 7.13, and then invoke

P−>Eval(x,y);

One final point concerning this approach: it is worthwhile noting that by generalizing the grid descriptors

slightly, it is possible to devise an even more general divided-differencing arithmetic that is heterogeneous

in shape with respect to different argument positions. By “heterogeneous”, we mean that full two-dimen-

sional (upper-triangular) divided-difference tables could be provided for some argument positions, while

other argument positions could just provide a single row of divided differences (i.e., one-dimensional,

FloatDDR1-like tables). By this means, when a procedure body is “accumulative” in certain of its formal

parameters but not others, it would be possible to tailor the divided-differencing version of the procedure to

improve its efficiency. (In the case of procedure

DivDiffArith<2> BivariatePoly::Eval,

it would be possible to specify that both argument positions provide FloatDDR1-like tables.)

− 35 −

8. PAIGE’S WORK ON FINITE DIFFERENCING OF COMPUTABLE EXPRESSIONS

In earlier sections, and also in Section 9, we have attempted to place the ideas that are developed in this

paper in their proper context by describing how they relate to previous work on computational-differentia-

tion [68,56,26,5,27] and to previous work on the creation of accurate divided-difference tables for expres-

sions [50,46]. In the present section, we discuss some additional intellectual forbearers of our work, focus-

ing particularly on how our ideas relate to Robert Paige’s work on finite differencing of set-valued expres-

sions in SETL programs.

Starting in the mid-70s, Paige studied how finite-differencing transformations of applicative set-former

expressions could be exploited to optimize loops in very-high-level languages, such as SETL. References

[52,53] are just two of many works that Paige wrote about this subject, and these ideas were implemented

in his RAPTS system [53,54]. Some of the techniques that Paige explored have their roots in earlier work

by Earley [15,16]. Independently of and contemporaneously with Paige, similar loop-optimization methods

targeted toward very-high-level set-theoretic languages were investigated by Fong and Ullman [18,19,20].

More recently, Liu and Stoller have used some extensions of these ideas to optimize array computations

[42] and recursive programs [44]. Liu et al. have also shown how such transformations can be applied to

derive algorithms for incremental-computation problems (i.e., problems in which the goal is to maintain the

value of some function F(x) as the input x undergoes small changes) [38,39,40,41,43].

Both Paige [52] and Paige and Koenig [53] provide lengthy discussions of the roots of the ideas that are

developed in those papers. The basic idea for optimizing SETL loops is described as a generalization of

strength reduction, an idea attributed to John Cocke from the 60s, whereby a loop is transformed so that a

multiplication operation in the loop is eliminated in favor of an addition, as shown below:

i = ...;
while (...) {

... i*c ...;
i = i + delta;

}

⇐

i = ...;
T = i*c; // T depends on i
deltaT = delta*c;
while (...) {
... T ...; // T replaces i*c
i = i + delta; // change to i
T = T + deltaT // update of T

}

This transformation improves the running time of the loop if the cost of the additions performed by the

transformed loop are less than the cost of the multiplications performed in the original loop. In [12], Cocke

and Schwartz presented a variety of strength-reduction transformations for use in optimizing compilers.

Paige’s work on loop optimization in SETL was based on the observation that a similar transformation

could be applied to loops that involve set-former expressions. In this transformation, an expensive set-for-

mer expression in a loop is replaced by a set-initialization statement (placed before the loop) together with

a set-update operation (placed inside the loop):

− 36 −

A = ...;
while (...) {

... { x ∈ A | x%2 == 0 } ...;
d = ...;
A = A ∪ d;

}

⇐

A = ...;
T = { x ∈ A | x%2 == 0 }; // T depends on A
while (...) {
... T ...; // T replaces the set former
d = ...;
A = A ∪ d; // change to A
if (d%2 == 0) T = T ∪ d; // update of T

}

In the transformed program shown above on the right, the expression { x ∈ A | x%2 == 0 } in

the loop is replaced by a use of T. Because the statement

A = A ∪ d;

may alter the value of variable A, just after this statement a new statement is introduced:

if (d%2 == 0) T = T ∪ d;

The latter statement updates the value of variable T to have the same value that the expression

{ x ∈ A | x%2 == 0 } has when evaluated with the new value of variable A.10

Of more direct relevance to the topic of the present paper is the discussion in Paige’s papers in which he

points out affinities between his work, on the one hand, and numerical differentiation and numerical finite-

difference methods, on the other hand. For instance, Paige and Koenig describe the relationship between

their SETL finite-differencing methods and numerical finite-difference methods as follows

[53, pp. 403−404]:

It is interesting to note that the origins of our method may be traced back to the finite difference tech-
niques introduced by the English mathematician Henry Briggs in the sixteenth century. His method,
which can be used to generate a sequence of polynomial values p(x0), p(x0 + h), p(x0 + 2h), . . ., hinges
on the following idea. For a giv en polynomial p(x) of degree n and an increment h, the first difference
polynomial

p1(x) = p(x + h) − p(x)

is of degree n − 1 or less, the second difference polynomial

p2(x) = p1(x + h) − p1(x)

is of degree n − 2 or less, . . ., and, finally, pn(x) must be a constant. Thus, to tabulate successive values
of p(x) starting with x = x0, we can perform these two steps:

1. Calculate initial values for p(x0), p1(x0), . . ., pn(x0) and store them in t(1), t(2), . . ., t(n + 1).
2. Generate the desired polynomial table by iterating over the following code block:

10The code fragment if (d%2 == 0) T = T ∪ d; is called a post-derivative of T = { x ∈ A | x%2 == 0 }; with re-
spect to the change A = A ∪ d;. Similarly, a code fragment for updating variable T that is placed before the change
A = A ∪ d; is called a pre-derivative.

− 37 −

print x, t(1); print x and p(x)
t(1) : = t(1) + t(2); $ place new values for
t(2) : = t(2) + t(3); $ p(x), p1(x),

. $..., pn − 1(x) into

.

.
t(n) : = t(n) + t(n − 1); $ t(1), t(2), ..., t(n).
x : = x + h; $

Note that Briggs’s method requires only n additions in step 2 to compute each new polynomial value,
while Horner’s rule to compute a fresh polynomial value costs n additions and n multiplications.

They relate Briggs’s method to strength reduction in the following passage [53, pp. 404−405]:

Although Cocke’s technique does not treat polynomials as special objects, strength reduction is suffi-
ciently powerful to transform a program involving repeated calculations of a polynomial according to
Horner’s rule into an equivalent program that essentially uses the more efficient finite difference method
of Briggs. Indeed, this is a surprising and important result that demonstrates that the success of polyno-
mial evaluation by differencing results from properties of the elementary operations used to form poly-
nomials rather than from properties exclusive to polynomials. In other words, Cocke’s method works
because the following distributive and associative laws hold for sums and products:

(i ± delta) * c ⇐i * c ± delta * c;

(i ± delta) + c ⇐(i + c) ± delta.

In [12] Cocke and Schwartz extend this idea to show how reduction in strength (which we call finite
differencing) applies to a wide range of arithmetic operations that exhibit appropriate distributive prop-
erties.

Later in the paper, after Paige and Koenig have introduced their rules for finite differencing of set-former

expressions with respect to changes in argument values (an operation that they sometimes call “differentia-

tion”), they return to the discussion of Briggs’s method [53, pp. 421]:

Profitable differentiation of an expression f can sometimes be supported by differentiating f together
with a chain of auxiliary expressions (as in Briggs’s first, second, ..., difference polynomials . . .).
Thus, the prederivative ∇−E 〈x +: = delta; 〉 of the nth degree polynomial E = P(x) is

E +: = P1(x)

where P1(x) is the first difference polynomial. However, for the prederivative code above to be inex-
pensive, we must also differentiate the second, third, ..., nth difference polynomials, denoted Ei = Pi(x),
i = 2 . . n. To realize Briggs’s efficient technique, we consider the extended prederivative (of expres-
sions ordered carefully into a “differentiable chain”) ∇−En − 1, . . . , E1, E 〈x +: = delta; 〉 that expands

into

E +: = E1;
E1 +: = E2;

.

.

.
En − 1 +: = En;

Essentially all of the material that Paige and Koenig present in their paper to relate their work to Briggs’s

method has been quoted above. Howev er, a few details about the derivation of Briggs’s method were not

spelled out in their treatment, which we now attempt to rectify. We will show below that computational

divided differencing supplies a clean way to handle an important step in the derivation about which Paige

− 38 −

and Koenig are silent.

The initial program for tabulating a polynomial at a collection of equally spaced points can be written in

C++ as follows:11

void Poly::Tabulate(float start, int numPoints, float h)
{

float x = start;
float y;
for (int i = 1; i <= numPoints; i++) { // Tabulation loop
y = Eval(x);
cout << x << ": " << y << endl;
x += h;

}
}

In the program shown above, Eval is the member function of class Poly that evaluates a polynomial via

Horner’s rule (see Section 3), of type

float Poly::Eval(float x);

The intention of Paige and Koenig is to transform procedure Poly::Tabulate into something like the

following version:

void Poly::Tabulate(float start, int numPoints, float h)
{

float x = start;
float y;
float E = Eval(start); // Call on Eval hoisted out of the loop
float E1 = ???; // Unspecified

. // initialization

. // "

. // "
float En−1 = ???; // "
float En = ???; // "
for (int i = 1; i <= numPoints; i++) { // Tabulation loop
y = E;
cout << x << ": " << y << endl;
E += E1; // Extended pre-derivative
E1 += E2; // w.r.t. x += h;

. // "

. // "

. // "
En−1 += En; // "
x += h;

}
}

However, as indicated by the question marks in the above code, Paige and Koenig do not state explicitly

11It should be pointed out that in practice it is better to code the statement in the loop that changes the value of x as
“x = start + i * h;”, rather than as “x += h;”, so that small errors in h do not accumulate in x due to repeated addition.
We hav e chosen to use the latter form to emphasize the similarities between Tabulate and the two earlier strength-reduction exam-
ples.

− 39 −

how they plan to arrive at the proper initialization code that is to be placed just before the loop in the trans-

formed program. It is unclear whether they intend to generate the values E1, E2, ..., En−1, En by evaluating

polynomial P at start, start+h, ..., start+(n−1)*h, start+n*h and then create the Ei via sub-

traction operations, or whether they intend to generate the finite-difference polynomials P1, P2, ..., Pn−1, Pn

symbolically and then apply each of them to start. The former method can lead to very inaccurate

results (see below), whereas the latter method requires that a substantial amount of symbolic manipulation

be performed to generate the Pi.

However, the divided-difference arithmetic FloatDDR1 gives us an easy way to create suitable initial-

ization code that produces accurate values for the Ei. This initialization code consists of three steps:

(1) Create a FloatV of equally spaced points, starting at start and separated by h, where the number of

points is one more than the degree of the polynomial.

(2) Introduce a single call on the member function

FloatDDR1 Poly::Eval(const FloatV &x);

to create the first row of the divided-difference table for the polynomial with respect to the given

FloatV.

(3) Convert the resulting FloatDDR1 (which holds divided-difference values) into the first row of a finite-

difference table for the polynomial by multiplying each entry by an appropriate adjustment factor (see

[13, Lemma 4.1]).

This initialization method is used in the version of Tabulate shown below. (In this version of Tabu-

late, the Ei are renamed diffTable[i].)

− 40 −

void Poly::Tabulate(float start, int numPoints, float h)
{

float x = start;
float y;

// Create accurate divided-difference table
FloatV fv(x, degree+1, h);
FloatDDR1 fddr1 = Eval(fv); // Calls FloatDDR1 Poly::Eval(const FloatV &);

// Convert divided-difference entries to finite-difference entries
float *diffTable(new float[degree+1]);
float adjustment = 1.0;
for (int i = 0; i <= degree; i++) {

diffTable[i] = fddr1.divDiffTable[i] * adjustment;
adjustment *= (h * (i+1));

}

for (int i = 1; i <= numPoints; i++) { // Tabulation loop
y = diffTable[0];
cout << x << ": " << y << endl;
for (int j = 0; j < degree; j++) { // Pre-derivative w.r.t. x += h;

diffTable[j] += diffTable[j+1];
}
x += h;

}
}

Empir ical Results: Tabulation of a Polynomial via Briggs’s Method

We now present some empirical results that illustrate the advantages of the final version of Poly::Tabu-

late presented above. Again, we work with the polynomial P(x) = 2. 1 * x3 − 1. 4 * x2 − . 6 * x + 1. 1, and

perform computations using single-precision floating-point arithmetic.

The final version of Poly::Tabulate uses the divided-difference arithmetic FloatDDR1 in the ini-

tialization step that creates the initial finite-difference vector diffTable. An alternative way to generate

diffTable is to evaluate polynomial P at start, start+h, ..., start+(n−1)*h, start+n*h and

then create diffTable via subtraction operations, according to the standard definition [13, pp. 214].

However, the latter way of generating diffTable involves subtraction operations, and hence is subject to

possible catastrophic cancellations. In contrast, the method using computational divided differencing yields

a way to create a more accurate initial finite-difference table.

To giv e a concrete illustration of the benefits, the following table shows what happens when P(x) is eval-

uated at the 10,001 points in the interval [0. 0, 1. 0] with a grid spacing of .0001:

− 41 −

Evaluate via Horner Comp. Div. Diff. + Briggs Standard Finite Diff. + Briggs

x P(x) P(x) P(x)

0.0000 1.10000 1.10000 1.10000
0.0001 1.09994 1.09994 1.09994
0.0002 1.09988 1.09988 1.09988

.
0.9998 1.19942 1.19941 19844.3
0.9999 1.19971 1.19970 19850.3
1.0000 1.20000 1.19999 19856.2

Time (in seconds
for 1000 trials) 7.64 5.62 5.49

The numbers that appear in the rightmost column for P(. 9998), P(. 9999), and P(1. 0000) are not typo-

graphical errors. What happens is that the standard method for computing the initial finite-difference table

involves a catastrophic cancellation, and after 10,000 iterations of the Briggs calculation, the accumulated

round-off error makes the values produced diverge widely from the correct answers.

Overall, the method based on computational divided differencing is far more accurate than the one in

which the vector needed for Briggs’s method is obtained by subtraction operations (and only 2% slower).

Furthermore, the results from the method based on computational divided differencing are nearly as accu-

rate as those obtained by reevaluating the polynomial at each point, but the reevaluation method is 36%

slower.

9. OTHER RELATED WORK

Section 8 described how our ideas relate to Robert Paige’s work on finite differencing of set-valued expres-

sions in SETL programs. This section concerns other related work, which falls into four categories:

Computational Differentiation

Computational differentiation is a well-established area of numerical analysis, with its own substantial liter-

ature [68,56,26,5,27]. The importance of the subject is underscored by the fact that the 1995 Wilkinson

Prize for outstanding contributions to the field of numerical software was awarded to Chris Bischof (then at

Argonne) and Alan Carle (Rice) for the development of the FORTRAN computational-differentiation sys-

tem ADIFOR 2 [8]. As discussed in Section 4, computational divided differencing is a generalization of

computational differentiation: a program resulting from computational divided differencing can be used to

obtain derivatives (as well as divided differences), whereas a program resulting from computational differ-

entiation can only produce derivatives (and not divided differences).

Other Wor k on Accurate Divided Differencing

The program-transformation techniques for creating accurate divided differences described in this paper are

based on a 1964 result of Opitz’s [50], which was later rediscovered in 1980 by McCurdy [46] and again in

1998 by one of us (Reps). However, Opitz and McCurdy both discuss how to create accurate divided dif-

ferences only for expressions. In this paper, the idea has been applied to the creation of accurate divided

− 42 −

differences for functions defined by programs.

McCurdy, and later Kahan and Fateman [35] and Rall and Reps [62], have looked at ways to compute

accurate divided differences for library functions (i.e., sin, cos, exp, etc.).

Kahan and Fateman have also investigated how similar techniques can be used to avoid catastrophic can-

cellation when evaluating formulas returned by symbolic-algebra systems. In particular, their work was

motivated by the observation that naive evaluation of a definite integral
b

a
∫ f (x) dx can sometimes produce

meaningless answers: When a symbolic-algebra system produces a closed-form solution for the indefinite

integral ∫ f (x) dx, say G(x), the result of the computation G(b) − G(a) may have no significant digits due

to catastrophic cancellation. Kahan and Fateman show that divided differences can be used to develop

accurate numerical formulas that sidestep this problem.

One of the techniques developed by McCurdy for computing accurate divided-difference tables involved

first computing just the first row of the table and then generating the rest of the entries by a backfilling algo-

rithm. He studied the conditions under which this technique maintained sufficient accuracy. Howev er, his

algorithm for accurately computing the first row of the divided-difference table was based on a series

expansion of the function, rather than a divided-difference arithmetic, such as the FloatDDR1 arithmetic

developed in Section 6.

Other Wor k on Controlling Round-Off Error in Numerical Computations

Computational differentiation and computational divided differencing are methods for controlling the

round-off errors that can arise in two types of numerical computations. An extensive collection of methods

for controlling round-off error for a wide variety of numerical computations has been developed by

Kulisch’s group at the University of Karlsruhe [28,29].

In future work, we plan to investigate the use of such techniques to achieve greater accuracy (and to vali-

date results) in steps of the computational-divided-differencing transformations where operations are imple-

mented by solving systems of linear equations (cf. box (5.7)).

Other Wor k that Exploits Operator Over loading

The operator-overloading feature of C++ provides a convenient mechanism for implementing the divided-

difference arithmetics that are described in this paper. Compared to other methods of providing polymor-

phism in programming languages, such as parametric polymorphism [47] and inheritance polymorphism

[11], operator overloading has always been something of a poor cousin. In the programming-languages

community, operator overloading is sometimes referred to as “ad hoc polymorphism”, a term that has pejo-

rative overtones. Nevertheless, in addition to its application in computational differentiation and computa-

tional divided differencing, operator overloading provides a convenient implementation mechanism for a

wide variety of other interesting applications, including partial evaluation [1], safe pointers [2], and expres-

sion templates [66].

− 43 −

ACKNOWLEDGEMENTS

We are grateful for discussions with Chris Bischof, Carl de Boor, James O’Brien, and Richard Zippel about

various aspects of the work described in the paper.

REFERENCES
1. Andersen, L.O., “Program analysis and specialization for the C programming language,” Ph.D. diss. and Report TOPPS D-203,

Datalogisk Institut, Univ. of Copenhagen, Copenhagen, Denmark (May 1994).
2. Austin, T.M., Breach, S.E., and Sohi, G., “Efficient detection of all pointer and array access errors,” Proc. of the ACM SIGPLAN

94 Conf. on Pro g. Lang. Design and Implementation, (Orlando, FL, June 20-24, 1994), SIGPLAN Not. 29(6) pp. 290-301 (June
1994).

3. Bates, S. and Horwitz, S., “Incremental program testing using program dependence graphs,” pp. 384-396 in Conf. Rec. of the
Twentieth ACM Symp. on Princ. of Prog. Lang., (Charleston, SC, Jan. 10-13, 1993), ACM, New York, NY (1993).

4. Beck, T. and Fischer, H., “The if-problem in automatic differentiation,” J. Comp. and Appl. Math. 50 pp. 119-131 (1994).
5. Berz, M., Bischof, C., Corliss, G.F., and Griewank, A. (eds.), Computational Differentiation: Techniques, Applications, and

Tools, Soc. for Indust. and Appl. Math., Philadelphia, PA (1996).
6. Binkley, D., “Using semantic differencing to reduce the cost of regression testing,” pp. 41-50 in Proc. of the IEEE Conf. on Softw.

Maint. (Orlando, FL, Nov. 9-12, 1992), IEEE Comp. Soc., Wash., DC (1992).
7. Bischof, C., Carle, A., Corliss, G.F., and Griewank, A., “ADIFOR: Automatic differentiation in a source translator environment,”

pp. 294-302 in Proc. of ISSAC 1992: Int. Symp. on Symb. and Alg. Comp., (Berkeley, CA, July 27-29, 1992), ACM, New York,
NY (1992).

8. Bischof, C., Carle, A., Khademi, P., and Mauer, A., “ADIFOR 2.0: Automatic differentiation of Fortran 77 programs,” IEEE
Comp. Sci. and Eng. 3 pp. 18-32 (1996).

9. Bischof, C., Roh, L., and Mauer, A., “ADIC: An extensible automatic differentiation tool for ANSI-C,” Tech. Rep. ANL/MCS-
P626-1196, Math. and Comp. Sci. Div., Argonne Nat. Lab., Argonne, IL (1997).

10. Bj |orner, D., Ershov, A.P., and Jones, N.D. (eds.), Partial Evaluation and Mixed Computation: Proc. of the IFIP TC2 Workshop on
Partial Evaluation and Mixed Computation, (Gammel Avernaes, Denmark, Oct. 18-24, 1987), North-Holland, New York, NY
(1988).

11. Cardelli, L., “A semantics of multiple inheritance,” pp. 51-67 in Semantics of Data Types: Proc. of the Int. Symp., (Sophia-
Antipolis, France, June 27-29, 1984), Lec. Notes in Comp. Sci., Vol. 173, ed. G. Kahn, D. MacQueen, and G. Plotkin, Springer-
Verlag, New York, NY (1984).

12. Cocke, J. and Schwartz, J.T., Programming Languages and Their Compilers: Preliminary Notes, 2nd Rev. Version, Courant Inst.
of Math. Sci., New York Univ., New York, NY (1970).

13. Conte, S.D. and de Boor, C., Elementary Numerical Analysis: An Algorithmic Approach, 2nd. Ed., McGraw-Hill, New York, NY
(1972).

14. de Boor, C., A Practical Guide to Splines, (Appl. Math. Sciences, Vol. 27), Springer-Verlag, New York, NY (1978).
15. Earley, J., “High-level operations in automatic programming,” Proc. of the ACM SIGPLAN Symp. on Very High Level Languages,

(Mar. 1974), SIGPLAN Not. 9(4)(Apr. 1974).
16. Earley, J., “High-level iterators and a method for automatically designing data structure representation,” J. Comp. Lang. 1(4) pp.

321-342 (1976).
17. Fischer, H., “Special problems in automatic differentiation,” pp. 43-50 in Automatic Differentiation of Algorithms: Theory, Imple-

mentation, and Application, ed. A. Griewank and G.F. Corliss, Soc. for Indust. and Appl. Math., Philadelphia, PA (1992).
18. Fong, A. and Ullman, J., “Induction variables in very high level languages,” pp. 104-112 in Conf. Rec. of the Third ACM Symp.

on Princ. of Prog. Lang., (Atlanta, GA, Jan. 19-21, 1976), ACM, New York, NY (1976).
19. Fong, A., “Elimination of common subexpressions in very high level languages,” pp. 48-57 in Conf. Rec. of the Fourth ACM

Symp. on Princ. of Prog. Lang., (Los Angeles, CA, Jan. 17-19, 1977), ACM, New York, NY (1977).
20. Fong, A., “Inductively computable constructs in very high level languages,” pp. 21-28 in Conf. Rec. of the Sixth ACM Symp. on

Princ. of Prog. Lang., (San Antonio, TX, Jan. 29-31, 1979), ACM, New York, NY (1979).
21. Futamura, Y., “Partial evaluation of computation process − an approach to a compiler-compiler,” Systems, Computers, Controls

2(5) pp. 45-50 (1971).
22. Gallagher, K.B. and Lyle, J.R., “Using program slicing in software maintenance,” IEEE Trans. on Softw. Eng. SE-17(8) pp.

751-761 (Aug. 1991).
23. Goldstine, H.H., A History of Numerical Analysis, Springer-Verlag, New York, NY (1977).
24. Griewank, A., “On automatic differentiation,” pp. 83-108 in Mathematical Programming: Recent Developments and Applica-

tions, ed. M. Iri and K. Tanabe, Kluwer Academic Publishers, Boston, MA (1989).
25. Griewank, A., “The chain rule revisited in scientific computing,” SIAM News 24(May & July, 1991).
26. Griewank, A. and Corliss, G.F. (eds.), Automatic Differentiation of Algorithms: Theory, Implementation, and Application, Soc.

for Indust. and Appl. Math., Philadelphia, PA (1992).

− 44 −

27. Griewank, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Soc. for Indust. and Appl.
Math., Philadelphia, PA (2000).

28. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D., Numerical Toolbox for Verified Computing I: Basic Numerical Problems,
(Springer Ser. in Comp. Math., Vol. 21), Springer-Verlag, New York, NY (1993).

29. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D., C++ Toolbox for Verified Computing I: Basic Numerical Problems, Springer-
Verlag, New York, NY (1995).

30. Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” ACM Trans. Program. Lang. Syst.
11(3) pp. 345-387 (July 1989).

31. Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,” ACM Trans. Program. Lang. Syst.
12(1) pp. 26-60 (Jan. 1990).

32. Horwitz, S., “Identifying the semantic and textual differences between two versions of a program,” Proc. of the ACM SIGPLAN
90 Conf. on Pro g. Lang. Design and Implementation, (White Plains, NY, June 20-22, 1990), SIGPLAN Not. 25(6) pp. 234-245
(June 1990).

33. Iri, M., “Simultaneous computation of functions, partial derivatives and estimates of rounding errors: Complexity and practical-
ity,” Japan J. Appl. Math. 1(2) pp. 223-252 (1984).

34. Jones, N.D., Gomard, C.K., and Sestoft, P., Partial Evaluation and Automatic Program Generation, Prentice-Hall Int., Engle-
wood Cliffs, NJ (1993).

35. Kahan, W. and Fateman, R.J., “Symbolic computation of divided differences,” Unpublished report, Dept. of Elec. Eng. and
Comp. Sci., Univ. of Calif.−Berkeley, Berkeley, CA (1985). (Available at http://www.cs.berkeley.edu/˜fateman/papers/divd-
iff.pdf.)

36. Kearfott, R.B., “Automatic differentiation of conditional branches in an operator overloading context,” pp. 75-81 in Computa-
tional Differentiation: Techniques, Applications, and Tools, ed. M. Berz, C. Bischof, G.F. Corliss, and A. Griewank, Soc. for
Indust. and Appl. Math., Philadelphia, PA (1996).

37. Linnainmaa, S., “Taylor expansion of the accumulated rounding error,” BIT 16(1) pp. 146-160 (1976).
38. Liu, Y.A., “Incremental computation: A semantics-based systematic transformation approach,” Ph.D. diss. and Tech. Rep.

95-1551, Dept. of Comp. Sci., Cornell Univ., Ithaca, NY (Oct. 1995).
39. Liu, Y.A. and Teitelbaum, T., “Caching intermediate results for program improvement,” in Proc. of the ACM SIGPLAN Symp. on

Part. Eval. and Sem.-Based Prog. Manip. (PEPM 95), (La Jolla, California, June 21-23, 1995), ACM, New York, NY (1995).
40. Liu, Y.A. and Teitelbaum, T., “Systematic derivation of incremental programs,” Science of Computer Programming 24 pp. 1-39

(1995).
41. Liu, Y.A., Stoller, S.D., and Teitelbaum, T., “Discovering auxiliary information for incremental computation,” pp. 157-170 in

Conf. Rec. of the Twenty-Third ACM Symp. on Princ. of Prog. Lang., (St. Petersburg, FL, Jan. 22-24, 1996), ACM, New York,
NY (1996).

42. Liu, Y.A. and Stoller, S.D., “Loop optimization for aggregate array computations,” in Proc. of the IEEE 1998 Int. Conf. on Comp.
Lang., (Chicago, IL, May 1998), IEEE Comp. Soc., Wash., DC (1998).

43. Liu, Y.A. and Stoller, S.D., “Dynamic programming via static incrementalization,” pp. 288-305 in Proc. of ESOP ′99: European
Symp. on Programming, (Amsterdam, The Netherlands, Mar. 22-26, 1999), Lec. Notes in Comp. Sci., Vol. 1576, ed. S.D. Swier-
stra, Springer-Verlag, New York, NY (1999).

44. Liu, Y.A. and Stoller, S.D., “From recursion to iteration: What are the optimizations?,” pp. 73-82 in Proc. of the 2000 ACM SIG-
PLAN Workshop on Part. Eval. and Sem.-Based Prog. Manip. (PEPM ′00), (Boston, MA, Jan. 22-23, 2000), ACM, New York,
NY (2000).

45. Lyle, J. and Weiser, M., “Experiments on slicing-based debugging tools,” in Proc. of the First Conf. on Empirical Studies of Pro-
gramming, (June 1986), Ablex Publishing Co. (1986).

46. McCurdy, A.C., “Accurate computation of divided differences,” Ph.D. diss. and Tech. Rep. UCB/ERL M80/28, Univ. of
Calif.−Berkeley, Berkeley, CA (1980).

47. Milner, R., “A theory of type polymorphism in programming,” J. Comp. Syst. Sci. 17 pp. 348-375 (1978).
48. Mogensen, T., “The application of partial evaluation to ray-tracing,” Masters thesis, Datalogisk Institut, Univ. of Copenhagen,

Copenhagen, Denmark (1986).
49. Ning, J.Q., Engberts, A., and Kozaczynski, W., “Automated support for legacy code understanding,” Commun. ACM 37(5) pp.

50-57 (May 1994).
50. Opitz, G., “Steigungsmatrizen,” Zeitschrift fuer angewandte Mathematik und Mechanik 44 pp. T52-T54 (1964). (In German.

English translation available at http://www.cs.wisc.edu/wpis/papers/opitz.zamm64.ps.)
51. Ottenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software development environment,” Proc. of the

ACM SIGSOFT/SIGPLAN Softw. Eng. Symp. on Practical Softw. Develop. Env., (Pittsburgh, PA, Apr. 23-25, 1984), SIGPLAN
Not. 19(5) pp. 177-184 (May 1984).

52. Paige, R., Formal Differentiation − A Pro gram Synthesis Technique, UMI Research Press, Ann Arbor, MI (1981).
53. Paige, R. and Koenig, S., “Finite differencing of computable expressions,” ACM Trans. Program. Lang. Syst. 4(3) pp. 402-454

(July 1982).
54. Paige, R., “Transformational programming—applications to algorithms and systems,” pp. 73-87 in Conf. Rec. of the Tenth ACM

Symp. on Princ. of Prog. Lang., (Austin, TX, Jan. 24-26, 1983), ACM, New York, NY (1983).

− 45 −

55. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in C: The Art of Scientific Computing, 2nd.
Ed., Cambridge Univ. Press, Cambridge, England (1992).

56. Rall, L.B., Automatic Differentiation: Techniques and Applications, Lec. Notes in Comp. Sci., Vol. 120, Springer-Verlag, New
York, NY (1981).

57. Rall, L.B., “Differentiation and generation of Taylor coefficients in Pascal-SC,” pp. 291-309 in A New Approach to Scientific
Computation, ed. U.W. Kulisch and W.L. Miranker, Academic Press, New York, NY (1983).

58. Rall, L.B., “Differentiation in Pascal-SC: Type GRADIENT,” ACM Trans. Math. Softw. 10 pp. 161-184 (1984).
59. Rall, L.B., “The arithmetic of differentiation,” Mathematics Magazine 59 pp. 275-282 (Dec. 1986).
60. Rall, L.B., “Differentiation arithmetics,” pp. 73-90 in Computer Arithmetic and Self-Validating Numerical Methods, ed. C. Ull-

rich, Academic Press, New York, NY (1990).
61. Rall, L.B., “Point and interval differentiation arithmetics,” pp. 17-24 in Automatic Differentiation of Algorithms: Theory, Imple-

mentation, and Application, ed. A. Griewank and G.F. Corliss, Soc. for Indust. and Appl. Math., Philadelphia, PA (1992).
62. Rall, L.B. and Reps, T.W., “Algorithmic differencing,” in SCAN 2000: 9th GAMM-IMACS Int. Symp. on Sci. Comput., Comp.

Arith., and Validated Numerics, (Karlsruhe, Ger., Sept. 19-22, 2000), (2000). (To appear.)
63. Reps, T. and Turnidge, T., “Program specialization via program slicing,” pp. 409-429 in Proc. of the Dagstuhl Seminar on Partial

Evaluation, (Schloss Dagstuhl, Wadern, Ger., Feb. 12-16, 1996), Lec. Notes in Comp. Sci., Vol. 1110, ed. O. Danvy, R. Glueck,
and P. Thiemann, Springer-Verlag, New York, NY (1996).

64. Shamseddine, K. and Berz, M., “Exception handling in derivative computation with nonarchimedean calculus,” pp. 37-51 in
Computational Differentiation: Techniques, Applications, and Tools, ed. M. Berz, C. Bischof, G.F. Corliss, and A. Griewank, Soc.
for Indust. and Appl. Math., Philadelphia, PA (1996).

65. Speelpenning, B., “Compiling fast partial derivatives of functions given by algorithms,” Ph.D. diss., Dept. of Comp. Sci., Univ. of
Illinois, Urbana, IL (Jan. 1980).

66. Veldhuizen, T., “Expression templates,” C++ Report 7(5) pp. 26-31 (June 1995).
67. Weiser, M., “Program slicing,” IEEE Trans. on Softw. Eng. SE-10(4) pp. 352-357 (July 1984).
68. Wengert, R.E., “A simple automatic derivative evaluation program,” Commun. ACM 7(8) pp. 463-464 (1964).
69. Zippel, R., Personal communication to T. Reps. July 1996.

