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Given a program Base and two variants, A and B, each created by modifying separate copies of Base, the goal of pro-
gram integration is to determine whether the modifications interfere, and if they do not, to create an integrated program
that includes both sets of changes as well as the portions of Base preserved in both variants. Text-based integration
techniques, such as the one used by the UNIX diff3 utility, are obviously unsatisfactory because one has no guarantees
about how the execution behavior of the integrated program relates to the behaviors of Base, A, and B. The first
program-integration algorithm to provide such guarantees was developed by Horwitz, Prins, and Reps. However, a
limitation of that algorithm is that it incorporates no notion of semantics-preserving transformations. This limitation
causes the algorithm to be overly conservative in its definition of interference. For example, if one variant changes the
way a computation is performed (without changing the values computed) while the other variant adds code that uses the
result of the computation, the algorithm would classify those changes as interfering. This paper describes a new
integration algorithm that is able to accommodate semantics-preserving transformations.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques − programmer workbench;
D.2.3 [Software Engineering]: Coding − program editors; D.2.6 [Software Engineering]: Programming Environ-
ments; D.2.7 [Software Engineering]: Distribution and Maintenance − enhancement, restructuring, version control;
D.2.9 [Software Engineering]: Management − programming teams, software configuration management; D.3.4 [Pro-
gramming Languages]: Processors − compilers, interpreters, optimization; E.1 [Data Structures] graphs

General Terms: Algorithms, Design

Additional Key Words and Phrases: coarsest partition, control dependence, data dependence, data-flow analysis, flow
dependence, program dependence graph, program integration, program representation graph, static-single-assignment
form
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1. INTRODUCTION

Given a program Base and two variant programs, each created by modifying a copy of Base, the goal of
program integration is to determine whether the changes interfere, and if they do not, to create a merged
���������������������������������������������������������
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program that includes the changes introduced in the variants as well as the portions of Base that are
preserved in both variants.

The first step of an integration algorithm is to identify the changes that are made to the Base program to
create the variant programs. There are two approaches to identifying the changes: either we can find the
textual changes or we can find the behavioral changes. Although text-based tools for three-way
merging—such as the UNIX utility diff3—have existed for years, when used for merging programs such
tools are unsafe in the sense that they do not protect against unwanted behavioral interactions between the
parts of the merged program that are incorporated from different variants. Thus, one has no guarantees
about how the execution behavior of the merged program relates to the behaviors of the base program and
its variants. To provide such guarantees, one must use information about the language’s semantics in the
identification of behavioral changes, in the test for interference, and in the method for combining non-
interfering variants.

An important class of program modifications is that of semantics-preserving transformations—
transformations that change the way computations or stages of computations are performed without chang-
ing the values computed. For instance, existing programs are frequently modified in order to improve the
performance of the programs. It is thus desirable to have an integration algorithm that can accommodate
semantics-preserving transformations. This paper proposes an integration algorithm that is capable of
accommodating semantics-preserving transformations.

While our long-term goal is to design a semantics-based program-integration tool for a full-fledged pro-
gramming language, for now we are using a simplified model of the program-integration problem so as to
make it amenable to theoretical study. This model possesses the essential features of the problem, and thus
permits us to conduct our studies without being overwhelmed by inessential details. Our integration model
has the following characteristics:

(1) We restrict our attention to the integration of programs written in a simple programming language
that has only scalar variables, assignment statements, conditional statements, while loops, and output
statements. The language does not include input statements; however, a program can use a variable
before assigning to it, in which case the variable’s value comes from the initial state.

We assume a standard operational semantics for sequential execution of the corresponding flowchart
(control flow graph [2]): at any moment there is a single locus of control together with a global exe-
cution state mapping program variables to values; the execution of each assignment statement, output
statement, or predicate passes control to a single successor; the execution of each assignment state-
ment changes the global execution state.

(2) When an integration algorithm is applied to base program Base and variant programs A and B, and if
integration succeeds—producing program M—then for any initial state σ on which Base, A, and B all

terminate normally,1 the following properties concerning the executions of Base, A, B, and M on σ
must hold:

(i) M terminates normally.

(ii) For any program component c in variant A that produces different sequences of values in A
and Base, component c is in M and produces the same sequence of values as in A (i.e., M

���������������������������������������������������������

1There are two ways in which a program may fail to terminate normally on some initial state: (1) the program contains a non-

terminating loop, or (2) a fault occurs, such as division by zero.
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agrees with A at component c).

(iii) For any program component c in variant B that produces different sequences of values in B
and Base, component c is in M and produces the same sequence of values as in B (i.e., M
agrees with B at component c).

(iv) For any program component c that produces the same sequence of values in Base, A, and B,
component c is in M and produces that same sequence of values (i.e., M agrees with Base, A,
and B at component c).

(3) Program M is to be created only from components that occur in programs Base, A, and B.

By a “program component” we mean an assignment statement, a predicate, or an output statement. By
“the sequence of values produced by a program component,” we mean the following: for an assignment
statement, the sequence of values assigned to the target variable; for a predicate, the sequence of boolean
values to which the predicate evaluates; and for an output statement, the sequence of values that is printed
out at that statement.

Properties (1) and (3) are syntactic restrictions that limit the scope of the integration problem. Property
(2) defines the model’s semantic criterion for integration and interference. A more informal statement of
Property (2) is: changes in the behavior of A and B with respect to Base must be incorporated in the
integrated program, along with the unchanged behavior of all three. Any program M that satisfies Proper-
ties (1), (2), and (3) integrates Base, A, and B; if no such program exists then A and B interfere with respect
to Base. However, Property (2) is not decidable, even under the restrictions given by Properties (1) and
(3); consequently, any program-integration algorithm will sometimes report interference—and conse-
quently fail to produce an integrated program—even though there is actually no interference (i.e., even
when there is some program that meets the integration criteria given above).

The first algorithm that meets the above requirements (i.e., the first algorithm for semantics-based pro-
gram integration) was given by Horwitz, Prins, and Reps in [12]; that algorithm is referred to hereafter as
the HPR algorithm. The HPR algorithm represents a fundamental advance over text-based program-
integration algorithms and provides the first step in the creation of a theoretical foundation for building a
program-integration tool. However, there is room for improvement. In particular, the HPR algorithm will
report interference (and hence will fail to produce an integrated program) when one variant changes the
way a computation is performed—without changing the values computed—while the other variant adds
code that uses the result of the computation.

This situation is illustrated in Figure 1, which shows three example integration problems. The HPR
algorithm will report interference in all three cases; however, there is no interference according to the
integration criteria given above, and an integrated program that satisfies the criteria is shown in each case.
In the first example, variant A changes the computation of area by renaming variable P to PI, and moving
the assignment rad := 2 inside the conditional, while variant B adds an assignment to variable vol that uses
the value of area. In the second example, variant A changes the algorithm for zeroing every other element
of array a, while variant B adds a computation that uses the final value of a. In the third example, variants
A and B both perform semantics-preserving transformations: variant A changes the way j is computed by
performing a reduction in strength (replacing a multiplication with an addition), while variant B changes
the assignment to k (which uses the value of j) by moving a loop-invariant computation outside the loop.

The limitations of the HPR algorithm illustrated in Figure 1 are due to the way the HPR algorithm
identifies which variables are assigned the same values in the base program as in the variants, and to the
way program fragments are extracted from Base, A, and B, and combined to form the merged program
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� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Base Variant A Variant B Integrated Program
� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
program
P := 3.14
rad := 2
if DEBUG

then rad := 4
fi
area := P * (rad**2)
output(area)

program
�
PI := 3.14

������������������
�����������������
if DEBUG

then rad := 4
else

�
rad := 2

�� �������������
� �������������

fi
�
area := PI * (rad**2)

�� �����������������������������������
� �����������������������������������
output(area)

program
P := 3.14
rad := 2
if DEBUG

then rad := 4
fi
area := P * (rad**2)
�
height := 10

�� �������������������
� ��������������������
vol := height*area

�� �����������������������������
� �����������������������������
output(area)
�
output(vol)

�� �������������������
� �������������������

program
PI := 3.14
if DEBUG

then rad := 4
else rad := 2

fi
area := PI * (rad**2)
height := 10
vol := height*area
output(area)
output(vol)

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

program
i := 1
while i≤N do

if even(i) then a[i] := 0 fi
i := i + 1

od
output(a)

program
�
i := 2

����������
���������
while i≤N do

�
a[i] := 0

�� �������������
� ��������������
i := i + 2

����������������
���������������

od
output(a)

program
i := 1
while i≤N do

if even(i) then a[i] := 0 fi
i := i + 1

od
�
i := 1

����������
����������
sum := 0

����������������
����������������
while i≤N do

������������������������
������������������������

sum := sum + a[i]
������������������������������

������������������������������
i := i + 1

����������������
����������������

od
��	���

�	���
output(a)
�
output(sum)

��
���
���
���
���
���
�
���
���
���
���
���

program
i := 2
while i≤N do

a[i] := 0
i := i + 2

od
i := 1
sum := 0
while i≤N do

sum := sum + a[i]
i := i + 1

od
output(a)
output(sum)

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

program
k := 0; i := 1
while i≤100 do

j := i * 2
while j<1000 do

k := k + i * 10 + j
j := j + 1

od
i := i + 1

od
output(k)

program
k := 0; i := 1
�
twoi := 2

����������������
���������������
while i≤100 do

�
j := twoi

����������������
���������������
while j<1000 do

k := k + i * 10 + j
j := j + 1

od
�
twoi := twoi + 2

�� �������������������������
� �������������������������
i := i + 1

od
output(k)

program
k := 0; i := 1
while i≤100 do

j := i * 2
�
teni := i * 10

����������������������
���������������������
while j<1000 do

�
k := k + teni + j

�� �������������������������
� �������������������������
j := j + 1

od
i := i + 1

od
output(k)

program
k := 0; i := 1
twoi := 2
while i≤100 do

j := twoi
teni := i * 10
while j<1000 do

k := k + teni + j
j := j + 1

od
twoi := twoi + 2
i := i + 1

od
output(k)

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 1. Three example integration problems that illustrate the limitations of the HPR algorithm with regard to
semantics-preserving transformations. Modifications in variants A and B are enclosed in boxes. In all three cases, the
HPR algorithm would report interference even though there is no interference according to the integration criteria.
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(these concepts are explained in more detail in Section 2). For example, consider the first integration prob-
lem of Figure 1. The change made to Base to create variant B was the addition of the computation of vol.
This new code must be included in the merged program; however, the HPR algorithm would extract from
variant B the entire program fragment needed to compute the value of vol. This fragment includes the
statement “area := P * (rad ** 2)”, which is undesirable since the way area is computed (though not its
value) has been changed in variant A (by renaming P to PI and by moving one assignment to rad inside the
conditional). It would be preferable to extract from variant B only the assignments to height and vol, com-
bining this fragment with the changed fragment from A. However, to do this requires being able to recog-
nize that the value of area is the same in variant A as in Base, which the HPR algorithm is unable to do.

To address these limitations of the HPR algorithm, we have designed a new algorithm that accommo-
dates semantics-preserving transformations. The algorithm uses a new operation, called limited slicing, to
extract program fragments from Base, A, and B that are smaller than the fragments extracted by the HPR
algorithm. To identify variables that are assigned the same values in the base program and a variant, the
new algorithm uses an auxiliary algorithm that determines, for each component of Base, A, and B, which
other components are congruent. A precise definition of congruence is given in Section 4; roughly, two
components are congruent only if they compute the same sequences of values when their respective pro-
grams are executed on the same initial state. Because the new integration algorithm can be used with any
safe congruence-testing algorithm, this paper actually describes a class of integration algorithms that
accommodate semantics-preserving transformations. One congruence-testing algorithm is given in Section
6; the correctness of this algorithm is proved fully in [24].

The remainder of the paper is organized into six sections, as follows. Section 2 summarizes and con-
trasts the techniques used by the HPR algorithm and the integration algorithm from this paper. Section 3
defines the graph representation of programs used by the new integration algorithm. Section 4 concerns
congruence of program components and presents the integration algorithm itself. Section 5 discusses two
important properties of the new integration algorithm. Section 6 gives a congruence-testing algorithm,
which can be used in the new integration algorithm. Section 7 discusses related work. The Appendix con-
tains a proof showing that the integration algorithm presented in this paper satisfies the integration criteria
given above.

2. IDENTIFYING CHANGED COMPONENTS AND EXTRACTING PROGRAM FRAGMENTS

The fundamental problems in program integration are (1) to determine, for all possible initial states, which
components of a variant will produce different values than the corresponding components of the base pro-
gram (we call such components changed components), and (2) to extract fragments from the base and the
variant programs to form a merged program. This section summarizes the techniques used by the HPR
algorithm and contrasts them against the ones used by the new integration algorithm.

A component c of a variant is a changed component if its execution behavior is not equivalent to the exe-
cution behavior of the corresponding component of Base. The execution behavior of a component is the
sequence of values produced at the component. In order to account for non-terminating programs, we
define equivalence of execution behaviors as follows: Two program components c 1 and c 2 of programs P 1

and P 2 have equivalent execution behaviors if and only if all of the following hold:

(1) For all initial states σ such that both P 1 and P 2 terminate normally when executed on σ, the
sequence of values produced at c 1 when P 1 is executed on σ is identical to the sequence of values
produced at c 2 when P 2 is executed on σ.

(2) For all initial states σ such that neither P 1 nor P 2 terminates normally on σ, either (1) the
sequences of values produced at c 1 and c 2 are identical infinite sequences, or (2) the sequence of
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values produced at c 1 is a prefix of the sequence of values produced at c 2, or vice versa.

(3) For all initial states σ such that P 1 terminates normally on σ but P 2 fails to terminate normally on
σ, the sequence of values produced at c 2 is a prefix of the sequence of values produced at c 1.

(4) For all initial states σ such that P 2 terminates normally on σ but P 1 fails to terminate normally on
σ, the sequence of values produced at c 1 is a prefix of the sequence of values produced at c 2.

In the HPR algorithm, changed components are identified by comparing program slices [2318]. The
slice of a program with respect to a component c is a projection of the program that includes all program
components that might affect (either directly or transitively) the sequence of values produced at c. For
example, there are six different slices of program Base from the first integration problem of Figure 1.
These slices are shown below; in each case the component with respect to which the slice is taken is
enclosed in a box.
� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

program
�
P := 3.14

�� ���������������
� ���������������

program
�
rad := 2

�� �������������
� �������������

program
if
�
DEBUG

�� �������������
� �������������

fi

program
if DEBUG

then
�
rad := 4

�� �������������
� �������������

fi

program
P := 3.14
rad := 2
if DEBUG

then rad := 4
fi
�
area := P * (rad**2)

�� ���������������������������������
� ���������������������������������

program
P := 3.14
rad := 2
if DEBUG

then rad := 4
fi
area := P * (rad**2)
�
output(area)

�� ���������������������
� ���������������������

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The HPR algorithm uses the following criterion for finding changed components: a variant’s changed
components are all those whose slices differ from the corresponding slices of Base. The intuition behind
this criterion is the following: If a component c’s slice in a variant differs from its slice in the base pro-
gram, then the way c’s values are computed differs in the variant and the base program, and thus the values
themselves might differ.

While this criterion for finding changed components is safe, it is overly pessimistic since it is possible
that components with different slices still compute the same values. For example, consider again the first
integration problem of Figure 1. The slices of Base, A, and B with respect to their assignments to variable
area are shown below. (In this example, the slice of B is identical to that of Base.)

Slice of Base and B Slice of A

program
P := 3.14
rad := 2
if DEBUG

then rad := 4
fi
�
area := P * (rad**2)

�� ���������������������������������
� ���������������������������������

program
PI := 3.14
if DEBUG

then rad := 4
else rad := 2

fi
�
area := PI * (rad**2)

�� �����������������������������������
������������������������������������

The slice of variant A differs from the corresponding slice of Base; thus, the assignment to area in variant
A would be classified as a changed component of A by the HPR algorithm although in fact the value
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assigned to area is the same in A as in Base (and B). (It is this (mis)classification that causes the HPR algo-
rithm to report interference for this example.)

Although the problem of identifying changed components exactly is, in general, undecidable, the slice-
comparison criterion that is used in the HPR algorithm is not the only way to identify changed components
safely; for example, a much different algorithm is given in Section 6. In this paper, we assume that such an
algorithm is at our disposal; in particular, we assume that we have an algorithm for testing the congruence
condition spelled out in Section 4.1. The integration algorithm that we give is parameterized by this auxili-
ary congruence algorithm; more precise congruence algorithms will allow the integration algorithm to
accommodate more semantics-preserving transformations.

In addition to using program slicing to find changed components, the HPR algorithm also makes use of
program slicing to extract fragments from Base, A, and B, which are then combined to form the merged
program. In particular, the merged program is formed by taking the union of three slices: (1) variant A
sliced with respect to the changed components of A, (2) variant B sliced with respect to the changed com-
ponents of B, and (3) Base sliced with respect to the unchanged components of Base, A, and B (in the HPR
algorithm, a component is classified as unchanged if its slice is the same in Base, A, and B). The problem
with this approach to creating the merged program is that a slice corresponds to a complete fragment, and it
is not desirable to extract a complete fragment when part of that fragment has been changed by the other
variant.

For example, consider variant B in the second integration problem of Figure 1. Variant B differs from
Base because a new computation to sum the elements of array a has been added. New components are
always classified as changed components; thus, the HPR algorithm would include in the integrated program
all slices of variant B with respect to the new components of B. Those slices would include the first loop of
B (which zeros every other element of array a). This is undesirable since that loop has been changed by
variant A. Since the value of array a after the first loop terminates (which is used by the new computation
of B) is the same in A as in B, it would be preferable to include only the new computation from B rather
than including the entire slice with respect to the new components.

By contrast, the algorithm given in this paper uses a different operation—called limited slicing—to
extract partial fragments, rather than full slices, from Base, A, and B, which are then used to form the
merged program. Limited slicing is defined and discussed in Section 4.3.

3. PROGRAM REPRESENTATION GRAPHS

The new program-integration algorithm uses a graph representation of programs called a Program
Representation Graph. Program Representation Graphs (PRGs) combine features of program dependence
graphs [149] and static-single-assignment forms [4226]. A program’s PRG is defined in terms of an aug-
mented version of the program’s control-flow graph. The standard control-flow graph includes a special
Entry vertex, a vertex for each if or while predicate, and a vertex for each assignment or output statement in
the program. The control-flow graph is augmented as follows. A vertex labeled “x := Initial (x)” is added
at the beginning of the control-flow graph for each variable x that may be used before being defined. As in
static-single-assignment forms, the control-flow graph is further augmented by adding special “φ vertices”
so that each use of a variable in an assignment statement, a predicate, or an output statement is reached by
exactly one definition.

A vertex labeled “φif : x := x” is added at the end of each if statement for each variable x that is defined
within either (or both) branches of the if and is live at the end of the if; a vertex labeled “φenter : x := x” is
added inside each while loop immediately before the loop predicate for each variable x that is defined
within the while loop, and is live immediately before the loop predicate (i.e., may be used either inside the
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loop, after the loop, or by the loop predicate before being redefined); a vertex labeled “φexit : x := x” is
added immediately after the loop for each variable x that is defined within the loop and is live after the
loop. Figures 2(a) and 2(b) show a program and its augmented control-flow graph.

The vertices of a program’s Program Representation Graph (PRG) are the same as the vertices in the
augmented control-flow graph (an Entry vertex, a vertex for each predicate, assignment, and output state-
ment, and for each Initial, φif , φenter , and φexit vertex). The edges of the PRG represent control and flow
dependences. The source of a control dependence edge is always either the Entry vertex or a predicate ver-
tex; control dependence edges are labeled either true or false. The intuitive meaning of a control depen-
dence edge from vertex v to vertex w is the following: if the program component represented by vertex v is
evaluated during program execution and its value matches the label on the edge, then (assuming all con-
structs terminate normally) the component represented by w will eventually execute; however, if the value
does not match the label on the edge, then the component represented by w may never execute. (By
definition, the Entry vertex always evaluates to true.)

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

program
P := 3.14
rad := 2
if DEBUG then

rad := 4
fi
area := P*(rad**2)
output(area)

Entry

DEBUG := Initial (DEBUG)

P := 3.14

rad := 2

if DEBUG

rad := 4

φif: rad := rad

area := P*(rad**2)

output(area)

F

T

Entry

DEBUG:=Initial (DEBUG)

P:=3.14 if DEBUGrad:=2

rad:=4

area:=P*(rad**2)φif: rad:=rad

output(area)

(b)(a) (c)

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 2. (a) A program; (b) its augmented control-flow graph; (c) its Program Representation Graph. In the Program
Representation Graph, control dependence edges are shown using bold arrows and the edges are shown without their
labels (in this example, all control dependence edges would be labeled true); data dependence edges are shown using
arcs.
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Algorithms for computing control dependences in languages with unrestricted control flow are given in
[96]. For the restricted language under consideration here, control dependences can be computed in a more
straightforward fashion. Most control dependence edges reflect the nesting structure of the program: there
is an edge labeled true from the vertex that represents a while predicate to all vertices that represent state-
ments nested immediately within the loop; there is an edge labeled true from the vertex that represents an
if predicate to all vertices that represent statements nested immediately within the true branch of the if, and
an edge labeled false to all vertices that represent statements nested immediately within the false branch;
there is an edge labeled true from the Entry vertex to all vertices that represent statements that are not
inside any while loop or if statement. In addition, there is a control dependence edge labeled true from
every vertex that represents a while predicate to itself, and every φenter vertex has two incoming control
dependence edges: one from its enclosing loop’s predicate vertex p, and the other from p’s control prede-
cessor.

Flow dependence edges represent possible flow of values, i.e., there is a flow dependence edge from ver-
tex v to vertex w if vertex v represents a program component that assigns a value to some variable x, vertex
w represents a component that uses the value of variable x, and there is an x-definition clear path from v to
w in the augmented control-flow graph.

Figure 2(c) shows the Program Representation Graph of the program of Figure 2(a). Control depen-
dence edges are shown using bold arrows and are unlabeled (in this example, all control dependence edges
would be labeled true); data dependence edges are shown using arcs.

4. THE NEW INTEGRATION ALGORITHM

Given a base program Base and variant programs A and B, the new integration algorithm performs the fol-
lowing steps:

(1) Apply a congruence-testing algorithm to the Program Representation Graphs of the three programs.

(2) Use the results of Step (1) to classify the vertices of each PRG.

(3) Use the classification of Step (2) to compute subgraphs that represent the changed and preserved
computations of the variant programs with respect to the base program.

(4) Combine the subgraphs to form a merged graph.

(5) For all φ vertices v from which there is no path to a non-φ vertex in the merged graph, remove v
and all of its incoming and outgoing edges.

(6) Determine whether the merged graph represents a program; if so, produce the program.

The algorithm may determine that the variant programs interfere in either Step (2), Step (3), or Step (6).

4.1. Vertex Congruence

The new integration algorithm uses an auxiliary algorithm that identifies congruent vertices of the Program
Representation Graphs of Base, A, and B. By definition, vertices u and v are congruent if and only if all of
the following hold:

(1) Vertices u and v have equivalent execution behavior (as defined in Section 2).

(2) The true/false labels on u’s incoming control dependence edges match the true/false labels on v’s
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corresponding incoming control dependence edges.2

(3) The sources of u’s incoming control dependence edges are congruent to the corresponding sources
of v’s incoming control dependence edges.

Example. To illustrate congruence of vertices, we can look at the first example in Figure 1. The assign-
ments P := 3.14 in Base and B and the assignment PI := 3.14 in A are congruent since the same values are
produced at these components, their incoming control dependence edges have the same labels, and the
sources of their incoming control dependence edges, the Entry vertices, are congruent. Similarly, the
assignments to area in all three programs are congruent. However, the assignments rad := 2 in Base and A
are not congruent because they have inequivalent behavior (if variable DEBUG is true, then rad := 2 in A
will not be executed; however, the assignment rad := 2 is always executed in Base).

It is, in general, undecidable to identify congruent vertices exactly; the new integration algorithm can use
any safe congruence-testing algorithm (i.e., one that identifies a subset of the exact set of congruent pairs of
vertices). For example, comparing program slices is a safe congruence-testing algorithm [20]. Our investi-
gation of appropriate congruence-testing algorithms led to the development of the Sequence-Congruence
Algorithm, which will be described in Section 6.

One advantage of the new integration algorithm is that it can easily exploit additional facts about pro-
gram semantics. Many techniques used in compiler optimization [3,16,2], such as constant propagation,
movement of invariant code, and common subexpression elimination, can be combined with the
Sequence-Congruence Algorithm to detect larger classes of congruent components. An alternative
approach would be to make use of knowledge of semantics-preserving program transformations that have
been applied to a program or certain parts of the program. This information could be supplied by the editor
front-end of a program-transformation system.

In the following discussion of the new integration algorithm, we do not make any assumption about how
the information about which components are congruent was acquired. All we assume is that this informa-
tion is at our disposal.

4.2. Classification of Vertices

There are two kinds of changes that can be introduced by a variant program: a change in execution
behavior, or a change in text that does not affect execution behavior. The integration algorithm attempts to
preserve both kinds of changes in the integrated program. The vertices in each of the three programs
(Base, A, and B) are classified as defined below to reflect how the behavior and text of the vertex in that
program relates to the behavior and text of the corresponding vertices in the other two programs.

The first problem is, given a vertex in one program, which are the corresponding vertices in the other
two programs? The identification of congruent vertices performed by Step (1) of the integration algorithm
cannot always provide an answer, since a vertex in one program may be congruent to several vertices in
another program (i.e., congruence may not define a one-to-one correspondence). Therefore, it is assumed
that vertices are tagged such that no two vertices in a program have the same tag (a vertex in one program
may, of course, have the same tag as a vertex in another program). Tags may be provided by the editor
used to create A and B from Base, or may be supplied by some other mechanism—the source of the tags is
not relevant to the algorithm itself.
���������������������������������������������������������

2Recall that φenter and while predicate vertices have two incoming control dependence edges; the Entry vertex has no incoming control

dependence edges; all other vertices have exactly one incoming control dependence edge.
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Given this assumption, the correspondence between vertices of the three programs is established as fol-
lows: Two vertices v 1 and v 2 correspond if and only if all of the following hold:

(1) v 1 and v 2 are congruent;

(2) v 1 and v 2 have the same tag;

(3) if v 1 and v 2 are assignment statements (including φ assignments), they assign to the same variable.3

Using this definition of corresponding vertices, each vertex of Base, A, and B is classified as defined below.

Every vertex in A is in one of five sets: NewA, ModifiedA, ModifiedB, IntermediateA, or Unchanged.

(1) A vertex is in NewA if there is no corresponding vertex in Base. Vertices in NewA represent pro-
gram components that have been added to Base to create A, or have been moved to contexts that
have changed their execution behaviors. (The vertices in NewA may or may not have correspond-
ing vertices in B.)

(2) A vertex is in ModifiedA if there is a corresponding vertex in Base, but the vertex’s text in A differs
from the text of the corresponding vertex in Base. Vertices in ModifiedA represent components of
A whose texts have been changed but whose execution behaviors remain the same. (The vertices in
ModifiedA may or may not have corresponding vertices in B.)

(3) A vertex is in ModifiedB if there are corresponding vertices in both Base and B, and the vertex’s
text in A is the same as the text of the corresponding vertex in Base, but differs from the text of the
corresponding vertex in B. (These vertices will also be classified as ModifiedB in B and Base.)

(4) A vertex is in IntermediateA if there is a corresponding vertex in Base and the vertex’s text in A is
the same as the text of the corresponding vertex in Base, but there is no corresponding vertex in B
(either because the vertex was deleted from B, or because the vertex’s execution behavior was
changed in B, or because the vertex’s left-hand side variable was changed in B).

(5) A vertex is in Unchanged if there are corresponding vertices in both Base and B, and all three ver-
tices have the same text. Vertices in Unchanged represent components that are textually and
behaviorally identical in all three programs.

Vertices in B are similarly classified into the sets NewB, ModifiedB, ModifiedA, IntermediateB, or
Unchanged. Vertices in Base are classified into the sets ModifiedA, ModifiedB, IntermediateA,
IntermediateB, Unchanged, and Deleted. A vertex in Base is in Deleted if neither A nor B contains a
corresponding vertex. Vertices in Deleted represent program components of Base that have been deleted
or whose left-hand-side variable and/or behavior have been changed in both A and B.

Because the text in corresponding vertices from A and B can be different, there are two cases when the
classification process discovers that the changes made in A and B interfere: (1) when corresponding ver-
tices with different text are classified NewA and NewB, respectively; (2) when corresponding vertices with
different text are classified ModifiedA and ModifiedB, respectively. Since a vertex in the merged PRG can
have only one version of the text, it is not possible to preserve the changed text of this vertex from both A
and B.

���������������������������������������������������������

3This requirement will be explained in Section 4.8.
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4.3. Identifying Changed and Preserved Computations

The merged graph must include all of the changed components of the variants, and must include enough of
the “neighborhoods” of those components to ensure that they retain their execution behaviors. Limited
slices provide the mechanism for extracting these neighborhoods.

Definition. Let R be the Program Representation Graph of Base, A, or B, and let S be a set of (φ and
non-φ) vertices in R. The limited slice of R with respect to S, denoted by R/ /S, is defined as the smallest
subgraph of R such that if there is a path from a vertex u to a vertex of S and all vertices along this path,
excluding the two endpoints, belong to either IntermediateA or IntermediateB, then all vertices and edges
on this path are included in R/ /S.

The limited slice with respect to a set of vertices is equivalent to the union of the limited slices with
respect to the individual vertices.

The affected components of a variant are the components that are textually different from the
corresponding components of Base, or that have no corresponding component in Base. The changed com-
putations of a variant are computed by taking a limited slice of the variant with respect to its affected com-
ponents. (RA denotes A’s PRG.)

AffectedA = NewA∪ModifiedA

ChangedCompsA = RA // AffectedA

AffectedB and ChangedCompsB are defined similarly.

The preserved computations of Base, A, and B are computed by examining the limited slices of the three
programs with respect to the vertices u in the set Unchanged. Note that these limited slices may not be

equal;4 although u itself is behaviorally and textually identical in Base, A, and B, the values of the variables
used at u may be computed differently in the three programs. Interference is reported at this point if there
is some vertex u in Unchanged such that the limited slices with respect to u in Base, A, and B, are pairwise
unequal. Otherwise, for each vertex u ∈ Unchanged, the preserved limited slice with respect to u,
Preserved (u), is determined as follows:
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Relationship of limited slices Preserved (u)
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

RA / /u = RB / /u RA / /u

(RA / /u = RBase / /u) and (RA / /u ≠ RB / /u) RB / /u

(RB / /u = RBase / /u) and (RB / /u ≠ RA / /u) RA / /u
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

The preserved computations, Preserved, is the union of Preserved(u) for all u ∈ Unchanged.

Preserved =
u ∈ Unchanged

∪ Preserved (u)

���������������������������������������������������������

4Two limited slices are equal if the vertex correspondence relation induces an isomorphism between them.
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4.4. Forming the Merged Graph

The merged graph, RM , is formed by taking the union of the graphs that represent the changed computa-
tions of A and B, and the graphs that represent the preserved computations of Base, A, and B:

RM = ChangedCompsA∪ChangedCompsB∪Preserved

For the purposes of this union, two vertices are “the same” (i.e., only one copy of the vertex is included in
the merged graph) if and only if the two vertices correspond. It is possible that both ChangedCompsA and
ChangedCompsB will include corresponding vertices with different text. This can only happen, however, if
the two vertices are both classified ModifiedA or both classified ModifiedB. In the former case, the text of
the vertex incorporated in the merged graph is the text from A; in the latter case, it is the text from B. In all
other cases, corresponding vertices from A and B have the same text (otherwise interference would have
been detected during vertex classification).

4.5. Removing Extra φφ Vertices

When the PRG of a program is created, there is a path from every φ vertex to a non-φ vertex. “Extra” φ
vertices—ones without such paths—can sometimes occur in the merged graph created by the previous step
of the integration algorithm. One way this situation arises is when a φ vertex is classified as Unchanged,
but—because of deletions or rearrangements of the code—some of the vertex’s successors in Base are no
longer successors in A and the rest are no longer successors in B. If the “extra” φ vertices were left in the
merged graph, then the graph would not be the PRG of any program, and the next step of the integration
algorithm, which tests whether the merged graph corresponds to some program, would fail. Thus, all such
“extra” φ vertices and their incident edges are removed from the merged graph.

4.6. Reconstituting a Program From the Merged Graph

The final step of the program-integration algorithm is to determine whether the merged graph corresponds
to some program, and if so, to produce the program. If the merged graph is infeasible (does not correspond
to any program), the algorithm reports interference.

Determining whether a Program Dependence Graph is feasible has been shown to be NP-complete [11];
a similar result can be shown for Program Representation Graphs. The crux of the problem is finding an
order for each predicate’s control children. However, we expect that, for graphs created by merging the
Program Representation Graphs of actual programs, problematic cases will rarely arise. We have explored
ways of reducing the search space, in the belief that a backtracking method for solving the remaining step
will behave satisfactorily [12].

4.7. An Example Integration

Figure 3 illustrates the new integration algorithm using the first set of example programs from Figure 1.
Figure 3 shows: (1) the sets of vertices that would be classified as AffectedA, AffectedB, and Unchanged if
the Sequence-Congruence Algorithm (to be discussed in Section 6) were used for Step (1) of the new
integration algorithm; (2) the graph fragments ChangedCompsA, ChangedCompsB, and Preserved; and
(3) the merged graph. This merged graph is feasible, and corresponds to the program shown in Figure 1 as
the result of integrating the first set of programs.

4.8. Discussion of Classification of Vertices

In Section 4.2, we require that corresponding assignment statements assign to the same variables otherwise
they are not corresponding components. This is because vertices with the same tag can have different
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PI:=3.14

area:=PI*(rad**2)

rad:=2

height:=4

vol:=height*area

output(vol)

DEBUG:=Initial (DEBUG) if DEBUG

rad:=4 output(area)

Entry φif: rad:=rad

AffectedA AffectedB Unchanged

Entry

PI:=3.14 if DEBUG

rad:=2

φif: rad:=rad area:=PI*(rad**2)

F

Entry

area:=P*(rad**2) height :=4 vol :=height*area

output(vol)

ChangedCompsA ChangedCompsB

EntryDEBUG:=Initial (DEBUG)

if DEBUG

rad:=4 rad:=2

φif: rad:=rad area:=PI*(rad**2)

output(area)

T

Preserved

EntryDEBUG:=Initial (DEBUG)

PI:=3.14 if DEBUG

rad:=4 rad:=2

φif: rad:=rad area:=PI*(rad**2) height :=4 vol :=height*area

output(area)

output(vol)

T F

Merged Graph
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Figure 3. The new integration algorithm is illustrated using the first set of example programs from Figure 1. Note that
some vertices in ChangedCompsA , ChangedCompsB , and Preserved have no incoming control dependence edges.
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texts. Without such a restriction, certain new kinds of interference conditions can occur. To sidestep this
problem, we have imposed the requirement. For instance, consider the following integration example:

Program Base

program
<T1> x := 1

Variant A

program
<T1> x := 1
<T2> y := x + 1

Variant B

program
<T1> u := 1
<T3> z := u + 2

Program M1

program
<T1> ??? := 1
<T2> y := x + 1
<T3> z := u + 2

Program M2

program
<T1> x := 1
<T2> y := x + 1
<T1> u := 1
<T3> z := u + 2

If corresponding assignment statements could assign to different variables, the merged program would be
M1. Note that in M1 there is a conflict in the name of the variable that should be used in the statement
tagged T1. Since the new integration algorithm requires that corresponding assignment statements assign
to the same variable, the merged program produced by the new integration algorithm is M2. Note that the
statements tagged T1 in variants A and B are not corresponding vertices (even though they satisfy all other
requirements of correspondence). Hence they both are included in the merged program; there is no
interference.

5. PRESERVATION OF TEXTUAL CHANGES AND BEHAVIORAL CHANGES

There are two kinds of changes that can be made in the variants: the text of a component may be changed
or the behavior of the component may be changed. In this section, we show that both kinds of changes will
be preserved in the merged program in a successful integration. In particular, we show that the new
integration algorithm satisfies the conditions of the integration model defined in Section 1.

We need a new term to state the properties precisely: Two program components are analogous if they
have the same tag. Note that corresponding components must be analogous, but not vice versa.

5.1. Preservation of Textual Changes

The preservation of textual changes in the merged program is shown by considering the construction of the
merged graph. In the new integration algorithm, textual changes are captured by the sets AffectedA and
AffectedB, which include, among other components, those components whose text has been changed. The
limited slices with respect to components in AffectedA and AffectedB are always included in the merged
graph. Thus, textual changes made in A and B are preserved in the merged program in a successful integra-
tion. The preservation of textual changes is summarized in the following Theorem.

THEOREM. Suppose the new integration algorithm successfully integrates two variants A and B with
respect to the base program Base and produces a merged program M. Then

(1) For any program component vA in A, if vA’s text differs from that of the analogous component in
Base, then there is a component v in M that has the same text as vA.

(2) For any program component vB in B, if vB’s text differs from that of the analogous component in
Base, then there is a component v in M that has the same text as vB.

(3) For any program component vBase in Base, if vBase has the same text as the analogous components in
both A and B, then there is a component v in M that has the same text as vBase .

PROOF. Suppose vA is a component of A whose text differs from that of the analogous component in
Base. Then vA ∈ ModifiedA or vA ∈ NewA depending on whether vA is put in the same congruence class as
the analogous component in Base in the first step of the new integration algorithm. In either case, since the
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limited slices with respect to components in ModifiedA and NewA are included in the merged graph, there is
a component v in M that has the same text as vA. This proves the first clause. The second clause is proved
similarly.

Suppose vBase is a component of Base whose text is the same as that of the analogous components, vA

and vB, in A and B, respectively. Then either vBase ∈ Unchanged or vA ∈ NewA or vB ∈ NewB depending on
whether vBase , vA, and vB are put in the same congruence classes in the first step of the new integration
algorithm. If vBase ∈ Unchanged, there is a component v in M that has the same text as vBase . If vA ∈ NewA,
there is a component v in M that has the same text as vA. If vB ∈ NewB, there is a component v in M that
has the same text as vB. In any case, there is a component v in M that has the same text as vBase . This
proves the third clause.

�

5.2. Preservation of Behavioral Changes

In addition to textual changes, we can show that the new integration algorithm preserves the behavioral
changes made in the variants. The preservation of behavioral changes implies that the new integration
algorithm satisfies the conditions of the integration model defined in Section 1.

THEOREM. (Integration Theorem). Suppose the new integration algorithm successfully integrates two
variants A and B with respect to the base program Base and produces a merged program M. Then for any
initial state σ on which A, B, and Base all terminate normally:

(1) M terminates normally on σ.

(2) For any program component vA in A, if vA produces a different sequence of values than the analo-
gous component in Base, then there is a component v in M that produces the same sequence of
values as vA.

(3) For any program component vB in B, if vB produces a different sequence of values than the analo-
gous component in Base, then there is a component v in M that produces the same sequence of
values as vB.

(4) For any program component vBase in Base, if vBase produces the same sequence of values as the
analogous components in both A and B, then there is a component v in M that produces the same
sequence of values as vBase .

The proof of this theorem is included in the Appendix.

6. THE SEQUENCE-CONGRUENCE ALGORITHM

The first step in the new program-integration algorithm is to determine the set of congruent pairs of pro-
gram components. To determine the congruent pairs of components is essentially to determine program
components that have equivalent behaviors. Any technique that can detect program components with
equivalent behaviors can be used in the new program-integration algorithm. This section describes one
such algorithm that we developed, which is called the Sequence-Congruence Algorithm.

The Sequence-Congruence Algorithm was inspired by an idea of Alpern, Wegman, and Zadeck for
extending value numbering to work in the presence of conditional statements and loops [4]; however, our
results are quite different. The Alpern-Wegman-Zadeck algorithm finds what they call congruent program
components by first optimistically grouping possibly congruent components in an initial partition and then
finding the coarsest partition consistent with the initial partition. They show that if two components are in
the same final partition, and the components both dominate some point p in the program’s control-flow
graph, then whenever p is executed, the values most recently produced at the two components will be the
same.
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The Sequence-Congruence Algorithm also uses the idea of partitioning an initial optimistic grouping of
possibly equivalent components. However, it is applied to a different graph and uses two partitioning

passes rather than one;5 consequently, the final partitions produced by the Sequence-Congruence Algorithm
are different from the final partitions produced by the Alpern-Wegman-Zadeck algorithm. Components
that are in the same final partition produced by the Sequence-Congruence Algorithm have a different pro-
perty than components in the same final partition produced by the Alpern-Wegman-Zadeck algorithm;
while the latter have the same values at certain moments during program execution, the former—as shown
in [25]—have equivalent execution behaviors (i.e., the sequences of values produced at the components are
guaranteed to be identical).

A further point of contrast between our work and that of [4] concerns the idea of applying partitioning to
more than one program simultaneously. This idea makes no sense in the context of the Alpern-Wegman-
Zadeck algorithm since a point in one program’s control-flow graph cannot be dominated by a component
of another program; however, the Sequence-Congruence Algorithm can be applied to any number of pro-
grams to find components with equivalent execution behaviors.

Section 6.1 presents the Sequence-Congruence Algorithm; Section 6.2 gives a rough outline of a proof
that the Sequence-Congruence Algorithm correctly identifies program components with equivalent
behaviors; Section 6.3 describes some enhancements to the Sequence-Congruence Algorithm that allow
more precise determination of which components have equivalent behaviors.

6.1. The Sequence-Congruence Algorithm

A component’s execution behavior depends on three factors: the operator in the component, the operands
available when the operator is applied, and the predicates that control the execution of the operation. It is
safe to assume that components with different operators, different operands, or different controlling predi-
cates will have different behaviors (although there do exist program components that have equivalent
behavior but have different operators, inequivalent operands, or inequivalent controlling predicates).

The Sequence-Congruence Algorithm is based on the above assumption and the idea of finding the coar-
sest stable partition of a graph. The following figure illustrates what we mean by a stable partition:

s t

w x y z

u v

(1)

s t

w x y z

u v

(2)

In Part (1) of the above figure, vertices s and t are in the same class; u and v are in the same class; w, x, y,
and z are in the same class. Because the predecessors of w and x and the predecessors of y and z are in
���������������������������������������������������������

5Combining the two partitioning passes into a single pass would not invalidate our results, but would lead to a weaker sequence-

congruence algorithm; i.e., program components in the same final partition would still be guaranteed to have equivalent behaviors, but

fewer components would be placed in the same final partition. This point is discussed further in connection with the example given at

the end of Section 6.1.
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different classes, the partition is unstable; therefore, the class containing w, x, y, and z must be split into
two classes, one for w and x and the other for y and z as shown in Part (2) of the figure. The graph shown
in Part (2) is stable, and is the coarsest stable partition of the graph of Part (1). Given an initial partition of
a graph’s vertices, there exists a coarsest refinement of the initial partition that is stable, which can be com-
puted by a variation of an algorithm due to Hopcroft [10].

The Sequence-Congruence Algorithm uses this technique to partition components of one or more PRGs.
The algorithm consists of two partitioning passes. Vertices that have different operators are put into dif-
ferent initial partitions. Flow dependence edges (and some additional edges) are used in the first pass to
refine the initial partition. The second pass starts with the final partition produced by the first pass; control
dependence edges are used to further refine this partition. Both passes use the same basic partitioning algo-
rithm to refine the partition of the graph’s vertices; only the starting partition and the edges considered in
the two passes are different.

The initial partition is based on the operator in a vertex. The operator in a statement or a predicate ver-
tex is determined from the expression part of the vertex. For instance, statement “x := a + b * c” has the
same operator as statement “y := d + e * f ” but a different operator than statement “z := g * h”; that is, the
structure of the expression in the vertex defines the operator. The expression “a + b * c” uses the operator
that takes three arguments a, b, and c, and returns the value of “a + b * c”. (Note that the assignment sign
:= is not considered to be an operator in the Sequence-Congruence Algorithm since it does not compute a
value. It is the expression on the right-hand side of the assignment sign that computes a value.)

A predicate is simple if it consists of a single boolean variable; an assignment statement is simple if its
right-hand-side expression consists of a single variable; an output statement is simple if it prints out the
value of a variable. Vertices that represent simple predicates, simple assignments, or simple output state-
ments are called simple vertices. The operator in a simple vertex is the identity operator, that is, an opera-
tor that takes one argument and returns the value of the argument. Examples of simple vertices include: “if
p,” “y := x,” and “output(i).”

The operator in a vertex whose expression consists of a single constant is the constant operator that takes
no argument and always returns the value of the constant. There is a different operator for each different
constant in the program.

In PRGs, two vertices that are the same kind of φ vertex (i.e., φenter , φexit , or φif) or that have the same
operators must have the same number of incoming control and flow dependence edges. The corresponding
flow (or control) predecessors of two vertices u 1 and u 2 are two vertices v 1 and v 2 such that the flow (or
control, respectively) dependence edges u 1 → v 1 and u 2 → v 2 have the same type. Edge types are
defined as follows.

Due to the presence of φ vertices in PRGs, each use of a variable in a non-φ vertex is reached by exactly
one (φ or non-φ) assignment to that variable. Therefore, if the operator in a non-φ vertex is an n-ary opera-
tor, there are exactly n incoming flow dependence edges for this vertex. These flow dependence edges are
assigned types flow1, flow2, . . ., flown, one for each operand.

A vertex u labeled “φif : x := x” has two incoming flow dependence edges: one represents the value that
reaches u from or via the true branch of the associated if statement; the other represents the value that
reaches u from or via the false branch. The flow dependence edges incident on a φif vertex are assigned
types flowtrue and flowfalse , respectively. For instance, consider the following program fragment:
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<T1> x := 1
if P then

<T2> x := 2
fi

<T3> φif : x := x

The assignment at T1 reaches T3 via the false branch of the if statement; so the flow dependence edge from
T1 to T3 has type flowfalse . The assignment at T2 reaches T3 from the true branch; so the flow dependence
edge from T2 to T3 has type flowtrue .

A vertex u labeled “φenter : x := x” has two incoming flow dependence edges: one represents the value
that reaches u from outside the associated loop (due to an assignment to x before the loop); the other
represents the value that reaches u from inside the loop. These flow dependence edges are assigned types
flowenter and flownext , respectively.

A vertex u labeled “φexit : x := x” has one incoming flow dependence edge; the source of this flow depen-
dence edge is the associated φenter vertex. The flow dependence edge incident on a φexit vertex is assigned
type flowexit .

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

The basic partitioning algorithm:

The initial partition is B[1], B[2], ..., B[p]
WAITING := { 1, 2,..., p }
q := p
while WAITING ≠ ∅ do

select and delete an integer i from WAITING

for each edge type m do
FOLLOWER := ∅
for each vertex u in B[i] do FOLLOWER := FOLLOWER ∪ m-successor(u) od
for each j such that B[j] ∩ FOLLOWER ≠ ∅ and B[j] ⊆/ FOLLOWER do

q := q + 1
create a new class B[q]
B[q] := B[j] ∩ FOLLOWER

B[j] := B[j] − B[q]
if j ∈ WAITING then add q to WAITING

else if size(B[j]) ≤ size(B[q]) then add j to WAITING

else add q to WAITING

fi
fi

od
od

od
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4. The basic partitioning algorithm. This algorithm finds the coarsest partition of a graph’s vertices that is
compatible with a given initial partition and the edges in the graph.
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Control dependence edges are assigned types as follows: All vertices except φenter and while predicate
vertices have exactly one incoming control dependence edge. The control dependence edges that form
self-loops on while predicates are assigned type controlloop . The incoming control dependence edge of a
φenter vertex u whose source is not the associated while predicate for u is assigned type controlenter −true or
controlenter −false depending on whether the label on the control dependence edge is true or false. All other
control dependence edges are assigned type controltrue or controlfalse depending on whether the label on the
control dependence edge is true or false.

The two partitioning passes of the Sequence-Congruence Algorithm both use the basic partitioning algo-
rithm shown in Figure 4. This algorithm is adapted from [4,1], which in turn is based on an algorithm of
[10] for minimizing a finite state machine. This algorithm finds the coarsest stable partition of a graph’s
vertices (i.e., a partition that is compatible with a given initial partition and the edges in the graph). The
algorithm guarantees that two vertices v and v ′ are in the same class after partitioning if and only if they are
in the same initial partition, and, for every predecessor u of v, there is an corresponding predecessor u ′ of
v ′ such that u and u ′ are in the same class after partitioning, and vice versa. The m-successors of a vertex u
are the vertices v such that there is an edge u → v of type m. The size function returns the number of ele-
ments in a class.

Figure 5 presents the Sequence-Congruence Algorithm, which operates on one or more program
representation graphs. When the algorithm operates on more than one PRG, the multiple PRGs are treated
as one graph; thus, when we refer below to “the graph,” we mean the collection of PRGs.

Pass 1:

For the first pass, some additional edges are added to the graph: an edge from every if predicate to each
associated φif vertex and an edge from every while predicate to each associated φexit vertex are added to the
PRGs. These added edges are assigned types flowif and flowwhile , respectively.

The initial partition is based on the operators in the vertices. Initially, there is a class for all the Entry
vertices; for each variable x there is a class for all the Initial vertices for x; there is a class for all non-φ ver-
tices that have the same operators; for each nesting level of while loops, there is a class for all the φenter

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

The Sequence-Congruence Algorithm:

Pass 1: Add a flow-if edge from every if predicate to each associated φif vertex.
Add a flow-while edge from every while predicate to each associated φexit vertex.
Create an initial partition using the operators in the vertices.
Apply the basic partitioning algorithm to refine the initial partition, ignoring all control dependence edges.
Discard all flow-if and flow-while edges.

Pass 2: Apply the basic partitioning algorithm to the partition obtained from the first pass,
using only control dependence edges to further refine the partition.

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 5. The Sequence-Congruence Algorithm. The Sequence-Congruence Algorithm consists of two passes. Both
passes use the basic partitioning algorithm shown in Figure 4; only the starting partition and the edges considered in the
two passes are different.

ACM Transactions on Software Engineering and Methodology Vol 1, No 3, July 1992 pp 310-354



- 21 -

vertices at that nesting level; there is a class for all the φexit vertices; there is a class for all the φif vertices;
there is a class for all the output vertices.

This initial partition is refined by the basic partitioning algorithm; however, all control dependence edges
are ignored in the first pass. (The edges added in the beginning of the first pass—those of types flowif and
flowwhile—are discarded at the end of the first pass.)

Pass 2:

The second pass considers only control dependence edges, and applies the basic partitioning algorithm
again to refine the partition obtained from the first pass.

In the worst case, the Sequence-Congruence Algorithm requires O (E 1 log E 1 + E 2 log E 2) time where
E 1 is the number of flow dependence edges plus the number of φif and φexit vertices, and E 2 is the number
of control dependence edges in the graph.

Example. Figure 6 shows an example of partitioning (not all partition classes are shown in Figure 6;
only those that stem from the three classes listed under “Initial Partition”). Note that vertex “i := i + 2” is
separated from vertices “j := i + 2” and “k := i + 2” during Pass 1 because the flow predecessor of vertex
“i := i + 2” is a φexit vertex, while the other two vertices have a φenter vertex as their flow predecessor. This
separation causes the vertex “output(i)” to be separated from the vertices “output(j)” and “output(k)”
during Pass 1 as well. Note also that vertex “k := i + 2” is separated from vertex “j := i + 2” in the final
partition, because these two vertices have inequivalent control predecessors. If the Sequence-Congruence
Algorithm used a single partitioning pass that considered all edge types simultaneously, then the final parti-
tions would be refinements of the partitions created using two passes (i.e., the algorithm would still be safe,
but it would be more conservative). For example, if a single partitioning pass were used the vertices
“output(j)” and “output(k)” would be placed in different final partitions because their flow predecessors,
“j := i + 2” and “k := i + 2”, respectively, are placed in different partitions.

6.2. The Sequence-Congruence Theorem

It is possible to show that the Sequence-Congruence Algorithm is a safe algorithm for identifying program
components that have equivalent behaviors. This is summarized in the following theorem.

THEOREM. (Sequence-Congruence Theorem). Program components that are in the same final partition
determined by the Sequence-Congruence Algorithm have equivalent execution behaviors.

For the sake of brevity, the proof of the theorem is not included in this paper; full details can be found in
[25]. (A rough outline of the proof is as follows: Suppose the theorem is not correct. Then there are pro-
gram components that are in the same final partition but have inequivalent execution behaviors. We can
find the “earliest” time t when the theorem fails; i.e., when two components that are in the same final parti-
tion produce different values. We then show that for the theorem to fail at time t, the theorem must have
already failed before time t, which contradicts the choice of t.)

6.3. Enhancements

In this section we consider several enhancements to the Sequence-Congruence Algorithm. The first is con-
cerned with simple assignment statements, simple predicates, and simple output statements. Due to the
property of the identity operator in a simple vertex, we can merge a simple vertex v with its flow predeces-
sor u before performing the first pass of partitioning. By “merging a vertex v with another vertex u” we
mean “replace every edge v → x with an edge u → x, remove edge u → v, and remove vertex v.” This
merge operation is undone before the second pass, but vertices u and v are left in the same partition.
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i := i+1 j := i+1 k := i+1{ }

i := i+2 j := i+2 k := i+2{ }

output(i) output(j) output(k){ }

INITIAL PARTITION

i := i+1 j := i+1 k := i+1{ }

j := i+2 k := i+2{ }

output(j) output(k){ }

i := i+2{ }

output(i){ }

AFTER PASS 1

i := 1
j := 1
k := 1
while i<100 do
    k := i+2
    if i<50 then
        j := i+1
        k := i+1
    else
        j := i+2
    fi
    i := i+1
od
i := i+2
output(i)
output(j)
output(k)

    AFTER PASS 2
(FINAL PARTITION)

j := i+1 k := i+1{ }

j := i+2{ }

output(j) output(k){ }

i := i+2{ }

output(i){ }

k := i+2{ }

i := i+1{ }

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 6. An example illustrating how the Sequence-Congruence Algorithm partitions the vertices of a (single) pro-
gram into equivalence classes. Nine vertices of the example program are shown in their classes in the initial partition,
after Pass 1, and after Pass 2.

Vertices u and v may or may not be put in different partitions during the second pass. For instance, con-
sider the following example:

<T1> a := 1
<T2> b := a + 2

<T3> c := 1
<T4> d := c
<T5> e := d + 2

If we merge the simple assignment statement T4 with its flow predecessor T3 before performing the first
pass of partitioning, we can discover that T2 and T5 are have equivalent behaviors.
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In the Sequence-Congruence Algorithm, we assume that statement “x := a + b * c” has the same opera-
tor as statement “y := d + e * f ” but a different operator than statement “z := g * h”; that is, the structure
of the right-hand-side expression defines the operator. The expression “a + b * c” uses the operator that
takes three arguments a, b, and c, and returns the value of “a + b * c”. Thus, in the following program
fragment, T1 and T2 are not in the same equivalence class because they have different operators.

<T1> x := a + b * c
z := b * c

<T2> y := a + z

We can detect larger equivalence classes if the program is transformed to three-address code before parti-
tioning. For the above example, the assignment to x is replaced by two statements when the program frag-
ment is transformed to three-address code; consequently, T3 and T4 are placed in the same equivalence
class by the Sequence-Congruence Algorithm.

temp := b * c
<T3> x := a + temp

z := b * c
<T4> y := a + z

Similarly, a constant inside an expression is tightly coupled with the operator. The expression “a + 1”
uses the unary operator that takes an argument a and returns the value of “a + 1”. Therefore, in the follow-
ing program fragment, T5 and T6 are not in the same equivalence class because they have different opera-
tors (and different numbers of incoming flow dependence edges).

<T5> x := a + 1
z := 1

<T6> y := a + z

A simple transformation can improve the result of partitioning: for each constant c that appears in the pro-
gram, (1) a new variable Const_c is created, (2) an assignment statement “Const_c := c” is added at the
very beginning of the program, and (3) all references to c in the program are changed to references to
Const_c. This transformation does not change the execution behavior of a program; however, larger
equivalence classes of components that has equivalent behaviors will result from partitioning.

As presented in Section 6.1, the Sequence-Congruence Algorithm uses the same basic partitioning
algorithm—the one given in Figure 4—for both Pass 1 and Pass 2; however, this is not strictly necessary.
In principle, it is possible to use variants of the basic partitioning algorithm tailored specially for the two
different passes. For example, one kind of enhancement that may be worthwhile incorporating into Pass 1
is one that takes into account the mathematical properties of an expression’s operator. For instance, con-
sider the following example:

<T1> a := 1
<T2> b := 2
<T3> x := a + b
<T4> y := x * 3

<T5> c := 2
<T6> d := 1
<T7> u := c + d
<T8> v := u * 3

With the present algorithm for Pass 1, T3 and T7 are eventually placed in separate classes, and hence T4
and T8 are also placed in separate classes in the first pass. However, because addition is commutative, T3
and T7 could be placed in a single equivalence class, which then also makes it possible for T4 and T8 to be
members of a single equivalence class. A simple enhancement to the basic partitioning algorithm extends
it to handle commutative operators [4].
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The benefits of finding larger equivalence classes during Pass 1 carry over to Pass 2; in this example, T3
and T7 would be members of the same equivalence class, and T4 and T8 would be members of another.

It is obvious that the Sequence-Congruence Algorithm could also benefit from additional information
supplied by the programmers. Such information could be furnished through pragmas or could be obtained
through interaction with the programmers. For instance, if it is asserted that two components have
equivalent behavior, the technique of congruence closure [7,17] can merge the equivalence classes to
which the two components belong and propagate the effects to combine other equivalence classes.

7. Comparison With Related Work

In addition to the HPR algorithm [12], there has been previous work on integrating functions [5], logic pro-
grams [15], and specifications [8]. Different models of integration have been used in each case. In
Berzins’s work on integrating functions, variants A and B are merged without regard to Base. The function
that results from the merge preserves the (entire) behavior of both; thus, A and B cannot be merged if they
conflict at any point where both are defined. Similarly, Lakhotia and Sterling’s 1−1 join operation is a
two-way merge. However, in their work there is no notion of interference, and the characterization of the
semantic properties of the merged program was left as an open question in [15]. Feather’s work on
integrating specifications does take Base into account, but although the integration algorithm preserves syn-
tactic modifications, it does not guarantee any semantic properties of the integrated specification. Both the
HPR algorithm and the algorithm described in this paper are three-way integration operations that satisfy
the semantic criterion stated in Section 1.

The program-integration algorithm presented in this paper addresses an important limitation of the HPR
algorithm, namely, its inability to integrate program variants when a change made in one of the variants is a
semantics-preserving transformation of some part of the base program, and a change made in the other
variant uses the result computed by that part of the program. The key idea of the new algorithm is the use
of limited slices—rather than full slices—to extract what is changed in each of the variants.

Because the new integration algorithm is parameterized by the auxiliary algorithm used for identifying
congruent program components, we have actually defined a class of integration algorithms that accommo-
date semantics-preserving transformations. Any technique for identifying congruent vertices that meets the
conditions enumerated in Section 4.1 can be used in conjunction with the integration algorithm described in
this paper. Thus, applying the Sequence-Congruence Algorithm, which was discussed in Section 6, is just
one of the ways in which the first step of the new integration algorithm could be implemented.

The Sequence-Congruence Algorithm is not the first to address the problem of equivalent execution
behaviors; for example, it is shown in [19] that two components with isomorphic slices have equivalent
execution behaviors (the slice of a program with respect to a program component c is, roughly, all the
statements and predicates in the program that can potentially affect the values produced at c during pro-
gram execution). Further, this result holds even if the two components happen to be in two different pro-
grams, provided the two programs are run on identical—or actually just sufficiently similar—initial states.
However, the Sequence-Congruence Algorithm is both more powerful and more efficient than the method
based on comparing slices. All components (in the same or in different programs) with isomorphic slices
are identified as equivalent by the Sequence-Congruence Algorithm, but not all components identified as
equivalent by the Sequence-Congruence Algorithm have isomorphic slices. Partitioning the components of
one or more programs into equivalence classes can be done using the Sequence-Congruence Algorithm in
worst-case time O (N log N) (where N is the sum of the programs’ sizes); such a partitioning requires
worst-case time O (N 2) using the program slice comparison technique of [13].
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We have shown that when the Sequence-Congruence Algorithm is used for congruence testing, the new
integration algorithm is strictly better than the HPR algorithm in the following sense [25]:

(1) The new algorithm succeeds whenever the HPR algorithm succeeds.

(2) The integrated program produced by the new algorithm satisfies the integration criteria stated in
Section 1.

(3) There are integration problems on which the new algorithm succeeds while the HPR algorithm
reports interference.

For instance, while the HPR algorithm reports interference for all the examples of Figure 1, the new
integration algorithm, used in conjunction with the Sequence-Congruence Algorithm, succeeds on the first
example. (The second and third examples of Figure 1 illustrate limitations of the Sequence-Congruence
Algorithm, which fails to identify all the unchanged components in those two examples.)

The development of more powerful congruence-testing algorithms (and hence more powerful program-
integration algorithms) is a subject of on-going research. Relevant work on program-optimization and
transformation techniques for graph representations similar to PRGs includes [22], [9], and [21].

APPENDIX. PROOF OF THE INTEGRATION THEOREM

This appendix gives the detailed proof of the integration theorem stated in Section 5. In what follows, we
use RA, RB, RBase , and RM to denote the respective program representation graphs of A, B, Base, and M.

By the construction of RM , every vertex v of RM is taken from either RA or RB or both (it is possible that
v appears in RBase as well); this vertex in RA or RB is called an originating vertex of v. A vertex v of RM

inherits an “identity” from its originating vertices.

A vertex v in RM may have a different text from one of its originating vertices, but the text of v must
match at least one of its originating vertices. Modulo their having different texts, v and its originating ver-
tices can be considered to be the same vertex in different graphs. Note that, by the construction of RM , if
both v 1 and v 2 are originating vertices of v, then v 1 and v 2 must be corresponding vertices; in particular,
v 1 and v 2 have equivalent behavior.

Every edge u → v of RM is taken from either RA or RB or both. (It is possible that the edge u → v
appears in RBase as well.) Since each control or flow dependence edge is identified by its two end-points, if
an edge u → v of RM is taken from RA (or RB), then there are originating vertices u ′ and v ′ of u and v,
respectively, and an identical control or flow dependence edge u ′ → v ′ in RA (or RB, respectively). In
addition, it can be shown (by case analysis on the classification of v ′) that v ′ and v have the same text.

We first prove an auxiliary lemma that will be used in the proofs of the remaining lemmas in this section.

LEMMA 1. Suppose s 1 and s 2 are two sequences of boolean values. If (1) either s 1 is a prefix of s 2 or
vice versa, (2) the last values of s 1 and s 2 are true, and (3) s 1 and s 2 have the same number of true values,
then s 1 and s 2 are identical sequences.

PROOF. Suppose s 1 and s 2 are not identical. Without loss of generality, we may assume s 1 is a proper
prefix of s 2. If s 2 has k true values, then s 1 can have at most k − 1 true values since the last value of s 2,
which is true, does not appear in s 1. But this contradicts the assumption that s 1 and s 2 have the same
number of true values. Therefore, s 1 and s 2 are identical sequences.

�

The proof of the Integration Theorem proceeds by first showing that every vertex of RM produces the
same sequence of values as its originating vertices when the merged program M is run on an initial state σ
on which A, B, and Base all terminate normally. Then we show that the merged program M must also
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terminate normally on an initial state σ when A, B, and Base all terminate normally on σ. Finally, we prove
the existence of vertices with the changed and preserved behaviors in M.

LEMMA 2. Suppose A and B are two variants of Base for which the new integration algorithm succeeds
and produces a merged program M. When M is run on an initial state σ on which A, B, and Base all ter-
minate normally, every program component of M produces the same sequence of values as its originating
component in A or B.

PROOF. We prove this lemma by contradiction. Suppose it is not the case that every vertex of RM pro-
duces the same sequence of values as its originating vertex. We choose a vertex uM in M such that uM pro-
duces a different sequence of values than its originating vertex and each of uM’s control predecessors, vM ,
produces the same sequence of values as vM’s originating vertex. Note that it is always possible to choose
such a uM because there is a control dependence path from the Entry vertex to every other vertex in the
PRG and all Entry vertices always produce the same (sequence of) values.

There are two ways in which uM and its originating vertex could produce different sequences of values:
(1) there is a constant k such that the k th values produced at uM and its originating vertex differ, and (2) the
sequence of values produced at uM is a proper prefix of that produced at its originating vertex. In the latter
case, because uM’s control predecessor, vM , produces the same sequence of values as vM’s originating ver-
tex, there must be a non-terminating or faulting computation wM that is executed between vM and uM . If
this is the case, we choose wM instead of uM . Therefore, we can always find a vertex uM in M and a con-
stant k such that the k th value produced at uM differs from the k th value produced at its originating vertex.

Let tM be the moment just after uM executes for the k th time. If there are many uM in M and k such that
the k th value produced at uM differs from that produced at its originating vertex, choose the ones with the
earliest tM .

If uM has no flow predecessor, that is, uM is a constant vertex,6 then at least one of its originating ver-
tices, say uA in A, must be an identical constant vertex. Because uM and uA are identical constant vertices,
they cannot produce different values. Thus, uM cannot be a constant vertex.

Let vM be a flow predecessor of uM . Without loss of generality, assume the flow edge vM →f uM is
taken from A; that is, there is a corresponding flow edge vA →f uA in A and vA and uA are originating ver-
tices of vM and uM , respectively. Let tA be the moment just after uA executes for the k th time.

Since uM and uA produce different values at tM and tA, respectively, we may assume the values of vM and

vA at tM and tA,7 respectively, are different (for if all corresponding flow predecessors of uM and uA have
the same value at tM and tA, respectively, then the values of uM and uA at tM and tA must be the same).
However, since tM is the earliest time when the lemma fails and vA is an originating vertex of vM , the only
way that the values of vM and vA at tM and tA could be different is that vM and vA have executed a different
number of times by the times tM and tA. In what follows, we will show that this cannot happen.

Let wM be the least common control ancestor of uM and vM in M; i.e., wM is a common control ancestor
of uM and vM in M, and all other common control ancestors of uM and vM are control ancestors of wM

(while predicates are not considered to be control ancestors of themselves). Let wA be the least common
���������������������������������������������������������

6An assignment vertex is a constant vertex if the right-hand-side expression consists of a single constant; a predicate vertex is a con-

stant vertex if the expression consists of a constant boolean value. An output statement is a constant vertex if it prints out the value of

a constant.

7The value of a vertex v at time t is the most recent value produced at v by the time t.
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control ancestor of uA and vA in A. Note that wA might not be the originating vertex of wM . Depending on
whether the whole control dependence path wM →c

* uM is taken from A we have two cases.

Case 1. The whole control dependence path wM →c
* uM is taken from A.

We have the situation as shown in Figure A1. Note that at times tM and tA, both uM and uA have pro-
duced k values; all but the k th values produced are pairwise identical. We want to show that wM and wA

have produced the same sequence of values by the times tM and tA, respectively.
� First assume that uM and uA are neither φenter vertices nor while predicate vertices; thus, uM and uA

have exactly one incoming control edge. Let xM and xA be the control predecessors of uM and uA,
respectively, and assume that the control edges xM →c uM and xA →c uA are both labeled true.
Since xA is an originating vertex of xM , and the lemma does not fail until time tM , either the sequence
of values produced by xM by the time tM is a prefix of the sequence of values produced by xA by the
time tA, or vice versa.

At time tM , uM has executed k times and the control edge xM →c uM is labeled true; thus, by the time
tM , xM has produced a sequence of (boolean) values, k of which are true and the last value in the
sequence is true. Similarly, by the time tA, xA has produced a sequence of (boolean) values, k of
which are true and the last value in the sequence is true. By Lemma 1, we conclude that by the times
tM and tA, xM and xA have produced the same sequence of values.

� Next assume that uM and uA are while predicate vertices; thus, uM and uA have one incoming control
edge in addition to the self-loops . Let xM and xA be the control predecessors of uM and uA, respec-
tively, along the control edges that are not the self-loops and assume the control dependence edges
xM →c uM and xA →c uA are both labeled true. Since xA is an originating vertex of xM , and the
lemma does not fail until time tM , either the sequence of values produced by xM by the time tM is a
prefix of the sequence of values produced by xA by the time tA, or vice versa.

By the times tM and tA, uM and uA have produced k values, of which all but the last ones are pairwise
identical. Thus, the loops of uM and uA must have performed the same number of times by the times
tM and tA. Therefore, xM and xA must have produced the same number of true values, and the most
recent values produced at both xM and xA are true. By Lemma 1, xM and xA must have produced
identical sequence of values by the times tM and tA, respectively.

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure A1.
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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� Next assume that uM and uA are φenter vertices and the flow dependence edge vM →f uM is from out-
side the loop; thus, uM and uA have two incoming control dependence edges. Let xM and xA be the
associated while predicates of uM and uA, respectively. Let yM and yA be the other control predeces-
sors of uM and uA, respectively, and assume that the control edges yM →c uM and yA →c uA are both
labeled true. We have the situation as shown in Figure A2.

Note that xA and yA are originating vertices of xM and yM , respectively. Since the lemma does not
fail until the time tM , either the sequence of values produced by yM by the time tM is a prefix of that
produced by yA by the time tA, or vice versa. Also note that, by the times tM and tA, the last values
produced at yM and yA are true since the control edges yM →c uM and yA →c uA are labeled true.

Because xA is an originating vertex of xM , and because the lemma does not fail until the time tM ,
either the sequence of values produced by xM by the time tM is a prefix of that produced by xA by the
time tA, or vice versa. Note that yM and yA are also control predecessors of xM and xA.

Since uM is a φenter vertex, the number of times uM has executed equals the number of true values
produced at yM plus the number of true values produced at xM . Similarly, the number of times uA has
executed equals the number of true values produced at yA plus the number of true values produced at
xA.

Suppose the sequences of values produced at yM and yA by the times tM and tA are not identical. The
sequence of values produced at yM is a proper prefix of that produced at yA, or vice versa. If the
sequence of values produced at yM is a proper prefix of that produced at yA, then the sequence of
values produced at xM is also a proper prefix of that produced at xA. On the other hand, if the
sequence of values produced at yA is a proper prefix of that produced at yM , then the sequence of
values produced at xA is also a proper prefix of that produced at xM . In either case, since the last
values produced at yM and yA are true, the total number of true values produced at yM and xM cannot
be equal to that produced at yA and xA. Therefore, uM and uA could not have executed the same
number of times by tM and tA. However, this contradicts the assumption that, by the times tM and tA,

� �����������������������������������������������������������������������������������������������������������������������������������������������������������������
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xM (while P)

uM

(φenter)
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xA (while P)
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Figure A2.
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both uM and uA have executed k times. We conclude that yM and yA must have produced identical
sequence of values by the times tM and tA.

Because yM and yA have produced the same sequence of values by the times tM and tA, and because
uM and uA have executed the same number of times, xM and xA must have also produced identical
sequence of values by the times tM and tA.

� Lastly, assume that uM and uA are φenter vertices and the flow dependence edge vM →f uM is from
inside the loop. Let xM and xA are the associated while predicates. Note that in this case, wM and xM

are the same vertex; wA and xA are the same vertex. We have the situation as shown in Figure A3.

Note that tM is the moment immediately after uM executes for the k th time. Thus, by the time tM , xM

has executed k − 1 times. Similarly, tA is the moment immediately after uA executes for the k th time.
By the time tA, xA has executed k − 1 times. Therefore, xM and xA have executed the same number of
times.

Since xA is an originating vertex of xM and the lemma does not fail until the time tM , xM and xA must
have produced the same sequence of values by the times tM and tA, respectively.

We conclude that by the times tM and tA, xM and xA, which are control predecessors of uM and uA, have
produced the same sequence of values.

By repeating the above arguments for each pair of corresponding control ancestors of uM and uA, we
know that wM and wA have produced the same sequence of values by the times tM and tA.

Next we will do a case analysis on uM and uA. In each subcase, we will show that vM and vA have pro-
duced the same sequence of values by the times tM and tA (because wM and wA have produced the same
sequence of values).

Subcase 1. uM and uA are non-φ vertices. In this case, there are control edges wM →c vM and
wA →c vA. We have the situation as shown in Figure A4.

Since wM and wA have produced the same sequence of values by the times tM and tA, vM and vA must
have executed the same number of times. Since vA is an originating vertex of vM and the lemma does not
fail until the time tM , it must be that, by the times tM and tA, vM and vA have produced the same sequence of
values.

� �����������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure A3.
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� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure A4.
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Subcase 2. uM and uA are φif vertices and there is a control edge wM →c vM . Since vA is an originating
vertex of vM , there is a control edge wA →c vA. We have the situation as shown in Figure A4. By the
same argument as in Subcase 1 above, we know that, by the times tM and tA, vM and vA have produced the
same sequence of values.

Subcase 3. uM and uA are φif vertices and there is an if predicate PM on the control dependence path
such that wM →c PM →c vM . Since vA is an originating vertex of vM , there must be an if predicate PA on
the control dependence path such that wA →c PA →c vA. We have the situation as shown in Figure A5.

There are two possibilities depending on whether PA is an originating vertex of PM .
� Suppose PA is an originating vertex of PM . Since wM and wA have produced the same sequence of

values by the times tM and tA, PM and PA must have executed the same number of times. Further-
more, since PA is an originating vertex of PM and the lemma does not fail until the time tM , PM and
PA must have produced the same sequence of values by the times tM and tA. Similarly, vM and vA

must have produced the same sequence of values by the times tM and tA.
� Suppose PA is not an originating vertex of PM . Then there must be originating vertices wB, PB, and

vB in B for wM , PM , and vM , respectively. Because both vA and vB are originating vertices of vM , vA

and vB are corresponding vertices. Therefore, since PA and PB are control predecessors of

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure A5.
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corresponding vertices, PA and PB are congruent vertices (see the definition in Section 4.1). Because
both wA and wB are originating vertices of wM , wA and wB are corresponding vertices. We have the
situation as shown in Figure A6.

Let tB be the point of time during the execution of B such that vB has executed the same number of
times as vM at tM . (We are able to choose such a tB for otherwise either (1) PM and PB would have
produced different values earlier than tM and tB or (2) wM and wB would have produced different
values earlier than tM and tB. In either case, the lemma would have failed earlier than tM .) Because
vB is an originating vertex of vM , vM and vB have produced the same sequence of values by the times
tM and tB; otherwise the lemma would have failed earlier than tM .

By the times tM and tB, vM and vB have executed the same number of times; Thus, by the same argu-
ment as in Subcase 1 (where it is shown that when uM and uA have executed the same number of
times, their control ancestors, wM and wA, also have produced the same sequence of values), PM and
PB have produced the same sequence of values and wM and wB have produced the same sequence of
values.

Because wM and wA have produced the same sequence of values by the times tM and tA and wM and
wB have produced the same sequence of values by the times tM and tB, wA and wB have produced the
same sequence of values by the times tA and tB. Because wA and wB have produced the same
sequence of values by the times tA and tB, the two if predicates PA and PB must have executed the
same number of times by the times tA and tB. Because PA and PB are congruent vertices and they
have executed the same number of times, PA and PB must have produced the same sequence of
values by the times tA and tB.

Because PA and PB have produced the same sequence of values by the times tA and tB, vA and vB

must have executed the same number of times by the times tA and tB. Because vA and vB are
corresponding vertices and they have executed the same number of times, vA and vB must have pro-
duced the same sequence of values by the times tA and tB. Because vM and vB have produced the
same sequence of values by the times tM and tB, and because vA and vB have produced the same
sequence of values by the times tA and tB, vM and vA have produced the same sequence of values by
the times tM and tA.

Subcase 4. uM and uA are φenter vertices and vM and vA are flow predecessors of uM and uA from outside
the loops, respectively. This case is similar to Subcase 1 above.

� �����������������������������������������������������������������������������������������������������������������������������������������������������������������
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Subcase 5. uM and uA are φenter vertices and vM and vA are flow predecessors of uM and uA from inside
the loops, respectively. We have the situation as shown in Figure A7.

Because by the times tM and tA, wM and wA have produced the same sequence of values, vM and vA must
have executed the same number of times. Furthermore, since vA is an originating vertex of vM , vM and vA

must have produced the same sequence of values by the times tM and tA for otherwise the lemma would
have failed earlier than tM .

Subcase 6. uM and uA are φexit vertices. In this case, vM and vA are φenter vertices. The situation is
shown in Figure A8.

This case is similar to Subcase 3 above. There are two cases depending on whether PA is an originating
vertex of PM . By the same argument as in Subcase 3 above, vM and vA have produced the same sequence
of values by the times tM and tA.

In each of the above six subcases, vM and vA have produced the same sequence of values by the times tM
and tA. Thus, at times tM and tA, uM and uA must produce the same values, which contradicts the previous
assumption that uM and uA produce different values at times tM and tA.

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Case 2. Some of the edges on the control dependence path wM →c
* uM are taken from A; others are

taken from B.

We can decompose the control dependence path wM →c
* uM into fragments such that fragments are

taken from A and B alternately. The situation is shown in Figure A9.

In Figure A9, the control dependence path yM →c
* uM is taken from A; the control dependence path

zM →c
* yM is taken from B, etc. Note that these fragments overlap at common predicate vertices and the

predicates at which fragments overlap have originating vertices in both A and B. In Figure A9, yM and zM

are predicates at which fragments overlap and they have originating vertices yA, yB, zA, and zB, respec-
tively.

Because at times tM and tA, uM and uA have executed the same number of times, and because the control
dependence path yM →c

* uM is taken from A, by the same arguments as in Case 1 above, by the times tM
and tA, yM and yA have produced the same sequence of values.

Let tB be a point of time during the execution of B such that by the times tA and tB, yA and yB have pro-
duced the same sequence of values. (It is always possible to find such a time tB since yA and yB are
corresponding vertices and both A and B terminate normally on the initial state σ.) Thus, at times tM , tA,
and tB, yM , yA, and yB have produced the same sequence of values.

Since yA and yB are corresponding vertices, each pair of corresponding control ancestors of yA and yB

must have produced the same sequence of values by the times tA and tB. In particular, zA and zB have pro-
duced the same sequence of values and wA and wB have produced the same sequence of values by the times
tA and tB.

On the other hand, at the times tM and tB, yM and yB have produced the same sequence of values. Since
the control dependence path zM →c

* yM is taken from B, by the same arguments as in Case 1, correspond-
ing control ancestors of yM and yB on the paths zM →c

* yM and zB →c
* yB must have produced the same

sequence of values. In particular, zM and zB have produced the same sequence of values by the times tM
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and tB. Thus, by the times tM , tA, and tB, zM , zA, and zBhave produced the same sequence of values.

By repeating the argument in the previous paragraph for each fragment on the control dependence path
wM →c

* uM , we know that if wM is in a fragment that is taken from A, then wM and wA have produced the
same sequence of values by the times tM and tA; if wM is in a fragment that is taken from B, then wM and
wB have produced the same sequence of values by the times tM and tB. In the latter case, since wA and wB

have produced the same sequence of values by the times tA and tB, wM and wA have produced the same
sequence of values by the times tM and tA. Thus, regardless of whether wM is taken from A or B, wM and
wA must have produced the same sequence of values by the times tM and tA.

Since wM and wA have produced the same sequence of values by the times tM and tA, by the same argu-
ment as in Case 1, we know that vM and vA have produced the same sequence of values at times tM and tA.
Consequently, uM and uA cannot produce different values at times tM and tA. That is, the lemma cannot fail
at tM .

From Case 1 and Case 2, we know uM and uA cannot produce different values at times tM and tA, respec-
tively. This completes the proof of the lemma.

�

LEMMA 3. Suppose the new integration algorithm successfully integrates two variants A and B with
respect to the base program Base and produces a merged program M. Then for any initial state σ on
which A, B, and Base all terminate normally, M terminates normally on σ.

PROOF. We prove this lemma by contradiction. Suppose M does not terminate normally on σ. Then
either there is a non-terminating loop or a fault such as division by zero occurs during the execution of M.

First suppose a fault occurs during the execution of M. Let u be the component where the fault occurs.
By the construction of M, u must have an originating vertex in either RA or RB. Without loss of generality,
assume u has an originating vertex uA in RA. By Lemma 2, u and uA produce the same sequence of values.
The same fault must also occur at uA. Thus, A cannot terminate normally on the initial state σ, which con-
tradicts the assumption that A terminates normally. Therefore, no fault can occur during the execution of
M.

Next suppose there is a non-terminating loop during the execution of M. Let u be the predicate of the
non-terminating loop. Without loss of generality assume u is taken from RA; that is, u has an originating
vertex uA in RA. By Lemma 2, u and uA produce the same sequence of values. Because A terminates nor-
mally, the sequence of values produced at uA is finite. Therefore, the sequence of values produced at u is
also finite. The loop of u cannot execute an infinite number of iterations, which contradicts the assumption
that u is the predicate of a non-terminating loop. Therefore, there cannot be a non-terminating loop in M.

Because no fault can occur during the execution of M and because there cannot be a non-terminating
loop in M, M terminates normally on the initial state σ.

�

LEMMA 4. Suppose the new integration algorithm successfully integrates two variants A and B with
respect to the base program Base and produces a merged program M. Then for any initial state σ on
which A, B, and Base all terminate normally:

(1) For any program component vA in A, if vA produces a different sequence of values than the analo-
gous component in Base, then there is a component v in M that produces the same sequence of
values as vA.

(2) For any program component vB in B, if vB produces a different sequence of values than the analo-
gous component in Base, then there is a component v in M that produces the same sequence of
values as vB.
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(3) For any program component vBase in Base, if vBase produces the same sequence of values as the
analogous components in both A and B, then there is a component v in M that produces the same
sequence of values as vBase .

PROOF. Suppose vA is a component of A that produces a different sequence of value than the analogous
component in Base. Then vA ∈ NewA. By the construction of M, vA is an originating vertex of a vertex v in
M. By Lemma 2, since A, B, and Base all terminate normally, v and vA produce the same sequence of
values. This proves the first clause. The second clause can be proved by the same argument.

Suppose vBase is a component of Base that produces the same sequence of values as the analogous com-
ponents, vA and vB, in A and B, respectively. Then either vBase ∈ Unchanged or vA ∈ AffectedA or
vB ∈ AffectedB depending on whether vBase , vA, and vB are put in the same congruence classes in the first
step of the new integration algorithm and depending on whether they have the same text. If
vBase ∈ Unchanged, then vA and vB are originating vertices of a vertex v in M. By Lemma 2, since A, B, and
Base all terminate normally, v produces the same sequence of values as vA and vB. Because vBase also pro-
duces the same sequence of values as vA and vB, the sequences of values produced at v and vBase must be
identical.

If vA ∈ AffectedA, then vA is an originating vertex of a vertex v in M. By Lemma 2, since A, B, and Base
terminate normally, v produces the same sequence of values as vA. Because vBase also produces the same
sequence of values as vA, the sequences of values produced at v and vBase are identical.

By the same argument, we know if vB ∈ AffectedB, then there is a component v in M that produces the
same sequence of values as vBase . This proves the last clause.

�

The Integration Theorem follows immediately from Lemmas 3 and 4.
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