Solving Shape-Analysis Problems in Languages with
Destructive Updating

MOOLY SAGIV

Tel-Aviv University

and

THOMAS REPS
University of Wisconsin
and

REINHARD WILHELM
Universitit des Saarlandes

This article concerns the static analysis of programs that perform destructive updating on heap-
allocated storage. We give an algorithm that uses finite shape graphs to approximate conserva-
tively the possible “shapes” that heap-allocated structures in a program can take on. For certain
programs, our technique is able to determine such properties as (1) when the input to the program
is a list, the output is also a list and (2) when the input to the program is a tree, the output is also
a tree. For example, the method can determine that “listness” is preserved by (1) a program that
performs list reversal via destructive updating of the input list and (2) a program that searches
a list and splices a new element into the list. None of the previously known methods that use
graphs to model the program’s store are capable of determining that “listness” is preserved on
these examples (or examples of similar complexity). In contrast with most previous work, our
shape analysis algorithm is even accurate for certain programs that update cyclic data structures;
that is, it is sometimes able to show that when the input to the program is a circular list, the
output is also a circular list. For example, the shape-analysis algorithm can determine that an
insertion into a circular list preserves “circular listness.”

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
symbolic ezecution; D.3.3 [Programming Languages|: Language Constructs and Features—
data types and structures; dynamic storage management; D.3.4 [Programming Languages|:
Processors—optimization; E.1 [Data]: Data Structures—graphs; lists; trees; E.2 [Data]: Data
Storage Representations—composite structures; linked representations; F.3.1 [Logics and Mean-

A preliminary version of this article appeared in the Conference Record of the 23 ACM Symposium
on Principles of Programming Languages.

Part of this research was done while Sagiv was visiting the University of Chicago; part was
done while visiting the Universitdt des Saarlandes, partially supported by SFB 124-VLSI-Design
Methods and Parallelism of the Deutsche Forschungsgemeinschaft; part was done while visiting
the University of Wisconsin, supported by a David and Lucile Packard Fellowship for Science and
Engineering and by the Defense Advanced Research Projects Agency under ARPA order no. 8856
(monitored by the Office of Naval Research under contract N00014-92-J-1937). Reps is supported
in part by a David and Lucile Packard Fellowship for Science and Engineering, by the National
Science Foundation under grant CCR-9100424, and by the Defense Advanced Research Projects
Agency under ARPA order no. 8856 (monitored by the Office of Naval Research under contract
N00014-92-J-1937).

Sagiv’s Address: Dept. of Computer Science; School of Mathematical Sciences; Tel-Aviv Univer-
sity; Tel-Aviv 69978; Israel. E-mail: sagiv@math.tau.ac.il.

Reps’s Address: Computer Sciences Department; University of Wisconsin; 1210 West Dayton
Street; Madison, WI 53706; USA. E-mail: reps@cs.wisc.edu.

Wilhelm’s Address: Fachbereich 14 Informatik; Universitit des Saarlandes; 66123 Saarbriicken;
Germany. E-mail: wilhelm@cs.uni-sb.de.

ings of Programs]|: Specifying and Verifying and Reasoning about Programs—assertions; in-
variants; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs—type
structure

General Terms: Algorithms, Languages, Theory, Verification
Additional Key Words and Phrases: Abstract interpretation, alias analysis, dataflow analysis,
destructive updating, pointer analysis, shape analysis, shape graphs, static analysis

1. INTRODUCTION

This article concerns the static analysis of programs that perform destructive up-
dating on heap-allocated storage. It addresses problems that can be looked at—
depending on one’s point of view—as pointer analysis problems, alias analysis prob-
lems, sharing-analysis problems, storage analysis problems (also known as shape
analysis problems), or typechecking problems. The information obtained is useful,
for instance, for generating efficient sequential or parallel code.

Throughout most of the article, we emphasize the application of our work to
shape-analysis problems. The goal of shape analysis is to give, for each program
point, a conservative, finite characterization of the possible “shapes” that the pro-
gram’s heap-allocated data structures can have at that point. We illustrate our
approach by means of a running example in which we apply the shape-analysis
technique to a program that uses destructive-updating operations to reverse a list.
This example also illustrates the connection between shape analysis and typecheck-
ing: it demonstrates how a sufficiently precise shape-analysis algorithm is able to
verify that the destructive-reverse program does indeed return a list whenever its
argument is a list. The application of our work to pointer-analysis and alias-analysis
problems is discussed in Section 7.1.

This article presents a new shape-analysis algorithm. For certain programs—
including ones in which a significant amount of destructive updating takes place—
the algorithm is able to verify such shape-preservation properties as (1) when the
input to the program is a list, the output is also a list and (2) when the input
to the program is a tree, the output is also a tree. For instance, the method can
determine that “listness” is preserved by (1) a list-reversal program that performs
the reversal by destructively updating the input list and (2) a list-insert program
that searches a list and splices a new element into the list. Furthermore, the shape-
analysis algorithm is even accurate for certain programs that update cyclic data
structures; that is, it is sometimes able to show that when the input to the program
is a circular list, the output is also a circular list. For example, the shape-analysis
algorithm can determine that an insertion into a circular list preserves “circular
listness.”

These are rather surprising capabilities. None of the previously developed meth-
ods that use graphs to solve shape-analysis problems are capable of determining
that “listness” is preserved on these examples (or examples of similar complexity)
[Chase et al. 1990; Jones and Muchnick 1981; Larus and Hilfinger 1988; Stransky
1992; Plevyak et al. 1993]. Previous to this article, it was an open question whether
such precision could ever be obtained by any method that uses graphs to model stor-
age usage. Furthermore, as far as we know, no other shape-analysis/typechecking

method (whether based on graphs or other principles [Choi et al. 1993; Deutsch
1992; 1994; Ghiya and Hendren 1996; Hendren 1990; Hendren and Nicolau 1990;
Landi and Ryder 1991]) has the ability to determine that “circular listness” is
preserved by the list-insert program.

What does our method do that allows it to obtain such qualitatively better results
on the above-mentioned programs than previous methods? A detailed examination
of the differences between our algorithm and previous algorithms is deferred to
Section 8; however, a brief characterization of some of the differences is as follows:

—Several previous methods have used allocation sites to name shape-nodes [Chase
et al. 1990; Jones and Muchnick 1982; Plevyak et al. 1993]. Allocation-site
information imposes a fixed partition on the memory. In contrast, our approach
deliberately drops information about the concrete locations. There is only an
indirect connection to the run-time locations: shape-graph nodes are named
using a (possibly empty) set of variables. A shape-node named with variable-set
X represents run-time locations that are simultaneously pointed to by all (and
only) the variables in X.

—Like other shape-analysis methods, our method clusters collections of run-time
locations into summary nodes. In our approach, run-time locations that are not
pointed to by variables are clustered into a single summary node. [Chase et al.
1990, p.309] observed that their shape-analysis method cannot handle programs
such as the list-reversal program because it lacks a way to materialize (“un-
summarize”) summary nodes at certain key points of the analysis. Our method
materializes copies of the summary node (as nonsummary nodes) whenever a
pointer variable is assigned a previously summarized run-time location.

—In the analysis of an assignment to a component, say x.cdr := nil, our method
always removes x’s cdr edges. Previous methods either never remove these
edges [Stransky 1992] or use some heuristics to remove such edges under lim-
ited conditions [Chase et al. 1990; Jones and Muchnick 1981; Larus and Hilfinger
1988; Plevyak et al. 1993]. (This unusual characteristic of our method is also a
by-product of the node-naming scheme.)

—We use sharing information to increase the accuracy of the primitive operations
used by our method. More specifically, we keep track of shape-nodes that rep-
resent cons-cells that may be the target of more than one pointer from fields of
cons-cells.! (Sharing through variables—e.g., when two variables point to the
same cons-cell—is represented directly by shape-graph edges.)

When an unshared list is traversed, say via a loop containing an assignment
x := z.cdr, the sharing information is used to improve the precision of the ma-

IThroughout the article, the presentation is couched in terms of the Lisp primitives for manip-
ulating heap-allocated storage (i.e., nil, cons, car, and cdr). However, this is not due to any
basic limitation of the work; the algorithm extends readily to the case of pointers to user-defined
types that have more than two fields. We assume that we are working with an imperative lan-
guage that meets the following general description. A program consists of assignment statements,
conditional statements, loops (while, for, repeat), read statements, write statements, and goto
statements. (The treatment of procedures is discussed in Section 6.4.) The language provides
atomic data (e.g., integer, real, boolean, etc.) and constructor and selector operations (e.g., nil,
cons, car, and cdr), together with appropriate predicates (equal, atom, and null). We assume
that a read statement reads just an atom and not an entire list, tree, or graph.

terialization operation, which allows the algorithm to determine that x points to
an unshared list on every iteration. The limited way in which sharing informa-
tion is utilized in Chase et al.[1990] and Jones and Muchnick [1981] prevents the
methods described in those articles from determining this fact.

—The shape-node names also provide information that sometimes permits the
method to determine that a shared node becomes unshared (e.g., this occurs
in the program that performs an insertion into a list). With the Chase-Wegman-
Zadeck method, once a node is shared it remains shared forever thereafter. For
programs that operate on lists and trees, the non-graph-based method of Hen-
dren [1990] is sometimes able to determine that a shared node becomes unshared.
However, Hendren’s method does not handle data structures that contain cycles.

An experimental implementation of the shape-analysis method has been created.
The examples presented in this article have been prepared with the aid of this
implementation.

The remainder of the article is organized as follows. Section 2 provides an
overview of the shape-analysis technique. Section 3 introduces the terminology
and notation used in the rest of the article. Section 4 presents a concrete collecting
semantics for a language with destructive updating, in terms of “shape-graphs”
that represent memory states. Section 5 introduces an abstract domain of “static
shape-graphs” and shows how they can be used to approximate the sets of shape-
graphs that arise in the collecting semantics. Section 6 presents some elaborations
and extensions of our basic approach. Section 7 concerns applications of the shape-
analysis method. Section 8 discusses related work. A proof of correctness, showing
that the abstract semantics of static shape-graphs is safe with respect to the con-
crete semantics, is presented in the electronic appendix.

2. AN OVERVIEW OF THE METHOD

The shape-analysis algorithm is presented and proven correct using the frame-
work of abstract interpretation [Cousot and Cousot 1977]. Because pointers, heap-
allocated storage, and destructive updating are all mechanisms that introduce alias-
ing, the formal treatment of shape analysis is notationally somewhat formidable.
However, many aspects of the shape-analysis algorithm can be understood at an
intuitive level. In this section, we give such an overview of the algorithm, using a
program that performs a list reversal via destructive updating as a running example.

The list-reversal program is shown in Figure 1. Assuming that variable z initially
points to an unshared list (i.e., a possibly empty, acyclic, singly linked list with
no shared cons-cells), after each iteration, y points to the reversal of a successively
longer prefix of the original list. The shape-analysis algorithm detects (among other
things) that at the beginning of each iteration of the loop the following properties
hold:

—Invariant (1). Variable z points to an unshared, acyclic, singly linked list.

—Invariant (2). Variable y points to an unshared, acyclic, singly linked list, and
variable ¢ may point to the second element of the y-list (if such an element exists).

—Invariant (3). The lists pointed to by z and y are disjoint.

program reverse(z, y)

begin
/* x points to an unshared, acyclic, singly linked list */
y ;= nil
while z # nil do
t:=y
Y=z
T = z.cdr
y.cdr =1t
od
t :=nil
end

Fig. 1. A program to reverse a list.

2.1 Static Shape Graphs

The shape-analysis algorithm is based on an abstraction of memory, called a static
shape graph (SSG). An SSG is a finite, labeled, directed graph that approximates
the actual (or “concrete”) stores that can arise during program execution. The
shape-analysis algorithm itself is an iterative procedure that computes an SSG at
every program point.

In contrast to concrete stores, each SSG in a program is a priori of bounded
size. This is achieved by using a single shape-node to represent multiple cons-cells.
In general, a shape-node in an SSG has the following properties:

(a) A shape-node nz, where Z # ¢, represents a unigque cons-cell in any given
concrete store: the cons-cell pointed to by exactly the variables in Z. However,
across the collection of SSGs that are the abstractions of the (several different)
concrete stores that arise on different loop iterations (or during entirely different
executions of the program), nz will, in general, denote different cons-cells. For
example, column two of Figure 2 shows the concrete stores that arise at the
beginning of the loop in the list-reversal program when input-list z is a
five-element list; column three shows the corresponding SSGs. Shape-node n,;
represents the cons-cells I, lo, I3, l4, and [5 in the concrete stores that arise on
iterations 0, 1, 2, 3, and 4, respectively.

(b) In contrast, shape-node ng can represent multiple cons-cells of a single
concrete store. (Jocularly, we refer to ny as the “primordial soup.”) For example,
in the SSG in column three of the iteration-0 row, n, represents the cons-cells [s,
I3, l4, and I5 of the concrete store in column two. In the SSG in column three of
the iteration-5 row, ny represents the cons-cells I3, l2, and ;.

(c) In different SSGs, the same cons-cell may be represented by different
shape-nodes. For instance, consider the SSGs in column three of Figure 2 in
top-to-bottom order. Cons-cell [; is represented by shape-nodes n{.}, n{y1, N},
ng, Ng, and ng; cons-cell I3 is represented by ng, ng, Ny}, Ny}, Ny, and ng;
cons-cell 5 is represented by ny, ng, ng, ng, ny.}, and ng,;.

There is an important conclusion to draw from these properties: it is incorrect
to think of a shape-node as representing a fixed partition of memory. Instead, the

| Tter. | Concrete store SSG
€T — o> o~ o> o> ° T —»] N .
0 ll l2 l3 l4 l5 ’I’L{w} Uz
€T — o~ o~ o~ ° A
S PR PR e * *
n{z} n¢.
Y — . Y — o
1 h My}
Tr—> |e s o T — . .
I3 Iy ls N{z} Ny
Y — b4 o Y — ° o («— ¢t
2 ls Ly {y} n{t}
€T — L2 [) T —» - °
Iy l5 M{z} g
t
Y—> | b ® Y —»| . o |— ¢
3 I3 Iy Iy N{y} N}
T—> |e T —» . .
ls Tz g
. {=}
Y—> | b b * Y —> . o |l— ¢
4 ly I3 l> h M{y} ey
L
t
'
Y — o> o> o> - ° Y— ¢ ot
n n
5 ls l4 l3 l2 ll {y} {t}

Fig. 2. The concrete stores and the corresponding SSGs that arise at the beginning of
the loop in the list-reversal program when input-list z is a five-element list. For each of
the shape-nodes in all of the SSGs, the value of is* is false.

ideas to keep in mind are the following:

By going from stores to SSGs, we deliberately drop information about
the concrete locations, but we keep “aliasing-configuration” information
that characterizes cons-cells that are simultaneously pointed to by dif-
ferent sets of variables. A shape-node nx (i.e., with variable-set X) in
the shape-graph for program-point p represents the cons-cells that are
simultaneously pointed to by all (and only) the variables in X when
control reaches p.

(The sets of variable names that represent alias configurations are reminiscent of
the alias-configurations tracked by Myers in his algorithm for determining aliasing
among (scalar) program variables [Myers 1981].)

2.2 An Explicit Representation of Sharing

An examination of the iteration-0 row of Figure 2 may lead the reader to think that
acyclic structures are abstracted to cyclic structures (and hence that the abstraction
cannot distinguish between cyclic and acyclic structures). In fact, although SSGs
are “cyclic”’—in the sense that there are nodes with paths to themselves—there is an
additional component of SSGs that distinguishes the abstractions of cyclic concrete
structures from the abstractions of acyclic concrete structures. In particular, each
shape-node n in an SSG has an associated Boolean flag, denoted by is*(n), that,
when true, indicates that the cons-cells represented by n may be the target of
pointers emanating from two or more distinct cons-cell fields (“is*” stands for “is-
shared”). Edges from variables do not contribute to is* status: is* captures a notion
of “heap shared”; sharing through variables is represented explicitly by edges from
variables to shape-nodes.

The SSG in column three of the iteration-0 row of Figure 2 illustrates an impor-
tant aspect of the abstraction from concrete stores to SSGs: because all nodes in
the tail of an acyclic list are represented by summary-node ng, the abstraction of
a list (deliberately) loses information about the length of the list. In this way, we
achieve a bounded-size abstract representation and hence a terminating abstract
semantics.

The significance of isf(n) = false is that if several car and cdr edges in an SSG
point to n, they represent concrete edges that never point to the same cons-cell in
any concrete store that the SSG represents. For example, in the SSG in column
three of the iteration-0 row of Figure 2, because is*(ng) = false, the two cdr edges
from ny,y to ng and from ng to ng cannot represent edges that point to the same
cons-cell in any concrete store that this SSG represents. Thus, despite the fact that
this SSG contains a cycle, it only represents acyclic concrete stores.

An examination of the iteration-3 row of Figure 2 may lead the reader to think
that disjoint lists are abstracted to shared lists (and hence that the abstraction
cannot distinguish between disjoint lists and shared lists). However, the is* values
come to the rescue here, too. Because is*(ny) = false, we know that the two cdr
edges from ny,y to ng and from nygy to ng cannot point to the same cons-cell in
any concrete store. Consequently, the abstraction captures the fact that at the
beginning of iteration 3, the lists pointed to by x and ¢ are disjoint. Thus, despite
the fact that the tails of the z-list and the ¢-list are both represented by ng, the

SSG only represents concrete stores in which the z-list and the ¢-list do not share
any cons-cells in common.

2.3 An lterative Algorithm

The shape-analysis method is an iterative algorithm that computes an SSG for
every point in the program. The algorithm operates over the domain of SSGs, with
each statement in the program having an associated SSG-to-SSG transformer. The
shape-analysis algorithm is conservative with respect to the collection of stores that
can actually arise during any execution:

—The SSG computed for a program point by the algorithm may have more shape-
nodes and edges than the SSG obtained by abstracting the collection of stores
that can actually arise during execution.

—The SSG for a program point p might have is*(n) = true even though, in the
concrete stores that arise at p, none of the cons-cells that n represents are the
target of pointers emanating from two or more distinct cons-cell fields.

For the reverse program from Figure 1, the shape-analysis algorithm uses four
iterations over the program to compute the final SSGs. The SSGs that arise at
each program point during the analysis are shown in Figure 3. These will be used
below, in Section 2.4, to explain how the algorithm is able to establish information
about the possible “shapes” that heap-allocated structures in a program can take
on. (For space reasons, only the SSGs for statements in the loop body are shown.
In all of these SSGs, is? is false for all of the shape-nodes.)

2.4 What the Shape-Analysis Algorithm Achieves and Why

We now consider the main reasons why the shape-analysis algorithm is able to
produce accurate information about the list-reversal program. In particular, we
wish to give a feeling for why the algorithm is able to establish the three invariants
mentioned at the beginning of Section 2.

There are three key aspects of the algorithm that contribute to the successful
outcome of the analysis of the list-reversal program. Each of them can be illustrated
by the SSG transformations carried out by the algorithm during its third iteration
over the program (see the iteration-3 column of Figure 3.)

2.4.1 Tracking of Aliasing Configurations. One aspect involves the tracking of
aliasing configurations via the “names” attached to shape-nodes. This is illustrated
by the SSG transformation carried out at the statements “t := y” and “y := z”
during the third iteration. In particular, when the statement “¢ := y” is analyzed—
producing the second SSG in column 3 of Figure 3 from the first SSG. There are
two issues: (1) the “liquidization” of ng; and (2) the “renaming” of ng,.

When “t := y” is encountered in the third iteration, ¢ points to ny), which is
also pointed to by ng,y.cdr. This represents a concrete store in which y is the
only variable pointing to a cons-cell I, and l,.cdr points to a cons-cell l;, which is
pointed to by ¢ (and no other variable). After the assignment “t := y”, l; is not
pointed to by any variable, and both ¢ and y point to l,. The appropriate SSG
to represent this store is obtained by “liquidizing” ny;: to model the fact that
variable ¢ no longer points to l;, we remove ¢ from the “name” of ny;; because

Tteration 1

Bl

r— |
Nz} Ty
t:=y
X —» [0—]
n{w} n¢
y:=x
xr — o
y— |
N{yz} Ng¢
T = x.cdr
Y — ° ']
Ny} Nz}
L2 j
y.cdr =1t .
Y — ° °
Ny} Tz}
ng j

Iteration 2
€T —> . o—]
e}y Mo
Y — .
Ny}
XL —> L 0—]
n{w} Ny
il
N{t,y}
T —> o
y—~ |
Ny} Mg
t — °
n{t}
x
Y — . L
Ny} Mz}
t — . s
n{t} Ng j
x
Y — L L
Ny} Mz}
t — . s
n{} ng j

Iteration 3
€T — [0—]
ey Mo
Y — . o [
N{y}y Mg}
T —> L 0—]
n{w} Ny
Y —
t — /
N {ty}
T — o
y—~ |
N{y,z} /Mg
t — /
n{t}
xr
Y — . 3
Ny} M}
t — ° o~
n{t} Ng j
xr
Y — » .
Ny} Tz}
t — . s
Nt} ng j

Tteration 4
€T — [.—]
n{z} n¢ 1
1Y — . o |— ¢
N{y} Mg}
XL —> L Q—]
’I’L{ac} Ny
Y —
t — d
N {t,y}
T — o
y— |
N{y,z} /T¢
t — /
n{t}
x
Y — . L
Ny} ™Ma}
t — . (s
n{t} Ng j
x
Y — » L
Ny} M=}
t — . s
Nt} ng j

Fig. 3. The SSGs that arise when the shape-analysis algorithm is applied to the list-

reversal program.

10

this turns the “name” of the shape-node into ¢, it is merged with shape-node ng,
which already has the “name” ¢. (By this, ngy) is “liquidized” and falls into the
primordial soup.)

In addition, to model the fact that variable ¢ now points to I, we add ¢ to the
“name” of ng,}, renaming ng,y to nyg 1. Therefore, after statement “¢ := y” there
is a cdr edge from ny;) to ng (and there is no longer any shape-node known as
n{y})-

Executing the statement “¢ := y” cannot increase the amount of “sharing” in
any concrete store. That is, it cannot increase the number of cons-cells that are
the target of pointers emanating from two or more distinct cons-cell fields. This
is reflected in the SSG by the fact that is? is still false for all shape-nodes in the
new SSG. Thus, despite the fact that the tails of the z-list and y-list are both
represented by ng, the SSG captures the fact that the lists pointed to by y and x
remain disjoint. (See Invariant (3) and the discussion in Section 2.2)

Similarly, when the statement “y := z” is processed (to produce the third SSG
from the second SSG), nyy,,y is renamed to ngy, and ny,) is renamed to nyy,q}-
(The use of sets of variables to name the nodes in SSGs can result in an exponen-
tial number of shape-nodes. Techniques to sidestep this problem are discussed in
Section 6.2.)

2.4.2 “Materialization” of ny,y from ng. Equally important is the way the al-
gorithm handles the advancement of z down the z-list by “z := z.cdr” (to produce
the fourth SSG from the third SSG).

When “z := z.cdr” is encountered in the third iteration, z and y point to shape-
node nyy 3, and the cdr field of ny, .} points to summary-node ngy. Because
is*(ng) = false, this represents a concrete store in which z and y point to a cons-
cell ly, and the cdr field of [y points to an unshared cons-cell /1, which may, in turn,
point to an unshared, acyclic, singly linked list (made up of I3, I3, etc.). After the
assignment, only y points to lp; £ points to 1 (and I, I3, etc. are still not pointed
to by any variable). The appropriate SSG to represent this store has shape-nodes
N{y}> M{z}> N{t}, and ny as shown in the fourth SSG in column 3 of Figure 3.

The effect has been to “materialize” a new nonsummary shape-node n(,} from
summary-node ny. (We say that “the operation ‘z := z.cdr’ ladles a node out of
the primordial soup.”)

Materialization creates an SSG that conservatively covers all the possible new
configurations of storage. For example, had is*(n,) been true in the third SSG, as
it is in column two of Figure 4, then there would have been three additional cdr
edges: from ny,} to n{gy, from nyyy to ng,y, and from ng to nyzy. (When we ladle
a node from the primordial soup, and is*(n,) = true, we refer to edges like these
as “bits of algae” attached to ny,y.)

2.4.3 Cutting the List. In the analysis of “y.cdr := ¢” (which produces the fifth
SSG from the fourth SSG), the cdr edge of shape-node ny,) (which points to n,}
in the fourth SSG) is first removed. This cuts the y list at the head, separating the
first element, ny,;, from the tail, which z points to. A cdr edge from ng,y to ngy
is then added, which concatenates shape-node ny,; at the head of the list that ¢
points to.

11

Node Materialization

T — R R T —» R -
Y — Y —

N{y,z} Mg N{y,z} Tl

T{e} N}
T = x.cdr T = z.cdr

T T
j Ve b] j

Y — ° . — | Y — . °

’I”L{y} n{z} ’I”L¢ n{y} Ib{m} g

it} Nt}

a) Unshared Summary node (b) Shared summary node

(is*(ny) = false) (is*(ny) = true)

Fig. 4. Materialization of n; from ng.

Other shape-analysis algorithms handle a statement of the form “y.cdr := t”
much more conservatively: they do not, in general, remove the cdr edges emanating
from the shape-nodes that y points to.? Instead, they retain the old edges and add
cdr edges from the shape-node that y points to, to the shape-node that ¢ points to.

The reason our shape-analysis algorithm is able to do a better job is because
it conservatively tracks all the possible aliasing configurations via the “names”
attached to shape-nodes: a shape-node nz in the shape-graph for program-point p
represents the cons-cells that are simultaneously pointed to by exactly the variables
in Z when control reaches p. If y is in the name of shape-node nz (ie., if y €
Z), then nz represents only concrete cons-cells whose cdr field will definitely be
overwritten. Therefore, in the interpretation of “y.cdr := t,” our method can always
replace the cdr edges of all shape-nodes that y points to by edges to the shape-nodes
that ¢ points to. (In the fourth SSG in column 3 of Figure 3, there is only a single
shape-node that y points to (namely ny,;), and a single shape-node that ¢ points
to (namely ngs).)

In the shape analysis of the list-reversal program, there is a crucial interaction
between these three aspects. Suppose, for example, that in the SSG transformation
for “z := m.cdr,” shape-node n(,; was not materialized out of ny, but instead
variable was merely set to point to n,. (This is essentially what other shape-
analysis algorithms do, but expressed in our terminology.) At “y.cdr := t,” the
removal of y’s cdr edge would still cut the y-list at the head, separating the node

2Tn some algorithms, cdr edges emanating from a shape-node that y points to are removed in very
limited circumstances.

12

that y points to (i.e., ny,}) from the list pointed to by 2 (which in this case would
be represented by ny.). However, when the cdr edge from ng,; to ngy is added to
the SSG, this sets y’s cdr field to ¢, whose cdr field points to ng, which is what 2
points to. At this stage, the information that the z-list and the y-list are disjoint
has been lost!

Note how differently things turn out when ny,) is materialized from ny at “z :=
z.cdr.” At “y.cdr :=t,” x points to ny,}, and thus when y’s cdr field is set to nyy
(whose cdr field points to ny), © does not point to ng. Although ng occurs in both
the tail of # and the tail of y, because is*(ng) = false we know that the two lists do
not share any cons-cells in common; that is, z and y must point to disjoint acyclic
lists.

The operations discussed above—assigning a pointer to a pointer, advancing
a pointer down a list, and cutting a list—are three of the five main operations
of list-manipulation algorithms. The fourth and fifth common list-manipulation
operations—splicing a new element into a list and removing an element from a
list—can, in many cases, be handled accurately by our shape-analysis algorithm,
even if shape-nodes temporarily become shared! (This is not illustrated by the list-
reversal program, but is discussed in Section 5.5.) This points up the strength of our
approach: our algorithm handles all five of the basic list-manipulation operations
with a remarkable degree of precision, as well as similar tree- and circular-list-
manipulation operations.

3. TERMINOLOGY AND NOTATION

A program is represented by a control-flow graph G = (V, A), where V is the set of
vertices, and A C V x V is the set of arcs. G has a unique start vertex, which we
assume has no predecessors. The other vertices of the control-flow graph represent
the statements and predicates of the program in the usual way; st(v) denotes the
statement or predicate of vertex v.

To simplify the formulation of the analysis method, it will be stated for a single
fixed (but arbitrary) program. The set of pointer variables in this program will be
denoted by PVar.

3.1 Normalization Assumptions

For expository convenience, we will assume that programs have been normalized to
meet the following conditions:

—Only one constructor or selector is applied per assignment statement.

—An expression cons(z,y) is executed in three steps: (1) an uninitialized cons
cell is allocated, and its address is assigned into a new temporary variable (e.g.,
“temp := new”); (2) the car component of temp is initialized with the value of
z (“temp.car := x”); (3) the cdr component of temp is initialized with the value
of y (“temp.cdr :=y”).

—All allocation statements are of the form z := new, (as opposed to z.sel := new).

—In each assignment statement, the same variable does not occur on both the
left-hand and right-hand side.

—Each assignment statement of the form lhs := rhs in which rhs Z nil is immedi-
ately preceded by an assignment statement of the form lhs := nil.

13

—An assignment statement of the form temp := nil is placed at the end of the
program for each temporary variable temp introduced as part of normalization.

Thus, for every vertex v € V in which a pointer manipulation is performed, st(v) has
one of the following forms: z := nil, z.sel := nil, z := new, z := y, = := y.sel, or
z.sel ==y, where y Z x. (In our implementation, the work of putting a program into
a form that meets these assumptions is carried out by a preprocessor.) Note that
the number of temporary variables that are introduced to meet these restrictions
is, in the worst case, linear in the size of the original program.

The normalization assumptions are not essential, but simplify the presentation.
For example, the next-to-last assumption allows the semantics to treat the “kill”
aspects of a statement (e.g., z := nil) separately from the “gen” aspects (e.g.,
x := y.sel, assuming that z’s value is nil). (See Figures 6 , 8, and 9)

Ezample 3.1.1. Figure 5 shows (a) the normalized version of the list-reversal
program and (b) the control-flow graph of the program in normalized form.

3.2 Shape-Graphs

Both the concrete and abstract semantics are defined in terms of a single unified
concept of “shape-graph,” which is defined as follows:

Definition 3.2.1. A shape-graph is a finite directed graph that consists of
two kinds of nodes—variables (i.e., PVar) and shape-nodes—and two kinds of
edges—variable-edges and selector-edges. A shape-graph is represented by a
pair of edge sets, (E,, Es), where

—F, is the graph’s set of variable-edges, each of which is denoted by a pair of the
form [z,n], where & € PVar and n is a shape-node.

—F is the graph’s set of selector-edges, each of which is denoted by a triple of the
form (s, sel, t), where s and ¢ are shape-nodes, and sel € {car, cdr}.

We overload the symbol E, to also mean the function that, when applied to a
variable z, returns x’s E, successors. That is, for x € PVar, we define E,(z) to be

E,(z) def {n | [z,n] € E,}. Similarly, for a shape-node s and sel € {car, cdr}, we

define E,(s, sel) to be Es(s, sel) def {t | (s,sel,t) € Es}. (The intended meaning
of a use of E, or E, will always be clear, according to whether arguments are
supplied or not.) Given SG = (E,, E;), we define shape_nodes(SG) as follows:

shape_nodes(SG) def {n|[x,n] € E,}U{n| (x,%x,n) € E;}U{n | (n,*,%) € Es}.

The class of shape-graphs is denoted by SG.

Note that for a given shape-graph SG, shape_nodes(SG) is uniquely defined: it
consists of the set of nonisolated nodes in SG (i.e., the nodes that are touched by
at least one edge). It is for this reason that we do not explicitly list the node set
when specifying a shape-graph. (For the sake of simplicity, we choose not to work
with a definition of shape_nodes(SG) that removes unreachable nodes.)

Remark. We will systematically use the terms “nodes” and “edges” when re-

ferring to elements of shape-graphs, and “vertices” and “arcs” when referring to

14

program reverse(z,y)

begin
/* x points to an unshared,
acyclic, singly linked list */

n{m} Ny
y = mnil
while z # nil do
t ;= nil
t:=y
y :=mnil

yocdr =t

T {y} Mg

Fig. 5. The list-reversal program in normalized form and the normalized program’s
control-flow graph.

elements of control-flow graphs. In general, properties of (or operations on) the
shape-graphs used to define the abstract semantics will be superscripted with f;
those used to define the concrete semantics have no superscript.

The shape-graphs that arise in the concrete semantics for the language have
somewhat different characteristics from the ones that arise in the abstract seman-
tics. However, the fact that both are defined from a shared root concept (namely,
Definition 3.2.1) helps in defining the abstraction relation that relates them (see
Definition 5.2.1).

In the concrete semantics, which is given in Section 4, the result of an execution
sequence is a shape-graph that represents the state of heap-allocated storage in
memory. In this case, each shape-node represents a unique cons-cell, and for each
variable z, either E,(z) is a singleton set (say {n}), or it is empty. Furthermore,
E;(n, car) and Es(n, cdr), which represent the cons-cells pointed to by the car and

15

ls = nill (2., E)) € (B, {[x A}, Ex)
[x.sel := nil]]((E,,,Es)) (— {(s, sel, %) | [z,s] € E,})
[z = new]]((Ev,Es» <E U {[-Z' Nnewl}s Es)
[= :y]](<EvaES>) (E U{lz,n] | [y,n] € Eu}, E)
[2.sel := y]]((Ev,Es)) (EU,E U{(s,sel,t} | [2,5],[y,t] € Ev})
[z:=y sel]]((Ev,Es)) (E U{lz,t] | [y, s] € Ev, (s, sel,ty € Es}, Es)

Fig. 6. The concrete semantics [st]: DSG — DSG. The shape-graph transformer associ-
ated with all predicates and all assignment statements that do not perform any pointer
manipulations is the identity function. The term 7, denotes an operation that generates
a new shape-node (i.e., a new cons-cell).

cdr fields of n, are also either singleton sets or empty (depending on whether these
fields point to allocated cons-cells or not). Such properties are captured in the
following definition:

Definition 3.2.2. (Deterministic Shape-Graphs). A shape-graph is determin-
istic if (1) for every x € PVar, |E,(z)| < 1, and (2) for every shape-node n and
sel € {car,cdr}, |Es(n,sel)] < 1. The class of deterministic shape-graphs is de-
noted by DSG.

The concrete semantics will treat statements as “deterministic-shape-graph trans-
formers.” In contrast, in Section 5.3, the abstract semantics will use nondetermin-
istic shape-graphs to model (conservatively) the state of heap-allocated storage. In
nondeterministic shape-graphs, quantities such as E, (x), Es(n, car), and E;(n, cdr)
may each yield a set with more than one shape-node.

4. THE CONCRETE SEMANTICS

In this section, we present a concrete semantics in which deterministic shape-graphs
are used to represent the state of memory and in which the meaning of an assign-
ment statement is a deterministic-shape-graph transformer. This concrete seman-
tics is used to define a concrete collecting semantics that associates a set of possible
concrete stores with each point in the program.

Figure 6 contains the semantic equations of the concrete semantics. The meaning
of a statement st is a function [st]: DSG — DSG. (When examining the last four
equations in Figure 6, bear in mind that, because of the Normalization Assumptions
of Section 3.1, before each of the statements executes it is known that the value of
the left-hand side is nil. Thus, the last four equations need only handle the “gen”
aspects of the statements’ semantics. The “kill” aspects are handled by the first two
equations of Figure 6.) The DSG transformers listed in Figure 6 cover the six kinds
of pointer-manipulation statements; all the other DSG transformers—for predicates
and for assignment statements that do not perform any pointer manipulations—are
the identity function.

By design, the “concrete” semantics is somewhat nonstandard in the following
ways:

16

—The only parts of the store that the concrete semantics keeps track of are the
pointer variables and the cons-cells of heap-allocated storage.

—Rather than causing an “abnormal termination” of the program, dereferences of
nil pointers and uninitialized pointers are treated as no-ops.

—The concrete semantics does not interpret predicates, read statements, and as-
signment statements that do not perform pointer manipulations.

These assumptions build a small amount of abstraction into the “concrete” seman-
tics. The consequence of these assumptions is that the collecting semantics may
associate a control-flow-graph vertex with more concrete stores (i.e., DSGs) than
would be the case were we to start with a conventional concrete semantics. (These
assumptions are patently safe, so we will not take the space here to justify them
further.)

We now turn to the collecting semantics. For a control-flow-graph vertex v € V,
let pathsTo(v) be the set of paths in the control-flow graph from start to predeces-
sors of v.

Definition 4.1. The collecting semantics cs: V — 2P59 is defined as follows:

es(v) € { [st ()] [st DS,) | [on, -, vs] € pathsTo(v) }

The value of ¢s(v) represents (a superset of) the concrete stores that could arise
just before vertex v is executed.

Equationally, the collecting semantics can be defined as the least fixed point
(under set inclusion) of the following system of equations in CS,, for v € V:

, if v = start
CS. = { %&ft(?ﬁ](SG) | (w,0) € A, SG € CS.} otherwise @)

5. THE ABSTRACT SEMANTICS

In this section, we present a shape-analysis technique that uses a restricted subset
of shape-graphs to characterize the possible shapes that heap-allocated storage can
take on.

Static shape-graphs (or SSGs, for short) are defined in Section 5.1; the abstraction
function is defined in Section 5.2; and the abstract semantics is given in Section 5.3.
The reverse program is used as a running example in these sections. Section 5.4
discusses an interesting aspect of how the abstract semantics treats statements
of the form “x.sel := nil.” Section 5.5 considers a second example program—a
list-insertion program that may insert a cons-cell at an arbitrary point in a linked
list—and shows that the shape-analysis method is capable of determining that when
the argument is an unshared acyclic list, the result is also an unshared acyclic list.

5.1 Static Shape-Graphs

Unlike the concrete stores of the collecting semantics (i.e., DSGs), the SSGs of the
abstract semantics are nondeterministic: E,(z), Es(n, car), and Eg(n, cdr) may

3 An alternative semantics that returns a special value L if a nil pointer or uninitialized pointer is
dereferenced was used in Sagiv et al. [1995]. The present formulation has the advantage of being
simpler.

17

each yield a set with more than one shape-node. In addition, and again in contrast
with DSGs, the SSGs for a given program are a priori of bounded size. This is
achieved by our naming scheme for shape-nodes: the name of a shape-node is a
(possibly empty) set of program variables. In general, the abstraction function
clusters infinitely many concrete cons-cells (from an infinite set of finite DSGs) into
a single SSG shape-node.

Definition 5.1.1. A static shape-graph is a pair (SG*,is!), where

—SG"* is a shape-graph,
—the set shape_nodes(SG*) is a subset of {nx | X C PVar}, and
—ist is a function of type shape_nodes(SG*) — {false, true}.

The class of static shape-graphs is denoted by SSG.

In the following definition, we impose an order on SSGs where SG§ C SGﬁ2 if
SGY contains at least the edges of SG*:

Definition 5.1.2. Let SGt = (B!, EY),is!) and SG% = ((E',,E%),is}). We
define the following ordering on SSG: SG! T SG? if and only if all of the following
conditions hold:

—E!, C EL,
—E%, CE,

—For every n € shape_nodes(SG*), ish(n) = isk(n).

The domain SSG is a complete join semi-lattice with a join operator U defined
by

SGtusah € def (B, UE!,, B}, UEY,),ist vish).

5.2 The Abstraction Function

Our task in this section is to define the abstraction function that relates the domains
2PS9 and SSG. The abstraction function « is defined in Definition 5.2.1; « is
defined in terms of the auxiliary functions 7, which establishes the relationship
between the nodes of a DSG and their corresponding nodes in the SSG, and g,
which is an overloaded symbol denoting a family of functions defined inductively
on the structure of elements that make up a DSG.

Definition 5.2.1. (The Abstraction Function). Let SG = (E,, E,) be a shape-
graph in DSG, and let [, l;, and l» be shape-nodes in shape_nodes(SG). The function
7[E,](l), from shape_nodes(SG) to 2PV, identifies the set of variables that point
to a given cons-cell [. Tt is defined as follows:

B () (2 € PVar | [2,1] € B}

(When E, is understood, we will write 7[E,](I) as 7(l).)

The function #is[E;](l), from shape_nodes(SG) to {false, true}, checks whether a
cons-cell [is the target of pointers emanating from two or more distinct cons-cell
fields (“iis” stands for “induced-is-shared”). It is defined as follows:

def

iis[B (1) Z |{(x, %,1) € E}| > 2.

18

(When E; is understood, we will write #s[E;](l) as iis(l).)
The collection of functions G[E,] (abbreviated as 3 in all but the last case below)
is defined as follows:

(1) %m0
B((a, 1)) L [()]
B(E)dze (8. 0) | [z,1] € .}
B({l, sel, o)) L (B(1y), sel, Blz))
B(E,) def {B(ly, sel, 1)) | (I, sel,l5) € E,}
BUE., E)) L (BIBI(E), BIEJED), An. \/ iis[E(D))

{tIB[EL](1)=n}
The abstraction function a: 2P°Y — SSG is defined by

a$) = || BIE(E, B)).

(Ey,Es)ES

The core components of Definition 5.2.1 are the operations w[E,](!) and 8(I) =
Naxie,)()- The function 7[E,](I) establishes the relationship between a DSG shape-
node [and the name of the SSG shape-node that represents [. For example, consider
the iteration-0 row of Figure 2. In column two, DSG node [; is pointed to by variable
z and is mapped by 3 to SSG node B(l1) = nx[Eg,](1;) = N{z} (see column three).
DSG nodes Is, I3, l4, and l5, which are not pointed to (directly) by any variables,
are mapped by 3 to SSG node ng4. In general, n[E,] generates a finite set of SSG
node names from the a priori unbounded number of DSG nodes in the DSGs in
S. Auxiliary function S then collapses SG onto the smaller set of nodes, while
preserving many aspects of SG’s structure. We say that an SSG shape-node n
represents a DSG shape-node ! in SG = (E,, E;) if 8[E,](I) =n

The function #is[Es](l) checks whether a cons-cell [is the target of pointers em-
anating from two or more distinct cons-cell fields. Because of the indexed-or per-
formed with respect to the set of cons-cells that 3 maps to nx, is*(nx) is true if
any of the cons-cells in SG that nx represents is the target of pointers emanating
from two or more distinct cons-cell fields in SG. (This aspect of 8 and 7[E,] is
not illustrated by the SSGs that appear in Figure 2.) On the other hand, if 3 sets
isf(nx) to false, this means that the cons-cell (or cells) that nx represents all have
at most one predecessor. For example, consider the iteration-0 row of Figure 2.
In the SSG in column three, ny represents the cons-cells ls, I3, l4, and I5, each of
which has exactly one predecessor in the DSG shown in column two. Consequently,
is*(ng) = false.

In Section 5.3 and the electronic appendix, it is convenient to work with an
alternative, but equivalent, definition of iis[E;]:

Definition 5.2.2.

iis[E.)(1) % 30y, 15, Fsely, sel -

<ll, sell,l) (lg, Selg,l> S ES A (l1 75 l2 \Y sel1 75 Selg)
It may not be immediately apparent why sharing information is represented ex-
plicitly in SSGs. The reason is that only very conservative information about shar-

19

ing could be inferred directly from an SSG if there was no explicit is* function. For
example, without the is* function, it would not be possible to distinguish acyclic
lists from cyclic lists. Suppose that SG* is an SSG that arises from an application
of abstraction-function a to DSG SG, and suppose that n is a shape-node of SG*
that represents a shared shape-node I of SG. Not only is is*(n) = true, but one or
more of the following conditions must hold in SG*:

—There exists a selector-edge from ng to n. This reflects the fact that n, can rep-
resent multiple cons-cells, and thus the single SSG edge (n,, sel,n) can represent
two or more selector-edges in SG.

—There exist two selector-edges to n from different SSG shape-nodes, say, nz, and
nz,, where Z; N Z = ¢. In this case, the two SSG edges represent two different
selector-edges to [in SG—one from the cons-cell pointed to by the set of variables
71 and one from the cons-cell pointed to by the set of variables Z,.

—There exist two selector-edges to n, with different selectors, from a single shape-

node in SG*. In this case, the two SSG edges represent two different selector-
edges in SG.

The reason why explicit sharing information is maintained in SSGs is that the
converse of the above observation need not hold. For example, in the SSG in
column three of the iteration-0 row of Figure 2, there exist two selector-edges to ny
from different shape-nodes, ng (i.e., nz,) and ny,y (i.e., nz,) such that Z; N Z; =
¢ N {z} = ¢. However, the value of is#(ny) is false. (The fact that is*(n,) = false
is what indicates that ng’s incoming edges represent edges that never point to the
same cons-cell in any concrete store.)

As defined in Definition 5.2.1, the abstraction of a set of DSGs S results in a single
SSG, a(S). Even though abstraction function a combines information from several
applications of 8, we can sometimes recognize that particular pairs of elements in
an SSG represent features that can only come from different DSGs. In particular,
a shape-node nz represents cons-cells that are simultaneously pointed to by all
(and only) the variables in Z. In a given DSG, each program variable points to
at most one cons-cell. Therefore, two different shape-nodes nx and ny, such that
X #Y and X NY # ¢, represent incompatible configurations of variables: they
cannot possibly represent cons-cells that are in the same DSG. This means that the
following structural property holds for an SSG ((E*, E!),is*) that arises from an
application of abstraction function a:

Compatibility of Edge End-Points: For all (nx,sel,ny) € E!, either X = Y or
XNnY =¢.

Example 5.2.3. For example, in the SSG at the top of column two in Figure 11,
the selector-edge (niyy, cdr,ngy)) satisfies {y} N {t} = ¢. This SSG could not
contain any of the following selector-edges: {n{z}, car,nfz 1), (N{z}, cdr,N{z1,}),
(N{z,t:}> COT,NYz}), and (Nga 4.}, €dr, Nga))-

The SSG transformers of the abstract semantics make use of several properties
similar to the “compatibility-of-edge-end-points” property to determine that certain
combinations of shape-node elements cannot possibly coexist in the same concrete
store (see Figures 10 and 12). This is one of the key reasons why our shape-analysis
method is able to carry out accurate “node materialization” on many programs

20

44]
€T —»
€Tr—> L — e p e
RN . . T ik} e}
n{z} Mg _ ~ _ _
et 1 T 1
(a) A singly linked list (b) A tree (c) An arbitrary graph
l—
T —» . T —»
Nz} 1 ng iz} 1 ng
(d) A possibly cyclic list (e) A possibly cyclic list
of length > 2 of length > 1

Fig. 7. SSGs that characterize five kinds of data types. For each of the shape-nodes in
all of the SSGs but (c), the value of is* is false. In (c), the value of is* is true for both
shape-nodes.

(and consequently why it is more precise than competing methods on many of
these programs).

Because abstraction function « distributes over U (i.e., union of sets of DSGs),
the unique concretization function v such that o and v form a Galois connection
can be defined as follows:

Definition 5.2.4. (The Concretization Function). Let SG* be a shape-graph in
S8S8G. Concretization function v: SSG — 2P59 is defined as follows:

def

7(SG* = {SG € DSG | B(SG) T SG*}.

A data type is a collection of DSGs. Definition 5.2.4 provides a way for certain
data types, including linked lists, trees, and arbitrary graphs, to be characterized
by SSGs:

Definition 5.2.5. Let SG* be a shape-graph in SSG. SG* characterizes the
data type v(SG¥).

Ezample 5.2.6. Figures 7(a)—(e) show the shape-graphs that characterize five
kinds of data types.

The shape-analysis algorithm is conservative with respect to the concrete seman-
tics, and thus the shape-graphs produced may have superfluous edges. Therefore,
when the shape-analysis algorithm reports that a variable points to a circular list, it
may actually point to a noncircular list; however, when the algorithm reports that
a variable points to a noncircular list, it will never point to a circular list. This kind
of conservative approximation is appropriate for use, for example, in parallelizing

21

compilers [Hendren and Gao 1992; Hendren et al. 1992]. (An extension of our basic
technique allows SSGs to characterize some kinds of definitely circular data types,
including definitely circular lists. See Section 6.3.)

Remark. The reader may wonder why we do not use an abstraction function that
uses a set of SSGs to represent the set of stores that can arise at a control-flow-graph
vertex, such as

a(S) © (BB (B, E.) | (B, B, € S).

Using such an abstraction function would have certain advantages:

—In general, it would lead to a shape-analysis algorithm that is more accurate than
the method described in this article.

—It would allow us to give simpler definitions for the transfer functions of the
abstract semantics (cf. Figures 8 and 9). In particular, there would be no need
to use the compatibility-of-edge-end-points property.

However, our belief is that an approach based on a set of SSGs per control-flow-
graph vertex is not likely to be feasible in practice. The number of shape-nodes
associated with a single control-flow-graph vertex can grow to be very large—
in the worst case, doubly exponential in the number of program variables (i.e.,
22|PW|). Using a single SSG per control-flow-graph vertex avoids the space blow-
up.? In addition, the operations needed by a fixed-point-finding algorithm—join of
SSGs, equality of SSGs, and applications of the transfer functions of the abstract
semantics—can usually be carried out more efficiently for a method based on one
SSG per vertex. For these reasons, we believe that the use of a single SSG per
vertex is more likely to provide a practical shape-analysis algorithm and that the
additional notational complexity required to define the transformers of the abstract
semantics is warranted.

5.3 The Abstract Interpretation

The abstract meaning function [J#: SSG — SSG for the pointer-manipulation state-
ments is given in Figures 8 and 9. The operations presented in Figures 8 and 9
manipulate variable-edges, selector-edges, and sharing information, as well as the
alias information that is maintained in the shape-node names of SSGs. As we shall
see, this meaning function is conservative with respect to the concrete semantics
defined in Figure 6 (see Theorems 5.3.6 and 5.3.7).

The key property of the abstract semantics is that each abstract assignment oper-
ation creates an SSG that conservatively covers all the possible new configurations
of variable sets whose members all point to the same cons-cell (i.e., DSG shape-
node). The formal definition of the abstract semantics, given in Figures 8 and 9,
uses two basic mechanisms:

4The number of shape-nodes in a single SSG is bounded by | PVar| Although with our shape-
analysis algorithm, the number of shape-nodes can actually grow to be this large for some patho-
logical programs, our limited experience to date suggests that this is unlikely to arise in practice.
The blow-up problem can also be mitigated by using widening (see Section 6.2).

22

—In many of the cases, the “names” of SSG shape-nodes are adjusted by performing
operations on the variable sets that “name” SSG shape-nodes, e.g., nz becomes
nZU{z} or nz,{z}.

—The cases of the abstract semantics use “abstract predicates” over SSG shape-
graph elements. These provide safe tests for corresponding “concrete predicates”
on DSG shape-graphs.

Figure 10 lists four of the abstract predicates that are used in the abstract se-
mantics and the corresponding concrete predicates.

Each of the abstract predicates p* in Figure 10 has the property that if the
concrete property p holds on the elements of a given DSG SG, then pf holds on
the corresponding elements of S(SG). Therefore, the abstract semantics can use
p* = false as a safe test of whether p holds on the corresponding elements in any of
the DSGs in v(SG*): if p! equals false (on specific elements of an SSG SG*), then
p does not hold on the corresponding elements in any of the DSGs in V(SGﬂ). For
example, when dis*[Ef](nx) does not hold, we conclude that iis[E,] does not hold
on any of the cons-cells represented by nx (i.e., none of the cons-cells represented by
nx are shared). In the SSG transformer for a statement of the form “z.sel := nil,”
which removes the selector-edges emanating from all shape-nodes nx with x in
their name, the abstract semantics can determine whether it is safe to set is*(nx)
to false by testing the value of iis*(nx).

This relationship is captured by the following lemma about the properties listed
in Figure 10:

LEMMA 5.3.1. Let SG = (E,, E,) be some DSG in DSG; letl, Iy, ls, ..., I, be
shape-nodes in shape_nodes({E,, Es)); and let 8 denote B[E,].

(1) compatible(ly,...,l,) = compatible*(B(l1),...,3(,))
(2) i =1> = () = B(l2)

(3) 11 # 1y = B(ly) #! B(l)

(4) iis[Es](1) = #is*[B(Es)](B(1))

PROOF. The abstract properties are derived from the concrete ones using the
following observations:

(1) A shape-node nz represents cons-cells that are simultaneously pointed to by
all (and only) the variables in Z. In a given DSG, each program variable points
to at most one cons-cell. Consequently, two different shape-nodes nz; and nz,,
such that Z; N Z; # ¢, represent incompatible configurations of variables: they
cannot possibly represent cons-cells that are in the same DSG. Therefore, two
different SSG shape-nodes nz, and nz, can represent cons-cells in the same
DSG only if Z; N Z; = ¢.

(2) A given cons-cell in SG is represented by a unique SSG shape-node in 8(SG).
Therefore, predicate nz, = nz, tests whether nz, and nz, are the same.

(3) Different cons-cells in SG are either represented in §(SG) by different SSG
shape-nodes, or else both are represented by summary node ng4.

(4) Let Iy, l2, seli, and sels be elements of SG that satisfy the conditions of the
existential quantifiers in column two of the case for #s[E;](l) in Figure 10. We

23

[1= millf (B,), isf)) 1

(Bt EYY,ist"), where

EY = {ly, fo(nw)] | ly,nw] € B} Ay #)
B = {(fo(nv), sel, fo(nw)) | (nv, sel,nw) € Ef}
ist' (ng) = ist(ng) Vist(nzugay)

[-sel == nil]f ((EL, Ef), ist)) % (Bt B, ist'), where

EY = E! — {(nx,sel,%) |z € X}
#

ist' (n ist(n /\ iist[EY(n) if 3nx . [z,nx] € E} A (nx, sel,n) € E!
zsﬁ otherwise

[z = new]# (%, %), ist)) € (B U {2, n ()]}, BE), istn gy o false])

[o := yIF (B, B9, ish)) ' (B, BY), is"), where

_ nZU{z} if Yy €Z
9ay(nz) = { ng otherwise

B = {2 9:4(n2)] | [2,n2] € BE} U{[z, 92,4 (n2)] | ly,nz] € Ei}

!

Eg = {<gﬂhy(nZ1)’Sel’gm,y(nz2)> | <nZ1aselanZ2) € Eg}

ist' (ng) = ist (Nz—{z})

[l == y]f ((EL, BLY,ist)) % (Bt BY'), is""), where

Eﬁl = EtU{(nx,sel,ny) | [z,nx],[y,ny] € EL A compatible* (nx,ny)}

it (n) = ist(n) v iist[EY](n) if [y,n] € B!
ist(n) otherwise

Fig. 8. The abstract semantics []#:SSG — SSG for the five of the six kinds of
statements that manipulate pointer variables. (By convention, is*(n) = false if n ¢
shape_nodes(SG*).)

have
true = compatible(ly,l2,1) Figure 10

= compatible*(B(l1), B(I2), B(1)) Case (1) above

(l1, selq,1) € Es (11), sely, B(l)) € B(Es)
A (la, sela,l) € Eg = (1), sela, B(1)) € B(Es) Definition 5.2.1

(8
AN (l1 75 lz \% sell :/é 5612) é 1 # l2 \Y sell 75 Selz
(
A |
A (

)
B(l1), sel1, B(1)) € B(Es)
B(l2), sela, B(1)) € B(Es) Case (3) above
B(l) #* B(l2) V selr # sels)

24

he(nz) = nzu(a)
gt — B U Uy ient iny setnpyemt 12, he(n2)]}
iy € B (ny sel,nzhe B 2 n e B 1% ha(nz)]}
/ (B! — {{ny, sel,*) |y € Y})
s U Uy nyleBt (ny selng)e bt as(hg,y,ny,sel,nz)

(Bt EYY,ist"), where

isﬁl(nz) = isﬂ(nz_{z})
(nw, sel',hy(nz)) |
compat_in* ([y, ny], (ny, sel,nz), (nw, sel',nz))
_ (ha(nz), sel', ho(nz)) |
aS(hz’ ¥y sel, nZ) = U compat_selfﬂ(['y, nY]7 (nYa Sel; nZ)’ <nZ7 Sel’) nZ))

| [(hanz), sel',nw) |
compat_out([y, ny], (ny, sel, nz), (nz, sel',nw))

Fig. 9. The abstract semantics for statements of the form z := y.sel. This case implements
node materialization.

Concrete Predicates

Usage Meaning
compatible(ly,. .., lx) true
Lhi=10 li=1
I # 1> L#D
34,12, dselq, sels :
11s[Es](1) (I, sel1, 1), (1o, sela, 1) € E

A (l1 7é l> V selq 76 Selz)
Abstract Predicates

Usage Meaning
compatible(nz,,...,nz)|Vi,j: Z; = Z;VZiNZ; = ¢
nz, Zﬁ Nz, Z1 = ZQ

’nzlséﬁnzZ Z1W £ ZoNZi=Zy=¢

Inz,,nz,, Isel1, sels :

compatible* (nz,,nz,,nz)
A (nz,,seli,nz),{nz,,sela,nz) € E!
A (nz, £ nz, V seli # sela)

iist [Eg](nz)

Fig. 10. The basic concrete and abstract properties used in the abstract semantics.

This shows that there exist elements 5(l1), 8(l2), seli, and sels in B(SG) such

that compatible*(8(11), B(12), B(1)) A (B(L1), sel1, B(1)) € B(Es) A (B(l2), sel2, B(1)) €
B(E,) A (B(1y) #* B(lo) V sely # sely). Therefore, #is*[E!](8(1)) holds. O

The above four predicates are examples of a more general principle:

Definition 5.3.2. Let p be any predicate on various DSG components (i.e., shape-
nodes, variable-edges, selector-edges, etc.). Similarly, let p* be a predicate on the
corresponding kinds of SSG components. We say that p! is a safe approzimation
of p (denoted by p =4 p*) if we have for every (E,, E;) € DSG and components A,

25

B, ... of (E,, E,)
p(A,B,...) = p*(B[E.)(A), BIE](B),...).

The case of the abstract semantics that handles statements of the form “x :=
y.sel” make use of three additional abstract predicates: compat_in®, compat_selfﬁ,
and compat_out!. These will be discussed in detail later in the section.

We now discuss the individual cases of the abstract meaning function (Figures 8
and 9), illustrating the most important features using Figure 11, which shows the
final SSGs computed for each program point by abstract interpretation of the de-
structive list-reversal program. Each block of Figure 11 indicates the shape of
memory just before the program-point label that appears at the bottom of the
block. The set listed at the top of each block indicates the vertex (or vertices) in
the control-flow graph and the action(s) taken there. For example, the block la-
beled v15 (see the lower right-hand corner of Figure 11) indicates that vertex vys’s
one predecessor is the statement ¢; := nil at vy4.

—For an assignment statement of the form z := nil, z is “liquidized” from all
shape-nodes that have variable z in their “name.” That is, z is removed from
the name of all such shape-node names, which may cause what were formerly
distinct shape-nodes to be merged.

Example. In the transition between block v; and block vg of Figure 11, the
assignment ¢; := nil causes ¢; to be removed from the “name” of shape-node
N{yz,t1}- Shape-nodes nyy . ¢} and ny, .} are then merged.

—For an assignment statement of the form z.sel := nil, the SSG transformer given
in Figure 8 removes all of the sel selector-edges in shape-nodes that have z in
their “name.” This is safe because the variable set of a shape-node in the SSG
for a program-point consists of variables that all point to the same cons-cell;
therefore, all shape-nodes that have x in their name represent cons-cells whose
sel field will be overwritten. (Conversely, if it is possible for a concrete cons-cell
[that is not pointed to by variable x to arise at this statement, then I’s sel field
will not be overwritten; ! will be represented in the SSG by a shape-node that
does not have z in its “name.”) See also the discussion of “strong nullification”
in Section 5.4.

Ezample. In Figure 11, the transition between v1; and v;2 removes selector-edge
(ngy}, cdr,ngz ,31)-

The other important aspect of the SSG transformer for z.sel := nil is the way
information in shape-node names is used to reset sharing information. This is
based on the observation that it is safe to reset is*(n) to false whenever iis*(n)
is false. (The resetting of sharing information by the SSG transformer is not
illustrated by the list-reversal program, since is' is false for all shape-nodes in
all shape-graphs that arise. The issue of resetting sharing information to false is
discussed in detail in Section 5.5.)

—For an assignment statement of the form z := new, a new unshared node n(,;
is created. All other shape-nodes are unaffected.

26

{ start } {vi:y :=nil, vig:y.cdr:=t} {vo:x #nil }
Nz} Mo ™ e Mo T o™ N
t1— t1—
n{zvtl} n{z7t1}
Y— |o ol— 1t Y— |o > |e— ¢
n n n n
V1 {y} Vs {t} {y} vs {t}
{vs:t:=nil} {va:t:=y} {vs:y :=mil}
T | j T— | j T | j
’I’L{z} o~ TL{E} o~ n{z} o~
€T —> n T —> n X — n
tl_. “ o|l—Y t1_> ./ L Y t1_> 7] > — ¢
n{zatl} n{z7t1} —t n{wvtl}
n n n
Va {y} vs {t,y} Ve {t}
{ve:y =2} {v7:ty :=nmil } {vs:t1 :=z.cdr }
€I —» o tl
Y —
N{y,z} o ';:: . o 'Z: . »
;g.:: o n N{yz} N N{yz} Tt}
n{y,m,tl} o|— ¢ o|—t t — . s
n n n ¢
vy {t} vg {t} {t} Vo
{vg:z :=mil } {viorz =11 } {v11:y.cdr :=nil'}
t T t T
s s
Y — . ° <_t1 Y — . L Y — ° »
{y {t1} {y} "{=,t1} {y {z,t1
t — . - t — . o~ t — . o~
n ¢ n ¢ n ¢
{t} Y10 {t} V11 {t} V12
{ve:z #mil } {vis:t:=mil} {v14:t; :=mil }
€I — ~ €Tr — ~
T LR ey, LR r— |e o
T —> o Ng T —> o N, N{z} Ny,
t1— t t1—
n{z,tl n{z,t1
Y — ° ® Y — d Y — o
n n n n
{v} V13 {t} {v} V14 {v} v1s

Fig. 11. The final SSGs computed for the destructive list-reversal program. For each of
the shape-nodes in all of the SSGs, the value of is® is false.

27

—For an assignment statement of the form z := y, the shape-node names are
changed to reflect the fact that whatever y was pointing to before is now also
pointed to by z. In addition, new variable-edges are added to reflect the assign-
ment of y to z.

Example. See the transition between block vg and block v; of Figure 11.

—For an assignment statement of the form x.sel := y, sel selector-edges are added
between shape-nodes pointed to by z and compatible shape-nodes pointed to by

Y.

Example. See the transition between block w15 and block v, of Figure 11.

In addition, shape-nodes that are pointed to by y may have their is* values
adjusted if the concrete cons-cells they represent could have become shared.
—The SSG transformer for an assignment statement of the form x := y.sel is
the most elaborate operation (see Figure 9). The reason for this is that the
SSG transformer has to create an SSG that conservatively covers all the possible
new configurations of variable sets whose members all point to the same cons-
cell after the assignment: in particular, if y.sel points to nz, then a copy of
nz is “materialized”—producing a “new” node nzyy,} from “old” node nz. In
defining the materialization operation, the goal is to cover conservatively all the
possibilities, yet at the same time not introduce too many superfluous edges that
prevent the abstract semantics from being able to verify interesting properties.

Ezample. See the transition between block vg and block vg of Figure 11, in which
the assignment ¢; := z.cdr causes node Ny} tO be materialized from n.

The other important aspect of the SSG transformer for z.sel := nil is the way
information in shape-node names is used to reset sharing information. This is
based on the observation that it is safe to reset isf(n) to false whenever iis*(n)
is false. (The resetting of sharing information by the SSG transformer is not
illustrated by the list-reversal program, since is* is false for all shape-nodes in
all shape-graphs that arise. The issue of resetting sharing information to false is
discussed in detail in Section 5.5.)

—For an assignment statement of the form z := new, a new unshared node n,)
is created. All other shape-nodes are unaffected.

—For an assignment statement of the form z := y, the shape-node names are
changed to reflect the fact that whatever y was pointing to before is now also
pointed to by z. In addition, new variable-edges are added to reflect the assign-
ment of y to z.

Example. See the transition between block vg and block v; of Figure 11.

—For an assignment statement of the form x.sel := y, sel selector-edges are added
between shape-nodes pointed to by = and compatible shape-nodes pointed to by

Y.

Ezample. See the transition between block v12 and block vy of Figure 11.

28

In what follows, let ny be a shape-node that y points to, and let nz be one of
the shape-nodes that y.sel points to (i.e., there is a selector-edge (ny, sel,nz)).
Bear in mind that

—uy.sel may have selector-edges to many shape-nodes and
—uy.sel may have a selector-edge to ng, which in general represents many concrete
cons-cells in a single DSG.

For every node nz pointed to by y.sel, we materialize a new node nzy,} and

direct the following variable-edges to nzy.:

—Old variable-edges that point to nz before the assignment. (This does not
occur in the transition between block vg and block vg of Figure 11.)

—A new variable-edge from z. (See variable-edge [t1,n,1] in block vg of Fig-
ure 11.)

In Figure 9, the process of determining the selector-edges that are to be directed
to and from nz,) is divided into three cases, based on three additional abstract
predicates, compat_in®, compat_self*, and compat_out!, defined in columns three
and four of Figure 12.

—The property compat_in® describes when two selector-edges whose targets are
both nz can possibly represent edges that coexist in the same concrete store.
In particular, if an edge (nw, sel’,nz) is compatible with (ny, sel,nz), the
abstract semantics for x := y.sel generates an old — new selector-edge from
the old node nw into the new node nzys}-

Ezample. Selector-edge (nyy .}, cdr,ng) in block vg of Figure 11 is a compatible
incoming edge with respect to itself. This generates edge (ngy,.}, cdr,ngs,}) in block
Vg.

Note that if is*(nz) = false, all of nz’s incoming edges—other than (ny, sel,nz)
itself —are incompatible with (ny, sel,nz). In this case, the only old — new
edge generated is (ny, sel,nzu(s.)). (This situation is illustrated by the above
example.)

When y.sel points to ng, if ny has a direct cycle of the form (ng, sel’, ng), this
also counts as an “incoming” edge of ng. If isu(n¢,) = true, such an edge will
be “materialized” in two ways: as an edge (ng, sel’,n{,}) and as a direct cycle
(n{z},s€l',n{zy). (The latter is handled by the set former that uses predicate

compat_self ﬁ; see the discussion below.)

Ezample. In block vg of Figure 11, is*(ny) = false, so the direct cycle (ny, cdr,ng)
is incompatible with (ngy .1, cdr,ng). Consequently, a selector-edge (ng, cdr,ny,y)
is not generated when n;,} is materialized from ng in the transition from block vg
to block vy.

—The property compat_self* is used to define when a direct cycle (nz, sel’,nz) is
materialized as a direct cycle (nzy(qy, sel', nzug})- If the edges (nz, sel’,nz)
and (ny, sel,nz) represent a direct cycle and an edge that can possibly co-
exist in the same concrete store, the abstract semantics for z := y.sel gener-
ates a new — new selector-edge from the new node nzy¢.} to nzu(e}- Note

29

Concrete Predicates

Usage Me[anir]lg
y, | € E,
. [?;’ll]’l , A (11, sel, o) € Es
compat_in | (l1, sel, l2), A (s, sel',lQ) € E.
(lg,sel l2> A ls # Iy
y: ll [y, ll] € Ev
compat_self | (l1, sel ,12), A {l1,sel,l2) € Es
(l2, sel’ l2) A <l2, sel', l2> (S IR
[y, 1), e
compat_out ({l1, sel l2),) Q gl;: zZl”, ?z>€€ ESS
(lz,sel l3> A # I
Abstract Predicates
Usage Meaning
compatible? (ny,nz, nw)

[y, nY] € Eg

A
[y,ny], ’ [
compat_in® | (ny, sel,nz), Q (nv, Sez’ nz), {nw, sel’;nz) € E;
(nw, sel’,nz) nz # nw ,
A ((ny =f nw A sel = sel’)

vist (nz))
compatible (ny ,nz)
y,ny) A [y: nY] € Eg

compat_selft | (ny, sel ,NZ), A (ny,sel,nz),(nz,sel',nz) € E
{nz,sel’,nz) A ((ny =Y nz A sel = sel’)

Vist(nz))

compatible® (ny ,nz, nw)
yan A [y7 nY] € Eg
) A (ny,sel,nz){nz,sel',nw) € E*
N nz 7611 nw
A (ny £ nz V sel # sel')

ny,sel nz),
(nz,sel',nw)

compat_ out!

Fig. 12. Properties used in the “z := y.sel” case of the abstract semantics.

that if is*(nz) = false, all of nz’s incoming self edges are incompatible with
(ny, sel,nz), unless ny and nz are the same shape-node and sel’ = sel.

Ezample. Selector-edge (ng, cdr,ng) in block vg of Figure 11 is an incompat-
ible self edge with respect to edge (nfy.},cdr,ng), and hence a selector-edge
(n{e1}, cdr,ng,y) is not generated when ny,,) is materialized from ngy in the tran-
sition from block vg to block vg.

—The property compat_out* describes when an outgoing selector-edge (nz, sel’, ny)
of ny represents an edge that can possibly coexist in the same concrete store
with an edge represented by selector-edge (ny,sel,nz). If (nz,sel',ny) and
(ny, sel,nz) are compatible, the abstract semantics for x := y.sel generates a
new — old selector-edge from the new node nzyg,) to the old node ny .

Ezample. Selector-edge (ng, cdr,ng) in block vg of Figure 11 is a compatible
outgoing edge of ny with respect to edge (n(y .}, cdr,ng), and hence a selector-edge
(n{e,}, cdr,ng) is generated when ny,,, is materialized from ng in the transition

30

from block vg to block vg.

Because each field of a concrete cons-cell can have only a single outgoing edge,
if ny = nz, then sel’ # sel (or equivalently, ny # nz V sel' # sel).

Note that all of the operations of the abstract semantics preserve the “compati-
bility” property for the variable-set names of selector-edge end-points described in
Section 5.2.

The shape-analysis algorithm itself is an iterative procedure that computes an
SSG, SGf,, for each control-flow graph v, as the least fixed point (under the ordering
defined in Definition 5.1.2) of the following system of equations in SG*:

<<¢7¢>7An'fa'lse> if v = start
SG. = { Ui vy [56)[(SGH) otherwise @)

The iteration starts from the initial assignment SG* = ((¢, ¢), An.false) for each
control-flow-graph vertex w.

Ezxample 5.3.3. The final abstract values for all of the control-flow-graph vertices
of the normalized list-reversal program are shown in Figure 11. Among other things,
this information tells us that if z’s value is a list at the beginning of the program
(see block v1) then y’s value is a list at the end of the program (see block v;5).

Block vs of Figure 11 shows the final SSG computed for vertex vy of the list-
reversal program. The elements of this graph can be interpreted as follows:

—There are two shape-nodes that represent the head of the list that z points to:
Nz} and ng, ;). Shape-node ng,y represents the situation where z is the only
variable pointing to the head of the list (which only happens before the first
iteration of the loop). Shape-node ng, . } represents the situation where x and
t1 both point to the head of the list. Shape-node ny,; represents the head of the
reversed list that y points to. Shape-node ny;; represents the head of the list
that ¢ points to, which is a sublist of the list that y points to. Shape-node ng
represents all of the cons-cells in the tails of the lists that z, t;, and ¢ point to.

—For each of the shape-nodes in the graph, the value of ist is false. The fact that
isﬁ(n(,,) = false tells us a number of interesting things about the memory state
produced by any execution sequence that ends at vertex vo: (1) it implies that
the cdr-edges from the cons-cells that z and ¢ point to cannot point to the same
cons-cell (and consequently that the tails of the z-list and the ¢-list cannot share
any cons-cells in common) and (2) similarly, for every pair of different cons-cells
in the tail of z (respectively, t), the edr-edges from these cons-cells cannot point
to the same cons-cell. Consequently, the z-list (respectively, ¢-list) is an acyclic
list.

Example 5.3.4. Tt is instructive to consider the algorithm’s behavior when work-
ing with a program that uses the convention that the end of a linked list is rep-
resented by an element whose cdr field points to itself (e.g., see Sedgewick [1988,
p-17-20]). This termination node would be represented in the SSG by a shape-node
for which is* is true. However, if the convention is that there is a single copy of
this node—shared by multiple lists—that is pointed to by a global variable, say nil,

31

then the termination node n (nily 1 distinct from summary-node ng in the SSG,
and list-manipulation programs are analyzed as precisely as before.

Alternatively, suppose there are multiple termination nodes—one for each list—
and that each linked-list object is represented using a pair of pointer variables,
one pointing to the head of the list and one to the termination node. Again, the
termination node will be distinct from summary-node ng in the SSG, and list-
manipulation programs are analyzed as precisely as before.

If no pointer to the termination node is maintained, then is*(ng4) will be true.
Therefore, techniques such as the ones discussed in Section 6.1 need to be used, or
else much of the precision of the analysis will be lost.

Termination and safety of the shape-analysis algorithm are argued in the standard
manner [Cousot and Cousot 1977]. For a given program P, we work with the domain
of SSGs in which PVar consists of the program variables in P. This domain is finite
and hence of finite height. Termination is assured because the semantic equations
of Figures 8 and 9 are monotonic:

PropOSITION 5.3.5. (MonNoTonicity OF []#). For all assignment statements
st, and for each pair of SSGs SGﬂl and SGﬁ2 such that SGﬂl C SGg, we have
[st]*(SGY) C [st]*(SG3).-

The heart of the safety argument involves showing that each semantic equation of
the abstract semantics is conservative with respect to the corresponding equation
of the concrete semantics:

THEOREM 5.3.6. (LOCAL SAFETY THEOREM). For all assignment statements
st, and for every SG € DSG, we have B([st](SG)) C [st]*(B(SQ)).
PROOF. See the electronic appendix. O

Finally, we have the following

THEOREM 5.3.7. (GLOBAL SAFETY THEOREM). For every control-flow-graph
vertex v, we have a(cs(v)) C SGE.

PrOOF. Immediate from Proposition 5.3.5 (Monotonicity) and Theorem 5.3.6
(Local Safety), using Theorem T2 of Cousot and Cuosot [1977, p.252]. O

5.4 Strong Nullification

The key property of the abstract semantics is that each abstract assignment oper-
ation creates an SSG that conservatively covers all the possible new configurations
of variable sets whose members all point to the same cons-cell. This permits state-
ments of the form z.sel := nil to be treated in an unusual manner—unusual for a
static-analysis algorithm, that is. When the algorithm processes such a statement,
it always removes the sel edges emanating from the shape-nodes that z points to
(i-e., the shape nodes nx such that z € X). We call this operation strong nullifi-
cation.

Example 5.4.1. Figure 13 shows a simple example that illustrates why strong
nullification is possible. After the statement z := y in the then-branch of the
conditional, and y point to the same cons-cell, and z points to a different cons-
cell. Similarly, after the statement x := z in the else-branch of the conditional, =

32

| Program | Collecting semantics | Abstract semantics
Y — . —
. Yy c\\ .
A I3 T{y}
g
2 —» ®) 2 —»
l2 l4 TL{Z}
if ---thenz:=y
else z :=z
fi
— T
g) * [) y —» \
A I3 N{z,y}
2 —»
zZ —> e L] n{ } ‘\\ o
Iy Iy r
Y -
—> [L]
T{y}
Iy I3
€T —»
T |, ° Z—* /
Z = T {e,z}
ls ls
z.cdr := nil
T —» Z —]
y) e) y —»
A ls N{a,y}
2z —
A—— ° ° .\\ R
lz l4 n{z}
()
Y . Y7
Ty}
I I3
x — .
= [] [Z —
z —> n{zvz}
Iy l4

Fig. 13. A program that illustrates strong nullification.

33

and z point to the same cons-cell, and y points to a different cons-cell. Thus, in the
SSG after the conditional statement, z and y both point to shape-node ny, .}, and z
points to ny.y (reflecting the state of memory after the then-branch is executed); in
addition, x and z both point to shape-node ny, .}, and y points to ny,; (reflecting
the state of memory after the else-branch is executed).

The abstract semantics for the statement z.cdr := nil eliminates the edges
(N{z,y}, cdr,ng) and (ng, .y, cdr,ng). This is safe because ng, ,, represents only
cons-cells that are pointed to by both = and y (which occurs only on some execution
sequences), and ny, .} represents only cons-cells that are pointed to by both z and
z (which also occurs only on some execution sequences).

The abstract semantics for z.cdr := nil retains the edges (ny.y, cdr,ng) and
(n{y},cdr,ng). This correctly captures the fact that in the collecting semantics
after x.cdr := nil, there is a DSG that contains a cons-cell pointed to by y alone
with an outgoing edr-edge (to I3), as well as a DSG that contains a cons-cell pointed
to by z alone with an outgoing cdr-edge (to l4).

Other shape-analysis algorithms do not perform strong nullification for a state-
ment of the form “z.sel := nil,” except under very limited circumstances [Chase
et al. 1990; Jones and Muchnick 1981; Larus 1989; Larus and Hilfinger 1988;
Plevyak et al. 1993]. The reason for this is that, after the conditional statement
in Example 5.4.1, they perform actions that (in our terminology) are equivalent to
merging ny,y and ng,) into one shape-node. When this is done, it is not safe to
perform strong nullification—i.e., to remove the shape-node’s outgoing cdr edge—
because it would lose the information that y can, in fact, point to a cons-cell that
has an outgoing cdr-edge.

In contrast, our shape-analysis algorithm always performs strong nullification.
However, we are not claiming that our method is somehow “able to treat all state-
ments precisely.” With our method, the place where precision is lost (i.e., when it is
lost) occurs in the treatment of statements of the form “z := y.sel,” rather than in
statements of the form “z.sel := nil.” In particular, this is a problem when y’s sel
field points to ng and is¥(ny) = true. In the SSG transformer for x := y.sel, node
materialization creates shape-nodes that conservatively cover all the possible new
configurations of variable sets whose members could all point to the same cons-cell.
(See the treatment of the statement “z := z.cdr” in Figure 4(b).)

On the other hand, in comparing the capabilities of our method with those of
other graph-based shape-analysis algorithms, it would be wrong to think that we
have just shifted the place where imprecision is introduced from the treatment
of statements of the form “z.sel := nil” to statements of the form “z := y.sel.”
Not only do other shape-analysis algorithms use less precise SSG transformers for
x.sel := nil (i.e., performing strong nullification only under very limited circum-
stances), they also use less precise SSG transformers for statements of the form
z := y.sel; namely, they merely advance z to point to whatever shape-node (or
shape-nodes) y.sel points to. In the case where y.sel points to ne, this advances z
into the primordial soup!

34

5.5 Insertion into a List

Whereas the previous sections have all considered the actions of the shape-analysis
algorithm on the list-reversal program, this section considers a second example
program, the list-insertion program shown in Figure 14, which may insert a cons-
cell at an arbitrary point in a linked list. For this program, the shape-analysis
algorithm is able to establish the following properties:

—“Listness” is preserved by the list-insert program. That is, when the initial value
of variable z is an unshared acyclic list, the value of y at the end of the program
is also an unshared acyclic list.

—“Circular listness” is also preserved by the list-insert program. More precisely,
if at the beginning of the list-insert program x is a possibly cyclic list of length
> 1 (see Figure 7(e)), then at the end of the program, z is a possibly cyclic list
of length > 2 (see Figure 7(d)). (For details, see Sagiv et al.[1995, Appendix B].)

The list-insert program also illustrates an interesting capability of the shape-
analysis algorithm that does not arise with the list-reversal program: in certain
circumstances, information in shape-node names can be used to reset a shape-
node’s sharing information from true to false. In the case of the list-insert program,
this feature plays a crucial role in the ability of the shape-analysis algorithm to
determine that the program preserves both “listness” and “circular listness.”

Assume that at the beginning of the list-insert program, x points to an unshared
list of length 1 or more and that e points to the new element to be inserted. The
key SSGs are those that arise at vertices v11, v12, and v13 of the control-flow graph,
where the new element is spliced into the list. The crucial step is the transition
from vi2 : y.cdr := nil to v13 In the immediately preceding transition, from vy
to w12 e.cdr is assigned the value ¢, which adds a new selector-edge into n;) and
causes is*(ng;)) to be set to true in the shape-graph for v;,.

The strong nullification performed in the transition from v;s to w3 removes
the selector-edges (n. .y}, cdr,ng)) and (ngs 3, cdr,ngy). Thus, in the SSG for
vertex vy3, shape-node ny; retains only a single incoming selector-edge, namely
(n{ey, cdr,ngyy). In the SSG transformer given in Figure 8 that covers the assign-
ment y.cdr := nil, the fact that predicate iis* is a safe approximation to iis is used
to reset sharing information. In this case, because the value of z'isﬁ[Egl] (ngey) at
v12 is false, the SSG transformer for the control-flow graph arc from vi2 to v
determines that it is safe to set isﬂ(n{t}) to false in the SSG for vertex vy3. (See
the third row of Figure 15.)

Remark. Tt is interesting to note that if the assignment at vy15 were e.cdr := nil,
rather than y.cdr := nil, isﬁ(n{t}) would still be set to false at vi3, even though
there would be two incoming selector-edges to shape-node ngy: (ny. 43, cdr,ngy)
and (ng,), cdr,ng)). Because these two edges are incompatible—they do not
represent edges that can simultaneously coexist in a single concrete store—the
value of iis*[E%'](ng;) would again be false at vertex vya, and so isf(ngy) would
be false at vertex v;3.

program insert(z,)
begin
y:i=z
while y.cdr ZnilA ... do
y :=y.cdr od
t:=y.cdr
e.cdr:=t
y.cdr:=e
t := nil
e := nil
y = nil
end

(a)

program insert(z, e)
begin

X —> L o—]e—b °

e} Mo M{e}
y := nil
y:=z
while y.cdr #nil A ... do
z 1= nil
z:=y.cdr
y = mnil

:=mnil
€T — . o—]

N{e} TN

U1

V2

U3

V4

Us

Ve

U7

35

Fig. 14. (a) A program that searches a list and splices a new element into the list. (b) The
normalized program. (c) The normalized program’s control-flow graph.

36

vertex Shape Graph
—
- Y — - t —
Z —>
N{z} N{zy} {1} g
€T —»
Y —
et .
V11 ’I’L{e}
e
7 — Y — _ t —
2 —»
N{z} N{z,y} T{t})
€T —»
Y —
"{ay} € —»| [
V12 n{e}
—
- Y — R t —
2 —»
N{z} N{z,y} Nz} g
I — N
Y —
ey)
V13 n{e}

Fig. 15. The SSGs at vertices v11, v12, and v13 of the list-insert program. These illustrate
how isu(n{t}) is reset to false in the transition from wis to viz. First, the shape-graph
for vertex vi1 is shown. In this graph, is*(ng,) = false. Then, in the shape-graph for
vertex viz, isﬁ(n{t}) = true (shown in bold). Finally, in the shape-graph for vertex vis,
is*(ny) = false.

6. EXTENSIONS

This section discusses several variations on the basic method that has been pre-
sented above. Due to space limitations, they will only be sketched out below.

37

6.1 More Summary Shape-Nodes

The major source of inaccuracy in our method is attributable to the fact that, in
general, summary shape-node ngy represents a number of unrelated cons-cells. This
is particularly a problem when isf(ns) = true. For example, in a program that
uses both a list and a graph, the tail of the list is abstracted to the same summary
node as (most of) the graph’s nodes. Consequently, the shape-analysis algorithm
imprecisely identifies both structures as graphs: variables that actually point into
the list appear to point to some kind of shared graph structure.

There are several simple ways to improve the accuracy of shape analysis by
introducing more summary nodes, including the following;:

— Using two separate summary nodes: One in which is*(ng) = false, representing
all nodes not pointed to by any variable and pointed to by at most one distinct
cons-cell field, and one in which is*(n4) = true, representing all nodes not pointed
to by any variable and pointed to by two or more distinct cons-cell fields.

— Using allocation-sites to identify shape-nodes [Chase et al. 1990; Jones and Much-
nick 1982]: This can be incorporated into our method as an “orthogonal dimen-
sion” of shape-node names—e.g., shape-nodes would have names such as n, x,
where s is an allocation site, and X is a set of program variables. ng

— Using some type information: For example having one ny node for every declared
data type.

However, even these extensions do not help solve the following kind of accuracy
problem:

Ezample 6.1.1. At vertex w1y of the list-insert program, the shape-graph com-
puted by our shape-analysis algorithm indicates that variables y and z can point
to a cyclic list (see Figure 15, the vy; row). Note that during an execution of
the program, at vy; variables y and z point into the middle of the (acyclic) list
that x points to. The reason for the inaccuracy in the structure reported at viy
by the shape-analysis algorithm is that n, does double duty: (1) it represents the
segment of the list in between z and y (cf. the selector-edges (ny,}, cdr,ng) and
(ng, cdr,ny. 41)); (2) it also represents the segment of the list beyond what y points
to (cf. the selector-edges (ny. 3, cdr,nyy) and (ngy, cdr,ng)). This, combined with
the fact that is’ (ngsy) = true, causes it to appear that y and z may be pointing to
a cyclic list.

In the case of the insert program, this temporary inaccuracy does not cause our
algorithm any problems. In going from the second to the third row of Figure 15, the
(apparent) cycle is broken, and thus the algorithm is still able to determine that at
the end of the program z points to an acyclic list. However, for other programs we
are not so fortunate. For example, in Lindstrom scanning of a tree [Lindstrom 1973]
(also known as the Deutsch-Schorr-Waite algorithm for traversing a tree without a
stack [Knuth 1973, p.417]) this kind of inaccuracy prevents us from finding that,
after traversing a tree, we still have a tree.

It is possible to avoid this sort of inaccuracy by introducing additional summary
nodes (with an appropriate naming scheme) to discriminate between cons-cells that
are transitively pointed to by different collections of variables or via different se-

38

T := new
if ---theny;:=z fi
if ---thenyy:=z fi

if ... then y, :=x fi

Fig. 16. An artificial program for which an SSG with 2™ shape-nodes arises.

lectors. We have developed several alternative abstract semantics based on this
idea.

6.2 Reducing the Number of Shape-Nodes

The number of shape-nodes in an SSG is bounded by 2/ZVe"l, Unfortunately, for
some pathological programs the number of shape-nodes can actually grow to be this
large. For example, the number of shape-nodes in the SSG that arises at the end
of the program shown in Figure 16 is 2". Our limited experience to date suggests
that this is unlikely to arise in practice, the main reason being that the number of
possible aliasing configurations is normally small.

It is possible to change the shape-analysis algorithm to use widening to eliminate
the possibility of exponential blow-up and to guarantee that a conservative solution
to Eq. (2) of Section 5.3 can be found in polynomial time. The basic idea is to
reduce the number of shape-nodes that can arise, by discarding an arbitrary amount
of “simultaneously-points-to” information at certain shape-nodes, thereby trading
off accuracy for efficiency. For instance, at various points in the shape-analysis
algorithm (e.g., at loops) we can widen an SSG into a less precise, but usually more
compact, SSG by merging shape-nodes, say nz, and nz,, into nz,nz, and giving
nz,nz, all the variable- and selector-edges that were incident on nz, and nz,.

Formalizing this notion involves changing the SSG domain by weakening what
has (up to now) been a fundamental condition on variable-sets in shape-node names.
In particular, we now allow the name of a shape-node to be any subset of the
variables pointing to it:

As before, the SSG for program point p represents, in general, a number
of DSGs. An SSG shape node nz, where Z # ¢, represents the (at most
one) cons-cell in each DSG that is simultaneously pointed to by all the
variables in Z. In addition, if w is a variable not in Z, but the SSG has
a variable-edge [w,nz], then variable w may or may not point to that
same cons-cell.

For SSGs that are in the image of abstraction-function a (Definition 5.2.1), we have
the following property:

For every x € PVar and nx € shape_nodes(SGﬁ), z € X if and only if
[z,nx] € E,.

For SSGs on which widening has been performed, we have the weaker property:

39

For every z € PVar and nx € shape_nodes(SG*), if z € X then [z,nx] €
E,.

The relation C’ on the extended domain of SSGs captures the fact that the
widened SSGs are less accurate than the original SSGs, i.e., a widened SSG denotes
more DSGs than the original SSG. Formally, C’ is a preordering on the extended
domain of SSGs, defined as follows:

Definition 6.2.1. Let SG! = (B!, E*,),is?) and SGY, = ((EY,, E%,),ist). SG! T/
SGY if and only if there exists a mapping r:2FVer — 2PVer gych that for all
X C PVar, r(X) C X, and

—for every [z,nx] € Egl, [z,n.(x)] € Eﬁz,
—for every {(ns, sel,nr) € Eﬁl, (nr(s), s€l,np () € Egz, and
—for every nx € shape_nodes(SGii), zs%(nx) = isg(nr(x)).

In Definition 6.2.1, function r has the ability to discard an arbitrary amount of
“simultaneously-points-to” information at any shape-node. Note that we can still
use graph union as a confluence operator.

We have been careful to write the abstract semantics given in Figures 8and 9
so that it does not have to be changed when widening is employed. For example,
z.sel := nil removes z’s sel selector-edges from a shape-node nz only when z €
Z. Thus, if [z,nz] € E, but z ¢ Z, the abstract semantics does not remove
nz’s outgoing sel edges: this would not be safe because we do not know that nyz
represents a cons-cell that z must point to. Note that we still do perform a strong
nullification of nz’s outgoing sel edges for assignments of the form z.sel := mnil,
where z € Z, because nz represents only cons-cells whose sel field will definitely
be overwritten. (In Section 6.2.2, we define an operation that can be used to
materialize shape-nodes in order to guarantee that if [x,nz] € E, then z € Z. By
applying this operation prior to nullification, we can still always perform strong
nullification, even if the shape-analysis algorithm performs widening.)

This observation is captured in the following proposition:

PROPOSITION 6.2.2. (GENERALIZED MoNOTONICITY OF []*). For all assign-
ment statements st, and for each pair of SSGs SG% and S’Gg such that SGI{ cC’ SGg,
[st](SGY) T’ [st]*(SGS).

The following generalization of Theorem 5.3.6 is an immediate corollary:

COROLLARY 6.2.3. For all assignment statements st, for every SG € DSG, and
for every SG* such that B(SG) T’ SG*, B([st](SG)) T’ [st]*(SG*).

Proor. B([s6](SG)) C [stF(B(SG)) C' [st](SG*). O

6.2.1 Strategies for Merging Nodes. There are many possible strategies for re-
ducing the number of shape-nodes through widening. Different widening policies

may lead to shape-analysis algorithms that differ in accuracy and efficiency. For
example, we may decide to forget an arbitrary variable z € PVar by widening

40

11— _ _

T —» v -
n{=} T

Y —» ° & |« ¢
{y} T{t}

Fig. 17. The SSG obtained by eliminating ¢; from the name sets of the SSG shown in
Figure 11.

((E%, EY),ist) into ((EY', EY'),is!') where

fz(nW)l = nW—{z}
B = {ly, f-(nw)] | [y,nw] € E}
EY = {(f-(nv), sel, f-(nw)) | {nv, sel,nw) € Ef}

ist (nw) = is'(nw) Vist(nwugzy)

By definition, ((E!, Et),is?) C' (B!’ Ef'),is!'). Tt is possible to use this widen-
ing operator to guarantee that a conservative solution to Eq. (2) of Section 5.3 can
be found in polynomial time. It simply has to be applied whenever necessary to
limit the cardinality of shape-node name sets to some chosen constant. (This is
similar in spirit to k-limiting [Jones and Muchnick 1981], but it is likely to produce
much better results because limiting the cardinality of name sets still preserves
most of the structural information about the graph.)

Example 6.2.1.1. In the SSG shown in the vy box of Figure 11, we can eliminate
t1 from the name sets to get the SSG shown in Figure 17. In this case, widening
amounts to not distinguishing between the store that arises just before the first
iteration and the stores that arise on each succeeding iteration. Because t; is not
live at v2, and because there are no structural differences between the store that
arises just before the first iteration and the ones that arise subsequently, widening
does not lead to a loss of accuracy in this case.

As mentioned earlier, another possible widening strategy is to merge shape-nodes
ny and nz into a shape-node n(ynz)- This would seem to make the most sense
when Y and Z have many variables in common.

Experimentation is necessary to determine what kind of widening works best in
practice.

6.2.2 Materializing Shape Nodes via Narrowing. It is interesting to note that if
widening has been performed we can also narrow an SSG into one that denotes the
same DSGs but in some sense is more “precise.” This operation may be employed
gainfully just before the interpretation of statements of the form z.sel := nil to
allow the abstract semantics to always be able to perform strong nullification (i.e.,
to always remove x’s sel selector-edges), even if the shape-analysis algorithm has
widened the SSG with respect to variable x. The narrowing operation converts an

41
SSG ((Ef, Ef),is') into an SSG ((E!', Et'), is!') defined by the following:

— nwu{z} [$7nW] € Elu)
fIE;](nw) { nw otherwise

{[z,nz] | [z,nz] € Bf Az # 2} U{[z, f[E](nz)] | [2,nz] € E}}
. ER U {{fIE](nv), sel',nw) | (nv, sel’,nw) € Ef}
Ef = U {{nv,sel', f[Ef](nw)) | (nv, sel',nw) € EL}
U {(f[Ef](nv), sel', f[EE](nw)) | (nv, sel',nw) € EE}
is*(nw) Visf(nw_(oy) € WA [z, nw_(,}] € E}
ist(nw) otherwise

EY'

ist (nw)

The narrowing operation materializes at most |E,(z)| shape-nodes and guaran-
tees that x is in the name of all the shape-nodes that x points to. This permits the
interpretation of x.sel := nil to nullify the sel field of all shape-nodes that x points
to.

Example 6.2.2.1. Applying this narrowing operation to the SSG in Example 6.2.1.1
yields back the SSG shown in the vy box of Figure 11. In general, however, nar-
rowing a widened graph may yield an SSG that is less precise than the original
SSG.

6.3 Refining the Concrete Semantics

In this article, we have tried to simplify the presentation of our ideas both by
choosing a small programming language and by using a “concrete semantics” that
has a small amount of abstraction built into it already. The following are some
possible refinements of the concrete semantics that would lead to slightly different
abstract semantics (with somewhat different powers):

—Shape-nodes that are not reachable from variables are not removed by the op-
erational semantics shown in Figure 6. For certain programs, this may lead to
loss of accuracy. This can be overcome by working with concrete and abstract
semantics that incorporate garbage-collection operations (see Sagiv et al. [1995]).

—In the way shape graphs were defined in Section 3.2, there are no shape-graph
elements that represent uninitialized fields of cons-cells or fields whose value
is either an atom or nil. One consequence of this is that the shape-analysis
algorithm is only able determine rather weak data-type properties. As pointed
out in Example 5.2.6, when the algorithm reports that a variable points to a
circular list, it may actually point only to a noncircular list. That is, the type
“circular list” really means “possibly circular list.”

By introducing three additional nodes, Tatom, 7nil, and Nyuninit, Much more
accurate type properties can be obtained in many cases. We impose the invariant
on shape-graphs that all fields of shape-nodes have at least one outgoing selector-
edge (possibly t0 Tatom, Tnil; O Nuninit). Lhis modified domain of SSGs is
capable of characterizing some definitely cyclic data structures.

For example, with this extended definition of shape-graphs, the SSG shown
in Figure 7(d) characterizes the definitely cyclic lists of length > 2 (modulo the
absence of edges from the car fields to Natom in the two shape-nodes); Figure 7(e)

42

characterizes the definitely cyclic lists of length > 1. The possibly cyclic lists of
length > 1 are characterized by the following SSG:

o

TL{Z} t Mg
n

nil —

6.4 Interprocedural Analysis

The shape-analysis algorithm can also be extended to handle procedure calls. Two
fundamental problems need to be resolved:

(1) Representing multiple occurrences of the same local variable in (mutually) re-
cursive procedures.

(2) Accounting for the different calling contexts in which a procedure can occur.

To approximate the local variables of recursive calls, we introduce an extra vari-
able T for every local variable . Variable 7 is used as a representative for all copies
of z in other scopes. Shape-nodes whose name sets contain only barred variables are
a new kind of “summary node.” Like ng4, they can represent multiple cons-cells of
a single concrete store. Using these ideas, we have extended the abstract semantics
to handle procedure calls and returns.

The second problem can be resolved using one of the known interprocedural
techniques of Sharir and Pnueli [1981]. For example, a simple conservative solution
is to consider a procedure call as a goto to the called procedure and a return from a
procedure P as a goto to all the statements that follow an invocation of P. A more
accurate solution can be determined by tabulating a “shape-graph-transformation”
function for each procedure.

An alternative is to use Hendren’s tabulation method for interprocedural analy-
sis [Hendren 1990].

7. APPLICATIONS

The algorithm developed in Section 5 produces an SSG Sij for every program
point v. This SSG provides an approximation to the set of stores (DSGs) that can
possibly occur in any execution of the program that ends at v. Therefore, many
interesting questions about the stores at v can be answered (conservatively) by
investigating SG%. In this section, we present two such applications of SSGs. The
information that these techniques provide is useful both in optimizing compilers
and in software engineering tools.

7.1 Finding May-Aliases

We say that two access paths, e; and ea, are may-aliases at a program point v
if there exists an execution sequence leading to v that produces a store in which

43

both e; and e; point to the same cons-cell. The may-alias problem is a fundamental
problem in optimizing compilers generating code for scalar, superscalar, and parallel
architectures. It is also useful in software engineering tools.

A special case of the may-alias problem concerns whether two pointer variables
z and y are may-aliases just before a given program point v. It is possible to use
the results of our shape-analysis algorithm to give a conservative answer to this
question by testing whether z and y point to a common shape-node in the SSG
SG%. If z and y do not point to a common shape-node, we conclude that they
cannot be may-aliases; otherwise, we conservatively conclude that there may exist
an execution sequence in which they point to the same cons-cell.’?

The more general complex question is whether two access paths e; and ey are
may-aliases. There are several different possible tests:

—A simple test is to check if there are common shape-nodes accessible from both
e1 and es. If there are no such nodes, we can conclude that e; and e; are
definitely not may-aliases. Otherwise, we conservatively conclude that e; and e
are may-aliases.

Ezxample. In the v box of Figure 11, this test yields that z.cdr and y.cdr are
may-aliases. This is obviously a superfluous may-aliases because n, is not shared.

—Sharing information can be used to reduce the number of superfluous may-aliases
reported for two given access paths. The main idea is that directed paths in SG*
that lead to unshared nodes do not create aliases. To test whether e; and e, are
may-aliases just before program-point v, we test whether there exist two (possibly
empty) directed selector-paths m and 7y in SG% leading to a common SSG node
such that the following conditions hold:

(1) For every node nx that appears more than once along w1 (resp., m2), either
X =¢oris(ny).

(2) There exists a possibly empty common suffix A of e; and ey (i.e., e1 = €] A
and es = ehA) such that e} and e} lead to a common node n and either
(1) €} and €} is a simple variable or (2) is(n) = true.

Ezample. In the v, box of Figure 11, none of the shape nodes are shared. There-
fore, the only detected may-aliases are the ones induced by variables, e.g., y.cdr.cdr
and t.cdr are may-aliases.

—The node-compatibility conditions can be used to trim out some additional su-
perfluous aliases. The main idea is that directed paths that go through different
shape-nodes that have common variables in their name can only come from differ-
ent DSGs. Therefore, we can safely say that these kind of paths do not indicate
may-aliases.

5Similarly, it is possible to use the results of our shape-analysis algorithm to give a conservative
answer to the question of whether two pointer variables and y are must-aliases just before a
given program point v: if every shape-node with z in its name also has y in its name, and vice
versa, then we conclude that they are must-aliases.

44

7.2 Detecting Shared Data Structures

SSGs can also be used to determine if there is possible sharing between components
of two heap-allocated data structures, which is precisely the kind of information
needed to be able to compile programs to take advantage of coarse-grained paral-
lelism. The sharing problem is a natural generalization of the may-aliases problem
in which we quantify over access paths. Therefore, the three aforementioned ap-
proaches can be adapted to provide a solution to the sharing problem. For example,
the second approach implies that if all shape-nodes n accessible from both z and
y have the value is*(n) = false, there cannot possibly be any sharing between the
data structures pointed to by x and y.

8. RELATED WORK

The shape-analysis problem was first investigated by Reynolds [1968], who studied
it in the context of a Lisp-like language with no destructive updating. Reynolds
treated the problem as one of simplifying a collection of set equations. A similar
shape-analysis problem, but for an imperative language supporting nondestructive
manipulation of heap-allocated objects, was formulated independently by Jones
and Muchnick, who treated the problem as one of solving (i.e., finding the least
fixed point of) a collection of equations using regular tree grammars [Jones and
Muchnick 1981]. Follow-on work on this kind of shape-analysis problem includes
Mogensen [1988; 1989], Heintze [1992], and Reps [1995].

Jones and Muchnick [1981], also began the study of shape analysis for languages
with destructive updating. To handle such languages, they formulated an analysis
method that associates program points with sets of finite shape-graphs.® To guaran-
tee that the analysis terminates for programs containing loops, the Jones-Muchnick
approach limits the length of acyclic selector paths by some chosen parameter k.
All nodes beyond the “k-horizon” are clustered into a summary node. The Jones-
Muchnick formulation has two drawbacks:

(1) The analysis yields poor results for programs that manipulate cons-cells beyond
the k-horizon. For example, in the list-reversal program of Figure 5, little useful
information is obtained. The analysis algorithm must model what happens
when the program is applied to lists of length greater than k. However, the
tail of such a list is treated conservatively, as an arbitrary, and possibly cyclic,
data structure.

(2) The analysis may be extremely costly because the number of possible shape-
graphs is doubly exponential in k.

In addition to Jones and Muchnick’s work, k-limiting has also been used in a number
of subsequent papers (e.g., Horwitz et al.[1989]).

Whereas Jones and Muchnick [1981] use sets of shape-graphs, our work follows
Jones and Muchnick [1982], Larus [1989], Larus and Hilfinger [1988], Chase et
al. [1990], and Stransky [1992] who developed shape-analysis methods that associate
each program point with a single shape-graph. The use of a single shape-graph is

6In this section, we use the term “shape-graph” in the generic sense, meaning any finite graph
structure used to approximate the shapes of run-time data structures.

45

possibly less accurate than a method based on sets of graphs, and, compared with

a method that uses sets of graphs, working with a single graph complicates the

abstract semantics. However, for reasons mentioned in Section 5.2, the use of a

single graph seems necessary for the pragmatic reason that it is more likely to lead

to a practical shape-analysis algorithm.

Jones and Muchnick [1982], Chase at el. [1990], and Stransky [1992] present
similar methods in which the shape-nodes correspond to a program’s allocation
sites. These methods are more efficient than the methods discussed earlier, both
from a theoretical perspective [Chase et al. 1990] and from an implementation
perspective [Assmann and Weinhardt 1993].

The algorithm presented by Chase et al. [1990] is based on the following ideas:
— Sharing information, in the form of abstract heap reference counts (0, 1, and

00), is used to characterize shape-graphs that represent list structures.”

— Several heuristics are introduced to allow several shape-nodes to be maintained
for each allocation site.

— For an assignment to x.sel, when the shape-node that z points to represents
only concrete cons-cells that will definitely be overwritten, the sel field of the
shape-node that z points to can be overwritten (a so-called “strong update”).

The Chase-Wegman-Zadeck algorithm is able to identify list-preservation properties

in some cases; for instance, it can determine that a program that appends a list to a

list preserves “listness.” However, as noted by Chase et al. [1990], allocation-site in-

formation alone is insufficient to determine interesting facts in many programs. For
example, it cannot determine that “listness” is preserved for either the list-reversal
program or the list-insert program. In particular, in the list-reversal program, the

Chase-Wegman-Zadeck algorithm reports that y points to a possibly cyclic structure

and that the structures that z and y point to might share cons-cells in common.

There are three major technical differences between our algorithm and the Chase-
Wegman-Zadeck algorithm that lead to the improvements in accuracy obtained by
our algorithm:

(1) Tracking of aliasing configurations. The sets of variable names attached to
shape-nodes track possible aliasing configurations. A shape-node nz represents
cons-cells that are simultaneously pointed to by exactly the variables in Z.
The abstract semantics tracks possible aliasing configurations by performing
operations on the variable sets that name SSG shape-nodes.

(2) “Strong nullification.” For an assignment of the form z.sel := y, the Chase-
Wegman-Zadeck method ordinarily performs a “weak update” (i.e., selector-
edges emanating from the shape-nodes that z points to are accumulated). It
performs a strong update only under certain specialized conditions.

In our algorithm, because of the Normalization Assumptions of Section 3.1, an
assignment statement x.sel := y is transformed into two statements: z.sel :=
nil, followed immediately by z.sel := y. When our algorithm processes the
first of these statements, it (always) removes the sel edges emanating from the
shape-nodes that z points to. We have called this operation “strong nullifi-

"The idea of augmenting shape-graphs with sharing information also appears in the earlier work
of Jones and Muchnick [1981].

46

cation,” by analogy with “strong update.” When the algorithm processes the
second statement, it introduces sel edges that emanate from the shape-nodes
that x points to. With these taken together, the effect is to overwrite the sel
edges emanating from the shape-nodes that z points to. In other words, for
a statement in the original program of the form z.sel := y, our algorithm al-
ways performs a strong update, even when x does not point to a unique SSG
shape-node.

(3) Materialization. In an assignment statement of the form z := y.sel, our algo-
rithm materializes new shape-nodes that conservatively cover all the possible
new configurations of variable sets whose members all point to the same cons-
cell. For example, when y.sel points to ng, our algorithm materializes a new
node ng,} out of ng. Furthermore, if is*(ng) = false, this information is used
to exclude both of the two possible selector-edges from ng to ny,}, as well as
both of the two possible selector-edges from n .} to ny,}. In programs that use
a loop containing an assignment z := x.cdr to traverse an unshared linked list,
this technique permits our method to determine that x points to an unshared
list element on every iteration.

The Chase-Wegman-Zadeck algorithm lacks a node-materialization operation
(although they did recognize that the lack of one was a stumbling block to the
accuracy of their method [Chase et al. 1990, p. 309]).

Chase, Wegman, and Zadeck use reference-count values 0, 1, and oo, whereas we
use a Boolean-valued function is*. However, this does not represent a significant
difference because in our SSGs the selector-edges allow recovering the distinction
between 0 (no incoming edges) and 1 (at least one incoming selector-edge, but
ist(n) = false).

Our method has been presented within the framework of abstract interpretation,
which allows us to prove that the algorithm obtained is conservative with respect to
the concrete semantics. Chase, Wegman, and Zadeck give only informal arguments
about the correctness of their algorithm. Because of several ad hoc features of the
Chase-Wegman-Zadeck method, several changes would be necessary to reformulate
it as an abstract interpretation. For instance, the rules they give for the “join”
operation are complicated by the fact that the result of “joining” two shape-graphs
depends on the program point at which the operation is applied. (For this reason,
“join” is a misnomer in the lattice-theoretic sense.) In contrast, our join operation,
which is essentially graph union, is the join operation in the lattice of SSGs defined
in Section 5.1.

Plevyak et al. [1993] describe a shape-analysis algorithm that is similar to the
Chase-Wegman-Zadeck method. Their algorithm inherits most of the drawbacks of
the original Chase-Wegman-Zadeck algorithm.

Larus and Hilfinger [Larus 1989; Larus and Hilfinger 1988] devised a shape-
analysis algorithm that is based on somewhat different principles from the afore-
mentioned work. As with our algorithm, shape-nodes are labeled with some aux-
iliary information. At first glance, their node-labeling scheme appears to be more
general than ours: whereas we use a set of variables to label each node, they use
a regular expression (limited to be no longer than some chosen constant k) repre-
senting pointer-access paths that may lead to an instance of the node. However,

47

their shape-node labels do not add any information to their representation because
the pointer-access expressions can always be reconstructed from the graph stripped
of node labels. In contrast, our labels—which in some sense represent degenerate
regular expressions of length 1—do contribute essential information to our repre-
sentation: when z is in the variable-set of shape-node nyx, we know that a strong
nullification (and hence a strong update) can be performed on the selector-edges
emanating from nx.

It is possible that it would be worthwhile to extend our technique to use more
complicated shape-node names of the kind that Larus and Hilfinger use. How-
ever, on many interesting examples, even with our “length-1 labels,” our algorithm
achieves greater accuracy than the Larus-Hilfinger algorithm does, no matter what
value of k is chosen: for example, the Larus-Hilfinger algorithm is not able to de-
termine that programs such as the list-reversal and list-insert programs preserve
“listness.”

There are also several algorithms that are not based on shape-graphs for finding
may-alias information for pointer variables. The most sophisticated ones are those
of Landi and Ryder [1991] and Deutsch [1994]. Deutsch’s algorithm is particularly
interesting because, for certain programs that manipulate lists, it offers a way of
representing the exact (infinite set of) may aliases in a compact way. It can be shown
that, for the list-reversal program, Deutsch’s algorithm yields may-alias information
that is equivalent to that produced by the algorithm of Section 5.1. However, both
the Landi-Ryder and Deutsch algorithms do not determine that either “listness”
or “circular listness” is preserved by the insert program of Figure 15. The reason
is that, due to the lack of a strong-nullification operation, these algorithms cannot
infer that the assignment y.cdr := nil in the program shown in Figure 14(b) cuts
the list pointed to by x (see Figures 15, the second and the third rows)). (We do not
mean to imply that our method always dominates the Landi-Ryder and Deutsch
algorithms; we know of at least one program for which Deutsch’s algorithm is more
accurate than our algorithm.)

A different approach was taken by Hendren and Nicolau, who designed an al-
gorithm that handles only acyclic data structures [Hendren 1990; Hendren and
Nicolau 1990]. Because of the decision to work with programs that only manipu-
late acyclic structures, the algorithm does not have to have a way of representing
cycles, even conservatively. For this alias-analysis problem, they have given an effi-
cient algorithm that manipulates matrices that record access paths that are aliases.

To the best of our knowledge, the Hendren-Nicolau algorithm is the only algo-
rithm besides ours that can detect that insertion of an element into a list (respec-
tively, tree) preserves the list (tree) structure. However, by design, their algorithm
cannot determine such structure-preservation properties for programs that handle
cyclic lists.

Myers [1981] presented an algorithm for interprocedural bit-vector problems that
accounts for aliasing. Like our shape-analysis algorithm, his algorithm also keeps
track of sets of aliased variables. He conjectured that in practice the sizes of the
alias sets remain small. However, Myers’s work does not handle heap-allocated
storage and destructive updating. Therefore, his algorithm is significantly simpler,
and he is even able to show that it is precise. In contrast, it is undecidable to give a
precise solution to our problem, even in the absence of procedure calls [Landi 1992;

48 -
Ramalingam 1994].

ACKNOWLEDGEMENTS

We are grateful for the helpful comments of Martin Alt, Alain Deutsch, Christian
Fecht, John Field, Neil Jones, Yishay Mansour, Florian Martin, Mike O’Donnell,
G. Ramalingam, and Michael Rodeh. Laurie Hendren provided us with extensive
and very helpful information about the capabilities of her shape-analysis technique.

We used two logic-programming systems—QCoral [Ramakrishnan et al. 1993] and
XSB [Warren 1992]—to experiment with implementations of the shape-analysis
algorithm. We are indebted to Raghu Ramakrishnan and Praveen Seshadri for
help with Coral and to C.R. Ramakrishnan for porting the Coral implementation
to XSB.

REFERENCES

AsSMANN, U. AND WEINHARDT, M. 1993. Interprocedural heap analysis for parallelizing im-
perative programs. In Programming Models For Massively Parallel Computers, W. K. Giloi,
S. Jahnichen, and B. D. Shriver, Eds. IEEE Computer Society, Washington, D.C., 74-82.

CHASE, D., WEGMAN, M., AND ZADECK, F. 1990. Analysis of pointers and structures. In SIGPLAN
Conference on Programming Languages Design and Implementation. ACM Press, New York,
296-310.

CHoI, J.-D., BURKE, M., AND CARINI, P. 1993. Efficient flow-sensitive interprocedural computation
of pointer-induced aliases and side-effects. In Proceedings of the ACM Symposium on Principles
of Programming Languages. ACM Press, New York, 232-245.

Cousort, P. AND CousoT, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In Proceedings of the
ACM Symposium on Principles of Programming Languages. ACM Press, New York, 238-252.

DEUTSCH, A. 1992. A storeless model for aliasing and its abstractions using finite representations
of right-regular equivalence relations. In Proceedings of the IEEE International Conference on
Computer Languages. IEEE Computer Society, Washington, D.C., 2-13.

DeuTSCH, A. 1994. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In SIG-
PLAN Conference on Programming Languages Design and Implementation. ACM Press, New
York, 230-241.

GHIYA, R. AND HENDREN, L. 1996. Is it a tree, a dag, or a cyclic graph? In Proceedings of the
ACM Symposium on Principles of Programming Languages. ACM Press, New York. Available
via ftp://ftp-acaps.cs.mcgill.ca/pub/doc/papers/POPL96.ps.gz.

HEINTZE, N. 1992. Set-based program analysis. Ph.D. thesis, School of Computer Science, Carnegie
Mellon Univ., Pittsburgh, Pa.

HENDREN, L. 1990. Parallelizing programs with recursive data structures. Ph.D. thesis, Cornell
Univ., Ithaca, N.Y.

HENDREN, L. AND GAO, G. 1992. Designing programming languages for analyzability: A fresh
look at pointer data structures. In Proceedings of the International Conference on Computer
Languages. IEEE Computer Society, Washington, D.C., 242-251.

HENDREN, L., HUMMEL, J., AND NICOLAU, A. 1992. Abstractions for recursive pointer data struc-
tures: Improving the analysis and the transformation of imperative programs. In SIGPLAN
Conference on Programming Languages Design and Implementation. ACM Press, New York,
249-260.

HENDREN, L. AND NI1cOLAU, A. 1990. Parallelizing programs with recursive data structures. IEEE
Trans. Parallel Distrib. Syst. 1, 1 (Jan.), 35-47.

HorwiTZ, S., PFEIFFER, P., AND REPS, T. 1989. Dependence analysis for pointer variables. In
SIGPLAN Conference on Programming Languages Design and Implementation. ACM Press,
New York, 28-40.

. 49

JONES, N. AND MUCHNICK, S. 1981. Flow analysis and optimization of Lisp-like structures. In
Program Flow Analysis: Theory and Applications, S. Muchnick and N. Jones, Eds. Prentice-
Hall, Englewood Cliffs, N.J., Chapter 4, 102-131.

JONES, N. AND MUCHNICK, S. 1982. A flexible approach to interprocedural data flow analysis and
programs with recursive data structures. In Proceedings of the ACM Symposium on Principles
of Programming Languages. ACM Press, New York, 66-74.

KNuTH, D. E. 1973. The Art of Computer Programming, 2nd. ed. Vol. 1: Fundamental Algorithms.
Addison-Wesley, Reading, Mass.

LaNDI, W. 1992. Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1, 4, 323-337.

LANDI, W. AND RYDER, B. 1991. Pointer induced aliasing: A problem classification. In Proceedings
of the ACM Symposium on Principles of Programming Languages. ACM Press, New York, 93—
103.

LARrus, J. 1989. Restructuring symbolic programs for concurrent execution on multiprocessors.
Ph.D. thesis, Univ. of California, Berkeley, Calif.

LARUS, J. AND HILFINGER, P. 1988. Detecting conflicts between structure accesses. In SIGPLAN
Conference on Programming Languages Design and Implementation. ACM Press, New York,
21-34.

LiNDSTROM, G. 1973. Scanning list structures without stacks or tag bits. Inf. Process. Lett. 2, 2
(June), 47-51.

MOGENSEN, T. 1988. Partially static structures in a self-applicable partial evaluator. In Partial
Evaluation and Mized Computation: Proceedings of the IFIP TC2 Workshop on Partial Evalu-
ation and Mized Computation (Gammel Avernaes, Denmark, Oct 18-24, 1987). North-Holland,
Amsterdam, 325-347.

MOGENSEN, T. 1989. Separating binding times in language specifications. In Proceedings of the
4th International Conference on Functional Programming and Computer Architecture. ACM
Press, New York, 12-25.

MYERS, E. 1981. A precise inter-procedural data flow algorithm. In Proceedings of the ACM
Symposium on Principles of Programming Languages. ACM Press, New York, 219-230.

PLEVYAK, J., CHIEN, A., AND KARAMCHETI, V. 1993. Analysis of dynamic structures for effi-
cient parallel execution. In Languages and Compilers for Parallel Computing, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, Eds. Lecture Notes in Computer Science, vol. 768.
Springer-Verlag, Berlin, 37-57.

RAMAKRISHNAN, R., SESHADRI, P., SRIVASTAVA, D.; AND SUDARSHAN, S. 1993. Implementation of
the CORAL deductive database system. In Proceedings of the ACM SIGMOD 98 Conference.
ACM Press, New York, 167-176.

RAMALINGAM, G. 1994. The undecidability of aliasing. ACM Trans. Program. Lang. Syst. 16, 5,
1467-1471.

REps, T. 1995. Shape analysis as a generalized path problem. In Proceedings of the ACM
Symposium on Partial FEvaluation and Semantics-Based Program Manipulation, PEPM’95.
ACM Press, New York, 1-11.

REYNOLDS, J. 1968. Automatic computation of data set definitions. In Information Processing
68: Proceedings of the IFIP Congress. North-Holland, Amsterdam, 456-461.

Saciv, M., REps, T., AND WILHELM, R. 1995. Solving shape-analysis problems in languages
with destructive updating. Tech. Rep. TR-1276, Computer Sciences Dept., Univ. of Wisconsin,
Madison, Wisc. July. Available via http://www.cs.wisc.edu/trs.html.

SEDGEWICK, R. 1988. Algorithms, 2nd ed. Addison-Wesley, Reading, Mass.

SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications, S. Muchnick and N. Jones, Eds. Prentice-
Hall, Englewood Cliffs, N.J., 189-234.

STRANSKY, J. 1992. A lattice for abstract interpretation of dynamic (Lisp-like) structures. Inf.
Comput. 101, 1 (Nov.), 70-102.

WARREN, D. 1992. Memoing for logic programs. Commun. ACM 85, 3 (Mar.), 93—-111.

Received August 1996; accepted April 1997

50

APPENDIX

An appendix to this article is available in electronic form (PostScript™). Any of
the following methods may be used to obtain it; or see the inside back cover of a
current, issue for up-to-date instructions.

—By anonymous ftp from acm.org, file [pubs.journals.toplas.append]p1835.ps
—Send electronic mail to mailserve@acm.org containing the line
send [anonymous.pubs.journals.toplas.append]p1835.ps
—By Gopher from acm.org
—By anonymous ftp from ftp.cs.princeton.edu, file pub/toplas/append /p1835.ps
—Hardcopy from Article Express, for a fee: phone 800-238-3458, fax +1-516-997-
0890, or write 469 Union Avenue, Westbury NY 11550; and request ACM-TOPLAS-
APPENDIX-1835.

1997

THIS DOCUMENT IS THE APPENDIX TO THE FOLLOWING PAPER:

Solving Shape-Analysis Problems in Languages with Destructive Updating

MOOLY SAGIV

Tel-Aviv University

and

THOMAS REPS
University of Wisconsin
and

REINHARD WILHELM
Universitat des Saarlandes

A. PROOF OF THREE SAFE-APPROXIMATION PROPERTIES

In the proof of Theorem 5.3.6, the case for statements of the form “z := y.sel”
(Lemma B.1) relies on the fact that the abstract predicates compat_in®, compat_self '
and compat_out® are a safe approximation of the corresponding concrete properties
compat_in, compat_self, and compat_out (see Figure 12). In the following lemma,
we prove that.

LEMMA A.1.

(1) compat_in =5 compat_in*
(2) compat_self =5 compat_self*
(3) compat_out =5 compat_out*

ProoF. Let SG = (E,, E;s) be a DSG in DSG; let 8 denote B[E,]; and let iis
denote iis[Es].

Proof of (1). Suppose that lj, ls, and I3 are shape-nodes in shape_nodes(SG)
such that compat_in([y, 1], {l1, sel,l2), (I3, sel’,13)) holds. By definition, we have
ly,11] € Ey, (l1,sel,15) € E;, (I3, sel',15) € Es, and I3 # l. Using Definitions 5.2.1

Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

©

ACM

A-2

and 5.2.2 and Lemma 5.3.1, we have

true = compatible(ly,l2,13) Figure 12
= compatible*(B(l1), B(l2), B(I3)) Lemma 5.3.1 (1)
ly,l1] € By = [y,0(lL)] € B(Ey) Definition 5.2.1
(l1, sel,l2) € Es = (B(lh), sel, B(l2)) € B(Es) Definition 5.2.1
(I3, sel' 1) € By = (B(l3), sel’, 8(l2)) € B(Es) Definition 5.2.1
l3 7é l2 ﬁ(lz) ;éﬂ ,B(lg) Lemma 5.3.1 (3)

<l17 Sel,l2> c Es, (ll, sel lz) S Es,

; (I3, sel’, Is) € E;,
(I3, sell, 1) € E, (iis(I) V iis (12))

true =

(—1is(l2) V #s(l2))
<ll, Sel,l2> S Es,
<l3, sel’, l2> € E,
and Definition 5.2.2
(B(lh) =* B(l3) A sel = sel') V iis(la) Lemma 5.3.1 (2)
(B(11) =" B(I3) A sel = sel') vist(B(l2)) Definition 5.2.1

[

Therefore, compat_in®([y, 8(11)], (B(11), sel, B(l2)), (B(I3), sel’, B(I2))) holds.

Proof of (2). Suppose that I; and Iy are shape-nodes in shape_nodes(SG) such
that
compat_self ([y, 1], (l1, sel, l2), {l2, sel',I5}) holds, i.e., [y,l1] € E,, (l1, sel,ls) € E,
and (lo, sel’,l2) € E;. Using Definitions 5.2.1 and 5.2.2 and Lemma 5.3.1, we have

U

(I3 =13 A sel = sel") V iis(1)

LR

true = compatible(ll,lg)
= compatible*(B(11), B(l2))
ly.l1] € E, = [y,B8(l)] € B(Ey)
(li, sel,l2) € Es = (B(l), sel, B(l2)) € B(E;)
(l2, sel',lz) € Es = (B(l2), sel', B(l2)) € B(Es)

li,sel,ls) € E

5 (1, ,lo Ex)

817 2257 ll2>)€€ 157 = (l2,sel’,lb) € Ej,
2, ;02 s (—|'L28(l2) \ ”S(lz))

]

Figure 12
Lemma 5.3.1 (1)
Definition 5.2.1
Definition 5.2.1
Definition 5.2.1

true =
(iis(l2) V iis(l2))

<ll, sel,l2) c ES,
<12, sel’, l2) (S Es,
and Definition 5.2.2
= (B(l) =* B(l2) A sel = sel') V iis(ls) Lemma 5.3.1 (2)

= (B(1) =" B(l2) A sel = sel') Vist(B(l2)) Definition 5.2.1

Therefore, compat_self* (y, B(11)], (B(L1), sel, B(1z)), (B(l2), sel’, B(>))) holds.

Proof of (3). Suppose that Ij, ls, and I3 are shape-nodes in shape_nodes(SG)
such that
compat_out([y,11], (l1, sel, l2), (2, sel’,13)) holds, i.e., [y,l1] € E,, {l1,sel,l2) € Es,
(l2, sel',l3) € Es, and I3 # l5. Using Definitions 5.2.1 and 5.2.2 and Lemma 5.3.1,
we have

= (lh =13 A sel = sel') V dis(l2)

true = compatible(ly,ls,13) Figure 12
= compatible*(3(l), B(l2), B(l3)) Lemma 5.3.1 (1)
[y,lh] € B, = [y,8(l)] € E! Definition 5.2.1
(1, sel,1y) € E, = (B(1y), sel, B(l2)) € E! Definition 5.2.1
(ls, sel' 13y € By = {(B(ls), sel, B(I3)) € E* Definition 5.2.1
I3 75 I, = ﬁ(l3) #ﬂ ﬁ(lg) Lemma 5.3.1 (3)

A-3

The restrictions on the number of outgoing selector-edges that a field of a DSG
shape-node can have, given in Definition 3.2.2, can be expressed in alternative form
as follows:

OBSERVATION A.2. Suppose {c1, sely,c3) and (cz2, sela,cq) are selector-edges in
E; such that {c1,sel1,c3) # {(ca, sela,ca). Then c1 # ca V sely # sels.

In our case, we have

<ll, sel, l2> € FEs,

<l27 Sel,; l3> € ES, = (lla Sel; l2> 7& <l2a Sel,: l3)

ls #1>
= I £y V sel # sel’ Observation A.2
= B(I1) #* B(l2) V sel # sel’ Lemma 5.3.1 (3)

Combined with the properties shown above, this shows that

compat—OUtﬁ([ya ﬂ(ll)]a </6(l1)3 sel, Ig(l2)>5 <ﬂ(12)a Sella ﬂ(l3)>)
holds.

B. LOCAL SAFETY OF THE ABSTRACT SEMANTICS

In this section, we show that the abstract semantics of static shape-graphs is safe
with respect to the concrete semantics.

THEOREM 5.3.6(LOCAL SAFETY THEOREM). For all assignment statements st,
and for every SG € DSG, B([st](SQ)) C [st]*(B(SQ)).

PROOF. Let SG = (E,, E,), and define (E!, E'), (B!, E!), is"), and ((E!', EY'), is?')
as follows (in accordance with the diagram shown in Figure 18):

(B!, E.) j{ [st1(Ey, Ex)) (3)
(EE, EYy,is') € BIE,]((Ey, B,)) (4)
(B B, isty st (B2, B2, ist)) (5)

Throughout the rest of the proof, (E,, Es) and (E}, E.) are understood. We will
use 7 as a shorthand for #n[E,] and 7' as a shorthand for #[E!]. Similarly, § is a
shorthand for 3[E,], and #' is a shorthand for S[E].

We need to show that §'({(E!, EL)) C ((EEI, EEI), is?'). This amounts to showing
the following:

[2,0] € B, = B'([2,1]) € BY (6)
(,sel' Iy € E. = B'({l,sel',l')) € B (7)
iis[EL) (1) = is* (6'(1)) (8)

In some cases it is more convenient to use the set form of (7), i.e.,
p'(E) C BY (9)

The cases of st = x := nil, st = x := new, and st = x := y are left to the reader.
The cases of st = x := y.sel, st = z.sel := nil, and st = x.sel := y are shown in
Lemmas B.1, B.4, and B.6, respectively. In all cases, the direction of the argument
of the proof follows the arrow shown in Figure 18.

4 BB)
(E,,E,) (EY, BY),ist)
[st] [st]*
(E, '
(B, EY) B(E,, EY)) C (e By st
_ .

Fig. 18. The direction of the proof of the safety relationship between the DSG meaning
function and the SSG meaning function.

LEMMA B.1. B([z := y.5el](SQ)) C [z := y.sel]*(B(SG)).
PROOF. Let us define X, ,.; to be the cons-cell pointed to by y.sel in (E,, E,),
ie.,

Xyt 11| 9, 1,] € o, 1, sel,1) € .} (10)

Because (E,, E;) is a DSG, X, se is either the empty set or a singleton set. We

observe that the operational semantics of z := y.sel, defined in Figure 6, guarantees
that the following observations hold:

OBSERVATION B.2. For every ! € shape_nodes((Ey, Es)) — Xy sel,
[2,]]€ E, < [z,]]€E, (11)
gy = BO. (12)
OBSERVATION B.3. Forl € Xy, 7'(1) =7(l) U {x}.

We now show that (6), (7), and (8) hold for st = z := y.sel.

Part I. In this part we show that (6) holds. Let [z,l] € E!. There are two cases
to consider:
Case 1: 1 & Xy sel-
[2,l] € E, = [2,l] € E, Observation B.2, (11)
= B([z,1]) € E! Definition 5.2.1
= [2,8()] € E} Definition 5.2.1
= [2,8(1)] € E}' Figure 9
= [2,8'(1)] € B!’ Observation B.2, (12)
= 3'([z,1]) € E!' Definition 5.2.1
Case 2: 1 € Xy se1- By (10), there exist [y,l,] € E, and (I, sel,l) € E,. Because
[y,1,] € E,, we have

[v,1,] € E, = B([y,l,)) € E! Definition 5.2.1
= [y,4(,)] € E! Definition 5.2.1

Because (I, sel,l) € E,, we have

(ly, sel,l) € E; = B((ly,sel,l)) € E¥ Definition 5.2.1
= (B(1,), sel, B(1)) € E! Definition 5.2.1
= (B(ly), sel,nq)) € Ef Definition 5.2.1

There are two subcases to consider:
Case 2.1: [z,l] € E,.

[2,1] € E, = B([z,1]) € E} Definition 5.2.1
= [z,8(1)] € E} Definition 5.2.1
= [z,n.0)] € Eﬁ Definition 5.2.1
= [z, nx@)uie}] € B lv, B(1y)] € E% A{B(1y), sel,ny) € Ef A Figure 9
= [z,nmm) € B Observation B.3

= [2,8()] € Eg’ Definition 5.2.1
= @(z,l]) € BY' Definition 5.2.1

Case 2.2: [2,l]€ E, — E,.

[2,]]€e El —E, = z=2x Figure 6
, .80 € B}
= [x,n,,(l)u{z}] S EE A <ﬂ(ly), sel,n,r(l)) S Eg
A Figure 9
= [z,nm@p] € BY' Observation B.3
= [z,8'()] € B}’ Definition 5.2.1
= @'([z,1]) € B} Definition 5.2.1

Part II. Tn this part we show that (7) holds. Let (I, sel’,l') € E'. We have

{,sel',l'y € EL. = (I,sel',l') € Es Figure 6
= (B(1), sel', B(I")) € E! Definition 5.2.1

Therefore, there are four cases to consider:
Case 1: I,I' ¢ Xy se1. First, observe that because (E,, E,) is deterministic, it
cannot be that [y,l] € E, and sel’ = sel. Therefore, we have

(B(1), sel', B(1")) € EEA (nxqy, sel', B(I')) € EIN Definition 5.2.1

~(ly, 1] € By Asel' = sel) = —(y € m(l) A sel' = sel)
= (nqu,sel’,8(1")) € B Figure 9

= (B(l),sel', B(I")) € E¥' Definition 5.2.1

= (8'(1),sel',3'(I")) € EY' Observation B.2, (12)
= B'({l, sel',l')) € EY Definition 5.2.1

Case 2: 1 & Xy se1, ' € Xy se1. Let [y be the unique cons-cell such that [, € E,(y),

A-6

which must exist because I’ € X ser.

Y Y

Y

SRR

compat_in

compat_in

compat_inﬁ

(
(
(
(

B
g
B
p

(
(
,(

=g

<(5(l) sel',nxry)
l), sel’ nw(l’)u{z}> S Esﬂl

1), sel',nqny) € E

1), sel', B/ (I')) € B
(1), sel', B'(I")) € EY
{

({1, sel', 1) € EY

(6(ly) sel, N (1))7

)

Figure 12

Lemma A.1 (1)

Definition 5.2.1

Definition 5.2.1

Figure 9
Observation B.3
Definition 5.2.1
Observation B.2 (12)
Definition 5.2.1

Case 8: 1 € Xy s, I' € Xy se1- Let [, be the unique cons-cell such that [, € E, (y),
which must exist because [€ Xy ;.

ly,ly] € E
(ly, sel, 1)
{1, sel', 1"

I'#1

Case 4:

v
€ B,
cE,

)

=
=
=
=
=

(B
(8

l,ll S Xy.sel-

compat_out (

compat_out® | B({ y,sell ,
B
compat_out®

compat_out® | (B(
n

(Nryufz}, sel’s
(N 1y, sel’, ﬂ(l'))
(1), sel’, B(I'
(1), sel', B! (I
B'({l,sel',l') €

Because (E,, Es) is deterministic [= ['.

[y, L],
(ly, sel, 1),
l,sel',l ’)

(ly, 1y

)

(« l sel’
)
Bly)

¢
[
ta

AI")

sel Nr())s

0 sel’, A1)

)

Figure 12

Lemma A.1 (3)

Definition 5.2.1

Definition 5.2.1

Figure 9
Observation B.3
Definition 5.2.1
Observation B.2 (12)
Definition 5.2.1

Let I, be the

unique cons-cell such that I, € E,(y), which must exist because | € X ;.

y,ly] € E, [y, L],
(ly, sel,l) € E; = compat_self | (ly,sel,l), Figure 12
(l,sel',l) € Es ({1, sel', 1)
ﬁ([y;ly]);
= compat_self* | B({ly, sel,l)), Lemma A.1 (2)
B

([y, ly)],)
= compat_self* | (B(1,), sel, 3(1)), | Definition 5.2.1
(

[

= compat_self* ((ﬁ(ly),sel,n,r(l)), Definition 5.2.1

N1, sel’, M (1)

= (nw(l)u{z}, sel', nﬂ(l)u{m}) € Eg Figure 9

= (N, sel',neq)) € Egl Observation B.3
= (B'(),sel', 3 (1)) € B Definition 5.2.1
= B'({l, sel',1)) € BY Definition 5.2.1

Part III. In this part we show that (8) holds. Note that E; = E! and
shape_nodes({E., EL)) = shape_nodes({E,, E;)). Let | € shape_nodes({E,, E)), and
suppose that #s[FE,](I) holds. By Definition 5.2.1, is*(3(I)) holds. There are two
cases to consider:

Case 1: 1 & Xy ser-

ist(B(1)) = is*(8(1)) Figure 9
= ist'(8'(1)) Observation B.2 (12)

Case 2: 1 € Xy se1. By (10), there exist [y,l,] € E, and (I, sel,l) € E,. Because
[y,1,] € E,, we have

[y,1,] € E, = B([y,l,]) € E! Definition 5.2.1
= [y,0(l,)] € E! Definition 5.2.1

Because (I, sel,l) € E,, we have

(ly, sel,l) € E; = B((ly,sel,l)) € Ef Definition 5.2.1
= (B(y,), sel, B(1)) € E! Definition 5.2.1
= (B(ly), sel,nr)) € Ef Definition 5.2.1

Finally, because is*(3(1)) holds, we have
is*(B(1)) = is*(naq)) Definition 5.2.1
= s (neuiay) [y, 8] € BE A (B(), sel,nx) € E: AFigure 9
= ist (nn() Observation B.3
= is*(B' (1)) Definition 5.2.1.0
LeEMMA B.4. B([z.sel := nil](SG)) C [z.sel := nil]* (3(SQ)).

PROOF. Because the set of variable-edges is unchanged in the transformers for
statements of the form z.sel := nil in both the operational and the abstract se-
mantics, (6) trivially holds. Also, the following observation holds:

A-8

OBSERVATION B.5. E! = E, and therefore ' = (.

We now show that (7) and (8) hold for st = z.sel := nil.
Part I. In this part we show that (7) holds.
(1, sel',l"y € EsN

=([z,1] € E, A sel' = sel)
B((1, sel', I')) € EiA

{1,sel',l'y € E! = Figure 6

= (1] € By A sel = sel) Definition 5.2.1
(B(1), sel', B(1")) € EEA it

= (1] € By A sel' = sel) Definition 5.2.1
(nxqy,sel', p(l")) € EfA ..

= (1) € By A sell = sel) Definition 5.2.1
<n7r(l)7sell7ﬁ(ll)) € Eg/\ 43

= (@ € n(l) A sel' = sel) Definition 5.2.1

= (nqq),sel’, B(l")) € EY Figure 8

= (B(1), sel', B(I")) € EY' Definition 5.2.1

= (B'(1),sel',3'(I")) € B! Observation B.5

= B'({l,sel',l') € EY Definition 5.2.1

Part II. In this part we show that (8) holds. Suppose that éis[E!](l) holds. By
Figure 8, to prove that ist (8'(1)) holds, it is sufficient to show that (a) is?(3(1))
holds and (b) dist[E£')(8'(1)) holds.

Proof of (a)
ws[EL)(l) = iis[E;](l) Figure 6,E. C E;
= is*(B(1)) Definition 5.2.1
= is¥(3'(I)) Observation B.5
Proof of (b)

iis[E')(1) = iis*['(EL)](B' (1)) Lemma 5.3.1 (4)
= iis![E1'](8'(1)) Part 1 and the fact that iis![E!] is monotonic in Ef.0
LEMMA B.6. B([z.sel := y](SG)) C [z.sel := y]*(B(SG)).

PRrOOF. Because the set of variable-edges is unchanged in the transformers for
statements of the form z.sel := y in both the operational and the abstract seman-
tics, (6) trivially holds. Also, the following observation holds:

OBSERVATION B.7. E! = E, and therefore ' = (.

We now show that (7) and (8) hold.

Part I. In this part, we show that (7) holds. Let (I, sel’,l"} be a selector edge in
E!. By Figure 6, there are two cases to consider:
Case 1: (l,sel',l') € E;

(I,sel',l'V € E, = B({l,sel',l')) € B! Definition 5.2.1
= B'({,sel',l')) € E! Observation B.7

Case 2: [z,1],[y,l'] € E,
[z,1),[y,l'] € Ey = B([z,1]),8([y,!']) € E} Definition 5.2.1
= [z,B8(D)],[y,8(1")] € Ef Definition 5.2.1
= (B(1), sel, B(I")) € Ef' Figure 8
= (B'(1),sel,B'(l")) € B! Observation B.7
= B'({I,sel,I')) € B!’ Definition 5.2.1
Part II. In this part we show that (8) holds. Let I € shape_nodes({E!, E.)) such
that #is[E!](l). There are two cases to consider.
Case 1: iis[Eg](1).
iis[E,](1) = is*(8(1)) Definition 5.2.1
= is!'(3(1)) Figure 8
= ist’(8'(1)) Observation B.7

Case 2: —iis[E](I). In this case, by Figure 6, [y,l] € E, and therefore, by
Definition 5.2.1, [y, 8(1)] € E¥. Also,

iis[E')(1) = iis*[3'(EL)](B' (1)) Lemma 5.3.1 (4)
= msﬂ[Egl](ﬁ’) Part T and the fact that iis*[E!] is monotonic is E¥
= st (8'(1)) Figure 8.0

