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The need to integrate several versions of a program into a common one arises frequently, but it is a tedious and time

consuming task to integrate programs by hand. To date, the only available tools for assisting with program integration

are variants of text-based differential file comparators; these are of limited utility because one has no guarantees about

how the program that is the product of an integration behaves compared to the programs that were integrated.

This paper concerns the design of a semantics-based tool for automatically integrating program versions. The main

contribution of the paper is an algorithm that takes as input three programs A, B, and Base, where A and B are two

variants of Base. Whenever the changes made to Base to create A and B do not “interfere” (in a sense defined in the

paper), the algorithm produces a program M that integrates A and B. The algorithm is predicated on the assumption

that differences in the behavior of the variant programs from that of Base, rather than differences in the text, are signifi-

cant and must be preserved in M . Although it is undecidable whether a program modification actually leads to such a

difference, it is possible to determine a safe approximation by comparing each of the variants with Base. To determine

this information, the integration algorithm employs a program representation that is similar (although not identical) to

the dependence graphs that have been used previously in vectorizing and parallelizing compilers. The algorithm also

makes use of the notion of a program slice to find just those statements of a program that determine the values of poten-

tially affected variables.

The program-integration problem has not been formalized previously. It should be noted, however, that the integra-

tion problem examined here is a greatly simplified one; in particular, we assume that expressions contain only scalar

variables and constants, and that the only statements used in programs are assignment statements, conditional state-

ments, and while-loops.
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1. INTRODUCTION

Programmers are often faced with the task of integrating several related, but slightly different variants of a

system. One of the ways in which this situation arises is when a base version of a system is enhanced along

different lines, either by users or maintainers, thereby creating several related versions with slightly differ-

ent features. To create a new version that incorporates several of the enhancements simultaneously, one has

to check for conflicts in the implementations of the different versions and then merge them in a manner that

combines their separate features.

The task of integrating different versions of programs also arises as systems are being created. Program

development is usually a cooperative activity that involves multiple programmers. If a task can be decom-

posed into independent pieces, the different aspects of the task can be developed and tested independently

by different programmers. However, if such a decomposition is not possible, the members of the program-

ming team must work with multiple, separate copies of the source files, and the different versions of the

files must be merged into a common version.

The program-integration problem also arises in a slightly different guise when a family of related ver-

sions of a program has been created (for example, to support different machines or different operating sys-

tems), and the goal is to make the same enhancement or bug-fix to all of them. Such a change cannot be

developed for one version and blindly applied to all other versions since the differences among the versions

might alter the effects of the change.

Anyone who has had to reconcile divergent lines of development will recognize these situations and

appreciate the need for automatic assistance. Unfortunately, at present, the only available tools for integra-

tion are variants of differential file comparators, such as the UNIX1 utility diff. The problem with such tools

is that they implement an operation for merging files as strings of text.

A text-based approach has the advantage of being applicable to merging documents, data files, and other

text objects as well as to merging programs. Unfortunately, this approach is necessarily of limited utility

for integrating programs because the manner in which two programs are merged is not safe. One has no

guarantees about the way the program that results from a purely textual merge behaves in relation to the

behavior of the programs that are the arguments to the merge. The merged program must, therefore, be

checked carefully for conflicts that might have been introduced by the merge.

1UNIX is a trademark of AT&T Bell Laboratories.
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This paper describes a radically different approach based on the assumption that any change in the

behavior, rather than the text, of a variant with respect to the base program is significant and must be pre-

served in the merged program. We present an algorithm, called Integrate, that could serve as the basis for

building an automatic program-integration tool. Algorithm Integrate takes as input three programs A, B,

and Base, where A and B are two variants of Base.2 Algorithm Integrate either determines that the changes

made to Base to produce A and B may interfere (in a sense defined in Sections 2 and 4.4), or it produces a

new program M that integrates A and B with respect to Base. To find those components of a program that

represent potentially changed behavior, algorithm Integrate makes use of dependence graphs, similar to

those that have been used previously for representing programs in vectorizing and parallelizing compilers

[22,2,4,11], and an operation on these graphs called program slicing [3024].

A preliminary implementation of a program-integration tool based on the algorithm presented here has

been embedded in a program editor created using the Synthesizer Generator [2527]. Data-flow analysis on

programs is carried out according to the editor’s defining attribute grammar and used to construct the pro-

grams’ dependence graphs. An integration command invokes the integration algorithm, reports whether the

variant programs interfere, and, if there is no interference, creates the integrated program.

To the best of our knowledge, the program-integration problem has not been formalized previously. It

should be noted, however, that the integration problem examined here is a greatly simplified one; in particu-

lar, algorithm Integrate operates under the simplifying assumptions that expressions contain only scalar

variables and constants, and that the only statements used in programs are assignment statements, condi-

tional statements, and while-loops.

The paper is organized into seven sections. Section 2 discusses criteria for integratability and interfer-

ence. Section 3 illustrates some of the problems that can arise when programs are integrated using textual

comparison and merging operations.

Sections 4.1 through 4.5 correspond to the five steps of algorithm Integrate. The first step is to build the

dependence graphs that represent the programs Base, A, and B (the dependence graph that represents pro-

gram P is denoted by GP). Section 4.1 defines program dependence graphs and the operation of program

slicing. The second step, discussed in Section 4.2, uses program slicing to determine sets of affected points

2In fact, the approach we describe can accommodate any number of variants, but for the sake of exposition we consider the common
case of two variants A and B.
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of G A and GB as computed with respect to GBase. These sets capture the essential differences between

Base and the variant programs. The third step, described in Section 4.3, combines G A and GB to create a

merged dependence graph GM , making use of the sets of affected program points that were computed by

the second step. The fourth step uses G A, GB, the affected points of G A and GB, and GM to determine

whether A and B interfere with respect to Base; interference is defined and discussed in Section 4.4. The

fifth step, which is carried out only if A and B do not interfere, determines whether GM corresponds to

some program and, if it does, creates an appropriate program from GM . Although, as we have shown in

[1416], the problem of determining whether GM corresponds to some program is NP-complete, we conjec-

ture that the backtracking algorithm given for this step in Section 4.5 will behave satisfactorily on actual

programs. Section 4.6 summarizes algorithm Integrate, states a theorem that characterizes how the seman-

tics of the integrated program relates to the semantics of programs Base, A, and B, and discusses the algo-

rithm’s complexity.

Section 5 discusses applications of program integration in program-development environments. Section

6 describes related work, concentrating on the technical differences between the kind of dependence graphs

we employ and the dependence representations that have been defined by others. Section 7 discusses some

of the issues we have addressed in extending our work, and outlines some problems for future research.

2. CRITERIA FOR INTEGRATABILITY AND INTERFERENCE

Tw o versions A and B of a common Base may, in general, be arbitrarily different. To describe the inte-

grated version M we could say that the developers of A and B each have in mind their own specification,

and that M should be constructed so as to satisfy both specifications. For example, following the view of

specifications as pairs of pre- and post-condition predicates [13,8], given programs A and B that satisfy

{P A} A {QA} and {PB} B {QB}, respectively, A and B are integratable if there exists a program M that

halts such that {P A} M {QA} and {PB} M {QB}.

Under certain circumstances, it is not possible to integrate two programs; we say that such programs

interfere. One source of interference for the integration criterion given above can be illustrated by restating

the criterion as follows: M integrates A and B if M halts and satisfies the three triples

{P A ∧ PB} M {QA ∧ QB}, {P A ∧ ¬PB} M {QA}, and {PB ∧ ¬P A} M {QB}. A and B interfere if the for-

mula P A ∧ PB is satisfiable but QA ∧ QB is unsatisfiable; under this circumstance, it is impossible to find an

M that halts, such that the specification {P A ∧ PB} M {QA ∧ QB} is satisfied.
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An integration criterion based on program specifications leaves a great deal of freedom for constructing a

suitable M , but would be plagued by the familiar undecidable problems of automated program synthesis.

Moreover, the requirement that programs be annotated with specifications would make such an approach

unusable with the methods of system development currently in use. Consequently, this integration criterion

is not suitable at the present time as the basis for building a usable program-integration system.

Given the problems inherent in specification-based integration, we chose to investigate a different defini-

tion of the program-integration problem (with a different interference criterion). While specification-based

integration ignores program Base, Base plays an important role in our approach. Our basic assumption is

that any change in the behavior of the variants with respect to Base is significant and must be preserved in

M . A further assumption is that the integrated version M must be composed of exactly the statements and

control structures that appear as components of Base, A, and B.

Our notion of changed behavior in program A (respectively, B) with respect to Base is roughly the fol-

lowing: if there exists an initial state and variable x for which the final value of x computed by Base is dif-

ferent from the final value computed by A (B), then the computation of x is considered to be a change in

behavior of A (B) with respect to Base. The goal of program integration is to produce a program M that

preserves the changed behaviors of both A and B with respect to Base (i.e., if Base and A (B) disagree on

the final value of x, then M agrees with A (B)) and also preserves the behaviors that are unchanged in both

A and B with respect to Base (i.e., if Base, A, and B all compute the same final value for x, then M also

computes that final value). Variants A and B interfere with respect to Base if there exists an initial state

and variable x such that Base, A, and B each compute different final values for x.

Although it is undecidable whether a program modification actually leads to a change in behavior, it is

still possible to base an algorithm on this definition of program integration. In particular, it is possible to

determine a safe approximation of (i.e., a superset of) the set of changed computations. To compute this

information, we use a dependence-graph representation of programs similar to those used previously for

representing programs in vectorizing and parallelizing compilers [22,2,4,11]. We also use program slices

[3024] to find just those components of a program that determine the values of potentially affected vari-

ables. (In both cases, these ideas have been adapted to the particular needs of the program-integration prob-

lem.)

To simplify the program-integration problem to a manageable level, we allow ourselves two further

assumptions. First, we confine our attention to a simplified programming language with the following
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characteristics:3 expressions contain only scalar variables and constants; statements are either assignment

statements, conditional statements, while loops, or a restricted kind of “output statement” called an end

statement, which can only appear at the end of a program. An end statement names one or more of the

variables used in the program. The variables named in the end statement are those whose final values are of

interest to the programmer; when execution terminates, the final state is defined on only those variables in

the end statement. Thus a program is of the form:

program
stmt_list

end(id*)

Second, we make two assumptions about the editor used to create variants A and B from copies of Base.

1) The editor provides a tagging capability so that common components (i.e., statements and predicates)

can be identified in all three versions. Each component’s tag is guaranteed to persist across different

editing sessions and machines; tags are allocated by a single server, so that two different editors can-

not allocate the same new tag.

2) The operations on program components supported by the editor are insert, delete, and move. When

editing a copy of Base to create a variant, a newly inserted component is given a previously unused

tag; the tag of a component that is deleted is never reused; a component that is moved from its origi-

nal position in Base to a new position in the variant retains its tag from Base.

A tagging facility meeting these requirements can be supported by language-based editors, such as those

that can be created by such systems as MENTOR [9], GANDALF [1223], and the Synthesizer Generator

[2527].

An additional goal for an integration tool, although one of secondary importance, is ensuring that the

program M that results from integrating A and B resembles A and B as much as possible. There is one

aspect of this goal that is not addressed by the algorithm described in this paper. In particular, when the

final step of the integration algorithm determines the order of statements in M , it does not make direct use

of the order in which statements occur in A or B. Consequently, it may not preserve original statement

order, even in portions of the programs that are unaffected by the changes made to the base program to cre-

3We believe that our approach to program integration can be extended to more realistic programming languages. For example, we
have made some progress in extending the algorithm to handle languages with procedure calls [15] and with pointer variables [17].
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ate A and B. Our integration method does preserve the original variable names used in A, B, and Base;

however, as discussed briefly in Section 4.5, it may be desirable to abandon this property and permit the

final step of the integration algorithm to perform a limited amount of variable renaming.

3. THE PERILS OF TEXT-BASED INTEGRATION

Integrating programs via textual comparison and merging operations is accompanied by numerous hazards.

This section describes some of the problems that can arise, and underscores them with an example that baf-

fles the UNIX program diff3. (Diff3 is a relative of diff that can be used to create a merged file when sup-

plied a base file and two variants.)

One problem is that character- or line-oriented textual operations do not preserve syntactic structure;

consequently, a processor like diff3 can easily produce something that is syntactically incorrect. Even if the

problem of syntactically erroneous output were overcome, there would still be severe drawbacks to integra-

tion by textual merging, because text operations do not take into account program semantics. This has two

undesirable consequences:

1) If the variants of the base program do interfere (under a semantic criterion), diff3 still goes ahead and

produces an “integrated” program.

2) Even when the variants do not interfere (under a semantic criterion), the integrated program created

using diff3 is not necessarily an acceptable integration.

The latter problem is illustrated by the example given below. In this example, diff3 creates an unaccept-

able integrated program despite the fact that it is only necessary to reorder (whole) lines to produce an

acceptable one. The example concerns the following base program and two variants:

Base program

program
if P then x := 0 fi
if Q then x := 1 fi
y := x
if R then w := 3 fi
if S then w := 4 fi
z := w

end(y, z)
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Variant A Variant B

program program
if Q then x := 1 fi if S then w := 4 fi
if P then x := 0 fi if R then w := 3 fi
y := x z := w
if R then w := 3 fi if P then x := 0 fi
if S then w := 4 fi if Q then x := 1 fi
z := w y := x

end(y, z) end(y, z)

In variant A, the conditional statements that have P and Q as their conditions are reversed from the order in

which they appear in Base. In variant B, the order of the P−Q pair remains the same as in Base, but the

order of the R−S pair is reversed; in addition, the order of the first and second groups of three statements

have been interchanged.

Under UNIX, a program that (purportedly) integrates Base, A, and B can be created by the following

operations:

diff3 −e A Base B > script
(cat script; echo ’1,$p’) | ed − A

The first command invokes the three-way file comparator diff3; the −e flag of diff3 causes it to create an edi-

tor script as its output. This script can be used to incorporate in one of the variants (in this case, A) changes

between the base program (Base) and the second variant (B). The second command invokes the editor to

apply the script to variant A.

The program that results from these operations is:

program
if S then w := 4 fi
if R then w := 3 fi
z := w
if P then x := 0 fi
if Q then x := 1 fi
y := x

end(y, z)

This program is exactly the same as the one given as variant B. Because it does not account for the differ-

ences in behavior between Base and variant A, this can hardly be considered an acceptable integration of

Base, A, and B.

We now try a different tactic and exchange the positions of A and B in the argument list passed to diff3,

thereby treating B as the “primary” variant and A as the “secondary” variant (diff3 is not symmetric in its

first and third arguments). The program that results is:
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program
if Q then x := 1 fi
if P then x := 0 fi
y := x

end(y, z)

Clearly this program is unacceptable as the integration of Base, A, and B.

This example illustrates the use of diff3 to create an editing script that merges three documents whether

or not there are “conflicts.” Under some versions of UNIX, it is also possible to have diff3 produce an edit-

ing script that annotates the merged document at places where conflicts occur. At such places, the script

inserts both versions of the text, and brackets the region of the conflict by “<<<<<<<” and “>>>>>>>.”

For instance, the outcome for the second case discussed above is:

program
<<<<<<< B

if S then w := 4 fi
if R then w := 3 fi
z := w
if P then x := 0 fi

=======
>>>>>>> A

if Q then x := 1 fi
if P then x := 0 fi
y := x

end(y, z)

When we apply the program-integration method that is described in this paper to this same example,

there are several programs it might create, including the following three:

program program program
if S then w := 4 fi if Q then x := 1 fi if Q then x := 1 fi
if R then w := 3 fi if P then x := 0 fi if P then x := 0 fi
z := w y := x if S then w := 4 fi
if Q then x := 1 fi if S then w := 4 fi if R then w := 3 fi
if P then x := 0 fi if R then w := 3 fi y := x
y := x z := w z := w

end(y, z) end(y, z) end(y, z)

In contrast to the programs that result from text-based integration, any of the algorithm’s possible products

is a satisfactory outcome for integrating Base, A, and B.

4. AN ALGORITHM FOR INTEGRATING NON-INTERFERING VERSIONS OF PROGRAMS
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4.1. The Program Dependence Graph

Different definitions of program dependence representations have been given, depending on the intended

application; they are all variations on a theme introduced in [21], and share the common feature of having

an explicit representation of data dependences (see below). The “program dependence graphs” defined in

[11] introduced the additional feature of an explicit representation for control dependences (see below).

The definition of program dependence graph given below differs from [11] in two ways. First, our defini-

tion covers only the restricted language described earlier, and hence is less general than the one given in

[11]. Second, because of the particular needs of the program-integration problem, we omit certain classes

of data dependence edges and introduce one new class; reasons for these changes are provided in Section

6.1. Despite these differences, the structures we define and those defined in [11] share the feature of

explicitly representing both control and data dependences; therefore, we refer to our graphs as “program

dependence graphs,” borrowing the term from [11].

The program dependence graph (or PDG) for a program P, denoted by GP , is a directed graph whose

vertices are connected by several kinds of edges.4 Program dependence graph GP includes four kinds of

vertices:

1) For each assignment statement and control predicate that occurs in program P, there is a vertex

labeled with the assignment or predicate.

2) There is a distinguished vertex called the entry vertex.

3) For each variable x for which there is a path in the standard control-flow graph for P on which x is

used before being defined (see [1]), there is a vertex called the initial definition of x. This vertex rep-

resents an assignment to x from the initial state. The vertex is labeled “x : = InitialState(x).”

4) For each variable x named in P’s end statement, there is a vertex called the final use of x. This vertex

represents an access to the final value of x computed by P, and is labeled “FinalUse(x).”

We shall assume that vertices of PDGs are also labeled with an additional piece of information (which will

not be shown in our examples). Recall that we have assumed that the editor used to modify programs pro-

vides a tagging capability. Vertices of a PDG are labeled with the tags of the corresponding program com-

4A directed graph G consists of a set of vertices V (G) and a set of edges E(G), where E(G) ⊆ V (G) × V (G). Each edge (b, c) ∈ E(G)
is directed from b to c; we say that b is the source and c the target of the edge.
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ponents.

The edges of GP represent dependences between program components. An edge represents either a con-

trol dependence or a data dependence. Control dependence edges are labeled either true or false, and the

source of a control dependence edge is always the entry vertex or a predicate vertex. A control dependence

edge from vertex v1 to vertex v2, denoted by v1 →c v2, means that during execution, whenever the predi-

cate represented by v1 is evaluated and its value matches the label on the edge to v2, then the program com-

ponent represented by v2 will be executed (although perhaps not immediately). A method for determining

control dependence edges for arbitrary programs is given in [11]; however, because we are assuming that

programs include only assignment, conditional, and while statements, the control dependence edges of GP

can be determined in a much simpler fashion. For the language under consideration here, the control

dependence edges reflect a program’s nesting structure; program dependence graph GP contains a control

dependence edge from vertex v1 to vertex v2 iff one of the following holds:

1) v1 is the entry vertex, and v2 represents a component of P that is not subordinate to any control predi-

cate; these edges are labeled true.

2) v1 represents a control predicate, and v2 represents a component of P immediately subordinate to the

control construct whose predicate is represented by v1. If v1 is the predicate of a while-loop, the

edge v1 →c v2 is labeled true; if v1 is the predicate of a conditional statement, the edge v1 →c v2 is

labeled true or false according to whether v2 occurs in the then branch or the else branch,

respectively.5

Note that initial-definition and final-use vertices have no incoming control dependence edges.

A data dependence edge from vertex v1 to vertex v2 means that the program’s computation might be

changed if the relative order of the components represented by v1 and v2 were reversed. In this paper, pro-

gram dependence graphs contain two kinds of data dependence edges, representing flow dependences and

def-order dependences.

The data dependence edges of a program dependence graph are computed using data-flow analysis. For

the restricted language considered in this paper, the necessary computations can be defined in a syntax-

5In other definitions that have been given for control dependence edges, there is an additional edge for each predicate of a while state-
ment − each predicate has an edge to itself labeled true. By including the additional edge, the predicate’s outgoing true edges consist
of every program element that is guaranteed to be executed (eventually) when the predicate evaluates to true. This kind of edge is un-
necessary for our purposes and hence is left out of our definition.
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directed manner (see [14]).

A program dependence graph contains a flow dependence edge from vertex v1 to vertex v2 iff all of the

following hold:

1) v1 is a vertex that defines variable x.

2) v2 is a vertex that uses x.

3) Control can reach v2 after v1 via an execution path along which there is no intervening definition of

x. That is, there is a path in the standard control-flow graph for the program [1] by which the defini-

tion of x at v1 reaches the use of x at v2. (Initial definitions of variables are considered to occur at

the beginning of the control-flow graph, and final uses of variables are considered to occur at its

end.)

A flow dependence that exists from vertex v1 to vertex v2 will be denoted by v1 → f v2. (When it is neces-

sary to indicate that a dependence is due to a particular variable x, it will be denoted by v1 → x
f v2.)

Flow dependences are further classified as loop independent or loop carried [3]. A flow dependence

v1 → f v2 is carried by loop L, denoted by v1 → lc(L) v2, if in addition to 1), 2), and 3) above, the following

also hold:

4) There is an execution path that both satisfies the conditions of 3) above and includes a backedge to

the predicate of loop L; and

5) Both v1 and v2 are enclosed in loop L.

A flow dependence v1 → f v2 is loop independent, denoted by v1 →li v2, if in addition to 1), 2), and 3)

above, there is an execution path that satisfies 3) above and includes no backedge to the predicate of a loop

that encloses both v1 and v2. It is possible to have both v1 → lc(L) v2 and v1 → li v2.

A program dependence graph contains a def-order dependence edge from vertex v1 to vertex v2 iff all of

the following hold:

1) v1 and v2 are both assignment statements that define the same variable.

2) v1 and v2 are in the same branch of any conditional statement that encloses both of them.

3) There exists a program component v3 such that v1 → f v3 and v2 → f v3.

4) v1 occurs to the left of v2 in the program’s abstract syntax tree.
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A def-order dependence from v1 to v2 is denoted by v1 → do(v3) v2.

Note that a program dependence graph is a multi-graph (i.e., it may have more than one edge of a given

kind between two vertices). When there is more than one loop-carried flow dependence edge between two

vertices, each is labeled by a different loop that carries the dependence. When there is more than one def-

order edge between two vertices, each is labeled by a vertex that is flow-dependent on both the definition

that occurs at the edge’s source and the definition that occurs at the edge’s target.

Example. Figure 1 shows an example program and its program dependence graph. The boldface arrows

represent control dependence edges; dashed arrows represent def-order dependence edges; solid arrows rep-

resent loop-independent flow dependence edges; solid arrows with a hash mark represent loop-carried flow

dependence edges.

program
sum : = 0;
x : = 1;
while x < 11 do

sum : = sum + x;
x : = x + 1

end
end(x, sum)

ENTRY

sum : = 0 x : = 1 while x < 11

sum : = sum + x x : = x + 1

FinalUse(sum)FinalUse(x)

T T T

T T

Figure 1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and its
program dependence graph. The boldface arrows represent control dependence edges, dashed arrows represent def-
order dependence edges, solid arrows represent loop-independent flow dependence edges, and solid arrows with a hash
mark represent loop-carried flow dependence edges.
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4.1.1. Def-order dependences versus anti- and output dependences

Previous program dependence representations have included flow dependence edges as well as edges for

two other kinds of data dependences, called anti-dependences and output dependences. (All three kinds

may be further characterized as loop independent or loop carried.) Def-order dependences have not been

previously defined. The definition of program dependence graphs given in Section 4.1 omits anti- and out-

put dependences in favor of def-order dependences. Our reasons for using this definition are discussed in

Section 6.1; this section merely clarifies the differences among these three kinds of dependences.

For flow dependences, anti-dependences, and output dependences, a program component v2 has a depen-

dence on component v1 due to variable x only if execution can reach v2 after v1 and if there is no interven-

ing definition of x along the execution path by which v2 is reached from v1. There is a flow dependence if

v1 defines x and v2 uses x (a “write-read” dependence); there is an anti-dependence if v1 uses x and v2

defines x (a “read-write” dependence); there is an output dependence if v1 and v2 both define x (a “write-

write” dependence).

Although def-order dependences resemble output dependences in that they are both “write-write” depen-

dences, they are two different concepts. An output dependence v1 →o v2 between two definitions of x can

hold only if there is no intervening definition of x along some execution path from v1 to v2; howev er, there

can be a def-order dependence v1 →do v2 between two definitions even if there is an intervening definition

of x along all execution paths from v1 to v2. This situation is illustrated by the following example program

fragment, which demonstrates that it is possible to have a program in which there is a dependence

v1 →do v2 but not v1 →o v2, and vice versa:

[1] x : = 10
[2] if P then
[3] x : = 11
[4] x : = 12
[5] fi
[6] y : = x

The one def-order dependence, [1] → do([6]) [4], exists because the assignments to x in lines [1] and [4]

both reach the use of x in line [6]. In contrast, the output dependences are [1] →o [3] and [3] →o [4], but

there is no output dependence [1] →o [4].

4.1.2. Program slices

For a vertex s of a program dependence graph G, the slice of G with respect to s, written as G / s, is a graph

containing all vertices on which s has a transitive flow or control dependence (i.e., all vertices that can
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reach s via flow or control edges): V (G / s) = { w ∈V (G) | w →*
c, f s }. We extend the definition to a set

of vertices S =
i

∪ si as follows: V (G / S) = V (G / (
i

∪ si)) =
i

∪ V (G / si). It is useful to define V (G / v) = ∅

for any v ∉ G.

The edges in the graph G / S are essentially those in the subgraph of G induced by V (G / S), with the

exception that a def-order edge v → do(u) w is only included if, in addition to v and w, V (G / S) also con-

tains the vertex u that is directly flow dependent on the definitions at v and w. In terms of the three types of

edges in a PDG we have:

E(G / S) = { (v → f w) ∈ E(G) | v, w ∈V (G / S) }
∪ { (v →c w) ∈ E(G) | v, w ∈V (G / S) }
∪ { (v → do(u) w) ∈ E(G) | u, v, w ∈V (G / S) }

Example. Figure 2 shows the graph that results from slicing the program dependence graph from Figure

1 with respect to the final-use vertex for x.

program
x : = 1;
while x < 11 do

x : = x + 1
end

end(x)

ENTRY

x : = 1 while x < 11

x : = x + 1

FinalUse(x)

T T

T

Figure 2. The graph that results from slicing the example from Figure 1 with respect to the final-use vertex for x, to-
gether with the one program to which it corresponds.
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4.1.3. Program dependence graphs and program semantics

In choosing which dependence edges to include in our program dependence graphs our goal has been to

characterize partially programs that have the same behavior—two inequivalent programs should not have

the same program dependence graph, although two equivalent programs may have different program depen-

dence graphs. This property is crucial to the correctness of our program-integration algorithm. In particu-

lar, the final step of the algorithm reconstitutes the integrated program from a program dependence graph.

Because this graph may correspond to more than one program, we need to know that all such programs are

equivalent.

The relationship between a program’s PDG and the program’s execution behavior has been addressed in

[1916]. It is shown in [1916] that if the program dependence graphs of two programs are isomorphic then

the programs have the same behavior. It is also shown that if any of the different kinds of edges included in

our definition of program dependence graphs were omitted, programs with different behavior could have

the same program dependence graph. The concept of “programs with the same behavior” is formalized as

the concept of strong equivalence, defined as follows:

DEFINITION. Two programs P and Q are strongly equivalent iff for any state σ , either P and Q both

diverge when initiated on σ or they both halt with the same final values for all variables. If P and Q are not

strongly equivalent, we say they are inequivalent.

The term “divergence” refers to both non-termination (for example, because of infinite loops) and abnormal

termination (for example, because of division by zero).

The main result of [1916] is the following theorem (we use the symbol ≈ to denote isomorphism

between program dependence graphs):

THEOREM. (EQUIVALENCE THEOREM [1916]). If P and Q are pro grams for which GP ≈ GQ, then P and

Q are strongly equivalent.

Restated in the contrapositive the theorem reads: Inequivalent programs have non-isomorphic program

dependence graphs.

The relationship between a program’s PDG and a slice of the PDG has been addressed in [26]. We say

that G is a feasible program dependence graph iff G is the program dependence graph of some program P.

For any S ⊆ V (G), if G is a feasible PDG, the slice G / S is also a feasible PDG; it corresponds to the pro-

gram P′ obtained by restricting the syntax tree of P to just the statements and predicates in V (G / S) [26].
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THEOREM. (FEASIBILITY OF PROGRAM SLICES [26]). For any program P, if GS is a slice of GP (with

respect to some set of vertices), then GS is a feasible PDG .

Example. Figure 2 shows the one program that corresponds to the graph that results from slicing the

graph in Figure 1 with respect to the final-use vertex for x.

The significance of a slice is that it captures a portion of a program’s behavior in the sense that, for any

initial state on which the program halts, the program and the slice compute the same sequence of values for

each element of the slice [26]. In our case a program point may be (1) an assignment statement, (2) a con-

trol predicate, or (3) a final use of a variable in an end statement. Because a statement or control predicate

may be reached repeatedly in a program, by “computing the same sequence of values for each element of

the slice” we mean: (1) for any assignment statement the same sequence of values are assigned to the target

variable; (2) for a predicate the same sequence of boolean values are produced; and (3) for each final use

the same value for the variable is produced.

THEOREM. (SLICING THEOREM [26]). Let Q be a slice of program P with respect to a set of vertices. If

σ is a state on which P halts, then for any state σ ′ that agrees with σ on all variables for which there are

initial-definition vertices in GQ: (1) Q halts on σ ′, (2) P and Q compute the same sequence of values at

each pro gram point of Q, and (3) the final states agree on all variables for which there are final-use ver-

tices in GQ.

4.2. Determining the Differences in Behavior of a Variant

In this section we characterize (an approximation to) the difference between the behavior of Base and its

variants. Since we do not know the specification of Base or its variants, we assume that any and only

changes in the behavior of a variant with respect to Base are significant. The program dependence graphs

are a convenient representation from which to determine these changes.

Recall the assumption made in Section 4.1 that the vertices of a PDG are labeled with the tags main-

tained by the editor on program components. These tags provide a means for identifying PDG vertices that

correspond in all three versions. It is these tags that are used to determine “identical” vertices when we per-

form operations on vertices from different PDGs (e.g., V (G′) − V (G)). Similarly, when we speak below of

“identical slices”, where the slices are actually taken in different graphs, we mean that the slices are isomor-

phic under the mapping provided by the editor-supplied tags.
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If the slice of variant G A at vertex v differs from the slice of GBase at vertex v (i.e., they are different

graphs), then values at v are computed in a different manner by the respective programs. This means that

the values at v may differ, and we take this as our definition of changed behavior. We define the affected

points AP A, Base of G A as the subset of vertices of G A whose slices in GBase and G A differ:

AP A, Base = { v ∈V (G A) |  (GBase / v) ≠ (G A / v) }

The slice G A / AP A, Base captures the behavior of A that differs from Base. Note that when there is a vertex

v that is present in GBase but not in G A, any vertex still present in G A that, in GBase, depends on v is an

affected point of G A; thus, although such “deleted” vertices are not themselves affected points, they may

have indirect effects on AP A, Base (and hence on G A / AP A, Base).

Example. Figure 1 shows a program that sums the integers from 1 to 10 and its corresponding program

dependence graph. We now consider two variants of this program, shown in Figure 3 with their program

dependence graphs:

1) In variant A two statements have been added to the original program to compute the product of the

integer sequence from 1 to 10.

2) In variant B one statement has been added to compute the mean of the sequence.

These two programs represent non-interfering extensions of the original summation program. The set

AP A, Base contains three vertices: the assignment vertices labeled “prod : = 1” and “prod : = prod * x” as

well as the final-use vertex for prod. Similarly, APB, Base contains two vertices: the assignment vertex

labeled “mean : = sum / 10” and the final-use vertex for mean. Figure 4 shows the slices G A / AP A, Base and

GB / APB, Base, which represent the changed behaviors of A and B, respectively.

There is a simple technique to determine AP A, Base that avoids computing all of the slices stated in the

definition. The technique requires at most two complete examinations of G A, and is based on the following

three observations:

1) All vertices that are in G A but not in GBase are affected points.

2) Each vertex w of G A that has a different set of incoming control or flow edges in G A than in GBase

gives rise to a set of affected points − those vertices that can be reached via zero or more control or

flow edges from w.
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program
prod : = 1;
sum : = 0;
x : = 1;
while x < 11 do

prod : = prod * x;
sum : = sum + x;
x : = x + 1

end
end(x, sum, prod)

ENTRY

sum : = 0 x : = 1 while x < 11

sum : = sum + x x : = x + 1

prod : = 1

prod : = prod * x

FinalUse(sum)FinalUse(x)FinalUse(prod)

T T T

T T

T

T

(a) Variant A and its program dependence graph.

program
sum : = 0;
x : = 1;
while x < 11 do

sum : = sum + x;
x : = x + 1

end;
mean : = sum / 10

end(x, sum, mean)

ENTRY

sum : = 0 x : = 1 while x < 11

sum : = sum + x x : = x + 1

mean : = sum / 10

FinalUse(sum)FinalUse(x) FinalUse(mean)

T T T

T T

T

(b) Variant B and its program dependence graph.

Figure 3. Variants A and B of the base program shown in Figure 1, and their program dependence graphs.
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program
prod : = 1;
x : = 1;
while x < 11 do

prod : = prod * x;
x : = x + 1

end
end(prod)

ENTRY

x : = 1 while x < 11

x : = x + 1

prod : = 1

prod : = prod * x

FinalUse(prod)

T T

T

T

T

(a) The slice G A / AP A, Base and its corresponding program.

program
sum : = 0;
x : = 1;
while x < 11 do

sum : = sum + x;
x : = x + 1

end;
mean : = sum / 10

end(mean)

ENTRY

sum : = 0 x : = 1 while x < 11

sum : = sum + x x : = x + 1

mean : = sum / 10

FinalUse(mean)

T T T

T T

T

(b) The slice GB / APB, Base and its corresponding program.

Figure 4. The slices that represent the changed behaviors of A and B.

3) Each vertex w of G A that has an incoming def-order edge w′ → do(u) w that does not occur in GBase

gives rise to a set of affected points − those vertices that can be reached via zero or more control or

flow edges from u.



− 21 −

The justification for observation 1) is straightforward: for w ∈V (G A) − V (GBase), GBase / w is the empty

graph, whereas w ∈V (G A / w), so G A / w is not empty. The justification for observation 2) is also straight-

forward. By the definition of slicing, when w differs in incoming flow or control edges, G A / w and

GBase / w cannot be the same, hence w itself is affected. For any vertex v that is (directly or indirectly) flow

or control dependent on w in G A, the slice G A / v contains the subgraph G A / w. Therefore, if w is affected,

all successors of w in G A via control and flow dependences are also affected.

The justification for observation 3) is more subtle. When a def-order edge w′ → do(u) w occurs in G A

but not in GBase, then the slice G A / u will include both w′ and w and the def-order edge between them,

while GBase / u will not include this edge. Hence u is affected. The reverse situation, where w′ → do(u) w

occurs in GBase but not in G A means u is affected if u ∈V (G A). But it is not necessary to examine this pos-

sibility since either w′ → do(u) w in GBase is replaced by w → do(u) w′ in G A, in which case w′ ∈V (G A) will

contribute u as affected, or else one or both of the flow edges w → f u and w′ → f u in GBase will be miss-

ing in G A, in which case u is affected by the change in incoming flow edges. As before, for any vertex v

that is (directly or indirectly) flow or control dependent on u, the slice G A / v contains the subgraph G A / u;

therefore, if u is affected, all successors of u via control and flow dependences are affected. Note that nei-

ther w′ itself nor w itself is necessarily an affected point.

Observations 1), 2), and 3) serve to characterize the set of affected points. If v ∈V (G A) is affected there

must be some w in G A / v with different incoming edges in G A and GBase. By the arguments above, either

w itself is an affected point (cases 1) and 2)), or it contributes a vertex u ∈V (G A / v) that is an affected

point (case 3)); therefore, it is possible to identify v as an affected point by following control and flow

edges. This latter observation forms the basis for the function AffectedPoints(G′, G), given in Figure 5. It

computes the set of affected points of G′ with respect to G by examining all vertices w in G′ that have a

different set of incoming edges in G′ than in G, and collecting the affected points that each vertex con-

tributes. Then a worklist algorithm is used to find all vertices reachable from this set by flow or control

edges.

4.3. Merging Program Dependence Graphs

We now show how to create the merged program dependence graph GM . Graph GM is formed by taking

the union of three slices; these slices represent the changed behaviors of A and B with respect to Base and

the behavior of Base that is preserved in both A and B.
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function AffectedPoints(G′, G) returns a set of vertices
declare

G′, G: program dependence graphs
S, Answer: sets of vertices
w, u, b, c: individual vertices

begin
S := ∅
for each vertex w in G′ do

if w is not in G then
Insert w into S

fi
if the sets of incoming flow or control edges to w in G′ are different from the incoming sets to w in G then

Insert w into S
fi
for each def-order edge w′ → do(u) w that occurs in G′ but not in G do

Insert u into S
end

end
Answer := ∅
while S ≠ ∅ do

Select and remove an element b from S
Insert b into Answer
for each vertex c such that b → f c or b → cc is an edge in G′ and c ∉ (Answer ∪ S) do

Insert c into S
end

end
return(Answer)

end

Figure 5. The function AffectedPoints determines the points in the program dependence graph G′ that may yield dif-
ferent values in G′ than in G.

The previous section discussed how to compute the slices G A / AP A, Base and GB / APB, Base, which repre-

sent the changed behaviors of A and B with respect to Base. The slice that represents preserved behavior is

computed similarly. If the slice of GBase with respect to vertex v is identical to the slices of G A and GB

with respect to vertex v, then all three programs produce the same sequence of values at v. We define the

preserved points PPBase, A, B of GBase as the subset of vertices of GBase with identical slices in GBase, G A,

and GB:

PPBase, A, B = { v ∈V (GBase) | (GBase / v) = (G A / v) = (GB / v) }.

The slice GBase / PPBase, A, B captures the behavior of Base that is preserved in both A and B.

Example. When integrating the base program from Figure 1, variant A from Figure 3(a) and variant B

from Figure 3(b), the slice GBase / PPBase, A, B consists of GBase in its entirety. That is, the graph that repre-

sents the behavior of the original program that is preserved in both variant A and variant B is identical to
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the graph shown in Figure 1.

The merged graph GM is formed by taking the graph union of the slices that characterize the changed

behavior of A, the changed behavior of B, and behavior of Base preserved in both A and B.

GM = (G A / AP A, Base) ∪ (GB / APB, Base) ∪ (GBase / PPBase, A, B)

Example. The merged graph GM , shown in Figure 6, is formed by taking the union of the graphs shown

in Figure 4(a), Figure 4(b), and Figure 1.

ENTRY

sum : = 0 x : = 1 while x < 11

sum : = sum + x x : = x + 1

mean : = sum / 10prod : = 1

prod : = prod * x

FinalUse(sum)

FinalUse(x)FinalUse(prod) FinalUse(mean)

T T T

T T

T

T

T

Figure 6. GM is created by taking the union of the graphs shown in Figures 4(a), 4(b), and 1.
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4.4. Determining Whether Two Versions Interfere

A merged program dependence graph, GM , that is created by the method described in the previous section

can fail to reflect the changed behavior of the two variants, A and B, in two ways. First, because the union

of two feasible PDGs is not necessarily a feasible PDG, GM may not be a feasible PDG. Second, it is pos-

sible that GM will not preserve the differences in behavior of A or B with respect to Base. If either condi-

tion occurs, we say that A and B interfere. Testing for interference due to the former condition is addressed

in Section 4.5; this section describes a criterion for determining whether a merged program dependence

graph preserves the changed behavior of A and B.

To insure that the changed behavior of variants A and B is preserved in GM , we introduce a non-

interference criterion based on comparisons of slices of G A, GB, and GM ; the condition that must hold for

the changed behavior of A and B to be preserved in GM is:

GM / AP A, Base = G A / AP A, Base and GM / APB, Base = GB / APB, Base.

On vertices in PPBase, A, B the graphs G A and GB agree, and hence GM is correct for these vertices.

The verification of the invariance of the slices in GM and the variant graphs is closely related to the prob-

lem of finding affected points: GM must agree with variant A on AP A, Base and with B on APB, Base. There-

fore an easy way to test for non-interference (using function AffectedPoints) is to verify that

APM , A ∩ AP A, Base = ∅ and APM , B ∩ APB, Base = ∅.

Example. An inspection of the merged graph shown in Figure 6 reveals that there is no interference; the

slices GM / AP A, Base and GM / APB, Base are identical to the graphs that appear in Figures 4(a) and 4(b),

respectively. To illustrate interference, consider integrating the base program of Figure 1, variant B from

Figure 3(b), and variant C from Figure 7. As in the previous integration example, the slice GB / APB, Base is

shown in Figure 4(b); the slice GC / APC, Base includes all of the vertices of variant C except for

FinalUse(x). The merged graph is shown in Figure 8. Variants B and C interfere (with respect to Base)

because B’s changed behavior (with respect to Base) is not preserved in the merged graph GM . In particu-

lar, the vertex “mean : = sum / 10” is an affected point of B with respect to Base, but the slice

GM / “mean : = sum / 10” includes vertices “sum : = sum + 1” and “if sum > 5,” which are not included in

the slice GB / “mean : = sum / 10”.
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program
sum : = 0;
x : = 1;
while x < 11 do

sum : = sum + x;
if sum > 5 then

sum : = sum + 1
fi
x : = x + 1

end
end(x, sum)

ENTRY

sum : = 0 x : = 1 while x < 11

sum : = sum + x if sum > 5

sum : = sum + 1

x : = x + 1

FinalUse(sum)FinalUse(x)

Figure 7. Variant C and its program dependence graph.
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ENTRY

sum : = 0 x : = 1 while x < 11

sum : = sum + x if sum > 5

sum : = sum + 1

x : = x + 1

mean : = sum / 10

FinalUse(sum)FinalUse(x) FinalUse(mean)

Figure 8. The merged program dependence graph GM resulting from the integration of Base, B, and C.

4.5. Reconstituting a Program From the Merged Program Dependence Graph

The final step of the integration algorithm involves reconstituting a program from the merged program

dependence graph. Given a program dependence graph GM that was created by merging variants A and B,

function ReconstituteProgram must determine whether GM is feasible (i.e., corresponds to some program),

and, if it is, create an appropriate program from GM .

Example. The program dependence graph shown in Figure 6 is feasible and corresponds to the program:
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program
prod : = 1;
sum : = 0;
x : = 1;
while x < 11 do

prod : = prod * x;
sum : = sum + x;
x : = x + 1

end;
mean : = sum / 10

end(x, sum, prod, mean)

Because we are assuming a restricted set of control constructs, each vertex of GM has at most one incom-

ing control dependence edge (from a predicate vertex or the entry vertex), i.e., the control dependences of

GM define a tree rooted at the entry vertex. The crux of the program-reconstitution problem is to deter-

mine, for each predicate vertex v (and for the entry vertex as well), an ordering on the targets of v’s outgo-

ing control dependence edges that is consistent with the data dependences of GM . Once all vertices are

ordered, the control dependence subgraph of GM can be easily converted to an abstract-syntax tree.

Unfortunately, as we hav e shown in [1416], the problem of determining whether it is possible to order a

vertex’s children is NP-complete. We hav e explored two approaches to dealing with this difficulty:

1) For graphs created by merging PDGs of actual programs, it is likely that problematic cases rarely

arise. We hav e explored ways of reducing the search space, in the belief that a backtracking method

for solving the remaining step can be made to behave satisfactorily. These techniques are described

in the remainder of this section.

2) It is possible to side-step completely the need to solve an NP-complete problem by performing a lim-

ited amount of variable renaming. This technique is described in Section 4.5.3, where it can be used

to avoid any difficult ordering step that remains after applying the techniques outlined in approach 1).

The rest of this section describes the function ReconstituteProgram, which is invoked as step five of the

program-integration algorithm. ReconstituteProgram is presented in outline form in Figure 9. Reconsti-

tuteProgram alters graph G, which is a copy of GM ; GM itself is saved, unaltered, for use in the test on line

[9]. In the for-loop (lines [2]-[7]), the tree induced on G by its control dependences is traversed in post-

order. For each vertex v visited during the traversal, an attempt is made to determine an acceptable order

for v’s children; this attempt is performed by the procedure OrderRegion, which is explained in detail

below. We assume that a function, named TransformToSyntaxTree, has been provided to convert G with

ordered vertices into the corresponding abstract-syntax tree.
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function ReconstituteProgram(GM ) returns a program or FAILURE
declare

GM , G, GP: program dependence graphs
v, w: vertices of G

begin
[1] G := a copy of GM

[2] for each vertex v of G in a post-order traversal of the control-dependence subgraph of G do
[3] if OrderRegion(G, { w | (v → T

c w) ∈ E(G) }) fails then return( FAILURE ) fi
[4] if v represents an if-predicate then
[5] if OrderRegion(G, { w | (v → F

c w) ∈ E(G) }) fails then return( FAILURE ) fi
[6] fi
[7] end
[8] P := TransformToSyntaxTree(G);
[9] if GM = GP then return( P )
[10] else return( FAILURE )
[11] fi
end

Figure 9. The operation ReconstituteProgram(GM ) creates a program corresponding to the program dependence graph
GM by ordering all vertices, or discovers that GM is infeasible.

ReconstituteProgram can fail in two different ways. Failure can occur because procedure OrderRegion

determines that there is no acceptable ordering for the children of some vertex. Failure can also occur at a

later point, after OrderRegion succeeds in ordering all vertices of G. In this case, TransformToSyntaxTree

is used to produce program P from G, P’s program dependence graph GP is built, and GP is compared to

GM ; failure occurs if GM and GP are not identical. Examples of these kinds of failure are given in Section

4.5.4.

The correctness of ReconstituteProgram is captured by the following theorem.

THEOREM. ReconstituteProgram(GM ) succeeds iff graph GM is feasible.

It is easy to show that ReconstituteProgram fails when GM is infeasible: If GM is infeasible, there is no

program whose dependence graph is isomorphic to GM ; hence, the test in step [9] of ReconstituteProgram

(see Figure 9) must fail.

The proof that ReconstituteProgram fails only when GM is infeasible is rather lengthy and is omitted

here; the proof can be found in [5].

4.5.1. Procedure OrderRegion: Ordering vertices within a region

DEFINITION. The subgraph induced on a collection of vertices, all of which are targets of control depen-

dence edges from some vertex v, is called a region; v is the region head. If v represents the predicate of a
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conditional, v is the head of two regions; one region includes all statements in the “true” branch of the con-

ditional, the other region includes all statements in the “false” branch of the conditional. For all vertices w,

EnclosingRegion(w) is the region that includes w (not the region of which w is the head). Because the

entry vertex and the vertices representing initial definitions and final uses of variables are not subordinate to

any predicate vertex they are not included in any region (however, the entry vertex is a region head).

Given region R, the main job of procedure OrderRegion (shown in Figure 10) is to find a total ordering

of the vertices of R that preserves the flow and def-order dependences of G, or to discover that no such

ordering is possible. Note that simply using a topological ordering of the region is not satisfactory. For

example, consider the dependence graph fragment shown in Figure 11. A topological ordering of the ver-

procedure OrderRegion(G, R)
declare

G: a graph
R: a region of G

begin
PreserveExposedUsesAndDefs(G, R)
if PreserveSpans(R) fails then fail else TopSort(R) fi
ProjectUsesAndDefs(G, R)

end

Figure 10. Procedure OrderRegion adds new edges to the given region to ensure that dependences are respected, pro-
jects information onto the region head, and topologically sorts the vertices of the region.

ENTRY

w:=0 while P

x:=0 y:=x+w x:=1 z :=x

a :=x

A:

B: C:

D: E: F: G:

H:

Figure 11. Dependence graph fragment: Topological ordering F, D, E, G, of the vertices subordinate to vertex C is not
acceptable.
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tices of the region subordinate to vertex C is: F, D, G, E; howev er, the dependence graph of the program

generated according to this ordering would incorrectly have flow edges from D to G and from D to H,

rather than the ones from F to G and from F to H.

A secondary responsibility of OrderRegion is to project onto the head of R information from the vertices

of R regarding variable uses, variable definitions, and incoming and outgoing edges. This projection

ensures that, when the head of R is considered as a vertex in its enclosing region, it represents all uses and

definitions that occur in R.

To order the vertices of R, OrderRegion calls procedures PreserveExposedUsesAndDefs and PreserveS-

pans (discussed below). These procedures add edges to R to force an ordering of the vertices consistent

with the region’s data dependences. (This process is roughly that of introducing anti- and output depen-

dences consistent with the flow and def-order dependences of region R. As explained in Section 6.1, there

are fundamental problems in trying to perform integration with a dependence representation that includes

anti- and output dependences; thus, OrderRegion must discover these dependences from the merged

graph.) If this process introduces a cycle in R, OrderRegion fails; otherwise, a topological sort of region R

produces an ordering consistent with the region’s data dependences.

Information is projected onto the head of region R both by procedure PreserveExposedUsesAndDefs,

which projects the loop-carried flow edges of R and the edges of G with only a single endpoint in R onto

the region head, and by procedure ProjectUsesAndDefs, which projects onto the head of R information

from the vertices in region R about variable uses and definitions. For example, procedure ProjectUsesAnd-

Defs would designate vertex C of Figure 11 as representing uses of w and x, and definitions of x, y, and z.

4.5.2. Procedure PreserveExposedUsesAndDefs: Preserving upwards-exposed uses and downwards-

exposed definitions

For all variables x, a use of x that is upwards-exposed [1] within a region must precede all definitions of x

within the region other than its loop-independent flow-predecessors (a use of x can be upwards-exposed

and still have a loop-independent flow-predecessor that defines x within the region if the flow-predecessor

represents a conditional definition). Vertex E in Figure 11 represents an upwards-exposed use of variable

w.

Similarly, a definition of x that is downwards-exposed within a region must follow all other definitions of

x within the region other than those to which it has a def-order edge (again, a definition of x can be down-

wards-exposed and still precede a conditional definition of x). Vertex F in the example of Figure 11 repre-
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sents a downwards-exposed definition of variable x.

Procedure PreserveExposedUsesAndDefs uses flow edges of G having only one endpoint inside the

given region R, and loop-carried flow edges having both endpoints inside R to identify exposed uses and

definitions. It then adds edges to R to ensure that exposed uses and definitions are ordered correctly with

respect to other definitions within the region. Finally, the edges used to identify exposed uses and defini-

tions are removed from R and are projected onto the region head. Def-order edges with a single endpoint

inside R are also projected onto head(R). This ensures that the region that includes the head of R will be

ordered correctly during a future call to OrderRegion. PreserveExposedUsesAndDefs performs the follow-

ing four steps:

Step (1): Identify upwards-exposed uses.

A vertex with an incoming loop-independent flow edge whose source is outside region R, or with an

incoming loop-carried flow edge with arbitrary source, represents an upwards-exposed use of the

variable x defined at the source of the flow edge. Mark each such vertex UPWARDS-EXPOSED-

USE(x).

Step (2): Identify downwards-exposed definitions.

A vertex that represents a definition of variable x and has an outgoing loop-independent flow edge

whose target is outside region R, or has an outgoing loop-carried flow edge with arbitrary target, rep-

resents a downwards-exposed definition of x.6 Mark each such vertex DOWNWARDS-EXPOSED-

DEF(x).

Step (3): Preserve exposed uses and definitions.

For each vertex n marked UPWARDS-EXPOSED-USE(x), add a new edge from n to all vertices m

in the region such that m represents a definition of variable x, and m is not a loop-independent flow

predecessor of n. For each vertex n marked DOWNWARDS-EXPOSED-DEF(x), add a new edge to

n from all vertices m in the region such that m represents a definition of x and there is no def-order

edge from n to m.

Step (4): Project edges onto the region head.

Let S stand for R ∪ { head(R) }. Replace all flow and def-order edges with source outside of S and

6Our use of the term “downwards-exposed” is slightly nonstandard; we consider a definition to be downwards-exposed in code seg-
ment C only if it reaches the end of C and the variable it defines is live at the end of C.
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target inside S with an edge (of the same kind) from the source to head(R). Replace all flow and def-

order edges with source inside S and target outside of S with an edge (of the same kind) from

head(R) to the target.

Consider each loop-carried flow edge v1 → lc(L) v2 such that both v1 and v2 are in S. If head(R) = L,

then remove the edge; otherwise, replace the edge with a loop-carried flow edge

head(R) → lc(L) head(R).

Figure 12 shows the example dependence graph fragment of Figure 11 after the four steps described

above hav e been performed on the region headed by vertex C. The edge from D to F was added in Step (3),

due to F being downwards-exposed, and prevents F from preceding D in a topological ordering. The edges

from B to C and from C to H were added in Step (4), replacing those from B to E and F to H, respectively.

4.5.3. Dependences induced by spans

To simplify this section’s presentation, we begin by considering regions that only include assignment state-

ments; under this restriction, each use of variable x within a region is reached by at most one definition of x

that occurs within the region.

In the example dependence graph fragment of Figure 12, the ordering D, F, E, G  of the vertices subordi-

nate to vertex C is a topological ordering, but an unacceptable one for our purposes. The problem with this

ENTRY

w:=0 while P

x:=0 y:=x+w x:=1 z :=x

a :=x

A:

B: C:

D: E: F: G:

H:

Figure 12. Dependence graph fragment with new edge D → F added to preserve the downwards-exposed definition of
x at vertex F.
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ordering is that it allows the definition of variable x at vertex F to “capture” the use of x at vertex E. The

dependence graph of the program generated according to this ordering would incorrectly have a flow edge

from F to E, rather than the one from D to E. In general, a definition d of variable x must precede all uses

it reaches via loop-independent flow edges; other definitions of x must either precede d or follow all the

uses reached by d . This observation leads to the following definition:

DEFINITION. The span of a definition d , where d defines variable x, is the set {d}, together with all uses of

x that are loop-independent flow targets of d and in the same region as d .

Span(d , x) = { d } ∪ { u | (d → x
liu) ∈ E(EnclosingRegion(d)) }

Span(d , x) is called an x-span, and vertex d is its head.

Restating the observation above in terms of spans, a definition d1 of variable x must precede all vertices

in Span(d1, x); other definitions of x must either precede d1 or follow all vertices in Span(d1, x). Further-

more, for any other x-span with head d2, if any vertex in Span(d1, x) must precede a vertex in Span(d2, x),

then all vertices in Span(d1, x) must precede d2.

Unacceptable topological orderings are excluded by considering, for each variable x, all pairs <d1, d2>

of definitions of x. If there is some vertex v in Span(d1, x) that must precede some vertex w in Span(d2, x),

(because of a path from v to w) then edges are added from all vertices in Span(d1, x) − Span(d2, x) to ver-

tex d2. Similarly, if there is a path from a vertex in Span(d2, x) to a vertex in Span(d1, x), edges are added

from all vertices in Span(d2, x) − Span(d1, x) to vertex d1. For example, in the graph fragment of Figure

12, the edge E → F would be added because the edge D → F (introduced by PreserveExposedUsesAnd-

Defs) forms a path from Span(D, x) to Span(F, x), and vertex E is in Span(D, x) − Span(F, x).

The reason for taking the set difference Span(d1, x) − Span(d2, x), is that even in regions containing only

assignment statements, spans can overlap, as illustrated in Figure 13. Because C is itself in Span(B, x),

adding edges from all vertices in Span(B, x) to C would create a self-loop at C, making a topological order-

ing impossible.

Allowing vertices that represent loops and conditionals introduces the possibility that spans may overlap

in two new ways, as illustrated in Figure 14. In the first case there must be a def-order dependence edge

from d1 to d2 or vice versa, or the graph would have failed the interference test of Section 4.4. In the sec-

ond case there is a flow edge from d1 to d2. These edges force an ordering of the two spans. Thus, allow-

ing conditionals and loops does not complicate PreserveSpans.
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x:=0;
y:=1;
x:=x+y;
z:=x

x:=0 x:=x+y z:=x

y:=1A:

B: C: D:

Span(B, x) Span(C, x)

Figure 13. Straight-line code fragment and corresponding dependence graph fragment (control edges omitted) with
overlapping x-spans.

d1

d2

u

d1 d2

Figure 14. Conditionals and loops can lead to the two additional kinds of overlapping spans shown above.

There may be pairs of spans, Span(d1, x) and Span(d2, x), such that there is no path in either direction

between Span(d1, x) and Span(d2, x); such pairs are called independent x-span pairs. It is still necessary to

add edges to force one span to precede the other so as to exclude unacceptable topological orderings.

Although it might seem that an arbitrary choice can be made, Figure 15 gives an example in which making

the wrong choice leads to the introduction of a cycle in a fragment of a feasible graph.

The fragment of Figure 15 includes two x-spans: Span(A, x) and Span(D, x), and two y-spans:

Span(B, y) and Span(C, y). There are paths neither between the two x-spans nor between the two y-spans;

thus, it appears that one is free to choose to add edges from the vertices of Span(A, x) to vertex D, or from

the vertices of Span(D, x) to vertex A, or from the vertices of Span(B, y) to vertex C, or from the vertices

of Span(C, y) to vertex B. Howev er, while three out of these four choices lead to a successful ordering of
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Span(A, x)

Span(B, y) Span(C, y)

Span(D, x)

x:=0

a:=x b:=x

y:=0

c:=y d:=y+a

y:=1

e:=y+b f:=y

x:=1

g:=x+c h:=x+f

A:

B: C:

D:

Figure 15. Graph fragment (control edges omitted) with two x-spans and two y-spans.

the vertices, choosing to add edges from the vertices of Span(D, x) to vertex A leads to the introduction of a

cycle. This is because the introduction of these new edges creates paths both from a vertex in Span(B, y) to

a vertex in Span(C, y), and vice versa. Figure 16 shows the fragment of Figure 15 with the new edges

added; the path from Span(C, y) to Span(B, y) is shown using dashed lines. The path from Span(B, y) to

Span(C, y) is shown using dotted lines.

Unfortunately, as we hav e shown in [1416], the problem of determining the right choice in a situation

like the one illustrated in Figure 15 is NP-complete. However, we expect that in practice there will be very

few such choices to be made, and a simple backtracking algorithm will suffice: if a cycle is introduced

when ordering spans, procedure PreserveSpans backtracks to the most recent choice point, and tries a dif-

ferent choice. If all choices lead to the introduction of a cycle, the graph is infeasible.
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Span(A, x)

Span(B, y) Span(C, y)

Span(D, x)

x:=0

a:=x b:=x

y:=0

c:=y d:=y+a

y:=1

e:=y+b f:=y

x:=1

g:=x+c h:=x+f

A:

B: C:

D:

Figure 16. Span(D, x) has been chosen to precede Span(A, x). Paths have been created from Span(B, y) to Span(C, y)
and vice versa. The path from Span(C, y) to Span(B, y) is indicated using dashed edges; the path from Span(B, y) to
Span(C, y) is indicated using dotted edges.

Procedure PreserveSpans is presented in Figure 17. PreserveSpans makes use of an auxiliary procedure,

OrderDependentSpans, to order any span pairs of region R whose relative order is forced by a connecting

path. An invariant of the two procedures, established in the first line of PreserveSpans, is that graph R is

transitively closed. The basic operation used in PreserveSpans and OrderDependentSpans is

“AddEdgeAndClose(R, (a, b))”, whose first argument is a graph and whose second argument is an edge to

be added to the graph. AddEdgeAndClose(R, (a, b)) carries out two actions:

1) Edge (a, b) is inserted into R.

2) Any additional edges needed to transitively close R are inserted into R.
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procedure PreserveSpans(R)
declare

R: a region
h1, h2: vertices of R
Stack: a stack

begin
TransitivelyClose(R)
if R is cyclic then fail fi
Unmark all edges of R
OrderDependentSpans(R)
Stack := EmptyStack()
do

R is acyclic and there exist independent x-span pairs (for some variable x) with heads h1 and h2 →
Push(Stack, R, h1, h2)
AddEdgeAndClose(R, (h1, h2))
OrderDependentSpans(R)

[] R is cyclic and Empty(Stack) → fail
[] R is cyclic and ¬Empty(Stack) →

R, h1, h2 := Pop(Stack)
AddEdgeAndClose(R, (h2, h1))
OrderDependentSpans(R)

od
end

procedure OrderDependentSpans(R)
declare

R: a region
a, b, c, u, v, w: vertices of R
A, B: sets of vertices
x: a variable

begin
while there exists an unmarked edge (v, w) in R do

[1] Mark edge (v, w)
[2] for each variable x ∈(Defs(v) ∪ Uses(v)) ∩ (Defs(w) ∪ Uses(w)) do

/* v is in an x-span and w is in an x-span */
A := { u | v ∈Span(u, x) }  /* heads of x-spans of which v is a member */
B := { u | w ∈Span(u, x) }  /* heads of x-spans of which w is a member */

[3] for each vertex a ∈ A do
[4] for each vertex b ∈ B do
[5] for each c ∈( Span(a, x) − Span(b, x) ) do

if (c, b) ∉ E(R) then AddEdgeAndClose(R, (c, b)) fi
end

end
end

end
end

end

Figure 17. Procedure PreserveSpans introduces edges into region R to preserve the spans of R.

Because R is transitively closed, paths that force span orderings correspond to edges of R; furthermore, the

cost of AddEdgeAndClose is quadratic (rather than cubic) in the number of vertices of R.
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Each edge of R can be marked or unmarked; the edges added to R by AddEdgeAndClose (by either 1) or

2)) are unmarked. Edges are marked at line [1] in OrderDependentSpans. An invariant of the while-loop in

OrderDependentSpans is that for each marked edge e, all spans for which e forces an ordering are appropri-

ately ordered. Thus, after an unmarked edge (v, w) is selected (and marked), the invariant is reestablished

as follows: line [2] generates all variables x for which both v and w are elements of an x-span (but not nec-

essarily the same x-span); lines [3] and [4] iterate over all pairs of x-spans (represented by their heads)

such that v is a member of the first span and w is a member of the second; line [5] orders the two spans as

forced by the presence of edge (v, w).

The initial call on OrderDependentSpans in PreserveSpans serves to introduce edges for all forced span

orderings. The do-od-loop then implements a backtracking algorithm that examines all choices for inde-

pendent span pairs. Each pair of independent spans (represented by their span heads, say h1 and h2) repre-

sents two possibilities—the elements of Span(h1, x) could precede the elements of Span(h2, x), or vice

versa. The first possibility is represented by the call AddEdgeAndClose(R, (h1, h2)), which introduces an

edge directed from h1 to h2; the second possibility (which is tried only in the backtracking step, guarded by

the condition “R is cyclic and ¬Empty(Stack)”) is represented by the call AddEdgeAndClose(R, (h2, h1)).

In both cases, OrderDependentSpans is called to introduce edges for all span orderings forced as a conse-

quence of the new edge. (A single edge, such as (h1, h2), may force an ordering between spans other than

those headed by h1 and h2.)

The information needed for backtracking is kept as a stack of triples: the graph R as it existed before a

given “choice,” span head h1, and span head h2. Backtracking terminates with failure if R is cyclic and the

stack is empty, because no alternative remains to be tried. When R is cyclic but the stack is not empty, one

entry is popped from the stack and the “choice” is tried in the opposite direction. (Since there are only two

choices to be tried for each pair of span heads, there is no Push before continuing the search with the sec-

ond alternative.) PreserveSpans terminates with success if R is acyclic and there remain no independent x-

span pairs.

The cost of OrderDependentSpans can be expressed in terms of the following parameters:
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N the maximum number of vertices in a region
V the number of variables in the program
G the maximum number of spans of which any vertex is a member
S the maximum size of a span

Our statement of the complexity of OrderDependentSpans is based on the assumption that the set opera-

tions Insert, Delete, and MemberOf have unit cost, and that Union, Intersection, and Difference can be per-

formed with linear cost. At most N 2 edges can be inserted in R; for each edge, the processing cost is N 2,

the cost of reclosing R, plus the product of the costs of lines [2], [3], [4], and [5], which are O(V ), O(G),

O(G), and O(S), respectively. Thus, the cost of OrderDependentSpans is bounded by

O(N 2 . (N 2 + V . G2 . S)).

PreserveSpans performs at least one call on OrderDependentSpans; if backtracking is needed, there can

be an additional factor of 2P , where P is the number of independent spans pairs that remain after the initial

call on OrderDependentSpans.

It is possible to side-step entirely the need for backtracking in PreserveSpans by allowing a limited

amount of variable renaming to be performed. In particular, when two x-spans, s1 and s2, are independent,

all occurrences of the name x in s1 (as well as in any x-spans that overlap s1 in the region) can be replaced

by a new name not appearing elsewhere in the program. This renaming removes all problematic choices,

and thus PreserveSpans need never backtrack. The disadvantage of this measure is that the integrated pro-

gram will include variable names that did not appear in either variant, and thus conflicts with our goal that

the integrated program be composed of exactly the statements and control structures that appear as compo-

nents of the base program and its variants. Further work is needed to determine whether this technique will

be necessary in practice.

4.5.4. Examples of interference due to infeasibility

In this section, we illustrate the two ways in which ReconstituteProgram can fail. Failure can occur in pro-

cedure OrderRegion because there is no acceptable ordering for the children of some vertex of the merged

program dependence graph GM . This kind of infeasibility is illustrated in Figure 18. An attempt to inte-

grate any programs Base, A, and B that include the program fragments shown in Figure 18(a) would pro-

duce a merged PDG that includes the subgraph shown in Figure 18(b). OrderRegion would fail because the

children of the vertex “if P” cannot be ordered so as to preserve both the flow edge from “x : = 1” to

“y : = x” and the flow edge from “x : = 2” to “z : = x”.
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x : = 0 x : = 0 x : = 0
if P then x : = 1 fi if P then fi if P then x : = 2 fi
y : = x z : = x

A Base B

(a) Fragments of a base program and two variants.

ENTRY

x : = 0 if P y : = x z : = x

x : = 1 x : = 2

(b) The (infeasible) merged program dependence graph fragment GM .

Figure 18. Illustration of interference due to failure in OrderRegion. Fragments of a base program and two variants,
and the infeasible merged program dependence graph. The vertices of GM cannot be ordered so as to preserve both the
flow edge from “x : = 1” to “y : = x”, and the flow edge from “x : = 2” to “z : = x”.

Failure can also occur in ReconstituteProgram after acceptable orderings are found for the children of

ev ery vertex in GM . After all calls to OrderRegion succeed, TransformToSyntaxTree is used to produce a

program P, P’s program dependence graph GP is built, and GP is compared to GM ; failure occurs if GM

and GP are not identical. This kind of infeasibility is illustrated in Figure 19. Again, an attempt to inte-

grate any programs Base, A, and B that include the program fragments shown in Figure 19(a) would pro-

duce a merged PDG that includes the subgraph shown in Figure 19(b). OrderRegion would succeed, and a

program P that includes the program fragment shown in Figure 19(c) would be produced. P’s program

dependence graph would include the subgraph shown in Figure 19(c), which is not identical to the subgraph

shown in Figure 19(b); thus ReconstituteProgram would fail.

4.6. Recap of the Program Integration Algorithm

The function Integrate, given in Figure 20, takes as input three programs, A, B, and Base, where A and B

are variants of Base. Whenever the changes made to Base to create A and B do not interfere, function Inte-

grate produces a program P that integrates A and B.
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x : = 1
while P do y : = x end while P do od while P do x : = 2 end

A Base B

(a) Fragments of a base program and two variants.

ENTRY

x : = 1 while P

y : = x x : = 2

(b) The (infeasible) merged program dependence graph fragment GM .

x : = 1
while P do

y : = x
x : = 2

end

ENTRY

x : = 1 while P

y : = x x : = 2|

(c) The program fragment Q generated from GM , and Q’s program dependence graph GQ.

Figure 19. Illustration of interference discovered in the final step of ReconstituteProgram. The merged dependence
graph GM , shown in (b), is not identical to the dependence graph of program Q, shown in (c), which is the program
generated from GM by ReconstituteProgram.
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function Integrate(A, B, Base) returns a program or FAILURE
declare

Base, A, B, M : programs
GBase, G A, GB, GM : program dependence graphs

begin
GM := (G A / AP A, Base) ∪ (GB / APB, Base) ∪ (GBase / PPBase, A, B)
if (GM / AP A, Base ≠ G A / AP A, Base) ∨ (GM / APB, Base ≠ GB / APB, Base) then return( FAILURE ) fi
M := ReconstituteProgram(GM )
if M = FAILURE then return( FAILURE ) fi
return(M)

end

Figure 20. The function Integrate takes as input three programs A, B, and Base, where A and B are variants of Base.
Whenever the changes made to Base to create A and B do not interfere, function Integrate produces a program P that
integrates A and B.

The following theorem characterizes the execution behavior of the integrated program produced by func-

tion Integrate in terms of the behaviors of the base program and the two variants [2628].

THEOREM. (INTEGRATION THEOREM [2628]). If A and B are two variants of Base for which integration

succeeds (and produces program M), then for any initial state σ on which A, B, and Base all halt, (1) M

halts on σ , (2) if x is a variable defined in the final state of A for which the final states of A and Base dis-

agree, then the final state of M agrees with the final state of A on x, (3) if y is a variable defined in the final

state of B for which the final states of B and Base disagree, then the final state of M agrees with the final

state of B on y, and (4) if z is a variable on which the final states of A, B, and Base agree, then the final

state of M agrees with the final state of Base on z.

Restated less formally, M preserves the changed behaviors of both A and B (with respect to Base) as

well as the unchanged behavior of all three.

The cost of algorithm Integrate breaks down into three components: (1) building the program depen-

dence graphs for Base, A, and B, (2) building the merged program dependence graph GM and determining

whether the changed behaviors of A and B are preserved in GM , and (3) reconstituting a program from GM .

1) Building a program dependence graph is dominated by the cost of computing reaching definitions;

for the limited language considered here, this has cost

O((# program components) . (# of assignment statements)).

2) Function AffectedPoints (Figure 5) is linear in the size of its arguments; slicing a graph is linear in

the size of the slice. Consequently, the cost of creating the merged graph GM is linear in the sum of

the sizes of GBase, G A, and GB. Similarly, the cost of testing for interference by the test described in
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Section 4.4 is linear in the sum of the sizes of G A, GB, and GM .

3) The cost of ReconstituteProgram is dominated by the cost of the calls on PreserveSpans made by

OrderRegion. If no backtracking is needed, the cost of ReconstituteProgram is

O(R . N 2 . (N 2 + V . G2 . S)), where R is the number of regions in the program, and other quantities

are as described in Section 4.5.3; backtracking can contribute an additional exponential factor for

each region.

5. APPLICATIONS TO PROGRAMMING IN THE LARGE

An environment for programming in the large addresses problems of organizing and relating designs, docu-

mentation, individual software modules, software releases, and the activities of programmers. The manipu-

lation of related versions of programs is at the heart of these issues. In many respects, program integration

is the key operation in an environment to support programming in the large. Three specific applications for

program integration are discussed below.

5.1. Propagating Changes Through Related Versions

The program-integration problem arises when a family of related versions of a program has been created

(for example, to support different machines or different operating systems), and the goal is to make the

same change (e.g., an enhancement or a bug-fix) to all of them. Our program-integration algorithm pro-

vides a way for changes made to the base version to be automatically installed in the other versions.

For example, consider the diagram shown in Figure 21, where Figure 21(a) represents the original devel-

opment tree for some module (branches are numbered as in RCS [29]). In Figure 21(b), the variant num-

bered “1.1.2.1” represents the enhanced version of the base program “1.1” (created by editing a copy of

base program “1.1”). Variant “1.1.2.2,” which is obtained by integrating “1.1.2.1” and “1.2” with respect to

“1.1,” represents the result of propagating the enhancement to “1.2.” Figure 21(c) represents the new dev el-

opment history after all integrations have been performed and the enhancement has been propagated to all

versions.

5.2. Separating Consecutive Program Modifications

Another application of program integration permits separating consecutive edits on the same program into

individual edits on the original base program. For example, consider the case of two consecutive edits to a

base program O; let O + A be the result of the first modification to O and let O + A + B be the result of the
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1.1

1.2

1.3

1.4

1.1.1.1

1.1.1.2 1.2.1.1

(a)

1.1

1.2

1.3

1.4

1.1.1.1

1.1.1.2 1.2.1.1

1.1.2.1

1.1.2.2

(b)

1.1

1.1.2.1

1.1.2.2

1.1.2.3

1.1.2.4

1.1.2.1.1.1

1.1.2.1.1.2 1.1.2.2.1.1

(c)

Figure 21. Propagating changes through a development-history tree.

modification to O + A. Now suppose we want to create a program O + B that includes the second modifica-

tion but not the first. This is represented by situation (a) in the following diagram:

O

O+A O+B

O+A+B

(a)

O+A

O+A+B O

O+B

(b)

Under certain circumstances, the development-history tree can be re-rooted so that O + A is the root; the

diagram is turned on its side and becomes a program-integration problem (situation (b)). The base program

is now O + A, and the two variants of O + A are O and O + A + B. Instead of treating the differences

between O and O + A as changes that were made to O to create O + A, they are now treated as changes

made to O + A to create O. For example, when O is the base program, a statement s that occurs in O + A

but not in O is a “new” statement arising from an insertion; when O + A is the base program, we treat the

missing s in O as if a user had deleted s from O + A to create O. Version O + A + B is still treated as being

a program version derived from O + A. O + B is created by integrating O and O + A + B with respect to

base program O + A.
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5.3. Optimistic Concurrency Control

An environment for programming in the large must provide concurrency control, i.e., it must resolve simul-

taneous requests for access to a program. Traditional database approaches to concurrency control assume

that transactions are very short-lived, and so avoid conflict using locking mechanisms. This solution is not

acceptable in programming environments where transactions may require hours, days, or weeks.

An alternative to locking is the use of an optimistic concurrency control strategy: grant all access

requests and resolve conflicts when the transactions complete. The success of an optimistic concurrency

control strategy clearly depends on the existence of an automatic program-integration algorithm to provide

acceptable conflict resolution.

6. RELATION TO PREVIOUS WORK

We are not aware of any other work that permits the integration of program variants so as to preserve

changes to a base program’s behavior. One piece of work that addresses a related, but different problem is

[7]; however, it treats the integration of program extensions, not program modifications:

A program extension extends the domain of a partial function without altering any of the initially
defined values, while a modification redefines values that were defined initially [7].

In [7], functions A and B are merged without regard to Base. The function that results from the merge pre-

serves the (entire) behavior of both; thus, A and B cannot be merged if they conflict at any point where both

are defined. In contrast, this paper addresses the integration of modifications (in the sense defined in [7],

quoted above). With our technique, a program that results from merging A and B preserves the changed

behavior of A with respect to Base, the changed behavior of B with respect to Base, and the unchanged

behavior common to all three.

In the rest of this section, we discuss some technical differences between the program dependence graphs

and operations on them that are used in this paper and those used by others.

6.1. Program Dependence Graphs

There are several reasons for our use of program dependence graphs that include def-order dependence

edges but omit anti- and output dependence edges. The basic problem is that, for the purposes of program

integration, anti- and output dependences impose unnecessary ordering constraints. Tw o consequences of

this problem are illustrated in Figures 22 and 23. Figure 22 shows a base program and two variants, the

program dependence graphs that would be built for the three programs if program dependence graphs were
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x : = 10 x : = 11
a : = x b : = x
x : = 12 x : = 12 x : = 12

A Base B

(a) The base program and two variants.

ENTRY

x : = 10 a : = x x : = 12

o

-1

ENTRY

x : = 12

ENTRY

x : = 11 b : = x x : = 12

o

-1

(b) The program dependence graphs (with control, flow, anti-, and output dependences).

ENTRY

x : = 10 a : = x x : = 11 b : = x x : = 12

o o

-1
-1

(c) The merged program dependence graph.

Figure 22. A base program and two variants, the program dependence graphs that would be built for the three pro-
grams if program dependence graphs were to include anti- and output dependence edges, and the merged graph. Con-
trol dependence edges are shown in boldface; flow dependence edges are shown using (unlabeled) arrows; output de-
pendence edges are shown using arrows labeled “o”; anti-dependence edges are shown using arrows labeled “-1”.

to include anti- and output dependence edges, and the merged graph that combines the changed computa-

tions of the variants with the computation common to all three programs. The merged graph is infeasible; it

is not possible to order the assignments to x so as to preserve the merged graph’s anti- and output depen-

dences. In contrast, if anti- and output dependences are omitted from the program dependence graphs of

this example, the merged graph is feasible, and corresponds to both of the programs shown in Figure 23

(ignore the anti- and output dependence annotations).
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x : = 10

a : = x

x : = 11

b : = x

x : = 12

x : = 11

b : = x

x : = 10

a : = x

x : = 12

o

o

o

o

-1

-1

-1

-1

Figure 23. Tw o strongly equivalent programs with different sets of anti- and output dependences (anti-dependences are
shown to the right of the program using arrows labeled “-1”; output dependences are shown to the left of the program
using arrows labeled “o”). The programs have the same (empty) sets of def-order dependences, and the same sets of
flow dependences.

Figure 23 illustrates a second advantage of using def-order dependences rather than anti- and output

dependences; using def-order dependences allows a larger class of equivalent programs to have the same

program dependence graph. Figure 23 shows two strongly equivalent programs that have different sets of

anti- and output dependences (and thus would have different program dependence graphs if such graphs

included anti- and/or output dependences). The programs have the same (empty) sets of def-order depen-

dences, and the same sets of flow dependences; thus, they hav e the same program dependence graphs using

the definition from this paper.

6.2. Operations on Program Dependence Graphs

The problem of generating program text from a program dependence graph has previously been addressed

only in a context that admits a considerably simpler solution. In previous work, the program dependence

graph is known to correspond to some program. For example, in the work on program slicing, because the

slice is derived from a program dependence graph whose text is known, when creating the textual image of

a slice, it suffices to take the text of the original program and delete all tokens that do not correspond to

components of the slice [24].

Our work requires a solution to a more general problem because the final program dependence graph is

created by merging three other program dependence graphs. The merged program dependence graph may

not correspond to any program at all, but even if it does, this program is not known a priori, when Recon-

stituteProgram is invoked. As shown in [1416], the problem of deciding whether a PDG is feasible is NP-

complete.
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Ferrante and Mace describe an algorithm for generating sequential code for programs written in a lan-

guage with a multiple GOTO operator and impose the condition that the algorithm not duplicate any code

in this process [10]. Programs written in the language they consider have a close correspondence to the

subgraph of control dependences of a program dependence graph. They discuss the application of their

algorithm to compiling a program dependence graph for execution on a sequential machine; however, they

assume that only a certain class of optimizing transformations has been applied to the original (feasible)

PDG. They assert that the transformations of this class preserve the property that the resulting graph is fea-

sible. Thus, while their results are relevant to generalizing ReconstituteProgram to work on PDGs gener-

ated from programs with arbitrary control flow [11], they will have to be extended to account for the possi-

bility of infeasibility.

7. EXTENSIONS AND FUTURE WORK

In this paper, the problem of program integration is studied in an extremely simplified setting. For this rea-

son, the algorithm described in the paper is not yet applicable to real programming languages; however, we

feel that the approach that we have dev eloped provides a strong foundation for creating a system that sup-

ports program integration. In this section, we describe some of the issues we have addressed in extending

our work, and we outline some problems for future research.

7.1. Applicability to Realistic Languages

Among the obvious deficiencies of the present study are the absence of numerous programming constructs

and data types found in languages used for writing “real” programs. Certainly one area for further work is

to extend the integration method to handle additional programming language constructs, such as declara-

tions, break statements, and I/O statements, as well as other data types, such as records and arrays.

The major challenge when extending the integration method to handle other programming language con-

structs is devising a suitable extension of the program dependence representation. For example, the sim-

plest way of handling arrays is to treat an update to any cell as a conditional update to the entire array.

However, this strategy would preclude the integration of some non-interfering variants. Analyses of array

index expressions developed for vectorizing compilers provide sharper information about the actual depen-

dences among array references [6 [31, 2]3]. Because the definition of program dependence graphs that we

use for program integration differs from that used in previous work, previous results in this area will require

adaptation.
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We hav e recently made progress towards handling languages with procedure calls and pointer-valued

variables. Our results in these areas are summarized below.

7.1.1. Interprocedural slicing using dependence graphs

As a first step toward extending our integration algorithm to handle languages with procedures, we have

devised a multi-procedure dependence representation and have dev eloped a new algorithm for interprocedu-

ral slicing that uses this representation [15]. The algorithm generates a slice of an entire system, where the

slice may cross the boundaries of procedure calls. It is both simpler and more precise than the one previous

algorithm given for interprocedural slicing [30].

The method described in [30] does not generate a precise slice because it fails to account for the calling

context of a called procedure. The imprecision of the method can be illustrated using the following exam-

ple:

program Main

sum : = 0;

x : = 1;

while x < 11 do
call Add(sum, x);

call Add(x, 1)

end
end(x, sum)

procedure Add(a, b)

a : = a + b

return

Using the algorithm from [30] to slice this system with respect to variable x at the end of program Main,

we obtain everything except the final use of sum at the end of program Main:

program Main

sum : = 0;

x : = 1;

while x < 11 do
call Add(sum, x);

call Add(x, 1)

end
end(x)

procedure Add(a, b)

a : = a + b

return

However, further inspection shows that the value of x at the end of program Main is not affected by the first

call on Add in Main, nor by the initialization of sum in Main. The reason these components are included

in the slice is (roughly) the following: the statement “call Add(x, 1)” in program Main causes the slice to
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“descend” into procedure Add . When the slice reaches the beginning of Add it “ascends” to all sites that

call Add , both the site in Main at which it “descended” as well as the (irrelevant) site “call Add(sum, x).”

In contrast, our algorithm for interprocedural slicing correctly accounts for the calling context of a called

procedure; on the example given above, the first call on Add in Main and the initialization of sum in Main

are both correctly left out of the slice:

program Main

x : = 1;

while x < 11 do
call Add(x, 1)

end
end(x)

procedure Add(a, b)

a : = a + b

return

A key element of this algorithm is an auxiliary structure that represents calling and parameter-linkage rela-

tionships. This structure, called the linkage grammar, takes the form of an attribute grammar. Transitive

dependences due to procedure calls are determined using a standard attribute-grammar construction: the

computation of the nonterminals’ subordinate characteristic graphs. These dependences are the key to the

slicing algorithm; they permit the algorithm to “come back up” from a procedure call (e.g., from procedure

Add in the above example) without first descending to slice the procedure (it is placed on a queue of proce-

dures to be sliced later). This strategy prevents the algorithm from ever ascending to an irrelevant call site

[15].

7.1.2. Dependence analysis for pointer variables

To incorporate pointer-valued variables, an analysis of pointer usage is necessary; without the information

that such an analysis provides, an update via a dereferenced pointer has to be considered a potential update

to every location in memory.

We hav e devised a method for determining data dependences between program statements for program-

ming languages that have pointer-valued variables (e.g., Lisp and Pascal). The method determines data

dependences that reflect the usage of heap-allocated storage in such languages, which permits us to build

(and slice) program dependence graphs for programs written in such languages. The method accounts for

destructive updates to fields of a structure and thus is not limited to simple cases where all structures are

trees or acyclic graphs; the method is applicable to programs that build up structures that contain cycles.
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Unlike the situation that exists for programs with (only) scalar variables, where there is a fixed “layout”

of memory, for programs that manipulate heap-allocated storage not all accessible memory locations are

named by program variables. In the latter situation new memory locations are allocated dynamically in the

form of cells taken from the heap. To compute data dependences between constructs that manipulate and

access heap-allocated storage, our starting point is the method described by Jones and Muchnick in [20],

which, for each program point q, determines a set of structures that approximate the different “layouts” of

memory that can possibly arise at q during execution. We extend the domain employed in the Jones-

Muchnick abstract interpretation so that the (abstract) memory locations are labeled by the program points

that set their contents. Flow dependences are then determined from these memory layouts according to the

component labels found along the access paths that must be traversed to evaluate the program’s statements

and predicates during execution.

7.2. An Interactive Integration Tool

It remains to be seen how often integrations of real changes to programs of substantial size can be automati-

cally accommodated by our integration technique. Due to fundamental limitations on determining informa-

tion about programs via data-flow analysis and on testing equivalence of programs, both the procedure for

identifying changed computations and the test for interference must be safe rather than exact. Conse-

quently, the integration algorithm will report interference in some cases where no real conflict exists.

Whether or not fully automatic integration is a realistic proposition can be determined only through experi-

ence; an integration tool must be built and used on real programs.

A successful integration tool will certainly have to provide facilities for programmers to cope with

reported interference—facilities that would enable diagnosing spurious interference of the kind described

above, as well as aids for resolving true conflicts. For these situations it is not enough merely to detect and

report interference; one needs a tool for semi-automatic, interactive integration so that the user can guide

the integration process to a successful completion. Some rudimentary diagnostic facilities have been incor-

porated in a prototype program-integration tool embedded in an editor created using the Synthesizer Gener-

ator [2527]. The tool’s integration command invokes the integration algorithm on a base program and two

variants and reports whether the variant programs interfere. If interference is reported, it is possible for the

user to examine sites of potential conflicts—sites which may or may not represent actual conflicts.

(Roughly speaking, the sites reported are those at which slices of the two variants become “intertwined” in

the merged graph.) The tool’s slice command makes it possible for the user to display the elements of pro-
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gram slices; slicing can be invoked to provide further information about potential integration conflicts.

Further work on this tool is needed to provide capabilities for the user to resolve conflicts and create a

satisfactory merged program. Renaming program variables and suppressing dependences between program

components would be two ways a user might interact with an interactive integration tool. Conflict-

resolution facilities could operate directly on the merged program dependence graph, which is built by the

integration algorithm whether or not the variants interfere.

7.3. Alternative Program-Integration Criteria

We anticipate that it will be useful to define variations on the technique presented in this paper. It will

undoubtably be desirable for users to be able to supply pragmas to furnish additional information to the

program-integration system. For example, a user-supplied assertion that a change to a certain module in

one variant does not affect its functionality (only its efficiency, for example) could be used to limit the

scope of slicing and interference testing.

A somewhat different possibility exists when one can anticipate that a successfully integrated program

will never hav e to be examined by a human programmer. Under these conditions, there are perhaps more

liberal notions of program integration; for example, the integration procedure should be permitted to

rename freely any variable that occurs in the program.

Finally, there may be cases where it is desirable for programs produced through integration to have

somewhat different semantic properties than those guaranteed by the algorithm given above. For example,

consider the integration of programs that contain I/O statements. I/O statements could be treated as

accesses to two special objects input and output, which may be thought of as streams that are updated

whenever operations are performed on them. For example, an output statement “write x” could be treated

as an assignment “output : = output | StringValueOf(x),” where the symbol “|” represents string concatena-

tion. Consequently, output statements would be treated just like assignment statements in terms of detect-

ing changes to a base program’s behavior, and the relative order of output statements appearing in a pro-

gram P would be captured in GP by flow dependence edges [24]. Unfortunately, the integration of a base

program with two variants that both affect the output stream would fail due to interference. Thus, it may be

useful to develop an alternative representation for output statements in dependence graphs that would allow

the creation of an integrated program that would not necessarily preserve the output stream of either vari-

ant, but instead produce an interleaving of their output streams. In cases where interleaved output is an

appropriate property, this might make it possible to perform integrations that would otherwise fail.
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