A Proofs

Proof of Lemma 7.1. Observe that S^k is monotonic in k. Hence the lemma is equivalent to the following stronger claim: if $A(u)(i)$ is defined, then there exists a k such that $S^n(u)(i)$ is defined and equal to $A(u)(i)$, for all $n \geq k$. The proof is by induction on the program execution steps, i.e., $step(u, i)$, and is divided into a number of cases corresponding to the different types of vertices. In each case, the argument follows the following general outline:

1. If $A(u)(i)$ is defined, then program point u executes at least i times. From the properties observed earlier, $A(u)(i)$ is shown to be some function f_u of the values computed at some other program points at particular instances:

 $$A(u)(i) = f_u(A_{u_1}(1\ldots i_1), A_{u_2}(1\ldots i_2), \ldots),$$

 where $step(u_j, i_j) < step(u, i)$, for all j.

2. From the inductive hypothesis, we assume the existence of a k such that $S^k(u)(1\ldots i_j)$ is defined and equal to $A(u_j)(1\ldots i_j)$, for all j.

3. We then look at the definition of $S^{k+1}(u)$, obtained from the set of recursive equations,

 $$S^{k+1}(u) = F_u(S^k(v_1), S^k(v_2), \ldots),$$

 and show that $S^{k+1}(u)(i)$ is defined and equal to $f_u(A_{u_1}(1\ldots i_1), A_{u_2}(1\ldots i_2), \ldots)$, completing the proof.

Case 1: Let u be the Start vertex or some Initialize vertex. This is the base case, and the proof is trivial. Under an appropriate interpretation of these vertices, u executes only once. From the definition, we can easily verify that $S^1(u)(1)$ is defined and equal to $A(u)(1)$.

Case 2: Let u be a FinalUse vertex. Let v be its sole reaching definition. Both u and v can execute at most one time, and v must execute before u. The result follows trivially.

Case 3: Let u be a ϕ_T or ϕ_F vertex. Assume, without loss of generality, that u is a ϕ_T vertex. Let v denote $parent(u)$ and w denote $dataPred(u)$. From property 11 in §6, $j = index(A(v), i, true)$ must be defined and

$$step(w, j) < step(v, j) < step(u, i) < step(w, j + 1)$$

and $A(u)(i)$ must be equal to $A(w)(j)$. From the inductive hypothesis, there exists a k such that $S^k(w)(1\ldots j)$ is defined and equal to $A(w)(1\ldots j)$ and $S^k(v)(1\ldots j)$ is defined and equal to $A(v)(1\ldots j)$ (and, in particular, $index(S^k(v), i, true) = j$). By definition,

$$S^{k+1}(u) = select(true, S^k(v), S^k(w))$$

It is a property of $select$ that $S^{k+1}(u)(i)$ is defined and equal to $A(u)(i)$.

Case 4: Let u be a ϕ_y vertex. Let v be $ifNode(u)$, x be $trueDef(u)$ and y be $falseDef(u)$. Obviously, the $parent$ of both x and y is v. As observed in §6, $step(v, i) < step(u, i)$ (property 8), $step(x, j) < step(u, i)$ (property 12),

1
and \(\text{step}(y,i-j) < \text{step}(u,i) \) (property 12), where \(j = \#(A(v),i,true) \) and \(i-j = \#(A(v),i,false) \). Furthermore, from property 13,

\[
A(u)(i) = \begin{cases}
 A(x)(j) & \text{if } A(v)(i) \\
 A(y)(i-j) & \text{otherwise}
\end{cases}
\]

From the inductive hypothesis, there exists a \(k \) such that \(S^k(v)(1\ldots i) = A(v)(1\ldots i) \), \(S^k(x)(1\ldots j) = A(x)(1\ldots j) \), and \(S^k(y)(1\ldots i-j) = A(y)(1\ldots i-j) \), while from the definition,

\[
S^{k+1}(u) = \text{merge}(S^k(v),S^k(x),S^k(y))
\]

It follows that \(S^{k+1}(u)(i) \) is defined and equal to \(A(u)(i) \), as required.

Case 5: Let \(u \) be a \(\phi_{\text{Ext}} + \phi_{\text{while}} \) vertex. As can be seen from the defining equations in these cases, these are similar to \(\phi_T \) and \(\phi_T \) vertices, and the proof is similar, too.

Case 6: Let \(u \) be a \(\phi_{\text{Ext}} \) vertex. Let \(v, x, \) and \(y \) be whileNode\((u)\), outer\(\text{Def}(u)\), and inner\(\text{Def}(u)\), respectively. Let \(w \) be the parent of \(x \) and \(v \). Assume, without loss of generality, that the control dependences \(w \to v \) and \(w \to u \) are labeled true. Consider the case \(i = 1 \) first. We showed in §6 (property 14) that \(\text{step}(x,1) < \text{step}(u,1) \), and that \(A(u)(1) \), if defined, must be equal to \(A(x)(1) \). Consider \(i > 1 \). Again, we showed that \(\text{step}(v,i-1) < \text{step}(u,i) \), \(\text{step}(x,j) < \text{step}(u,i) \), and \(\text{step}(y,i-j) < \text{step}(u,i) \), where \(j = \#(A(v),i-1,false) + 1 \).

Furthermore,

\[
A(u)(i) = \begin{cases}
 A(y)(i-j) & \text{if } A(v)(i-1) \\
 A(x)(j) & \text{otherwise}
\end{cases}
\]

The hypothesis implies the existence of a \(k \) such that \(S^k(v)(1\ldots i-1) = A(v)(1\ldots i-1) \), \(S^k(y)(1\ldots i-j) = A(y)(1\ldots i-j) \), and \(S^k(x)(1\ldots j) = A(x)(1\ldots j) \). By definition,

\[
S^{k+1}(u) = \text{whileMerge}(S^k(v),S^k(y),S^k(x))
\]

The properties of \(\text{whileMerge} \) imply that \(S^{k+1}(u)(i) \) is defined and equal to \(A(u)(i) \).

Case 7: Let \(u \) be a \(\phi_{\text{copy}} \) vertex. The proof is similar to the above one, simplified by the fact that there is no definition of \(\text{varDef}(u) \) inside the loop. Let \(v \) denote whileNode\((u)\), and \(w \) denote data\(\text{Pred}(u)\). We showed in §6 (property 15) that \(\text{step}(v,i-1) < \text{step}(u,i) \), \(\text{step}(w,j) < \text{step}(u,i) \), where \(j = \#(A(v),i-1,false) + 1 \), and that \(A(u)(i) \) must be equal to \(A(w)(j) \). From the hypothesis, there exists a \(k \) such that

\[
S^k(v)(1\ldots i-1) = A(v)(1\ldots i-1)
\]

and

\[
S^k(w)(1\ldots j) = A(w)(1\ldots j)
\]

and by definition

\[
S^{k+1}(u) = \text{whileCopy}(S^k(v),S^k(w))
\]
It follows that $S^{k+1}(u)(i)$ is defined and equal to $A(u)(i)$, as required.

Case 8: Let u be an assignment statement, if predicate, or while predicate, and let u have at least one data-dependence predecessor. Let u_1, u_2, \ldots, u_n represent the n data-dependence predecessors of u. We know that $\text{step}(u_j, i) < \text{step}(u, i)$ for all $j \leq n$ (property 8), and that $A(u)(i)$ must be equal to $\text{functionOf}(u)(A(u_1)(i_1), \ldots, A(u_n)(i_n))$ (property 9). From the inductive hypothesis, there exists a k such that, for $1 \leq j \leq n$,

$$S^k(u_j)(1 \ldots i) = A(u_j)(1 \ldots i)$$

By definition,

$$S^{k+1}(u) = \text{map}(\text{functionOf}(u))(S^k(u_1), \ldots, S^k(u_n))$$

It follows that $S^{k+1}(u)(i)$ is defined and equal to $A(u)(i)$.

Case 9: Let u be a constant-valued assignment statement or if predicate. Let v be u’s parent. Assume, without loss of generality, that the control dependence $v \rightarrow_c u$ is labeled true. We know from property 10 of §6 that $j = \text{index}(A(v), i, \text{true})$ must be defined and that

$$\text{step}(v, j) < \text{step}(u, i)$$

Hence, there exists a k such that $S^k(v)(1 \ldots j)$ is defined and equal to $A(v)(1 \ldots j)$. By definition,

$$S^{k+1}(u) = \text{replace}(\text{true}, c, S^k(v))$$

and the required result follows.

Case 10: Let u be a constant-valued while predicate. If the constant is false, the vertex behaves just like vertices in the previous case. If the constant is true, and if u executes at least once, then there must be a k and j such that $S^k(v)(j)$ is defined and the same as $\text{label}(v, u)$, where v is u’s parent. From the definition, it can be seen that $S^{k+1}(u)$ is an infinite sequence of trues, satisfying the requirement.

We have proved the lemma for each possible value of $\text{typeOf}(u)$, and hence the lemma follows.

Proof of Lemma 7.3. The proof is by induction on k. Assume that the program terminates normally and that $S^k(u)(i)$ is defined. We show that $A(u)(i)$ is defined. The equality of $A(u)(i)$ and $S^k(u)(i)$ then follows from the previous lemma and the fact that $S^k(u)$ is monotonic in k.

Now, $A(u)(i)$ is defined iff u executes i times. Thus, it is enough to show that u executes i times, which we do below. (Similarly, the inductive hypothesis may be interpreted as: if $S^{k-1}(v)(j)$ is defined, then $A(v)(j)$ is defined and, hence, v must have executed j times.)

Case 1: Let u be the Start vertex or some Initialize vertex. The proof is trivial in this case.

Case 2: Let u be a FinalUse vertex. Let v denote dataPred(u). By definition, $S^k(u) = S^{k-1}(v)$. Thus, if $S^k(u)(i)$ is defined, then so is $S^{k-1}(v)(i)$. From the inductive hypothesis, program point v must have executed i times (which also
means that \(i \) must be 1, but that is immaterial). Since \(u \) and \(v \) have the same control-dependence predecessors, \(u \) must also execute \(i \) times (before the program can terminate normally).

Case 3: Let \(u \) be a \(\phi_T \) vertex. Let \(v \) denote \(ifNode(u) \) and \(w \) denote \(dataPred(u) \). By definition, \(S^k(u) = select(true, S^{k-1}(v), S^{k-1}(w)) \) Hence, if \(S^k(u)(i) \) is defined, then \(S^{k-1}(v) \) must contain at least \(i \) true values. The hypothesis implies that \(v \) must have evaluated to true at least \(i \) times. Hence \(u \) must execute for an \(i^{th} \) time. The proof is similar for a \(\phi_F \) vertex.

Case 4: Let \(u \) be a \(\phi_y \) vertex. Let \(w,x, \) and \(y \) denote \(ifNode(u), trueDef(u) \), and \(falseDef(u) \), respectively. Then, \(S^k(u) = select(false, S^{k-1}(v), S^{k-1}(w)) \). If \(S^k(u)(i) \) is defined, then \(S^{k-1}(v)(i) \) must also be defined. The hypothesis implies that \(w \) must have executed \(i \) times. Consequently, \(u \) must also have executed \(i \) times.

Case 5: Let \(u \) be a \(\phi_{Exit} \) vertex. Let \(v \) and \(w \) denote \(whileNode(u) \) and \(dataPred(u) \), respectively. Then, \(S^k(u) = select(false, S^{k-1}(v), S^{k-1}(w)) \). If \(S^k(u)(i) \) is defined, then \(S^{k-1}(v) \) must contain at least \(i \) occurrences of false. From the inductive hypothesis, the corresponding while loop must have completed execution at least \(i \) times. Hence \(u \) must have executed at least \(i \) times.

Case 6: Let \(u \) be a \(\phi_{Enter} \) vertex. The proof is similar to the case of a \(\phi_T \) vertex.

Case 7: Let \(u \) be a \(\phi_{Enter} \) vertex. Let \(v, y \), and \(x \) denote \(whileNode(u), innerDef(u) \), and \(outerDef(u) \), respectively. Then, \(S^k(u) = whileMerge(S^{k-1}(v), S^{k-1}(y), S^{k-1}(x)) \). Consider the case \(i = 1 \). If \(S^k(u)(1) \) is defined, then \(S^{k-1}(x)(1) \) must be defined, too. Hence, \(x \) must have executed at least once, from the induction hypothesis. Consequently, \(u \) must have executed at least once, too. Consider the case \(i > 1 \). If \(S^k(u)(i) \) is defined, \(S^{k-1}(v)(1 \ldots i - 1) \) must be defined, too. Consequently, \(v \) must have executed \(i - 1 \) times, by the induction hypothesis. Suppose it evaluated to true in the \(i - 1^{th} \) time, i.e., assume \(S^{k-1}(v)(i - 1) \) were true. Then \(u \) must subsequently execute, for an \(i^{th} \) time. On the other hand, let \(S^{k-1}(v)(i - 1) \) be false. Let \(j = \#(S^{k-1}(v), i - 1, false) \). Then, \(S^{k-1}(x)(j + 1) \) must be defined. That is, \(x \) must have executed at least once after \(u \) had executed \(i - 1 \) times. Hence, \(u \) must execute for an \(i^{th} \) time, too.

Case 8: Let \(u \) be a \(\phi_{Copy} \) vertex. The proof is just as in the previous case.

Case 9: Let \(u \) be an \(assignment \), if predicate, or \(while \) predicate, with \(n \) data-dependence predecessors \(u_1 \ldots u_n \), where \(n > 0 \). Then, \(S^k(u) = map(f)(S^{k-1}(u_1), \ldots, S^{k-1}(u_n)) \). If \(S^k(u)(i) \) is defined, then \(S^{k-1}(u_j)(i) \) must be defined, for all \(j \). Thus, \(u_j \) must have executed \(i \) times. Hence, \(u \) must also execute \(i \) times, because \(u \) and all the \(u_j \) have the same control-dependence predecessors.

Case 10: Let \(u \) be a constant-valued assignment statement or if predicate. Let \(v \) be \(u \)'s parent. Assume, without loss of generality, that the control dependence \(v \rightarrow_c u \) is labeled true. Then \(S^k(u) = replace(true, functionOf(u), S^{k-1}(v)) \). Thus, if \(S^k(u)(i) \) is defined, then \(S^{k-1}(v) \) must contain at least \(i \) occurrences of true. Hence, \(v \) must have evaluated to true at least \(i \) times. So, \(u \) must execute at least \(i \) times.

4
Case 11: Let u be a constant-valued *while* predicate. If the constant is *false*, the vertex behaves like the vertices in the previous case. Otherwise, if $S^k(u)(i)$ is defined, then its parent v must have evaluated to $\text{label}(v, u)$ at least once, which would have caused u to execute. This would have resulted in an infinite loop, contradicting the assumption that the program halts. Hence $S^k(u)$ must be a null sequence, for any k, completing the proof.