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Abstract. The need to integrate severa versions of a program into a common one arises frequently, but it is a
tedious and time consuming task to merge programs by hand. The program-integration algorithm proposed by
Horwitz, Prins, and Reps provides a way to create a semantics-based tool for integrating a base program with
two or more variants. The integration algorithm is based on the assumption that any change in the behavior,
rather than the text, of a program variant is significant and must be incorporated in the merged program. Anin-
tegration system based on this agorithm will determine whether the variants incorporate interfering changes,
and, if they do not, create an integrated program that includes all changes as well as all features of the base pro-
gram that are preserved in al variants. To determine this information, the agorithm employs a program
representation that is similar to the program dependence graphs that have been used previously in vectorizing
and parallelizing compilers.

This paper studies the algebraic properties of the program-integration operation, such as whether there are
laws of associativity and distributivity. (For example, in this context associativity means: “If three variants of a
given base are to be integrated by a pair of two-variant integrations, the same result is produced no matter which
two variants are integrated first.”) To answer such questions, we reformulate the Horwitz-Prins-Reps integration
algorithm as an operation in a Brouwerian algebra constructed from sets of dependence graphs. (A Brouwerian
algebra is a distributive lattice with an operation a = b characterized by a=bc iff aCbLic.) In this agebra,
the program-integration operation can be defined solely intermsof Ly, 1, and =. By making use of therich set
of algebraic laws that hold in Brouwerian algebras, we have established a number of the integration operation’s
algebraic properties.

1. Introduction

1.1. TheProgram-Integration Problem

The need to integrate several versions of a program into a common one arises frequently, but it is a tedi-
ous and time consuming task to merge programs by hand. Given a program P and a set of variants of P—
created, say, by modifying separate copies of P—the goal is to determine whether the modifications inter-
fere, and, if they do not, to create an integrated program that includes all changes as well as al features of
P that are preserved in all variants [10]. Opportunities for program integration arise in many situations:

(1) A system may be “customized” by a user while simultaneously being upgraded by a maintainer.
When the next release of the system is sent to the user, he must integrate his customized version of
the system and the newly released version with respect to the earlier release so as to incorporate
both his customizations and the upgrades.

(2) While systems are being created, program development is often a cooperative activity that involves
multiple programmers. |f atask can be decomposed into independent pieces, the different aspects of
the task can be developed and tested independently by different programmers. However, if such a
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decomposition is not possible, the members of the programming team must work with multiple,
separate copies of the source files, and the different versions of the files must ultimately be
integrated to produce a common version.

(3) Suppose atree or dag of related versions of a program exists (to support different machines or dif-
ferent operating systems, for instance), and the goal is to make the same enhancement or bug-fix to
al of them. For example, if the change is made to the root version—by manually modifying a copy
of the root program—the process of installing the change in all other versions requires a succession
of program integrations.

Anyone who has had to reconcile divergent lines of development will recognize these situations and
appreciate the need for automatic assistance.
At present, the only available tools for integration implement an operation for merging files as strings of

text, such as the UNix? utility diff3. This approach has the advantage that the current tools are as applica-
ble to merging documents, data files, and other text objects as they are to merging programs. However,
these tools are necessarily of limited utility for integrating programs because the manner in which two pro-
grams are merged is not safe—one has no guarantees about the way the program that results from a purely
textual merge behaves in relation to the behaviors of the programs that are the arguments to the merge.
For example, if one variant contains changes only on lines 5-10, while the other variant contains changes
only on lines 15-20, diff3 would deem these changes to be interference-free; however, just because
changes are made at different places in a program is no reason to believe that the changes are free of
undesirable interactions. The merged program produced by such a tool must, therefore, be checked care-

fully for conflicts that might have been introduced by the merge.?

Our goal isto design a semantics-based tool for program integration. We want a tool that—given pro-
gram Base and two variants A and B—makes use of knowledge of the programming language to determine
whether the changes made to Base to produce A and B have undesirable semantic interactions; only if
there is no such interference should the tool produce a merged program M.

While our long-term goal isto design such atool for a full-fledged programming language, for now we
are using a simplified model of the program-integration problem so as to make it amenable to theoretical
study. This model possesses the essential features of the problem, and thus permits us to conduct our stu-
dies without being overwhelmed by inessential details. Our integration model has the following charac-
teristics:

(1) Werestrict our attention to the integration of programs written in a simple programming language
that has only assignment statements, conditional statements, while loops, and final output statements
(called end statements); by definition, only those variables listed in the end statement have valuesin
the final state. The language does not include input statements; however, a program can use a vari-
able before assigning to it, in which case the variable€’ s value comes from the initial state.

(2) When anintegration algorithm is applied to base program Base and variant programs A and B, and if
integration succeeds—producing program M—then for any initial state o on which Base, A, and B

1UNIx isaTrademark of AT& T Bell Laboratories.

2Several managers in industry have told me that their mechanism to avoid integration conflicts is based on the modular structure of
systems. They assign overall responsibility for a given module of a system to a particular programmer, and institute a policy that any
changes to a module must be cleared with the person responsible. However, the notion that module boundaries protect against
interference—even in conjunction with the above policy—is as flawed as the notion used in diff3. Both rely the incorrect assumption
that “digjoint changes are interference free.”



all terminate normally,® M must have the following properties:

(i) M terminates normally on o.

(if)  For any variable x that has final value v after executing A on o, and either no final value or a
different final value v' after executing Base on g, x has final value v after executing M on o
(i.e., M agrees with A on x).

(iii) For any variable y that has final value v after executing B on o, and either no final value or a
different final value v' after executing Base on g, y has final value v after executing M on o
(i.e., M agreeswith BonYy).

(iv) For any variable z that has the same final value v after executing Base, A, and B on g, z has
final value v after executing M on o (i.e., M agrees with Base, A, and B on 2).

(3) Program M isto be created only from components that occur in programs Base, A, and B.

A more informal statement of Property (2) is: changes in the behavior of A and B with respect to Base
must be incorporated in the integrated program, along with the unchanged behavior of all three.

Properties (1) and (3) are syntactic restrictions that limit the scope of the integration problem. Property
(2) defines the model’s semantic criterion for integration and interference. Any program M that satisfies
Properties (1), (2), and (3) integrates Base, A, and B; if no such program exists then A and B interfere with
respect to Base. However, Property (2) is not decidable, even under the restrictions given by Properties
(2) and (3); consequently, any program-integration algorithm will sometimes fail to produce an integrated
program—and report interference—even though there is actually no interference (i.e., even when there is
some program that meets the criteria given above).

1.2. TheHorwitz-Prins-Reps Algorithm for Program Integration

The first algorithm that meets the requirements given above was given by Horwitz, Prins, and Repsin
[10]. Thus, that algorithm—referred to hereafter as the HPR algorithm—is the first algorithm for
semantics-based program-integration.

The HPR agorithm represents a fundamental advance over text-based program-integration algorithms,
and provides the first step in the creation of a theoretical foundation for building a semantics-based
program-integration tool. Changes in behavior (in the sense of Property (2) above) rather than changesin
text are detected, and are incorporated in the integrated program. Although it is undecidable to determine
whether a program modification actually leads to a change in program behavior, it is possible to determine
a safe approximation by comparing each of the variants with the original program Base. To determine this
information, the HPR algorithm employs a program representation that is similar to the program depen-
dence graphs that have been used previously in vectorizing and parallelizing compilers [5, 14]. 1t makes
use of an operation on these graphs called program dlicing [19, 28] to find potentialy changed computa-
tions. The HPR algorithm is summarized in Section 2, which also presents an example of an integration.
(Full details—and a more extensive example—can be found in [10].)

This paper concerns not the HPR algorithm, but a close relative of it. (The revised integration algorithm
is presented in Section 3.) We investigate the algorithm’s algebraic properties, which are of particular
interest when dealing with compositions of integrations. For example, if three variants of a given base
program are to be integrated by a pair of (two-variant) integrations, it is important to know whether there
isalaw of associativity to guarantee that it does not matter which two variants are integrated first. (Such a
law does hold; it is formulated as Theorem 4.4 and proven in Section 4.2.)

3There are two ways in which a program may fail to terminate normally on some initial state: (1) the program contains a non-
terminating loop, or (2) afault occurs, such as division by zero.



Although the capabilities of our current integration algorithms are severely limited, recent research has
made progress towards extending the set of language constructs to which they apply [9,11]. Our hope is
that such extensions will share with the basic integration algorithm a common set of algebraic properties.
However, we would like to avoid having to re-prove that each property holds every time we enhance our
techniques. Instead, we would like to have a framework that would not only let us establish the algebraic
properties of program integration, but would also allow us to show that a new algorithm possesses these
properties merely by demonstrating that the algorithm meets the conditions of the framework. This paper
uses | attice theory to provide such a framework.

1.3. An Overview of the Contents

A novel feature of our study is the use of Brouwerian algebra, rather than, for example, Boolean alge-
bra or relational algebra. A Brouwerian algebra [16] is a distributive lattice with a pseudo-difference
operation, a ~b, characterized by a=b [ c iff aC_blIc (see Section 3). The connection between program
integration and Brouwerian algebra is made as follows: we introduce a Brouwerian algebra constructed
from sets of dependence graphs; in this algebra, the program-integration operation can be expressed solely
in terms of the operations ||, 11, and ~.

The contributions of this paper can be summarized as follows:

(1) It establishes anumber of algebraic properties that hold for the integration operation. These investi-
gations make use of therich set of algebraic laws that hold in Brouwerian algebras.

(2) It provides alattice-theoretic framework for studying the common properties of different integration
algorithms. The operation we define to integrate elements of a Brouwerian algebra is expressed
purely interms of LI, 1, and =, and thus has an analogue in al Brouwerian algebras. The proper-
ties of the integration operation are established using only algebraic identities and inequalities, and
thus the results obtained hold for all Brouwerian algebras. Consequently, to show that a proposed
program-integration algorithm shares these properties, one merely has to show that the algorithm
can be formulated as an integration operation in some Brouwerian algebra.

(3) Itidentifies a new criterion for program integration, based on the operation in our framework that is
the dual of the integration operation.

The paper is divided into seven sections and three appendices. Section 2 provides an overview of the
HPR algorithm for program integration. It also reviews the results that were established in [22, 25] con-
cerning the semantic properties of a program that results from an integration. Readers familiar with the
HPR algorithm can skip directly to Section 3, which introduces the concepts from lattice theory on which
this paper’s results are based. Section 3.1 discusses the considerations that lead us to reformulate the HPR
algorithm as an operation in a Brouwerian algebra. Section 3.2 defines a lattice constructed from sets of
dependence-graph dlices and shows that it forms a Brouwerian algebra. Section 3.3 discusses the relation-
ship between Brouwerian and Boolean algebras. Section 3.4 defines the operation to integrate elements of
a Brouwerian algebra. Section 3.5 discusses how this operation—in the lattice of dependence-graph slice
sets defined in Section 3.2—relates to the HPR algorithm.

In Section 4, the algebraic framework from Section 3 is used to pose and settle three questions concern-
ing properties of the integration operation. Section 4.2 gives the proof of an associative law for the
integration operation; it also defines a generalization of the integration operation to one that simultane-
oudly integrates more than two variants with a given base element. Section 4.3 addresses the question of
whether there is an integrand compatible with a given base base, integrand a, and result m. This problem
is related to one of the applications of program integration, that of separating consecutive edits on some
base program into individual edits on the base program. Section 4.4 concerns a similar question; it looks



a the question of whether there is a base element that is compatible with given integrands a and b, and
result m.

Section 5 concerns double Brouwerian algebras—Brouwerian algebras whose duals are also
Brouwerian algebras. It introduces the quotient operation, which is the dual of the pseudo-difference
operation. In Section 5.2, it is shown that the lattice of dependence-graph slice sets from Section 3.2 isa
double Brouwerian algebra. Section 5.3 concerns the operation that is the dual of the integration opera-
tion, and shows how the two operations are related. Section 5.4 re-examines the question of when there is
an integrand compatible with a given base base, integrand a, and result m and extends the result from Sec-
tion 4.3.

Section 6 concerns more pragmatic issues. Section 6.1 describes a system that implements the ideas dis-
cussed in the paper. Section 6.2 describes how the ideas from this paper may make it possible to eliminate
arestriction that is part of the HPR algorithm. The HPR algorithm assumes that a special program editor
is used to create the program variants from the base program: the editor provides a tagging capability so
that common statements and predicates can be identified in different versions. (The assumption is stated
fully at the beginning of Section 2.2.) Asdiscussed in Section 6.2, it is possible to construct Brouwerian
algebras whose elements are sets of dependence graphs that do not have tags on their components. Using
sets of untagged dependence graphs would eliminate the necessity of supporting program integration by a
closed system; instead, it would be possible to handle programs created using ordinary text editors. (The
drawback of this approach is that it entails additional costs for finding the program that corresponds to the
set of dependence graphs that result from an integration.)

Section 7 discusses the relationship of the work described in this paper to previous work on program
integration.

To make the paper self-contained, there are three appendices that concern the basic algebraic laws that
hold for elements of Brouwerian algebras. Appendix A covers the algebraic laws that hold among the
operations L, 1, and = in a Brouwerian algebra. Appendix B concerns the basic algebraic laws for the
operation to integrate elements of a Brouwerian algebra. Appendix C gives a few laws that relate the
operations LJ, 1, =, and + in a double Brouwerian algebra. Thus, it may be helpful to scan the appen-
dices in conjunction with Sections 3, 4, and 5. (Throughout the body of the paper, when alaw given in
one of the appendices is used to justify a step of a proof, itisreferred to by the number given for the law in
the appropriate appendix.)

2. Overview of the HPR Algorithm for Program Integration

This section provides an overview of the HPR algorithm, which uses program dependence graphs to
integrate programs [10]. It summarizes parts of [10], which contains a comprehensive description of the
HPR algorithm. This summary is presented here because it is the starting point from which our new tech-
nigues are devel oped.

The integration of A and B with respect to Base requires combining three structures. A(A, Base),
A(B, Base), and Pre (A, Base, B), where A(A, Base) and A(B, Base) represent potentially changed compu-
tations of A and B with respect to Base, respectively, and Pre (A, Base, B) represents computations that are
preserved in al three. To determine this information, the HPR agorithm employs graphs that represent
the dependences between program elements.

2.1. Program Dependence Graphsand Program Slicing

The program dependence graphs used by the HPR algorithm are similar to those used previously for
representing programs in vectorizing and parallelizing compilers [5, 14]. Different definitions of program
dependence representations have been given, depending on the intended application, but all are variations



on a theme introduced in [13] and share the common feature of having an explicit representation of data
dependences (see below). The “program dependence graphs’ defined in [5] introduced the additional

feature of an explicit representation for control dependences (see below).*

Definition 2.1. A directed graph G consists of a set of vertices V (G) and a set of edges E (G). Each edge
b - cOE(G), wherehb, c OV(G), isdirected from b to ¢; we say that b is the source of the edge and that
cisthetarget.

As explained below, the vertices and edges of the directed graphs used in this paper are also labeled
with some additional information.

Definition 2.2. A program dependence graph (or PDG) for program P is a directed graph whose vertices
are connected by several kinds of edges. The assignment statements and control predicates of P are
represented by vertices of the graph; these vertices are labeled with the text of the associated statement or
predicate. In addition, there are three other kinds of vertices (which are labeled appropriately): there is a
distinguished vertex called the entry vertex; there is an initial-definition vertex for each variable that may
be used before being defined; and there is a final-use vertex for each variable named in P’s end statement.
There are four kinds of edges in a PDG: control dependence edges, oop-independent flow dependence
edges, loop-carried flow dependence edges, and def-order dependence edges. (See Definitions 2.3, 2.4,
and 2.5.) The latter three kinds of edges are referred to collectively as the graph’s data dependence edges.

Example. Figure 1 shows an example program and its program dependence graph.

The source of a control dependence edge is either the entry vertex or a predicate vertex and each edge is
labeled either true or false. A control dependence edge from vertex v to vertex w means (roughly) that
during execution, whenever the predicate represented by v is evaluated and its value matches the label on

the edge to w, then the program component represented by w will eventually be executed.®

Definition 2.3. A program dependence graph for program P contains a control dependence edge with

source v and target w, denoted by v — . w, iff one of the following holds:

(1) vistheentry vertex, and w represents a component of P that is not nested within any control predi-
cate; these edges are labeled true.

(2) v represents a control predicate, and w represents a component of P nested immediately within the
control construct whose predicate is represented by v. If v isthe predicate of a while-loop, the edge
v — . wislabeled true; if v is the predicate of a conditional statement, the edge v — . w is labeled
true or false according to whether w occurs in the then branch or the else branch, respectively.

A data dependence edge with source v and target w means (roughly) that the program’s behavior might
change if the relative order of the components represented by v and w were reversed.

“The definition of program dependence graph given here (which is taken from [10]) differs from that of [5] in two ways. First, our
definition covers only the restricted language described earlier, and henceis less general than the one given in [5]. Second, because of
the particular needs of the program-integration problem, we omit certain classes of data dependence edges and define one additional
class. However, the structures we define and those defined in [5] share the feature of explicitly representing both control and data
dependences; for this reason, despite their differences, we refer to our graphs as “program dependence graphs,” borrowing the term
from [5].

A method for determining control dependence edges for arbitrary programs is given in [5]; however, because we are assuming that
programs include only assignment, conditional, and while statements, the control dependence edges can be determined in a much
simpler fashion. For the language under consideration here, the control dependence edges essentially represent the program’s nesting
structure. This simplification is reflected in Definition 2.3.



program
sum:=0;
X:=1;
whilex < 11 do
sum :=sum+Xx;

X:=x+1
end
end(x, sum)

Figure 1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and its
program dependence graph. The boldface arrows represent control dependence edges, solid arrows represent loop-
independent flow dependence edges, solid arrows with a hash mark represent loop-carried flow dependence edges, and
dashed arrows represent def-order dependence edges.

Definition 2.4. A program dependence graph for program P contains a flow dependence edge with source
v and target w, denoted by v — ¢ w, iff v represents an assignment to a variable x and w represents a use of
x reached by v. The edge isloop carried, denoted by v — ¢, W, if v and w are both nested within a loop
L, the predicate vertex of loop L is p, and v reaches w along a path in the control-flow graph for program P
that includes the back-edge of loop L; otherwise the edge is loop independent, denoted by v — ; w. (Ini-
tial definitions of variables are considered to occur at the beginning of the control-flow graph for P, and
final uses of variables are considered to occur at the end of the graph.)

Definition 2.5. A program dependence graph for program P contains a def-order dependence edge with
source v, target w, and witness u, denoted by v — oy W, iff (1) v and w both represent assignments to the
same variable x, (2) there exist flow dependencesv — juandw — ; u, (3) v and w are in the same branch
of any conditional statement that encloses both of them, and (4) v lexically precedes w.

Definition 2.6. Let s be a vertex of program dependence graph G. The dlice of G with respect to s,
denoted by G/s, is agraph containing all vertices on which s has a transitive flow or control dependence
(i.e., al vertices that can reach s viaflow or control edges):

V(G/s) £ {wOV(G) |w — s}
We extend the definition to a set of vertices S= [ 5 asfollows:

I
V(G/9)=V(G/(Os) 2 OV(G/s).
1 I

It is useful to define V(G /v) =0 for any vOV(G). The edgesin the graph G/Sare essentially those in
the subgraph of G induced by V(G/S), with the exception that a def-order edge v — g,y W is only
included if, in addition to v and w, V(G /S) also contains the witness-vertex u. In terms of the four types
of edges in a program dependence graph we have:



E(G/S) 2 {(v-o.WIOE@G)|v,wOV(G/9)}
0{(v - WOE(G) | v, wOV(G/S)}
0{(v > c WOEG) | v, wOV(G/S)}
0{(V - gouyW)OE(G) | u, v, wOV(G/9)}.

Example. Figure 2 shows the graph that results from slicing the program dependence graph from Figure 1
with respect to the final-use vertex for x, together with the program to which it corresponds.

The significance of adiceisthat it captures a portion of a program’s behavior in the sense that, for any
initial state on which the program halts, the program and the dlice compute the same sequence of values
for each element of the slice [22]. In our case a program point can be (1) an assignment statement, (2) a
control predicate, or (3) afinal use of avariable in an end statement. Because a statement or control predi-
cate can be reached repeatedly in a program, by “computing the same sequence of values for each element
of the slice” we mean the following: (1) for any assignment statement the same sequence of values are
assigned to the target variable; (2) for a predicate the same sequence of boolean values are produced; and
(3) for each final use the same value for the variable is produced.

Theorem 2.7. (Slicing Theorem [22]). Let Q be a slice of program P with respect to a set of vertices. If
O is a state on which P halts, then for any state ¢’ that agrees with ¢ on all variables for which there are
initial-definition vertices in Gq: (1) Q halts on ¢’, (2) P and Q compute the same sequence of values at
each program point of Q, and (3) the final states agree on all variables for which there are final-use ver-
ticesin Gg.

2.2. An Algorithm for Integrating Programs

One of the requirements of the HPR algorithm is that program components (i.e., statements and predi-
cates) must be tagged so that corresponding components can be identified in all three versions. Com-
ponent tags can be provided by a special editor that obeys the following conventions:

(1) When a copy of a program is made—e.g., when a copy of Base is made in order to create a new
variant—each component in the copy is given the same tag as the corresponding component in the

program
X:=1;
whilex < 11do
X:=x+1
end
end(x)

Figure 2. The graph that results from slicing the example from Figure 1 with respect to the final-use vertex for x, to-
gether with the program to which it corresponds.



original program.

(2) The operations on program components supported by the editor are insert, delete, and move. A
newly inserted component is given a previously unused tag; the tag of a component that is deleted is
never re-used; a component that is moved from one position to another retains its tag.

(3) Thetags on components persist across different editing sessions and machines.

(4) Tagsarealocated by asingle server, so that two different editors cannot allocate the same new tag.

A tagging facility meeting these requirements can be supported by language-based editors, such as those

that can be created by such systems as MENTOR [3], GANDALF [18], and the Synthesizer Generator®

Component tags furnish the means for identifying how the program-dependence-graph vertices in dif-
ferent versions correspond. It is the tags that are used to determine “identical” vertices when operations
are performed using vertices from different program dependence graphs. For instance, when we speak
below of “identica dlices” where the dices are actually taken in different graphs (e.qg.,
(Ggase/ V) =(Gap /V)), we mean that the slices are isomorphic under the mapping provided by the editor-
supplied tags.

Remark. Except where we wish to emphasize which program components have the same tag, we do not
indicate program-component tags in our examples. When we do indicate program-component tags, the tag
is placed between square brackets to the left of the component (e.g., [3] z :=y). For al examplesin which
tags are not indicated explicitly, our convention is that components in different programs that have the
same text also have the same tag.

The first step of the program-integration algorithm determines the dlices of A and B that are changed
from Base and the glices of Base that are preserved in both A and B; the second step combines these slices
to form the merged graph Gy,; the third step tests G, for interference.

Sep 1: Determining changed and preserved slices

Let Ggae, Ga, and Gg denote the program dependence graphs for programs Base, A, and B, respec-
tively. By Theorem 2.7, if the dlice of variant G, at vertex v differs from the dice of Ggaee at v, then G,
and Gg,ee Might compute different values at v. In other words, vertex v is a site that potentially exhibits
changed behavior in the two programs. Thus, we define the affected points of G, with respect t0 Ggage,
denoted by AP, pase, 10 be the subset of vertices of G whose slices in Gg,ee and Gy, differ:

AP gase 2 { VOV(Ga) | (Gpase/ V) #(Ga/V)}.

We define APg gaee Similarly. It follows that the slices Go /APy, pase and Gg/APg gase Capture all the
slices of A and B (respectively) that differ from Base, and so we make the following definitions:

A(A, Base) £ Ga/ APp ase

A(B, Base) £ Gg/APg pase.

A vertex that has the same dice in al three programs is guaranteed to exhibit the same behavior. Thus,
we define the preserved points of Ggage, denoted by PPy paee, 5, 10 be the subset of vertices of Ggyee With
identical slicesin Ggage, Ga, and Gg:

PP Base B 2 {VOV(Ggase) | (Ga/V) = (Gpase/V) = (Gg/V)}.

The slices common to Base, A, and B (i.e., the dices unchanged in both A and B) are captured by the slice
Ggase / PP, Base, B, @nd so we make the following definition:

5The Synthesizer Generator is a Trademark of GrammaTech, Inc.
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Pre(A, Base, B) £ Ggase/ PPa Base -

Stated another way, Pre(A, Base, B) consists of the union of the dlices that are identical in al three
graphs.

Sep 2: Forming the merged graph

Definition 2.8. Given directed graphs G, = (Va, Ea) and Gg = (Vg, Eg), whose vertices might have some
tags in common, the graph union of G, and Gg, denoted by G, 04 Gg, is defined as
Ga Oy G £ (VaO Vg, EoDEp).

The merged graph Gy, is formed by taking the graph union of the slices that characterize the changed
behavior of A, the changed behavior of B, and behavior of Base preserved in both A and B:

Gu 2 A(A, Base) 04 Pre(A, Base, B) 0O, A(B, Base).

Sep 3: Testing for interference

There are two possible ways by which the graph Gy, can fail to represent a satisfactory integrated pro-
gram; we refer to them as “Type | interference” and “Type |l interference.” The criterion for Type |
interference is based on a comparison of slices of Gp, Gg, and Gy. The slices Gp/ APy gaee and
Gg/ APg gase represent the changed slices of A and B, respectively. There is Type | interference if Gy
does not preserve these dlices; that is, thereis Type | interference if either

(Gm /AP Base) # (Gal APp Base)

or
(Gm / APg gase) # (Gg/ APg, gase)-

The final step of the HPR algorithm involves reconstituting a program from the merged program depen-
dence graph. However, it is possible that there is no such program—the merged graph can be an infeasible
program dependence graph; thisis Type Il interference. (The reader is referred to [10] for a discussion of
reconstructing a program from the merged program dependence graph and the inherent difficulties of this
problem.)

If neither kind of interference occurs, a program whose program dependence graph is Gy, is returned as
the result of the integration operation.

Example. The following example illustrates the HPR algorithm. The tags on statements are noted
between sgquare brackets.

A Base B A(A, Base) Pre(A Base, B) A(B,Base) A[Base]B
program program program O program program program
[1] x:=0 [1] x :=0; [1] x :=0; [} x:=0 [1] x :=0; [1] x :=0;
end(x) [Zly=x [Zy:=X end(x) [2y:=x [y:=x
end(x, y) [Bz:=y [3]z:=y [B]z:=y
end(x, y, 2 end(2) end(x, 2)

This example illustrates one subtlety of the HPR algorithm: an insertion made in one integrand can “over-
ride” a deletion in the other integrand. In the example given above, the insertion of statement z:=y in
integrand B overrides the deletion of y := x from integrand A because z :=y uses the value assigned to y by
y :=X. Note that the deletion from A of the final use of y does not get overridden.
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2.3. Semantic Properties of the Integrated Program

The following theorem, Theorem 2.9, characterizes the execution behavior of the integrated program
produced by the HPR algorithm in terms of the behaviors of the base program and the two variants
[22,25]. It shows that the integrated program produced by the HPR algorithm incorporates the changed
behaviors of both variants A and B (with respect to base program Base) as well as the unchanged behavior
of A, B, and Base. Thus, the HPR algorithm meets the semantic criterion of the integration model that was
introduced in Section 1.1.

Theorem 2.9. (Integration Theorem [22,25]). If programs A and B are two non-interfering variants of

Base, and program M is the result of integrating A and B with respect to Base, then for any initial state o

on which A, B, and Base all halt,

() Mhaltsono.

(2) If xisavariable defined in the final state of A for which the final states of A and Base disagree, then
the final state of M agrees with the final state of A on x.

(3) Ifyisavariable defined in the final state of B for which the final states of B and Base disagree, then
the final state of M agrees with the final state of B onyy.

(4) If zisa variable on which the final states of A, B, and Base agree, then the final state of M agrees
with the final state of Base on z.

3. Using Lattice Theory to Describe Program Integration

In unpublished work, Susan Horwitz and | found proofs of several algebraic properties of the HPR algo-
rithm. However, because of the many different types of elements that occur in dependence graphs, the
proofs by which these results were established were very involved, containing many sub-cases and argu-
ment by reductio ad absurdum.

This section introduces the means by which these complications are side-stepped. In motivating the
new approach, it is necessary to introduce three different—but related—partially ordered sets. A close
relative of the HPR integration algorithm is expressed as an operation in the last of these, which is a
Brouwerian algebra constructed from sets of dependence-graph slices. This formulation allows usto give
proofs of the integration agorithm’s algebraic properties by simple manipulations of formulae; in these
proofs, we make use of the rich set of algebraic lavs—both identities and inequalities—that hold in
Brouwerian algebras.

3.1. Motivation

To understand the considerations that lead us to reformulate the HPR agorithm as an operation in a
Brouwerian algebra, consider how Pre(A, Base, B) was characterized in Section 2.2: “Pre(A, Base, B)
consists of the dlices that are identical in al three graphs.” This terminology suggests that
Pre(A, Base, B) isthe meet of A, Base, and B in alattice of dependence graphs ordered by “is-a-slice-of,”

the meet operation being “greatest common slice.”’

’A lattice is an algebra (L, L, r), where L is a set of elements that is closed under 1y (join) and 1 (meet), and for al a, b, and cin L
the following axioms are satisfied:

aja=a alla=a au(a b)=a
alb=bLa arnb=bna ar(a_b)=a
(a1 1b)1 c=aii(biic) (a7b)mc=an(brc)

The symbol C will be used to denote the partial order on the elements of L given by acb iff amb =a (or, equivalently, acb iff
a_b =b). All lattices considered in this work have a least element and a greatest element, denoted by 0 and T, respectively, which
satisfy the following axioms:
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Definition 3.1. The symbol G will be used to denote the set of well-formed PDGs. We extend the
definition of dlicing with respect to a vertex set (see Definition 2.6) to that of slicing with respect to a PDG
asfollows: let a and b be two PDGs in G; the slice of a with respect to b, denoted by a /b, is

al/b2 a/V(b).

We say that b isadice of aiff a/b=b. The symbol < will be used to denote the partial order “is-a
slice-of” on the elements of G (i.e, b < aiff bisadlice of a).

Observation. Let a (b denote the greatest common slice of dependence graphs a and b. The algebra (G,
0) isameet semi-lattice.

Example. A portion of (G, 0) isillustrated in Figure 3. For instance, the greatest common slice of the
elements labeled A and B in Figure 3 isthe element labeled C. (Note that the variable list in C's end state-
ment is empty.)

Remark. In Figure 3, as well as in other similar figures of the paper, elements of the semi-lattice are
shown as programs. This is done to keep the illustrations comprehensible; however, the reader should
keep in mind that the “is-a-dice-of” relation depicted is really a partial order on the programs’ program
dependence graphs.

One reason this formalization is interesting is that it gives a way of expressing Pre(A, Base, B) using
lattice-theoretic terminology: in (G, O), Pre(A, Base, B) = A OBase OB.

Returning to the HPR agorithm, the fact that A(A, Base) and A(B, Base) are combined with
Pre(A, Base, B) suggests that this combination is a join operation. The terms A(A, Base) and A(B, Base)
themselves suggest that some sort of difference operation exists for elements of the underlying lattice.

What complicates mattersisthe fact that (G, 0) isameet semi-lattice but not alattice (i.e., it has a meet
operation but no join operation). In particular, the operation of unioning two dependence graphs (by Oy ),
which is used in the HPR agorithm to combine the dependence graphs that represent A(A, Base),
A(B, Base), and Pre(A, Base, B), is not a join operation. To see this, consider the union of the depen-
dence graphs for the programs A and B shown below.

A B
program program
X :=0; X :=0;
Yy =X ifw> 2thenx:=1fi;
z:=y y =X
end() end()

The result of A Oy B is a dependence graph that corresponds to the program

alrT=T an't=a
ald=a anO=0

A meet semi-lattice (L, r) is defined similarly, but lacks the join operation.
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program program
sum:=0; sum :=0;
X:=1; x:=1;

whilex < 11 do
SuMm := sum + X;|
X :=x+1

od
end(x)

whilex < 11 do
Sum = sum + X;

program
sum :=0;
X:=1,;

whilex < 11 do

program

X=1
whilex < 11 do|

whilex < 11 dd

program
end()

Figure 3. The meet semi-lattice of dependence graphs (G, [0). The meet operation isillustrated by elements A, B, and
C, which arerelated by ACOB =C.
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program
X:=0;
yI=X;

z:=y
end(y)

program
x:=0;

X:=0;
if w>2thenx :=1fi;
yI=X;
z:=y

program
X :=0;
yi=X;

Z.=
end(z)

program program
x:=0; X:=0;
; ifw>2thenx :=1fi
end()

program

program
ifw>2thenx :=1fi

X:=0;
y =X

program
end()

Figure 4. An exampleillustrating that (G, ) does not have ajoin operation. Thereis no element D such that A <D
and B <D. Inparticular, A0y B = Cisnot such an element. Although B < C holds, A < C does not hold because the

dotted edge marked with (*) is not in the relation “is-a-sdlice-of”.

if w> 2then x :=1fi;

program
X :=0;
y=X
z:=y

end()



_15_

The relationships between A, B, and C in (G, [) are illustrated in Figure 4. For 04 (graph union) to be a
join operation in (G, 0), both A and B must be slices of ATgyB (i.e., both A< C and B < C must hold).
However, athough both A and B are subgraphs of C, only Bisasdlice of C (i.e, B<C, but A£C). The
graph for Alisnot adlice of C because in C vertex y := x isthe target of aflow edge whose source is vertex
X := 1, whereas there is no such edge incident on vertex y :=xinA. Thus, C/A#Aandso A £ C.

In fact, there does not exist any element D in (G, 0) such that A <D and B < D both hold. So not only
does 0, fail to be ajoin operation, (G, [J) has no join operation at al.

3.2. A Brouwerian Algebra of Slice Sets

Rather than work with (G, [), we construct a lattice whose elements consist of sets of slices and per-
form operations on these sets; in particular, the join operation is set union. However, in order for set inter-
section to capture common dlices, it is necessary to work with sets having a particular structure (rather
than arbitrary sets of dlices). Similarly, ordinary set difference turns out not to capture the notion of
A(A, Base) and A(B, Base) from the HPR algorithm, but a variation on set difference that takes into
account the ordering relation on slices can be used instead.

Definition 3.2. A dependence graph g 0 G is a single-point dlice iff there exists a vertex x 0V (g) such
that (g/x) =g. The symbol G, will be used to denote the subset of G consisting of all program depen-
dence graphs that are single-point slices; that is,

G,2{gOG|xOV(g) suchthat (g/x)=g}.

Observation. G, isapartial order with least element

program
end()

Example. The partial order of single-point slices isillustrated in Figure 5. Note that the element shown
below, which is present in Figure 4 but absent from Figure 5, is not a single-point slice, and hence not an
element of G;. For instance, its sice with respect to the final-use vertex for variable x does not include
either vertex sum:=0 or vertex sum:=sum+X; on the other hand, its slice with respect to vertex
sum := sum + x does not include the final-use vertex for x.
program
sum:=0;
x:=1
whilex < 11do
sum:=sum+ x;
X =x+1
end
end(x)

Our next construction makes use of the ordering relation on elements of G to create a suitable lattice

for expressing program integration.
Definition 3.3. The symbol DCS will be used to denote the set of all downwards-closed sets of single-
point dlices; that is,

DCSZ£ { SOP(G,)|Ox OG, if Bs0 Ssuch that x < s then x 0 S},
where P (G,) denotes the power set of G4. The notation DC(p), where p is a program, will be used to
denote the member of DCSthat consists of al single-point slices of p; that is,

DC(p) 2 {s0Gy|s< Gy},
where G, denotes the PDG of p. The notation DCy(g), where g is a PDG, will be used to denote
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program
=1,

x:=1;
whilex < 11 do
sum ;= sum + x
X :=x+1
od
end()

program
sum =0,
end()

program
end()

Figure 5. The partial order of single-point dlices.

{sOGq|s=<g}.
Example.
DC(program )
| x:=0; |
| y=x |
| z:=y |
lend(x, y, 2))
stands for the set
( program , program , program , program , program , program , program
| end() x:=0 x:=0 X:=0; X:=0; X:=0; X =
{ end() end(X) y =X y =X y =X y =
| end() end(y) z:=y z:=
L end() end(2)
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Example. A second element of DCSis shown in Figure 6.

Observation. The algebra (DCS, O, n), where O and n denote set union and set intersection, respec-
tively, isalattice. The partial order on lattice elementsis “ subset-of” (denoted by [1).

Example. Consider again the example programs for which there was no join in (G, O). These programs

would be represented in (DCS O, n) by downwards-closed sets of single-point dlices. The set that

represents their joinis shown in Figure 7.

Definition 3.4. For al x, y 00 DCS the pseudo-difference between x and y, denoted by x -y, is defined as
x+y2{z0G,|pO(x-y)suchthatz<p},

where x —y denotes the set difference between x andy. That is, x =y is the downwards closure of x —y.

The following table illustrates how the pseudo-difference operation (=) differs from ordinary set differ-
ence (-):

program
sum :=0;
x:=1;

whilex <11 do

while
X =X+1 sum:=0;

x:=1;

whilex <11 do

program
sum:=0,
end()

program
end()

Figure 6. The shaded region indicates the set in DCSthat represents DC (A).
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program prc))(g:rgrgl
Xfo ifw>2thenx:=1fi;

yIx yi=X;
z= z:=y

end(z) end()

B
A -
program program rogram
X:=0; x:=0; P xg:= 0;
g(;:)x )z/":;<’ if w>2thenx :=1fi;
enaly, - =
end() ené/() X
program
x:=0; program
y =X ifw>2thenx:=1fi
end() end()
program program
x:=0 if w > 2 then fi
end() end()
program
end()

Figure 7. The shaded region indicates the set DC(A) 0 DC (B), which in (DCS, O, n) isthejoin of sets DC(A) and

DC(B).
a b a-b b-a
(program, program]  (program , program,program)| 0O (=0) (program)
Jend() x:=0 + Aend() Xx:=0 X:=0; X:=0; +
L end) J | end() y =X | | yi=x |
L end) lend)
a-b b+a
O(=0) (program , program, program)
Jend() x:=0 x:=0;
| end() y=x |
L end)

In general, an element of DCS can contain multiple maximal elements; these are indicated by the multi-
ple peaks of setsx and y in Figure 8. Figure 8 illustrates the operation of pseudo-difference on two arbi-
trary elements of DCS The value of x =y is the downwards closure of x —y; thus, x =y includes both of
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A
-
as
.

Figure 8. Thevalue of x -y isthe downwards closure of x —y. Thus, x =y includes both of the shaded regions.

the shaded regions shown in Figure 8.

The set DCS, together with the operations of set union (O), set intersection (n ), and pseudo-difference
(=), isan instance of what is known as a Brouwerian algebra (defined below). The benefit of this fact is
that Brouwerian algebras have a rich set of algebraic laws, consisting of identities and inequalities (see
Appendix A). These laws provide a convenient way to establish the integration operation’s algebraic pro-
perties through simple formula manipulations. (For examples, see Sections 4 and 5 and the appendices.)

Definition 3.5. A Brouwerian algebra [16] isan agebra (L, LI, 1, =, T) where
(i) (L, LJ, ) isalattice with greatest element T.

(i) Lisclosed under -.

(iii) Forala,b,andcinL,a=~bCciffaCbLlc.

It can be shown that L has aleast element, given by O =T =T, and that (L, LI, 1) is distributive; that
is, foral a, b,andcinlL,

(iv) aLi(bric)=(aLib)ri(aLlc).
(v) ari(bLic)=(arb)Li(aric).

(For proofs, see[2], page 143-145.)

Remark. We use the symbol = to denote the general operation of pseudo-difference in an arbitrary
Brouwerian algebra as well as a specific operation in the algebra (DCS, O, n, =, G;). It should be clear
from the context which usage of - isintended.

Theorem 3.6. (DCS, O, n, =, G;) isaBrouwerian algebra, where O isset unionand n is set intersec-
tion.

Proof. Because the elements of DCS are downwards-closed sets of single-point dices, it is clear that G4,
which consists of al single-point slices, is a superset of any element of DCS. Suppose s0G; and xisa
single-point slice of s; because x—being a single-point slice—must also be a member of G4, it follows that
G, isitself downwards closed (i.e., G4 0 DCS). DCSisclosed under 0O and n, and (DCS, O, n)isalat-
tice ordered by set inclusion.
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It remains to be shown that - has the properties required of a pseudo-difference; that is, we must show
(1) DCSisclosed under ~ and (2) for al a, b, cODCS a=-bOciffalbOc.

To show property (1), consider any two elements a, b 1 DCS From Definition 3.4, we know that a=b
is the downwards closure (under the “is-a-single-point-sice-of” relation) of a—b, and hence a=~b O DCS
(Note that a—b denotes the set difference of a and b; a—b is not necessarily downwards closed, and
hence, in general, is not amember of DCS)

Two show property (2), there are two cases to consider.

O case: Assuminga=b c, we must showthataObOc.

From Definition 3.4, we know that a—b Oa ~b.

a-b0Oc by transitivity
(a-b)ObObOc
adb0ObOc because (a-b)Ob=aOb
albOc becauseaaOb

0 case: Assuming a db Oc, we must showthata=-bOc.

Let z be a member of a~b; we will show that z[Oc. From Definition 3.4 we know that there exists a
(single-point dlice) p Oa such that pOb and z< p. By the downwards-closure property of elements of
DCS, because p [0 awe know that z[0a aswell. There are two cases to consider:

(i)  Suppose z[Ob. By the assumption that a 0b O ¢ and the fact that z[0a, we have z[ObOc. How-
ever, because z [0 b, we conclude that z [ c.

(i) SupposezOb. Consider again the element p, wherep Oa, p Ob, and z < p. By the assumption that
alb0Oc and the fact that p Oa, we have p b Oc. However, because p Ob, we have p[c. But
because z < p and because c—being an element of DCS—is downwards closed, we conclude that
z[Oc.

O

3.3. Relationship Between Brouwerian and Boolean Algebras

A Brouwerian algebra is similar, but not identical, to a Boolean algebra. The relationship between
Boolean and Brouwerian algebras can be characterized as follows [16]: for al elements a, define the
Brouwerian complement by - a 2 T =a; a Brouwerian algebrais Boolean iff - - a =a.

Example. It may be helpful to keep in mind the following example of a Brouwerian algebra that is not a
Boolean algebra. The elements are the non-negative integers (together with atop element T); the ordering
isarithmetic order (i.e,0C1C2...C T).
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The operations ||, 1, and = are defined as follows:
allb £ max(a, b)
arib 2 min(a, b)

[0 ifach
a=b=43 ifab

Note that a b exhibits the required property, namely that a=b[c iff aC_max(b, ¢). In particular, to
show that a=b[c implies aC_ max(b, c), we observe that either a_b, in which case a_max(b, c) fol-
lows immediately, or else ab, in which casea =a+b[c, so again aC_max(b, ¢). Conversaly, to show
that aC_max(b, c) implies a-b[_c, we observe that either bCc, in which case c = max(b, c) JaJa~b
(i.e.,, cJa+b, aswasto be shown), or else b ¢, in which case b = max(b, ¢) Ja, soa~-b =0Cc.

To show that this algebra is not Boolean, we must show that there is some a for which - —a#a. In
fact, thisholdsfor all a such that 0OCa” T, as shown in the following table:

a - a - -a

0 T 0
o—acT T 0(#a)

T 0 T

Because Boolean agebras are Brouwerian algebras, but not vice versa, some of the properties that hold
in Boolean algebras do not hold in Brouwerian algebras. (Consequently, applying one's intuition about
Boolean algebras to Brouwerian algebras can be risky.) For example, the laws for distributing =~ over ||
and 1 in Brouwerian algebra are somewhat different from the laws for distributing — over || and 1 in
Boolean algebra. Two of the laws are the same:

Proposition A.14. (b+a)Ll(c~a)=(bLIic)~a’
Proposition A.15. (c=a)Li(c=b)=c=(arb).

8The basic algebraic laws that hold for elements of Brouwerian algebras are presented in Appendix A.



_22_

However, the laws for distributing = through 1 on the left and LI on the right are weaker:®
Proposition A.26. (arib)=cC(a=c)r(b=c).
Proposition A.29. c~(aLLUb)C(c+a)ri(c=hb).

We can show by means of examples that the inequalities in Propositions A.26 and A.29 are, at times,
strict.

a b c (artb)=c a=c b-c (a=c)ri(b=c)

DC(program| DC(program| DC{(program) 0 DC(program| DC(program| DC/(program)

| x:=0; | x:=0; | x:=0] | x:=0; | x:=0; | x:=0]

| y=x| | z=x| lend) | y=x| | z=x| (end) ]
lend) | [end() lend) |  [end()

In this example (ar1b) =c is strictly less than (a=c)M(b ~c) because the following two slices occur in
botha-candb-c:

program program
end() x:=0
end().
a b c c+(aLlb) c+a c+b (c+a)ri(c=b)
DC(program| DC(program| DC{(program) 0 DC(program| DC(program| DC(program)
| x:=0; | x:=0; | x:=0; | x:=0; | x:=0; | x:=0]
| ye=x| | ozi=Ex ] | yEXx| | z=x| | y=x| lend)
lend() ) lend) ) | z:=x| lend() ) lend() )
lend() J

In this example ¢ = (al_lb) is strictly less than (c =a)1(c ~b) because the following two slices occur in
bothc+aandc+b:

program program
end() x:=0
end().

3.4. Integration of Elements of a Brouwerian Algebra

We now introduce a ternary operation on elements of a Brouwerian algebra that, for the algebra of
downwards-closed sets of single-point slices (DCS, O, n, =, G4) discussed in Section 3.2, corresponds
very closely to the HPR algorithm. The integration operation on elements of a Brouwerian algebra,
denoted by a[base]b, combines two elements a and b with respect to a third element base.

Definition 3.7. The integration of elements a and b with respect to base, denoted by a[base]b, is defined
as

a[base]b £ (a~base).|(alrbaser1b)LI(b = base).

If a[base]b =m, we refer to element base as the base, elements a and b as the integrands, and element m
as the result of the integration.

®Note, however, that Proposition A.16 does provide an identity that can be used to transform ¢ = (ai 1b):
Proposition A.16. (c=b)~a=c=(aub)=(c+a)=h.



_23_

The integration operation a[base]bin (DCS O, n, =, G;) provides a method for integrating programs
that is an alternative to the HPR algorithm.

Example. The table shown in Figure 9, which indicates what sices are members of the sets DC(A),
DC(Base), DC(B), DC(A)-DC(Base), DC(A)nDC(Base)n DC(B), DC(B)=-DC(Base), and
DC(A)[DC(Base)|DC(B), illustrates the integration operation (in the algebra of downwards-closed sets
of single-paint slices) for the same example used to illustrate the HPR agorithm in Section 2.2. This pro-
duces a result equivalent to the one obtained in Section 2.2; the set of dlices computed for
DC(A)[DC (Base)]DC(B) (shown in the last line of the table given in Figure 9) corresponds to the pro-
gram
program
X :=0;
y =X

zZ:=y
end(x, 2).

3.5. Relationship tothe HPR Algorithm

The integration operation in (DCS, O, n, =, G;) and the HPR agorithm are related methods for
integrating programs, but differ substantially in detail. For example, to integrate programs a and b with
respect to base, the HPR a gorithm performs the operation

A(a, base) 04 Pre(a, base, b) 0Oy A(b, base),
which manipulates three individual program dependence graphs. By contrast, the integration operation in
(DCs 0O, n, =, G;) manipulates three sets of program dependence graphs. To integrate programs a and
b with respect to base, the following operation is performed:

(DC(a) ~DC(base)) 0 (DC(a) n DC(base) n DC (b)) 0 (DC (b) -~ DC (base)).
Degpite the fact that the two algorithms perform different operations, their final results are related, as

Slice
program program program program program program program
Term end() x:=0 x:=0 X =0; X :=0; X =0; X :=0;
end() end(x) y =X y =X y =X y =X
end() end(y) z:=y z:=y
end() end(2)
DC(A) x X X
DC (Base) X X X X X
DC (B) X X X X X X X
DC(A)~DC (Base)
DC(A) n DC(Base) n DC(B) X x x
DC(B) ~DC(Base) X x x X X
DC(A)[DC (Base)]|DC(B) X X X X X X

Figure 9. The table given above illustrates the integration operation in the algebra of downwards-closed sets of
single-point slices for the same example used to illustrate the HPR algorithm in Section 2.2. The last line of the table
indicates which slices are members of the set DC (A)[DC (Base)]|DC (B).
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explained below.
First, consider the graph-manipulation operations A and Pre used in the HPR algorithm. A isrelated to
= asfollows:
DCy(A(a, base)) = DC(a) = DC (base).
Preisrelated to n asfollows:
DCy(Pre(a, base, b)) =DC(a) n DC(base) n DC (b).

Second, consider the test for Type | interference in the HPR agorithm. The test is based on a com-
parison of dlices of the merged graph m with dlices of the graphs for programs a and b. The dlices
A(a, base) and A(b, base), respectively, represent the potentially changed computations of integrands a
and b with respect to base. Thereis Typel interferenceif graph m does not preserve these dlices, that is, if
either A(a, base) or A(b, base) is not a slice of m. Thus, the test for Type | interference can be expressed
asfollows: Thereis Type | interference iff

A(a, base) £ A(a, base) Uy Pre(a, base, b) 0g A(b, base)
or
A(b, base) £ A(a, base) Og Pre(a, base, b) 0y A(b, base).™

The reason for the Type | interference test in the HPR agorithm is that the operation of graph union
(Og) can “corrupt” slices; that is, it can create a graph whose slices are not slices of either argument. For
instance, consider again programs A and B from Figure 4. The result of A 0y B is a dependence graph that
corresponds to the program C shown below.

C
program
X :=0;
if w> 2then x :=1fi;
y =X
z:=y
end()

The dlice of C with respect to statement z :=y (which yields the entire program C) is hot a dlice of either A
or B.

From these observations—together with the definition of the integration operation in
(DCs 0O, n, =, G;)—we conclude that if the HPR algorithm does not report Type | interference, the two
integration methods compute answers that correspond. In particular, thereisaway of converting the PDG
created by the HPR agorithm into the set of single-point slices computed by the integration operation in
(DCs 0O, n, =, G,). Thisiscaptured by the following proposition:

Proposition 3.8. If the integration of programs a and b with respect to base via the HPR algorithm passes
the Type | interference test, then

DC,(A(a, base) 0y Pre(a, base, b) 0y A(b, base)) = DC (a)[DC (base)] DC (b).

9t js natural to ask why the interference test does not have a third clause to test whether
Pre(a, base, b) £ A(a, base) Oy Pre(a, base, b) 0g A(b, base).

This test is absent because, as shown in [22,25], it is unnecessary: Pre(a base b) is always a sdlice of
A(a, base) Og Pre(a, base, b) 0y A(b, base).
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Recall from Section 2.2 that Type | interference is not the only way in which the merged dependence
graph m created by the HPR algorithm can fail to represent a satisfactory integrated program. The final
step of the HPR algorithm involves reconstituting a program from dependence graph m; however, if there
is no program whose dependence graph is m, there is Type Il interference (and graph m is said to be
infeasible).

So far we have not discussed the notion of interference in connection with the integration operation in
(DCSs 0O, n, =, G4). The notion of interference is dightly different from the HPR algorithm; in particu-
lar, because the O, n, and = operationsin (DCS, O, n, =, G;) can never “corrupt” dices, there is only
one notion of interference for integrationin (DCS, O, n, =, G;), namely, infeasibility.

Definition 3.9. A dlice set s DCSisfeasibleiff there exists a program p such that DC(p) = s. If no such
program exists, sisinfeasible.

Thus, if the goal is to integrate programs a and b with respect to base using the integration operation in
(DCS, O, n, =, G,), integrands a and b interfere if there is no program that corresponds to the dlice set
DC(a)[DC (base)]DC (b).

We now show that DC (a)[DC (base)]DC (b) is infeasible iff either Type | or Type Il interference is
reported by the HPR algorithm (and thus the class of integrations handled successfully by the integration
operation in (DCS, O, n, =, G;) coincides with the class handled successfully by the HPR algorithm).
Stated in the contrapositive, we have:

Proposition 3.10. DC(a)[DC (base)]DC (b) is feasible iff the integration of a and b with respect to base
by the HPR algorithm succeeds (i.e., neither Type | nor Type Il interference is reported).

Pr oof.

0 case: Assuming that the integration of a and b with respect to base by the HPR algorithm succeeds, we
must show that DC (a)[DC (base)]|DC (b) isfeasible.

By the assumption that the HPR algorithm does not report Type Il interference, we know that
A(a, base) 04 Pre(a, base, b) 0Oy A(b, base) is feasible. Thus, there exists a program P (with PDG Gp)
such that Gp = A(a, base) Uy Pre(a, base, b) Oy A(b, base). Consequently,
DC(P) =DCy(Gp)
=DCy(A(a, base) Oy Pre(a, base, b) 0y A(b, base))
=DC(a)[DC (base)]|DC (b) By the assumption that Type | interference is not
reported and Proposition 3.8

Hence, DC (a)[DC (base)|DC (b) isfeasible.

0 case: Assuming that DC (a)[DC (base)]DC (b) is feasible, we must show that the integration of a and b
with respect to base by the HPR algorithm succeeds.

By assumption, there exists a program P (with PDG Gp) such that DCy(Gp) = DC (a)[DC (base)]DC (b).

Note that for any PDGH,H = [y s. We use thisobservation in the following derivation:
sODC,(H)
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Gp = O g S.

sODGy(Gy)

= Uy S
sODC(a)[DC (base)]DC (b)

= 0 s O Og s O Og S
sODC(a) = DC(base) sODC(a) n DC(base) n DC(b) sODC(b) = DC (base)

= Oy s Oq4 Og s Oq4 Og S
sODC,(A(a, base)) sODC,(Pre(a, base, b)) sODC,(A(b, base))

= A(a, base) Oy Pre(a, base, b) 0y A(b, base) )

There are now two cases to consider:

(i) Suppose the HPR algorithm reports Type | interference.

Without loss of generality, assume that A(a, base) £ A(a, base) Uy Pre(a, base, b) 0 A(b, base).
Thus, we have

DCy(A(a, base)) 1 DCy(A(a, base) Oy Pre(a, base, b) 0y A(b, base))

= DCy(Gp). by (*)

By the definition of the integration operation in (DCS, 0, n, =, G1),

DC(a) ~DC(base) DC (a)[DC (base)]|DC (b).
However, thisleads to the following contradiction:

DC(a) = DC(base) = DCy(A(a, base)) 1 DCy(Gp) = DC (a)[DC (base)]DC (b).
Thus, the HPR algorithm cannot report Type | interference.

(ii) Suppose the HPR algorithm reports Type I interference.
Thisleads to an immediate contradiction since, by (*),

Gp =A(a, base) 04 Pre(a, base, b) 0y A(b, base)
and hence A(a, base) U4 Pre(a, base, b) 0y A(b, base) isfeasible.

Consequently, neither Type | nor Type Il interference arises from the integration of a and b with respect to
base by the HPR algorithm. [J

Although Proposition 3.10 shows that the class of integrations handled successfully by the integration
operation in (DCS, O, n, =, G;) coincides with the class handled successfully by the HPR algorithm,
there is a difference in how the two algorithms handle unsuccessful integrations of the kind where the HPR
algorithm reports Type | interference. By Proposition 3.10, when the HPR algorithm reports Type |
interference the dlice set resulting from the integration operation in (DCS O, n, =, G,) is infeasible;
however, the slices in DC (a)[DC (base)]DC (b) are “uncorrupted,” which gives the integration operation
in (DCS, O, n, =, G;) certain advantages over the HPR algorithm. For example, suppose we perform a
succession of integrations to propagate a change through the development history of a program. With the
HPR algorithm, once Type | interference is detected it is not meaningful to perform any subsequent
integrations because Type | interference indicates that the resulting graph contains slices not found in any
of the argument graphs. By contrast, with the integration operation in (DCS O, n, =, G;) athough an
intermediate value may be infeasible—indicating interference—none of the dlices in the dlice set have
been “corrupted.” If a subsequent integration involving infeasible elements produces a feasible result, we
are guaranteed that the result contains only slices that were found in the argument sets.

The algebraic identities and inequalities we use to establish the integration operation’s algebraic proper-
ties hold in all Brouwerian agebras, not just (DCS, O, n, =, G;), and therefore the results we obtain
hold in all Brouwerian algebras aswell. It isimportant to understand that the notion of interference is not
part of this algebraic framework. For example, the classification of the elements of DCSinto feasible and
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infeasible elements is an issue that is specific to DCS; the feasibility issue is orthogonal to the algebraic
structure of (DCS, O, n, =, G,): theinfeasible elements of DCS are subject to the same algebraic laws as
the feasible elements. Thus, in the remainder of the paper the issue of interference is ignored; as with the
agebra (DCS 0O, n, =, G,), each application of the integration framework will have an associated
notion of interference.

One of the virtues of the HPR algorithm is that there is a theorem, the Integration Theorem (Theorem
2.9), that characterizes the execution behavior of the program produced by a successful integration (i.e.,
one for which there is neither Type | nor Type Il interference) in terms of the execution behaviors of the
base program and the two integrands. This same sort of result also holds for the integration operation in
(bCs 0O, n, =, G4). By Proposition 3.10, DC(a)[DC (base)]DC (b) is feasible iff the HPR algorithm
succeeds. By Proposition 3.8, it consists of exactly the single-point slices of the merged graph created by
the HPR algorithm. Because the Integration Theorem holds for the result of integrating by the HPR algo-
rithm, whenever DC (a)[DC (base)]DC (b) is feasible the Integration Theorem also holds for any of the
programs that correspond to DC (a)[DC (base)]DC (b).

To summarize, the integration operation in (DCS, O, n, -, G;) generalizes the HPR algorithm but
preserves its most important property, namely that the execution behavior of the integrated program meets
the semantic criterion of the integration model that was introduced in Section 1.1.

4. Algebraic Properties of the I ntegration Operation

Because the integration operation is defined solely in terms of LI, 11, and =, it has an analogue in all
Brouwerian algebras, not just the algebra (DCS, O, n, =, G;) from Section 3.2. Because we will study
the integration operation’s properties strictly from an algebraic standpoint, our results apply to this opera
tionin all Brouwerian algebras.

4.1. Basic Algebraic Properties of the I ntegration Operation

It is not difficult to show that the following basic properties hold for the integration operation:

alalb=b a[basela=a

a[0d]b=allb a[T]lb=arb

alarblb=allb alalLlb]b=ar1b

a[base]d =a+base albase] T =all(T ~base)
a[base](x;LIx,) =a[base]x;Lla[base]x, a[base](xi1Xy)a[base]x,Ma[base]x,
a[base]b is monotonicin a a[base]b is antimonotonic in base
a[xqiLixo]bCal[xq]bralx,]b a[x{Mxs]b =a[xq]bLla[x,]b

a[base]b ~base = (a ~base) L I(b =~ base) al[base]b+b = (a+base) b

Proofs of these properties are given in Appendix B.
We now show that the integration operation can be dightly simplified to

a[base]b = (a~base)Li(arib)Li(b - base).
That is, we can show that

(a+base)Ll(arbaser1b)Li(b ~base) = (a=base)LI(arb)Li(b ~base).
Lemma4.1l. (a+base)Li(ambaserb) = (a+~base)Li(arb).

Pr oof.
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(a~base)Li(arbaserib) = ((a~base)Li(arbase))r1((a~base)ib)

=ari((a~hase)Llb) by Proposition A.23'!
=(ari(a=bhase))Li(arib)
=(a+base)Li(arb) by Proposition A.11

(]
Corollary 4.2. a[base]b =(a=base)l_|(alb)LI(b =base).

Proof. Immediate from the definition of a[base]b and Lemma4.1. [

4.2. Associativity of Integration

The algebraic properties of the integration operation are of particular interest when dealing with compo-
sitions of integrations. For example, if three variants of a given base program are to be integrated by a pair
of (two-variant) integrations, it is important to know whether there is a law of associativity to guarantee
that it does not matter which two variants are integrated first. In this section, we prove that such a law of
associativity does hold for the integration operation. We also generalize the integration operation to
simultaneously integrate more than two variants with a given base element, and show that a three-variant
simultaneous integration can be done as a succession of two-variant integrations.

Definition 4.3. The simultaneous integration of elements X4, X5, - - -, X, with respect to element base,
denoted by (x4[base]x,, -, X,), isdefined as
(x1[base]x,, -, X,) £ (X1 ~base)LI(X, ~base)L| - - - LI(%,~base)LI(X1 X, - - - X, base).

Theorem 4.4. (Generalized Associativity Theorem). (x[base]y)[base]z = x[base](y[base]z)
= (x[base]z)[base]y = (x[base]y)[base](x[base]z) = (x[base]y)[x](x[base]z) = (x[base]y, z).

Theorem 4.4, which relates six different ways of integrating three variants with respect to a given base
element, isillustrated in Figure 10.

Because the integration operator is a ternary operator, Theorem 4.4 is a generalization of the ordinary
kind of associative law for binary operators, namely (x Oy) Oz =x0(y O z). We can simplify the gen-
eralized law to the ordinary law by currying the integration operator _[_]_ with respect to its middle argu-
ment, in this case base, which gives us a binary operator _[base]_. The first two clauses of Theorem 4.4
areof theform (x Oy) O z=x 0 (y 0 z), with operator _ [0 _ replaced by _[base] .

Pr oof of Theorem 4.4.

Part 1. Show that (x [base]y)[base]z = x[base](y[base]z) = (x[base]z)[base]y = (x[base]y, 2).

(x[base]y)[base]z
= (x[base]y ~base) | |(x[base]ybaser1z)1 I(z - base)
(x =base) LI(y = base)I(((x = base) LI(x[1base1y)LI(y = base)) '1base[12)|(z - base)
(x =base) LI(y = base) LI(z~base) LI(xy Mz base)
= (x[base]y, 2)

By analogous arguments, one can show x [base](y[base]z) = (x[base]z)[base]y = (x[base]y, 2).

Part I1. Show that (x[base]y)[base](x[base]z) = (x[base]y, 2).

UThe laws used to justify proof steps are listed in Appendixes A, B, and C.
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N

(A[Base] B)[ Base] (B[ Base] C)

(AlBase] B)[Base] C A[Base] (B[ Bas<] C)

@ (b)

Base Base

A j B /\(\ e B C
A[Base| B B[Base]C \ /
\ /‘ (A[Base|B, C)

(AlBase] B)[ B] (B[ Base] C)

© (d)

Figure 10. Associativity properties of the integration operation. By the Generalized Associativity Theorem (Theorem
4.4) al the computations illustrated above produce the same answer.

(x[base]y)[base](x [base]z)
= (x[base]y ~base) LI(x [base]y Mbaserx [base]z) LI(x[base]z = base)
= (X ~base) LI(y ~base)
LI(((x =base)I(xhasery)l I(y ~base)) base((x ~base) | |(xbasez) | (z = base)))
LI(x ~base)LI(z~base)
= (x~base)I(y ~base)|(z=base) LI(X[1y[1z[ 1base)
= (x[basely, z)

Part I11. Show that (x[base]y)[x](x[base]z) = (x[base]y, 2).

(x[base]y)[x](x[base]z)
= (x[base]y ~x)LI(X[base]yxx[base]z) LI(x[base]z - )
= ((y = base) =)
LI(((x ~base) LI(xMbasel"ly) LI(y ~base)) rx1((x = base) LI(x"1base1z)I(z ~ base)))
LI((z=base) = x)
= ((y ~base) = x)
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LI((x ~base) rx) LJ((x ~base) r1(xbaser1z)) LI((x ~ base) r1(z - base))
LI((x =base)rbaser1y)LJ(xbaser1zry) LI(xbaseryri(z = base))
LI((y = base)1(x = base)) LI ((y ~ base) rxbase1z) LI((y = base) 1 (z - base) r1x)
LI((z+base) ~x) *)
Note that each termin (*) isdominated by aterm of (x ~base)LI(y ~base) Li(z - base) LI(x My Mz base);
thus, (x[base]y)[x](x[base]z)C (x[base]y, 2).
However, by continuing from (*), we can also show that (x[base]y)[x](x[base]z) Z1(x[base]y, 2).
= (X ~base)

LI((y =base) =x) LI((y = base) M (x = base)) LI ((y = base) rxMbasez) LI((y ~ base) 71 (z = base) Mx)
LI((z+base) =x)_((z+base) M (x ~base)) LI((z=base) rxTbasery)LI((z=base) r1(y = base) 1x)
LI(x[Mbasel1z[1y) because (x ~base) "X = x ~base

= (x ~base)
LI(((y = base) I(z = base)) ~ x)
LI(((y = base) | I(z~base)) M1(x = base))
LI((x1base) r1(((y ~base)r12) LI((z = base)1y)))
L(((y ~base)r(z = base)) rx)
LI(xhaser1zriy) (**)

Now consider the second and third terms of the expression in line (**). Their join is of the form
(@a=x)LI(ari(x ~base)), where a = (y ~ base) | |(z+base) = (y1 1z) = base.

(@a=x)LI(ar(x=~base)) J(a=x)LI((arx) =~ base) by Proposition A.25
J((a=x) ~base) LI((arx) ~base) by Proposition A.11
=((@a=x)L1(arix)) ~base by Proposition A.14
=a+base by Proposition A.23
=((yL1z) = base) -~ base
=(yLlz) ~base

=(y ~base)LI(z~base)

Substituting into (**), we have

(x[base]y)[x](x[base]z) J(x = base) LI(y = base) LI(z~base) LI(x[y[1z1base)
= (x[basely, 2)

We have shown that (x[basel]y, z) J(x[base]y)[x](x[base]z) J(x[basely, z); consequently,
(x[base]y)[x](x[base]z) = (x[base]y, z). I

4.3. Compatible Integrands

Program integration deals with the problem of reconciling “competing” modifications to a base pro-
gram. A different, but related, problem is that of separating consecutive edits to a base program into indi-
vidual edits on the base program.

Example. Consider the case of two consecutive edits to base program Base; et Base + A be the result of
modifying Base, and let Base + A + 8B be the result of modifying Base + dA. By “separating consecutive
edits,” we mean creating a program Base + dB that includes the second modification but not the first.
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Base
+0A
\
Base+0A 'X
+0B
',
Baset+ 0A+ OB

One way of formalizing this goal is to say that we are looking for an integrand X that is compatible with
base Base, integrand Base+0A, and result Base+0A +0B; that is, X should satisfy the equation
(Base + dA)[Base](X) = Base + 0A +0B.

In this section the algebraic approach introduced in the previous sections is used to study this question.
The question is posed as “When does there exist an integrand compatible with a given base base, integrand
a, and result m?,” or, equivalently, “When does there exist an element x such that a[base]x = m?" We
show that, if they exist, the solutions to a[base]x = m form a meet semi-lattice with a least element, and
we give a closed formulafor the least element. (These results are further extended in Section 5.4.)

Existence of a Compatible Integrand

The theorem proven in this section provides a test for the existence of a compatible integrand. It shows
that a solution to the equation a[base]x = mexistsif and only if mitself is a suitable integrand (i.e., if and
only if mitself has the property that a[base]m = m).

Lemma4.5. a[base]x =miffa=(miibase) = 0 and (m=a) ~(m+base) = 0.

Pr oof.

0 case: Assuming a=(mLlbase) = 0 and (m=a) =~ (m +~base) = [, we must show that there is a solution
toa[base]x =m.

We will show that there is a solution to a[base]x =m by showing that m itself is a solution (i.e.,
a[base]m =m). The proof breaks into two parts. in part (i), we show that a[base]mC_m; in part (ii), we
show that a[base]m_m.

(i)  Wewill show that a[base]mCm.
We start by considering the terms of a[base]m:
a[base]m = (a+base) LI(al1base Im)LI(m = base).

(1) By the propertiesof 11, we know arlbaserimCm.
(2) Becausea=(mlLlbase) = 00 we know a_m_base, and consequently a ~base_m.
(3) Because mC_mLlbase, we know m-=base”_m.

Thus, a[baselmCmLimLIm =m. @)
(i)  Wewill show that a[base]m _m.
From the assumption (m=a) = (m=base) = [, we know that (m=a)_ (m = base). *)
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m=(arbaselr im) = (m=a)L/(m=base)LI(m+m) by Proposition A.15
=(m=a)LJ(m=base) O by Proposition A.4
= (m=base) by (*)

We now start from m=base = m=(al1base'Im) and join both sides by (a1basel 1m).

(m=base)I(albase 1m) = (m=(albase[1m))LI(arbasel1m)
=mll(allbasel1m) by Proposition A.12
=m )

a[base]lm = (a=base)_|(al1basel Tm)LI(m = base)
_(arbaserim)Li(m-=base)
=m by (**) (€

Combining (1) and (F), we have m_a[base]mL m; hence, a[base]m =m.

0 case: Assuming af[base]x=m, we must show that (i) a-(milbase)=0, and (ii)
(m=a)=(m=base) = 0.

We consider each case in turn below.

(i) If a[base]x =m, then we have
O=m-=m
=a[base]x+m
= ((a+base)Li(arbaserix)LI(x = base)) =m
= ((a+base) =m)LI((artbaser1x) =m)LI((x = base) -~ m) by Proposition A.14
J(a~base)-m
=a=(mllbase) by Proposition A.16

Therefore, a=(mLbase) = 0.
(if) If a[base]x =m, then

(m=a)=(m=base) = (a[base]x ~a) - (a[base]x ~base)
=[((a+base)lI(al1base[1X)LI(x ~base)) ~a]
=[((a=base)Li(arbasel1x)LI(x ~base)) ~base]
=[((a+base) ~a)LI((arbaserx) ~a)LI((x - base) ~a)]
=[((a=base) ~base) LI((arbaser1x) = base) LI((x ~ base) - base)]
by Proposition A.14

Itis possible to simplify five of the six termsin the last expression.

(a~base)~a=(a~a)~base = O+hase = [ by Propositions A.16, A.4, and A.5
(albasel1x)Ca, so (al1baseix)~a=0 by Proposition A.2
(a+~base) - base = a = (basel_|base) = a ~base by Proposition A.16
(albase1x)C base, so (al 1base[1x) = base = 0 by Proposition A.2
(x ~base) ~base = x = (basel_Ibase) = x - base by Proposition A.16

Picking up the derivation, we have

(m=a)=(m=base) =[O0 OI((x ~base) ~a)] =[(a=base) LI OLI(x ~base)]
= (x = (alUbase)) =~ ((a ~base) LI(x = base))

=x~((alUbase)LI(a=base)LI(x ~base)) by Proposition A.16
=x = (allbaseLl(x = base)) by Proposition A.11
= ((x =base) = (x =base)) -a by Proposition A.16
=0-a by Proposition A.4
=0 by Proposition A.5
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Theorem 4.6. a[base]x = miff a[base]m =m.

Pr oof.

00 case

The proof of this case is immediate: To show that a[base]x = m has a solution we merely choose x to be
m.

[l case

If a[base]x = m, then by the previous lemma, a -~ (mLlbase) = 0 and (m ~a) ~(m=base) = (0. Asshown
in the proof of the 00 case of the lemma, if a=(mUbase)=0 and (m+a)~(m-=base) = 0, then
a[baselm=m.

Existence of a Minimum Compatible Integrand

In this section, we give a closed formula for the least solution of the equation a[base]x = m and show
thatitis, in fact, the least solution.

Lemma4.7. If a[base]m = mthen m=a =m=(al |base).

Proof. Because a[base]m =m, we know from Theorem 4.6 and Lemma 4.5 that a - (m_lbase) = [0 and
(m=a)=(m-=base) = .

(m=a)=(m=base) = O
m-=al m-=base
m-a=(m=a)-a_(m=base)-a=m-=(allbase) *)

However, by Proposition A.11 we know that

m-=a_](m+a)-=base =m=(allbase) (**)
Therefore, by (*) and (**), m~a =m=(allbase). O

Lemma4.8. If a[base]m = mthen (a~base)LI(albaserim)Li(m+a)=m.

Proof. The proof breaks into two parts: in part (i), we show that (a ~base)LI(arbaserim)LJ(m=a)Cm;
in part (ii), we show that (a ~base)_I(al 1base im)I(m=a)_Im.

(i) Because a[baselm=m, we know that a-=(mLlbase)= 0. Consequently, a_mllbase, or
equivalently a~baseCm. Thus, (a+base)Li(arbaserim)L(m=a)CmLimLm=m.

(i) By Proposition A.18, (a~base)LI(m +a) Jm - base; thus,
(a=base)Li(arbaserim)Li(m=a) J(aribaserim)Li(m=base).

From part (ii) of the 0 case of Lemma 4.5, we know that from (m=a)=(m=base) = [0 we can
deduce (arbaserm)LI(m=base) = m. Therefore, (a~base)LI(arbaserm)Li(m=a)Im. O

Definition 4.9. X.n £ (Mm=a)Ll((arbaserim) = (a = base)).
Theorem 4.10. If a[base]m = mthen X, isthe minimum x such that a[base]x = m.

Pr oof.

Part 1. Show that a[base]Xin = m.

a[base]xin = (a~base)J(arbaseri((m=a)Ll((aribaserim)~(a+base))))
L(((m=a)Li((arbaserim) = (a - base))) -~ base) *)

First, we simplify the second term of (*).



arbaseri((m=a)Li((aribaserim) = (a+base)))
= (arbaseri(m=a))Li(arbaseri((aribaserim)=(a=base)))
= (aMbaseri(m=a))LI((arbaserim) = (a = base)) because arbase Jabasel im

Next, we simplify the third term of (*).
((m=a)lI((arbaserim) = (a~base))) -~ base
= ((m+a)~base)LI(((arbasel 1m) = (a ~base)) - base)
= (m=(albase))I(((arbase 1m) ~base) - (a ~ base))
=(m=+(allbase)) (O~ (a+=base))
=(m=(allbase)) 10
=m-=-a by Lemma4.7

a[base]Xmin = (@=base) I[(arbaseri(m=a))LI((arbaserim) = (a ~base))| LI(m=a)
=(a+base)LJ((arbaserim) = (a=base)) /(m=a)Li(arbaseri(m=a))
= (a~base)Li(allbase Im)I(m=a)Ll(al base1(m=a)) by Proposition A.12

By Lemma 4.8, we know that (a = base)J(al1basel Im)LI(m+a) =m. Thuswe can continue the deriva-
tion above as follows:

=mll(allbasel1(m=a))

=m

This completes the proof of Part I; we have shown that a[base]X i, = m.

Part 11. Show that X, isthe minimum x such that a[base]x = m.

Suppose that x is an element such that a[base]x = m. We will demonstrate that X X -

O = a[base] Xy, ~a[base]x
=[(a~base)LI(ar1basel 1Xmn) LI (Xmin = base)] = [(a = base) Li(al1basel1x) LI(x ~base)]
=[(a~base) ~((a+base)I(al1basel1x)LI(x ~base))]
Li[(ambaseMXmin) = ((a - base) Li(ambasemx) LI(x - base))]
LI[(Xmin ~base) = ((a = base) LI (ambase™x) LI(x = base))] *)

Note that, by Proposition A.2, the first term equals 0. In addition, because the outermost connectives in
(*) arejoins, each of the remaining two terms must also equal [1.
First, consider the third term of (*).

Xmin —base” (a=base) LI(ambaserx)LI(x =~ base)
XminC (a=base)LI(arbaserx)LI(x = base) Lbase
= (allbase)I(al1basel1x)LI(x =~ base)
=al lbasel |x|I(al1basel1x)
=al lbasel Ix

Therefore, Xy = (allbase) Cx, or, expanding with the definition of X,
((m=a)Li((arbaserim) = (a~base))) = (al Ibase) C x.

Xx_J((m+a)=(allbase))LI(((arbase1m) = (a+~base)) - (al_Ibase))
=(((m=a)~a)~base) LI(((ar1baserim) - (albase)) - (a =~ base))
((m+a)=base) (0~ (a+base))
(m=(allbase)) LU0
=m-a by Lemma4.7

Thus, x Im=a. ©)
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Now consider the second term of (*).
allbasel XpinC(a=base)Li(al1basel1x)LI(X = base)
(albase X i) = (a=base) L (al1base1x) LI(x = base) L x
x J(aribaseX,n) = (a = base)
={ambaser((m+a)Ll((arbaserim)=(a+base)))} - (a+base)
={(arbaseri(m=a))Li(aribaseri((aribaserim)=(a=base)))} ~(a~base)
={(arbaseri(m=a))Ll((arbaser im) = (a~base))} - (a=base)
because arbase Jarbaserim
=((arbaseri(m=a)) ~(a=bhase))I(((al 1base1m) - (a = base)) - (a =~ base))
= ((artbaseri(m=a)) ~(a=bhase)) i((ar basel 1m) = (a - base))
J(arbaser1im) = (a ~base) (€3]
By (1), xIm=a.
By (), xJ(arbaserim) = (a ~base).
Therefore, x J(m=a) L I((arbaserim) = (a =base)) = Xin-
O

Properties of Solutions of a[base]x = m
Lemma4.11. Solutionsof a[base]x = mare closed under 1.
Proof. Let x; and x, be two solutions of a[base]x =m (i.e.,, a[base]x; =m and a[base]x, =m). The
proof breaks into two parts: in part (i), we show that a[base](x;1x,)Cm; in part (ii), we show that
af[base](x;Mx5) 2Im.
0)
a[base](x,Mx,)Ca[base]xqMa[base]x,
=miim
=m *)
(i) Because a[base]x; =m and a[base]x, =m, we know that X; JX.i, and X, IXqin; therefore,
X1 1X2 I Xmin-
af[base](x1Mx,) = (a+base) Li(arbaseri(x,1X5)) LI((X11X5) ~base)
J(a+=base)Li(aribase 1 Xumin) L (Xmin ~base)
=m (%)
Combining (*) and (**), we have m_a[base](x;1X,)C m; hence, a[base](x11x,) =m. O
Theorem 4.12. Solutions of a[base]x = mform a meet semi-lattice with least element X in.
Proof. Immediate from Lemma4.11, together with Theorem 4.10. (I

The question of when there is an integrand compatible with a given base base, integrand a, and result m
isre-examined in Section 5.4, where the result just given as Theorem 4.12 is extended to Theorem 5.9.

Separating Consecutive Edits by Re-Rooting

In this section, we consider a different approach to the problem of separating consecutive edits to a base
program into individual edits on the base program.

Example. Consider again the case of two consecutive edits to a base program Base, where Base +0A is
the result of modifying Base, Base + dA + 0B is the result of modifying Base + 0A, and we want to create a
program Base + 8B that includes the second modification but not the first. We now consider an aternative
approach to that of solving an equation (as shown below on the left and discussed earlier). Thistime our
approach is to re-root the development history, as shown below on the right, so that Base + dA rather than



_36_

Baseistreated as the base program.

Base Base+0A
+5A +d6B -0A
\
Base+8 A ,X Base+ OA+ OB Base
+0B
¥ L
Baset+ dA+ 0B (Base + 5A + 4 B)[Base + 6 A]Base

Programs Base and Base + 0A + 0B are treated as two variants of Base +dA. For instance, instead of treat-
ing the differences between Base and Base +0A as changes +0A that were made to Base to create

Base + A, they are now treated as changes — A made to Base + 8A to create Base.'? For instance, when
Base is the base program, a statement s that occurs in Base +dA but not in Baseis a“new” statement aris-
ing from an insertion; when Base + dA is the base program, we treat the missing sin Base as if a program-
mer had deleted s from Base + dA to create Base. (The status of variant Base + dA + 0B is unchanged; it is
still treated as a variant derived from Base+0A.) Base+0B is created by integrating Base and
Base +0A+0B with respect to base program Base+dA (i.e, by performing the integration
Base[Base + 6A](Base + 0A + 0B)).

In this section, our algebraic techniques are used to demonstrate that the re-rooting approach is, in fact,
reasonable. Below, we show that the result of integrating after re-rooting is not, in general, an integrand
compatible with base Base, integrand Base + A, and result Base +0A +0B (even when a compatible
integrand does exist); however, the element E produced by integrating after re-rooting (where
E = Base[Base + dA](Base + dA + 8B)) has the property that (Base + dA)[Base]E _1Base +dA +0B. This
assures us that E captures everything that is different between Base + A + 6B and Base + 0A (i.e,, dl of the
+ 0B change, as desired), plus more. We then show that whenever a compatible integrand exists, E is
greater than or equal to some compatible integrand; in particular, we show that taking the meet of E and
Base + dA + OB produces one of the compatible integrands.

Theorem 4.13. a[base]ma[base](m[a]base).

Proof.

a[base](m[a]base) = (a=base)LI(al 1baselIm[a]base)I(m[a]base = base)
=(a~base)l I(arbaser1((m=a)Ll(arbaserim)l |(base~a)))LI((m+a)=base)
=(a+base)l|(albase1(m=a))Ll(abasellallbase1m)Ll(a1base(base - a))
LJ((m=a) ~base)
=(a+base)Li(artbaserim)Li(ari(base ~a))LI((m+a)~base)
=((aLi(m=a)) ~base)Li(albaserim)Li(ari(base ~a))
=((aLim) =base)LI(arbaserim)Li(ari(base - a)) by Proposition A.12

2The notations + 8A and — 8A are used here informally to suggest editing operations that, respectively, add and remove a feature from
aprogram. They are not intended as formal operators. The purpose of the discussion is merely to motivate the idea that re-rooting and
then integrating is potentially useful. The formal characterization of the re-rooting approach is the subject of the rest of the section.
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= (a+base)LI(m=base)Li(al1baser im)Li(ali(base ~a)) by Proposition A.14
“Ja[base]m

O
Corollary 4.14. If a[base]m =m, then m_a[base](m[a]base).
Proof. Immediate from Theorem 4.13. [J
We can show by means of an example that the [ in the above corollary is, at times, strict.

Example. The programs shown below have the properties that a[baselm=m and
m[a[base](m[a]base).

a base m a[base]m m[a]base  a[base](m[a]base)

DC(program] DC(program] DC(program] DC{(program DC(program) DC(program)
| x:=1; | x:=1;] | x:=1;| | x-1| | x:=1; | x:=1;]
| y:=x| | y:=x] | v:=2] | v:=2] | y:=x] | y=x]|
lend) | z:=y| | w:=v]| | w:=v]| | z:=y;] | v:=2]
lend) J lend() J Lend() J | vi=2 | w:=v|
| w:=v| lend) |

lend)

Note that mis strictly less than a[base](m[a]base) due to the presence in a[base](m[a]base) of the slice
program

X =1,

y =X
end().

(Even though this dlice is not a member of m, it does occur in a, base, and m[a]base; thus, it is part of
allbaserim[a]base and hence occursin a[base](m[a]base).)

The above example shows that m[a]base—the result of integrating after re-rooting—is not necessarily
asolution of a[base]x = m (when a solution exists). We now show that m[a]base is greater than or equal
to some solution of a[base]x =m; in particular, we show that when there exists a solution of
a[base]x =m, (m[a]base) " Tmis one of the solutions.

Lemma 4.15. (a[base]b)1a_Ja[base](al1b).
Pr oof.

(a[base]b)r1a = ((a~base)Li(ar1baser1b)Li(b ~base))r1a
=((a+hase)1a)L/(ar1baser1b)LJ((b=base)1a)

=(a=base)l_l(al1basel1b)L(al (b ~base)) by Proposition A.11
_ (a+base)Li(arbaserib) Li((arb) = base) by Proposition A.25
=a[base](arib)

O
Theorem 4.16. a[base]((m[a]base)1m) = a[base]m.

Proof. The proof breaks into two parts: in part (i), we show that a[base]((m[a]base)1m)_a[base]m; in
part (ii), we show that a[base]((m[a]base)1m) Ja[base]m.

(i)
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a[base]((m[a]base) im)_a[base](m[a]base)1a[base]m by Proposition B.10
=a[base]m *)
by Theorem 4.13

(i)
a[base]((m[a]base) im) = (a~base)| j(al1basel1((m[a]base)  Tm)1m)| j(((m[a]base)1m) = base)
= (a+base)| (albaser im)l_j(((m[a]base)  1m) = base)
_(a=bhase)| |(arbaserim)|_j(m[a](baserim) -+ base)
by Lemma 4.15
= (a+base)| |(arbaserim)| ((m+a)~base)
L j((mriarimiibase) ~base)| |(((baser1m) = a) = base)
(a=base)| j(@arbaserim)| j(m=a)=base)| ;O O
((aly(m=a))~base)| |(al1base1m)

((alym) ~base)| j(al1baser1m) by Proposition A.13
= (a~base)| |(m=base)| |(aribaserim)
=a[base]m (**)

Combining (*) and (**), we have a[base]mLCa[base]((m[a]base)i1m)Ca[base]m; hence,
a[base]((m[a]base)im) = a[base]m. O

Corollary 4.17. If a[base]m = mthen (m[a]base) imisa solution of a[base]x = m.

Proof. Immediate from Theorem 4.16. O

4.4. A Compatible Base

We now turn to the question of whether there is a base element compatible with given integrands a and
b and result element m; that is, we want to know “When does there exist an element x such that
a[x]Jb=m?

Existence of a Compatible Base

Note that, because a[x]b is anti-monotonic in x, we have
arlb=a[T]bCa[x]b=m=a[x]bCa[0]b=al jb.

Lemma 4.18 a[x]b=m has a solution for x iff (a=(a=m))=(artb)=m=b and
(b=(=m))=(bra)=m-=+a.

Pr oof.

O case

Assuming that a[x]b =m has a solution for x, we must show that (a=(a=m))=(arib)=m-=b and
(b=(b=m))=(brla)=m=a. The proof bresks into two parts. in pat (i), we show that
(@a=(a=m))=(arib)Cm=b;in part (ii), we show that (a = (a-m)) = (arib) Jm=b. (Theidentica argu-
ments with a and b interchanged show that (b = (b =m))=(bra) =m-a.)
(i)
(a=(a=m))=(arb) =(a=(a=m))=a)i((a=(a=m))=b)

=01((a+b)=(a+m))

=(a=b)=(a+m)

Cm-=b by Proposition A.19

(i)
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(a*(a=m)=(arb) = (@=(@=m)=a)Li(a*(a*m)=b)
=00((a=b)=(a=m))
=(@=b)*(@=m

(m=b)=(@a=(a+=m))=(arib)) =(m=b)=((a=b)=(a+m))
= (a[x]b=b) =((a=b)=(a=m))
=((a=x)=b)=((a=b)=(a=m))
=((a=b)=x)=((a=b)=(a=m))
C(@a=m)=x by Proposition A.19
=(a=x)=m
C((@a=x)=myu(@arixrib)=m)jL((b =x)=m)
=((a=x)(arxrib)Li(b=x)) ~m
=a[x]b=m
=m-=m
=0

Therefore, (a=(a=m))=(arb)Zm=h. (**)

Putting (*) and (**) together, we have m-=bJ(a=(a=~m))=(aritb):Im=b, hence
(a=(@a=m))=(arib)=m=b.

O case

Assuming that (a=(a+m))=(arib)=m=b and (b~(b+-m))=(brra)=m=a, we must show that
a[x]b =m has a solution for x. We will show that a solution exists by showing that (a=m)Li(b+-m) isa
solution.
The proof breaks into two parts: in part (i), we show that a[(a=m)L!(b=m)]bCm; in part (ii), we show
that a[(a~m)LI(b=m)]b _Jm.
0)
a[@=m)Li(b=m)b=(@=((a=m)Li(b=m)))Li(@ri((@a=myLi(b-m))rib)
Li(b=((@a=m)Li(b+m)))
=((a+-(a+=m))=(b+-m))Li(aribri(a+m))
U@rbri(b=m))L((b=(b~-m))=(a+-m))

C((arim)=(b=-m))(@ar(b-m)) by Proposition A.27
LI((brim)=(a=m))Li(bri(a=m))
C(@a=m=m)rm=((b=m)))L(ar(b=m)) by Proposition A.26

LI((b=(@=m))ri(m=(@=m)))Li(bri(a=m))
=(((@=(=m)L@r1(o=m))ri((m=(b=m)Li@ri(b=m)))
LiI(((b=(a=m))Li(bri(a=m)))ri((m=(@=m)Li(bria=m))))
=@ri((m=((M=m))@ri(b-my)))) by Proposition A.23
Ur((m=(@=m))u(bri(a=m))))
(@ (m=(b=m)))u@ri(b=-m)))
LI((br1(m=(a=m)))_i(br(a=m)))
@ri((m=(b=m))Li(b=m)))i(bri((m=(a=m))Li(a=m)))

=@rn(myu(b=m)))i(bri(mLi(a=m))) by Proposition A.12
= (ar(mub))i(bri(mia)) by Proposition A.12
= (aUb)r(au(mua)) ri(bL/(mub))ri(mLallb)

= (ab)r(@m)ri(bLim) because m_al ib
= (alUb)r1((@rb)L(mrib)Li(arim)Lim)

=(alb)rim becausearibCm
=m because mC—al |b

Therefore, mJa[(a=m)Li(b ~m)]b. *)
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(if)
al[(@a-m)Li(b-m)]bJal[a[m]b]b by Proposition B.12
=a[(a=m)(@rimrib)Li(b-m)]b
=a[(a=m)(arib)Li(b ~m)lb because arib_m

=(@a=((a=mu@nb)ud=m)))@r((a=m)arb)L(b+m))rb)
Li(b=((@a=m)(arib)Li(b~m)))
=(((@=(@a=m))=(arib))=(b=m)Li(arb)
L(((b = (b=m))=(arb)) = (a=m))

=((m=b)=(b=m))I(arib)Li((m=a)=(a+m)) by the assumptions
=(m=b)Li(@rb)LI(m=a) by Proposition A.30
=(m=(arib))(arb) by Proposition A.15
=m

Therefore, a[(a=m)L(b+m)]bIm. **)

Putting (*) and (**) together, we have mJa[(a=~m)LJ(b-m)]b2Jm, hence, a[(a=m)LJ(b=m)]lb=m. O

Existence of a Minimum Compatible Base

In this section, we show that when the equation a[x]b = m has a solution for x, (a=m)LJ(b ~m) isthe
least solution.

Theorem 4.19. If a[x]b =mhasa solution, then (a=m)LI(b ~m) isthe minimum x such that a[x]b = m.

Proof. By the proof of Lemma 4.18, if the equation a[x]b = m has a solution for X, then (a =m)L/(b ~m)
isasolution to the equation. It remains to be shown that (a ~m)LI(b -~ m) isthe least solution.

In the following derivation, let x be any solution to the equation a[x]b = m.
O=m-=m

=a[x]b=m

=((a=x)u(@rxrib)u(b=x)) ~m

=((a=x)=m)J((@arxrib)=m)Li((b =x) =m)

=((@a=m)=x)LI((arxrib) =m)Li((b =m)=x)

J((a=m)=x)Li((b+m) =x)

=((@a=m)Li(b=m))=x

Therefore, (a=m)LI(b=m))~x =0, and hence (a=~m)LI(b-m)Cx. O

Properties of Solutionsof a[x]b =m
Lemma 4.20. Solutionsof a[x]b =mare closed under 1.

Proof. Let x; and x, betwo solutionsof a[x]b =m(i.e.,, a[x;]b =mand a[x,]b = m).

a[x4Mxs,]b =a[x ]blLia[x,]b by (B.14)
=mpLm
=m

O

Theorem 4.21. Solutions of a[x]b = mform a meet semi-lattice with least element (a =m)LI(b =m).

Proof. Immediate from Lemma 4.20, together with Theorem 4.19. [

5. Algebraic Properties of Double Brouwerian Algebras

This section concerns double Brouwerian algebras—Brouwerian algebras whose duals are also
Brouwerian algebras. Section 5.1 introduces the quotient operation, which is the dua of the pseudo-
difference operation. In Section 5.2, it is shown that the lattice of downwards-closed sets of dependence-
graph dlices is a double Brouwerian algebra. Section 5.3 concerns the operation that is the dual of the
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integration operation, and shows how the two operations are related. Section 5.4 re-examines the question
of when there is an integrand compatible with a given base base, integrand a, and result m and generalizes
the result that was given earlier in Section 4.3.

5.1. The Quotient Operation

Definition 5.1. For al x, y 0 DCS the quotient of x with respect to y, denoted by x +v, is defined as
x+y£{z0OG,|IpO(y—-x)suchthatp < z}.

That is, x +V isthe complement of the upwards closure of y —x.

In the definition of x +y, elements of the set y —x represent forbidden (sub-)slices of members of x +v.
The quotient operation isillustrated in Figure 11.

Example. The following table illustrates the differences between ordinary set difference (-), pseudo-
difference (=), and quotient (+):

Figure 11. The value of x +y is the complement of the upwards closure of y —x; that is, x +y consists of all elements
that do not dominate an element of y —x. Thus, x+y excludes both of the shaded regions. In the agebra of
downwards-closed sets of single-point dlices, elements of the set y —x represent forbidden (sub-)slices of members of

X+Y.



_42_

a b a-b b-a
(program , program]  (program, program,program] 0O (=0) (program)
Jend() x:=0 } Aend() Xx:=0 X:=0; { x:=0;}
L end) | | end() yi=x | | y:=x|
L end) lend) )
a=b b-a
O(=0) (program, program , program)
Jend() x:=0 X:=0; ¢
| end() y=x |
end)
b+a a+hb
G, (=T) G, - (sOG,| program <s)
{ | x:=0;
| | oys=Ex |
L | end() J
Note that because b —aisthe singleton set
(program)
{ x:=0;t
| y=x |
lend)
a+bisthe (infinite) set of all single-point slices that do not contain the (sub-)slice
program
X :=0;
y =X
end().
5.2. Double Brouwerian Algebras
Definition 5.2. A double Brouwerian algebra [16] is an algebra (L, LI, 11, =, =, T) where both
(L, L, 11, =, T)yand (L, 11, LI, =+, T=T) are Brouwerian algebras. In particular,
(i) Lisclosedunder +.
(i) Foralab,andcinL,a+bIciffaJbric.
Theorem 5.3. (DCS O, n, =, +,G,) isa double Brouwerian algebra, where O isset union and n is

set intersection.

Proof. We must show that (DCS, n, O, +, ) isaBrouwerian algebra, which involves showing (1) DCS
isclosed under + and (2) forall a, b,cODCS a+~bOciffalbnc.

To show property (1), consider any two elements a, b 1 DCS  From Definition 5.1 (the definition of +
in the algebra of downwards-closed sets of single-point slices) we see that, for adl gOa<+b, if zisa
single-paint slice of g, zisalso amember of a+b, hencea+b ODCS

Two show property (2), there are two cases to consider.

0 case: Assuminga<b Oc, we must showthataOb n c.

Let b be the complement of b with respect to G, (i.e., b =G, —b). From Definition 5.1, we know that
boaOaxh.
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_ boaOa=+bOc
_ (boa)nbObnc
(bnb)O(anb)Obnc
OO0(anb)Obnc
anbObnc
albnc.

0 case: Assuming a b n ¢, we must showthata+b[Oc.

Let zbe amember of c; wewill show that zOa +b. There are two cases to consider:

(1) SupposezUb. Becausez[c, zOb,andaOb n ¢, we know zOa. By the downwards-closure pro-
perty of elements of DCS UOp 0G4 such that p<z pOa. This means that pd(b—-a). Hence,
Ip O (b —a) such that p < z consequently, zOa +b.

(2) Suppose z[Ohb. We first observe that z[0(b—a). Now suppose there exists a p [0 (b —a) such that
p<z(*). By the downwards-closure property of elements of DCS, because p<z and zOc, we
know that p Oc. But since pd(b—a), we aso have pdb. Therefore p Ob n ¢, which means that
pUOa (because albnc). From pOa and p Ob, we conclude that p O (b —a), which contradicts
(*). Hence, Ip O (b —-a) such that p < z, consequently, zOa +b.

O

5.3. An Alternative Way to Perform Integration

This section concerns a new criterion for program integration, based on the operation that is the dual of
the integration operation. After introducing a few new concepts that are needed to define the dual opera
tion, we show how the two operations are related.

Because the dependence-graph algebra is a double Brouwerian algebra, it is possible to perform integra-
tion using the dual of the operation a[base]b.

Definition 5.4. The dual integration of elements a and b with respect to element base is the element
a{ base} b defined by a{ base}b £ (a+base)(al Ibasel Ib) (b + base).

Note that, in the algebra of downwards-closed sets of single-point dlices, if a, base, and b are al finite
sets, then albasel b is finite. Hence, even though a +base and b +base are infinite sets, af{ base}b is
guaranteed to be finite.

We now investigate how a[base]b and a{ base}b are related; the theorem proven below shows that
a{ base}b is always less than or equal to a[base]b. We then give an example for which strict inequality
holds.

Theorem 5.5. a{ base}b_a[base]b.

Proof.

al[base]b = (a~base)L/(al1b)LI(b ~base) by Corollary 4.2
=((alLb) ~base)Li(ar1b) by Proposition A.14
= (all((aLib)~base))r(bLI((alLIb) ~base))
= (alJ(a=base)Li(b ~base)) (b Li(a=base)Li(b ~base)) by Proposition A.14
= (ald(b =base))r(bLi(a = base)) by Proposition A.11

By the dual derivation, we have a{ base}b = (ar(b +base)) Li(bI1(a + base)).

a{ base}b+a[base]b = [(all(b +base)) I(br(a+base))] ~[(all(b ~base))r1(bLi(a=base))]
= ((ar(b +base)) ~[(aLl(b=base))r(bLI(a~base))])
LI((br(a+base)) ~[(aLl(b ~base)) (b LI(a~base))])
by Proposition A.14
= ((ar(b +base)) = (all(b ~base))) Li((ar1(b + base)) - (bLI(a ~ base)))



LI((br1(a+base)) = (aLl(b = base))) Li((bI"(a+base)) - (bLi(a~ base)))

by Proposition A.15
= ((ar(b +base)) = (b LI(a=base))) LI((b(a+base)) = (aLl(b = base)))

by Proposition A.2

(ar(b +base)) ~(bLi(a~base)) = (ari(b + base)) ~ (a ~base)) ~b by Proposition A.16
C((b+base)ri(a=(a=base)))~b by Proposition A.25
L ((b+base)r1(allbase))~b by Proposition A.27
= (((b +base)base)a) b
=(brbaseria)=b by the dual of Proposition A.12
=0 by Proposition A.2

Similarly, (br1(a +base)) - (aLl(b =base)) = 0. Hence, a{ base}b ~a[base]b = [, and thus, by Propo-
sition A.2, a{ base}ba[base]b. O

Example. Returning once again to the integration example from Sections 2.2 and 3.4, we can show that
the inequality in the above theorem is, at times, strict; the sets of programs shown in the table in Figure 12
have the property that DC(A){ DC(Base)}DC(B) is strictly less than DC(A)[DC (Base)]|DC (B).
Because DC(A){DC(Base)}DC(B) is the intersection of DC(A)+DC(Base) with
(DC(A)ODC(Base) 0 DC(B)) n (DC(B) +DC (Base)), none of the following three single-point dlices,
which are all members of DC (A)[DC (Base)]DC(B), occur in DC (A){ DC (Base) } DC (B):

DC(A) DC (Base) DC(B)
DC(program) DC/(program| DC(program )
| x:=0]| | x:=0; | x:=0; |
lend(x) ) | yi=x] | y=x |
lend(x, y)) | z:=y |
lend(x, y, 2))
DC(A) = DC (Base) DC(A)n DC(Base) n DC(B) DC(B)-DC(Base) DC(A)[DC (Base)]DC (B)
0 (=0) DC(program| DC(program| DC/(program)
| x:=0] | x:=0 | x:=0;|
lend(x) ) | y=x] | y=x |
| z:=y| | z:=y |
lend(2) ) lend(x, 2) )
DC(A) = DC (Base) DC(A)0DC(Base) 1DC(B) DC(B)=DC(Base) DC(A){ DC(Base)}DC (B)
G, - (sOG,| program <) DC(program ) Gi(=T) DC(program|
3 | x:=0; | x:=0; | | x:=0]
I | y:=x I | y=x | lend(x) J
L | end() J | z=y |
lend(x, y, 2))

Figure 12. The table given above illustrates both the integration operation and the dual of the integration operation in
the double Brouwerian algebra (DCS, O, n, =, +, G;). The sets of programs in this example have the property that
DC (A){ DC(Base) } DC(B) is strictly less than DC (A)[DC (Base)]DC (B).
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program program program

X :=0; X :=0; X :=0;

y =X yi=X; Yy =X

end() z:=y z:=y
end() end(2).

This example illustrates a fundamental difference between integrating by the operation a[base]b and
integrating by a{ base}b. With a[base]b an insertion made in one integrand can “override” adeletion in
the other integrand; in the example shown above, the insertion of statement z:=y in integrand DC(B)
overrides the deletion of y :=x from integrand DC(A). By contrast, with a{ base}b a deletion in one
integrand can override an insertion in the other integrand; in the example, the deletion of statement y :=x
from integrand DC (A) overrides the insertion of z:=y in integrand DC(B). Conseguently, we say that
a{ base } b isthe deletion-preserving integration of a and b with respect to base.

Remark. Asapractical matter, the deletion-preserving integration operation is probably less important
than the integration operation, since the emphasis in producing software is usually on enhanced functional-
ity (i.e., insertions) rather than on reduced functionality. Thus, ordinarily it is desirable that an element
deleted as part of (say) programmer A’'s change but needed for programmer B's change (such as statement
y := X inthe example given above) should appear in the integrated program. Only occasionally isit impor-
tant to emphasize reduced functionality—for example when creating a specialized version of a system to
run on a machine with a small address space.

5.4. Existence of a Maximum Compatible Integrand

This section re-examines the question of when there is an integrand compatible with a given base base,
integrand a, and result m. In particular, we give a closed formula for the greatest solution of the equation
a[base]x =m and show that it is, in fact, the greatest solution. (Note that our formula for the greatest
solution makes use of the quotient operation, and thus holds only for double Brouwerian algebras.) This
result is then used to extend Theorem 4.12; Theorem 5.9 shows that, if they exist, the solutions to
a[base]x = mform adistributive lattice with aleast element and a greatest element.

Definition 5.6. X £ mLl(baseri(m=a)).

Theorem 5.7. If a[base]m = mthen X, is the maximum x such that a[base]x = m.

Pr oof.

Part |. Show that a[base]X g = m.

The proof breaks into two parts: in part (i), we show that a[base]Xax _M; in part (ii), we show that
a[base]X = m.
0)
a[base]Xax = a[base](mli(basel1(m+a)))
= a[base]mlia[base](basel 1(m+a)) by Proposition B.9
=mLla[base](baser1(m+a))
Im *)



(i)

_46_

a[base]Xax = a[base](mlli(basel1(m+a)))

= a[base]mlia[base](basel 1(m+a)) by Proposition B.9
=mlla[base](base1(m+a))

CmLl(a[base]basea[base](m+a)) by Proposition B.10
=m_J(ara[base](m+a)) by Proposition B.1

=mll(ari((a=base) (arbaseri(m=a))lI((m+a)=base)))
=mU(ar(a=base)) Li(ararbaseriim+a))Li(ari((m+a)=base))

Because a ~base[_ a, the second term (al1(a = base)) simplifiesto a ~base. By the dual of Pro-
position A.12, ari(m+a)=alrim, so the third term simplifies to arlbaserim. However,
(a~base)i(arbaserim)Ca[base]m =m, so the last line in the above derivation simplifies to
mLl(ari((m+a) = base)).

Additional simplification is possible because, by Proposition A.11, we have
(m+a)~-base[_m-=+a. Therefore, al1((m+a)=base)_m, and a[base]X = M. **)

Combining (*) and (**), we have m_ a[base]X . = m; hence, a[base]Xax = m.

Part 11. Show that X 1S the maximum x such that a[base]x = m.

Suppose that x is an element such that a[base]x = m. We will demonstrate that X [ X -

m = a[base]x
= (a~base) Li(arbaser1x)LJ(x = base)

X=baseC_m
xCmlbase *)
arlbaserxcCm
XCm+(aribase) (**)

Putting (*) and (**) together, we have

X (mLlbase)1(m + (al1base))
= (mM(m+(arbase)))Ll(baseri(m+ (arbase)))
=ml(baser(m+ (al1base)))
=m(baseri((baserim) =+ (baseri(aribase))))
=mLl(baseri((basel im) + (basel1a)))
=mLl(baseri(m=+a))

= Xmax

O

Properties of Solutions of a[base]x = m

by the dual of Proposition A.13
by the dual of Proposition A.21

by the dual of Proposition A.21

We can now extend the results from Section 4 concerning the properties of solutions of a[base]x =m.

Lemma 5.8. Solutionsof a[base]x = mare closed under |J.

Proof. Let x; and x, be two solutions of a[base]x = m (i.e,, a[base]x,; = mand a[base]x, = m).

a[base](x; LIx,) = a[base]x; LJa[base]x,
=mpLim
=m

by Proposition B.9
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Theorem 5.9. Solutions of a[base]x = m form a distributive lattice with least element X,;,, and greatest
eement X ax-

Proof. Immediate from Theorem 4.12, together with Theorem 5.7 and Lemma5.8. [
Theorem 5.9 isillustrated in Figure 13.

6. Some Practical Considerations

6.1. Implementation

A program-integration tool that uses the HPR agorithm has been demonstrable since the summer of
1987 [24,27]. With the integration tool, one is able to display program dlices and integrate programs; if
interference is detected during integration (i.e., integration fails), the system provides an interactive facil-
ity to help the user diagnose the cause of interference [23].

The user interface for the integration tool incorporates a language-specific editor created using the Syn-
thesizer Generator, a meta-system for creating interactive, language-based program-development systems
[21]. The editor of the program-integration tool automatically supplies tags on program components (i.e.,
assignment statements and predicates) so that common components can be identified in different versions.
Data-flow analysis of programsis carried out according to the editor’s defining attribute grammar and used
to construct program dependence graphs. Commands added to the editor make use of these graphs to per-
form their actions. For example, the integration command invokes the integration algorithm on the pro-
gram dependence graphs, reports whether the variant programs interfere, and, if there is no interference,
builds the integrated program.

Figure 13. If solutions to the equation a[base]x = m exist, then mitself is a solution, and the set of solutions forms a
distributive lattice with least element X, and greatest element X -
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The implementation has recently been extended to incorporate the ideas described in this paper. The
integration tool now also incorporates an editor and an interpreter for a higher-order functional language
that operates on values of type Brouw, where a Brouw value is a downwards-closed set of (tagged)
single-point slices. The primitive operations on Brouw values are the join, meet, and pseudo-difference
operations of a Brouwerian algebra, together with a ternary operation for integration. Functional expres-
sions are built up using lambda-abstraction, application, conditional expressions, let-clauses, and a least
fixed-point operator. (Boolean and integer values are also provided.) A free variablein an expression (say
X) denotes the Brouw created from the program in editing buffer x (i.e.,, DC(x)). If no such buffer exists,
thevalueis [, the least Brouw value. The editor displays a type for each expression; these types are sup-
plied using the Milner algorithm for polymorphic type inference (algorithm W) [6,17]. An evaluation
command added to the editor invokes the interpreter on the expression, and—if the fina result is a
Brouw—nbuilds the corresponding program (if one exists).

6.2. Integration Without Tags

Recall that in Section 2.2, we stated a requirement that a special program editor be used to create the
program variants from the base program. Our assumption about this editor was that it provides a tagging
capability so that common components can be identified in all versions. In the Brouwerian agebra
(DCs 0O, n, =, G;) defined Section 3.2, the elements are downwards-closed sets of tagged single-point
dlices; the tags on dlice vertices are those supplied by the special program editor.

A different Brouwerian algebra that can be used for integrating programs is one whose elements are
downwards-closed sets of untagged single-point slices. For thisto work, we need a notion of slice isomor-
phism. For the purposes of defining such a notion it is convenient to add an additiona label on flow
dependence edges: if vertex v represents a program component that assigns to variable x, and x is the i "
operand of the program component represented by w, then the (set-valued) label on edgev — ; w contains
i. (For example, if x isused as both thei'" and j ™ operands, then the label on edgev — ;wis{i, j}.)

Definition 6.1. Two single-point slices s; and s, are isomor phic with respect to vertices v, and v, iff all
of the following hold:

(1) Slicess; and s, have the same number of vertices and the same number of edges.
(2) (s1/vq)=sqand(s,/vy) =S5, both hold.
(3) Thereisal-to-1 and onto map M from the vertices of s, to the vertices of s,, such that

i) M(vy)=v,and

(ii)  For al vertices w of s, w and M (w) are the same kind of vertex (i.e., entry, assignment-
statement, if-predicate, while-predicate, initial-definition, or final-use).

(iii) For al vertices w of s;, w and M (w) have identical abstract syntax trees (i.e., corresponding
internal nodes of the two vertices abstract syntax trees contain the same operator, and
corresponding leaf nodes contain the same identifier or the same constant).

(4) Foreveryedgee=v - wins; thereisanedgee’ =M (v) - M(w) in s, such that:

(i)  The edge type of e (control, loop-independent flow, loop-carried flow, or def-order) is the
same as the edge type of €';

(ii) If eisacontrol dependence edge then its true/false label matches the true/false label of e';

(iii) If eis aflow dependence edge then its operand-number label matches the operand-number
label of e';

(iv) If eis aloop-carried flow dependence edge with carrying-loop-predicate label p then the
carrying-loop-predicate label of ' isM (p);
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(v) If eisadef-order edge with witness-vertex label u then the witness-vertex label of €' isM (u).

What makes it plausible to use downwards-closed sets of untagged single-point slices for program
integration isthat, given dicess; and s, and vertices v, and v,, it is possible to test in linear time whether
s, and s, are isomorphic with respect to v, and v, [12]. Furthermore, by using hashing techniques the
dlice-set manipulations needed to perform operations in the algebra of downwards-closed untagged
single-paint slices can be performed in linear expected time (i.e. expected time linear in the sum of the
sizes of the argument sets). The drawback of using untagged slice setsisthat it entails additional costs for
finding the program that corresponds to the set of dependence graphs that result from an integration.*®

It must be noted that the two different definitions of slice-set algebras correspond to two different rela-
tives of the HPR algorithm. In the algebra based on downwards-closed sets of untagged dlices, if a pro-
gram has multiple slices that are isomorphic, the corresponding slice set will have only one copy of the
duplicated slice. For example, both of the following programs

program  program

X :=0; X :=0;

y =X y=X

W =X X :=0;

end() W =X
end()

have the following set of (untagged) slices:

(program , program , program , program]
| end() x:=0 X :=0; x:=0; |
4 end() y =X WI=X
| end() end) |
L J

For this reason, the integration algorithm based on sets of untagged slices can produce a different answer
than the algorithm based on sets of tagged dlices (both in terms of the final program that is the result of an
integration, as well as in the notion of when an integration fails due to interference). Nevertheless, for
both algebras when the set resulting from an integration is feasible, the Integration Theorem (Theorem
2.9) halds. In other words, the same characterization of the execution behavior of the integrated program
in terms of the execution behaviors of the base program and the two integrands applies to the HPR algo-
rithm and to both slice-set algebras.

The benefits of doing without tags are two-fold. First, the class of integration problems that can be han-
dled successfully (i.e., without interference being reported) in the algebra based on sets of untagged dlices
is strictly larger than the class that can be handled in the algebra based on tagged dlices. (The latter coin-
cides with the class handled by the HPR algorithm.) Second, it is no longer necessary for program integra-
tion to be supported by a closed system; in principle, programs can be integrated even if they are created
using ordinary text editors.

7. Relation to Previous Work

There has been previous work on merging functional programs [1], logic programs [15], and
specifications [4]. Different models of integration have been used in each case. In Berzins's work on

Defining a good heuristic for this program-reconstitution problem remains an open question.



_50_

integrating functional programs, variants A and B are merged without regard to Base. The functional pro-
gram that results from the merge preserves the (entire) behavior of both; thus, A and B cannot be merged if
they conflict at any point where both are defined. Similarly, Lakhotia and Sterling’s 1-1 join operation is
a two-way merge. However, in their work there is no notion of interference, and the characterization of
the semantic properties of the merged program was left as an open question in [15]. Feather’s work on
integrating specifications does take Base into account, but although the integration algorithm preserves
syntactic modifications, it does not guarantee any semantic properties of the integrated specification. Both
the HPR agorithm and the algorithm introduced in Section 3 for integrating programs by combining
downwards-closed sets of single-point slices are three-way integration operations that satisfy the semantic
criterion stated in Section 1.

The notation a[base]b that has been used here for the integration operation in Brouwerian algebras is
taken from a paper by Hoare in which he investigated some of the properties of a[base]b in Boolean alge-
bras[7,8]. However, nearly all of the questions examined in thiswork (for Brouwerian algebras) were not
addressed by Hoare (for Boolean algebras).

In unpublished work, Susan Horwitz and | found proofs of several algebraic properties of the HPR algo-
rithm. The results given in this work consist of the analogues for Brouwerian algebras of these earlier
results, together with a number of new results. However, the method of proof used in this work is very
different from the proof techniques used to establish these earlier results, which involved complicated
arguments—with many sub-cases and argument by reductio ad absurdum—about operations on depen-
dence graphs. In contrast, the proofs given in this work are strictly algebraic in nature, making use of the
rich set of algebraic laws that hold in Brouwerian algebras.

The work described here was motivated by the desire to find a simpler way to prove properties about
program integration. In this, | feel it succeeds—proofs in Brouwerian algebra are much less complicated
than direct proofs about dependence graphs. It also provides a framework for studying common properties
of program-integration algorithms. The integration operation in a Brouwerian algebra is defined purely in
terms of L1, I, and =, and thus has an analogue in al Brouwerian algebras. Thus, to show that a pro-
posed program-integration algorithm shares these properties, one merely has to show that the algorithm
can be formulated as an integration operation in a Brouwerian algebra.
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Appendix A: Algebraic Lawsfor Brouwerian Algebras

This appendix covers the algebraic laws that hold for Brouwerian algebras.’* The material presented

“Propositions A.2-A.21 are taken from a list given in [20] (pp. 59-60). (In [20], the laws are expressed in dual form, using a
“pseudo-complement” operator, rather than in the form given in Appendix A, where pseudo-difference is used.)



_51_

here makes the paper essentially self-contained. (Severa of the easier proofs have been omitted and serve
as simple exercises for the reader.) Not al of the propositions listed below are actually used in the paper;
those not used have been included as additional background material. Further information about
Brouwerian algebras can be found in [16] and [20].

In double Brouwerian algebras, the algebraic properties of + are dual to the ones listed below; given a
property for =, the corresponding property for + isobtained by making the following substitutions: | | for
1, M for L, + for =, C for J, J for C, and “max” for “min.”

Proposition A.1. a=b=min{z|aCbLiz}.

Proof. The proof breaks into two parts: in part (i), we show that a=~bO{ z|aCbliz}; in part (ii), we
show that, for al wO{ z|laCblLiz},wJa=h.

0)
a=-bCa=b
aC(a=h)Lib by Definition 3.5(iii)

Therefore, a~bO{z|aCbLlz}.
(i) Supposew{z|aCbLlz}.
wllbJa
w_Ja=b by Definition 3.5(iii)
Therefore, a=b=min{ z|aCbLiz}. O
Proposition A.2. b~a=0OiffaJb.
Proof.
0 case Showthatb~a = O impliesa_Jb.
b-aC O
bCal O by Definition 3.5(iii)
=a
O case: Showthata_Jbimpliesb~a = [.

bCa
=all0
b-aC O by Definition 3.5(iii)

O
Proposition A.3. a=biffb-a=0=a=h.
Proof.

0 case Showthata =bimpliesb-a=0Oanda~b =[.
a_lb and b Ja; therefore, by Proposition A.2, b-a=0Oanda~b = 0.

0 case Showthatb-a=[0Oanda~b =0 impliesa =h.
b+a=0and a+b = [, therefore, by Proposition A.2, a_Jb and b _1a, which in turn impliesa = b.
O

Proposition A4. a~a=1[.
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Proposition A.5. O-a=10.
Proposition A.6. b= =h.

Proof.
0]
bCbO
b-0OCb by Definition 3.5(iii)
(i)
b-0OCb=0O
bC(b-0O)uO by Definition 3.5(iii)
=b-0

Therefore, b~ 0 =b. O
Proposition A.7. (a=~a)Llb =b.
Proposition A.8. al|(b+a)_b.

Proposition A.9. Ifa; Ja, thenb+~a, Jb+a;.

Proof.
a;_la, by supposition
a;Li(b-ay)Ja, i(b+ay)
b by Proposition A.8

aqL1(b=a,)_1b, hence, by Definition 3.5(iii), b~a, Jb~a;. O
Proposition A.10. If b; Jb, thenb; ~aJb,~a.

Proof.

all(b;=a)by by Proposition A.8
b, by supposition

b,~ab,~a by Definition 3.5(iii)

O

Proposition A.11. b_b+a.
Proposition A.12. all(b=a)=allb.

Proof.
0)
b-aCb by Proposition A.11
all(b-a)CalLlb
(i)
all(b-a)Ja
all(b-a)b by Proposition A.8

all(b+-a)JalLlb

Therefore, al I(b~a) =allb. O
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Proposition A.13. (b~a)l b =h.
Proposition A.14. (b+~a)Li(c+a)=(bLIc)~a.
Proof.
0)
b-aC(bLc)+a

c-alC(bLIc)~a
(b-a)Li(c-a)_(bLic)~a

(i)
blLicCallblLlc
=zall(b-a)Li(c+~a)
(bLic)=aC(b+a)Li(c+~a)

Putting (*) and (**) together, we have (b -=a)_I(c+~a) = (bLIc)~a. O
Proposition A.15. (c=a)Li(c~b)=c=(arb).
Proof.
(i)
c+(arb)Jc+a

c+(arb)Jc+b
c=(arb)Z(c-a)Li(c~b)

(i)
cC(cUa)ri(cLib)
=(clJall(c+b))r1((c+a)LiclLIb)
=((c+a)Li(c=b)LIa)r((c ~a)Li(c =b)Lib)
=((c+=a)(c=b))u(arb)
c+(arib)C(c+a)Li(c=hb)

Putting (*) and (**) together, we have c = (arb) = (c ~a)Li(c=b). O
Proposition A.16. (c=b)~-a=c=(allb)=(c+a)=*h.
Pr oof.
(i)
cCcllalLlb
=(c+(aLb))i(aLib)

c-bC(c=(allb))Lla
(c=b)~aCc=(alLlb)

(i)
cCcllbla
=(c+b)LlaLlb
=((c=b)~a)llallb
c-(alLlb)C(c=b)-a

by Proposition A.10
by Proposition A.10
*)

by Proposition A.12
**)
by Definition 3.5(iii)

by Proposition A.9
by Proposition A.9
*)

by Proposition A.11
by Proposition A.12

**)
by Definition 3.5(ii)

by Proposition A.12

by Definition 3.5(iii)
*)

by Definition 3.5(iii)

by Proposition A.12
by Proposition A.12

(**

by Definition 3.5(ii)



Putting (*) and (**) together, we have ¢ = (alIb) = (c =b) ~a. By symmetry, c=(al ib) =(c+~a)=b. O
Proposition A.17. a~cJ(b+c)=((b+a)~c).

Proof.

b-cC(aLlb)~c by Proposition A.10
=((b=a)Lia)=c by Proposition A.12
=((b=a)=c)Li(a=c) by Proposition A.14

Therefore, by Definition 3.5(iii), a~cJ(b-c)~((b+-a)=c). O
Proposition A.18. (b+a)Li(c+b)dc+a.

Pr oof.
cCallbLic

=allblLi(c+b) by Proposition A.12
=zall(b+a)Li(c+b) by Proposition A.12

Therefore, by Definition 3.5(iii), (b ~a)LI(c~b)Jc+a. O
Proposition A.19. (b+a)_J(c~a)=(c=b).
Proposition A.20. a_(allb)~b.

Proof.

(allb)~b=(a=b)Li(b=b) by Proposition A.14
=(a=b)Li by Proposition A.4
=a+b
Ca by Proposition A.11

O

Proposition A.21. cLi((clLib)=(cLia)) =cLi(b~a).

Pr oof.

cLi((cub)=(ca)) =cLi((c=(cua))Li(b=(cLia))) by Proposition A.14
=clI(O(b~(cLua))) by Proposition A.2
=clU(b=(cLa))
=cLl((b-a)=c) by Proposition A.16
=cli(b-a) by Proposition A.12

O

Proposition A.22. (a~b)=(arb)=a=bh.

Pr oof.

(@a=b)=(arb)=((a=b)=a)Li((a=b)=b)
=((a=a)=b)Li(a=(bLib))
=(0+=b)L(a=hb)
=0u(a=hb)
=a-=b

O
Proposition A.23. (b+~a)Li(br1a)=h.

Proposition A.24. (c=b)~a=(c+a)=(b+-a).

by Proposition A.15
by Proposition A.16
by Proposition A.4
by Proposition A.5
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Pr oof.
(i)
all(b+-a)L/((c=b)~a)=allbLl/(c+b)
=allbllc
_1c

crall(b=a)i((c=b)=a)
c-aL(b-a)l((c-b)+a)
(c+a)=(b=-a)C((c=b)~a)

(i)
b_b-+-a
(cra)=(b=a)d(c-a)=b
=(c+-b)-a

by Proposition A.12
by Proposition A.12

by Definition 3.5(iii)
*

by Definition 3.5(iii)

by Proposition A.11

by Proposition A.9

**)
by Proposition A.16

Putting (*) and (**) together, we have (c-b)-a_(c+a)=(b+a)J(c+b)=a; therefore,

(c=b)~a=(c+a)=(b-a). O
Proposition A.25. (arb)=-cCar(b~c).

Proof.
((@rb)=c)=(ari(b=c))

(((amb) =c)=a)Li(((arb) =c) = (b =c))
(((arb)=a)=c)Li((arb) =(cLi(b+c)))
(O=c)U((arib)=(bLic))

=0yd

=0

Therefore, by Proposition A.2, (arib)~cCari(b~c). O

Proposition A.26. (arib)=cC(a=c)r(b+c).
Proof.

((@artb)=c)Ca-=c
((@artb)=c)Cb-=c

Therefore, (alib)~cC_(a=c)r(b+c). O
Proposition A.27. b=(b-a)Carib.

Pr oof.

b =(al1b)Li(b =a)
b (alb)Li(b =a)
b=(b~a)—arb

O

Proposition A.28. Ifa=b[Cb, thenaCh.
Proposition A.29. c~(allb)C(c+a)ri(c=h).
Proof.

c=(allb)C(c+a)
c-(aLlb)C(c+b)

Therefore, c=(allb)C(c=a)li(c=b). O

by Proposition A.15
by Proposition A.16
by Propositions A.2 and A.12
by Propositions A.5 and A.12

by Proposition A.10
by Proposition A.10

by Proposition A.23

by Definition 3.5(iii)

by Proposition A.9
by Proposition A.9



_56_

Proposition A.30. (a=b)=-(b-a)=a=h.

Proof.
(i) (@a=b)=(b-a)Ca=b by Proposition A.11
(i) (@a=b)=(b-a)J(a=b)=b by Propositions A.9 and A.11

=a-=b by Proposition A.16
Therefore, (a=b)=(b+-a)=a~b. O
Proposition A.31. (alLlb)=(arb) =(a=b)Li(b~a).
Proposition A.32. a=(arib)=a=bh.

Appendix B: Algebraic Lawsfor the Integration Operation

This appendix gives proofs of the algebraic laws for the integration operation that were stated in Section
4.1.

Proposition B.1. a[a]b=h.
Proof.

alalb=(a+-a)Ll(alnarib)i(b-a)
=0u(amb)Li(b~a)
=b by Proposition A.23

O
Proposition B.2. a[base]a =a.
Proof.

al[base]a = (a~base)l |(al1base[1a)LI(a~base)
= (a+base)Li(albase)
=a by Proposition A.23

O
Proposition B.3. a[O]b =alLlb.

Pr oof.

a[dlb=(a=0O)(amdrb)Li(b=0)
=alLlb

O

Proposition B.4. a[T]b =arib.

Pr oof.
a[Tlb=@=-T)(@arnTrib)L(b=T)
=0U(arnb)u O
=arb
O

Proposition B.5. a[al1b]b =al ib.

Pr oof.

alarblb =(a=(arb))Li(@amarbrb)Li(b=(arb))
= ((alub) = (arb))Li(arib)
= (alUb)Li(arb) by Proposition A.12
=allb
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O
Proposition B.6. a[al_lb]b=ar1b.

Proof.

alallb]b=(a=~(aLlb))Li(ar(alb)rb)Li(b=(a b))
=[0arb)O by Proposition A.2
=allb

O

Proposition B.7. a[base] = a+base.
Proof.
al[base]Od = (a+base) LI(aMbase 0)LI(0 - base)

=(a+base) 010

=a-~base
O
Proposition B.8. a[base] T =alLl(T ~base).
Proof.
a[base] T =(a~base)l |(arbase1T)LI(T ~base)

=(a~base)Li(arbase) LI(T ~base)

=all(T ~base) by Proposition A.23
O
Proposition B.9. a[base](x;l1x,) = a[base]x,| Ja[base]x.,.
Proof.
a[base](x; LX5) = (a+base)Li(arbase(x LIX,)) LI((X1 Ix,) ~base)

=(a+base)J(arbaserix;)Ll(arbaserix,)LI(x, ~base)LI(x, ~base)
by Proposition A.14
= a[base]x, Lla[base]x,

O
Proposition B.10. a[base](x;1x,)Ca[base]x;a[base]Xs.

Proof. Because al 1basel1(X1[1X,)Cal1basel1x; and (X1 [1X,) =base[_ X, = base, we have

a[base](x;1x5) = (a+base)LJ(arbaser1(xMx,)) L((x11x,) ~base)
[ (a+base)i(arbaserix;)LI(x, ~base)
=a[base]x,

Therefore, a[base](x;x,)Ca[base]x;. Similarly, we have a[base](x;x,)Ca[base]x,. Conse-
quently, a[base](x1Mx,)Ca[base]x,Ma[base]x,. O

Proposition B.11. a[base]b is monotonicin a.

Proof. Supposea_a’. We will show that a[base]b_a'[base]b.

a[base]b ~a'[base]b = ((a ~base) Li(ambaseb)Li(b = base))
=((a'=base)Li(a' " 1baser1b) LI(b ~ base))
= ((a=base) ~((a' ~base)LI(a'baseb)L (b ~base)))
LI((ambasemb) = ((a' ~base) LI(a' Mbaser1b)Li(b ~base)))
LI((b ~base) = ((a' ~base) L I(a'"baselb)LI(b = base)))
by Proposition A.14
= (((a+base) = (a' ~base)) = ((a' rbaser1b) Li(b = base)))
LI(((arbaserib) ~(a'mbaserib)) = ((a' ~base) Li(b - base)))
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LI(((b ~base) = (b ~base)) = ((a' = base) LI(a' T 1baser1b)))
by Proposition A.16
=0uboud
=0

Therefore, by Proposition A.2, a[base]bCa'[base]b. [
Proposition B.12. a[base]b is antimonotonic in base.

Proof. Suppose base”base’. We will show that a[base'lb Ca[base]b.

a[base’]b ~a[base]b = ((a~base) LI(al1base'T'1b)I(b =~ base")) ~a[base]b
= ((a+base") ~a[base]b)Li((al1base'[1b) - a[base]b)
LI((b ~base") ~a[base]b) by Proposition A.14
=((a+base') - ((a=base) I(arbaserib)L (b = base)))
Li((arbase'rb) = ((a = base) LI(arbase1b) LI (b - base)))
LI((b =base") - ((a = base) LI(arbaserb)Li(b - base)))
= 0OLl((albase'T1b) = ((a=base)_I(al1base[1b) I(b ~base))) 1 O
by Propositions A.9 and A.2

= ((al1base'r1b) = (al1baser1b)) ~ ((aLib) = base) by Propositions A.16 and A.14
=(((arbase'rb) ~a)Li((al 1base'"1b) = base) LI((al1base’' "1b) ~ b))
= ((alub) ~base) by Proposition A.15
= (dw((arbase' r1b) ~base) L O0) - ((altb) - base) by Proposition A.2
= ((arbase'T1b) = base) =~ ((aLlb) -~ base)
= (arbase'r1b) = (baseLi((alLb) ~ base)) by Proposition A.16
= (al1base'1b) = (allbasel_Ib) by Proposition A.12
=0

Therefore, by Proposition A.2, a[base’lbCa[base]b. O
Proposition B.13. a[x;LIx,]bCa[x;]bralx;]b.

Proof.
a[xiLix,]lbCafx,]b by monotonicity
a[x,Lixp]lbCafx,]b by monotonicity

Therefore, a[xq LIXs]bCa[xq]bra[x,]b. O
Proposition B.14. a[x11x,]b =a[x;]bLla[x,]b.

Proof.

a[x1Mxo]b = (a= (X1 Mxo)) LU@rib)Li((b = (x11x5))) by Corollary 4.2
=(a=xy)U@=x)U@rb)u(b=x,) (b =x5) by Proposition A.15
=a[x4]bLia[x,]b by Corollary 4.2

O

Proposition B.15. a[base]b = base = (a ~base) LI(b - base).
Pr oof.

a[base]b ~base = ((a =~ base) Li(al1base[1b) LI(b = base)) - base
= ((a~base) ~base)i((al 1baser1b) ~base) LI ((b = base) ~ base)
by Proposition A.14
= (a+base)1OLI(b ~base) by Proposition A.2
= (a+base)LI(b ~base)
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Proposition B.16. a[base]b ~b = (a=base) ~b.

Pr oof.

a[base]lb=b = ((a=base)i(al1basel1b)LI(b=base)) ~b
=((a+~base) =b)Li((albaser1b) =b)L_i((b - base) ~b) by Proposition A.14
=((a+~base)=b)/O10O by Proposition A.2
=(a~base)-b

O

Appendix C: Relationship Between Pseudo-Difference and Quotient

This appendix gives afew laws that relate the operations LI, 1, =, and + in adouble Brouwerian alge-

bra.

Proposition C.1. (a+b)r(b~a)=ari(b-a).

Proof. The proof splitsinto two cases. in part (i), we show that (a<b)r1(b-a)Cari(b=a); in part (ii),
we show that (a ~b)r(b+a)3Jari(b~a).

0]

(i)

We will show that (a+b)r1(b+-a)Cari(b~a).
(a+b)ri(b-a)Ca=+b,so((a+b)ri(b-a))ribCa *)
(@a+b)ri(b-a)Cb-aLb, therefore ((a+b)ri(b-a))rib =(a+b)ri(b-a). (**)
Substituting (**) into (*), we have

(a+b)ri(b-a)Ca

Therefore, (a+b)ri(b-a)_ari(b+~a). ©)

We will show that (a+b)ri(b+-a)Jari(b+a) by showing that (a8 b-a_ari(b=a), and
(b)a+bJari(b~a).
(a) follows immediately from the properties of 1. To show (b), we have
a Ja
Jari(b+~a)
Jbrari(b+~a)
Therefore, a+b Jari(b -a).
Thus, (a<b)r(b~a)Jari(b=a). €y

Combining (1) and (1), we have (a+b)ri(b+a) =ari(b=a). O

Proposition C.2. bLi((b+a)~a)=b+a.

Proof. The proof splitsinto two cases. in part (i), we show that bLI((b+a)~a)Cb+a; in part (ii), we
show that bLI((b +a)~a) Jb+a.

0]

(i)

bCb+a by the dual of Proposition A.11
(b+a)-aCb+a by Proposition A.11
Therefore, bl I((b+a)-a)Cb+a *)
bJam(b+a) by the dual of Proposition A.8
Jd(b+a)=((b+a)=a) by Proposition A.27

Therefore, bLI((b+a)~a) Jb+a. **)
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Putting (*) and (**) together, we have b +a_Jb| (b +a)~a) Jb+a. Therefore, bl i((b+a)~a)=b+a.

O

Corollary C.3. (b+a)~bC(b+a)~a.

Pr oof.
b+ra=bLi((b+a)+a) by Proposition C.2
b+aCbLi((b+a)~a)

(b+a)~bC(b+a)~a by Definition 3.5(iii)

O
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