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Abstract. We describe Deskcheck, a parametric static analyzer that
is able to establish properties of programs that manipulate dynamically
allocated memory, arrays, and integers. Deskcheck can verify quantified
invariants over mixed abstract domains, e.g., heap and numeric domains.
These domains need only minor extensions to work with our domain
combination framework.

The technique used for managing the communication between domains
is reminiscent of the Nelson-Oppen technique for combining decision pro-
cedures, in that the two domains share a common predicate language to
exchange shared facts. However, whereas the Nelson-Oppen technique is
limited to a common predicate language of shared equalities, the tech-
nique described in this paper uses a common predicate language in which
shared facts can be quantified predicates expressed in first-order logic
with transitive closure.

We explain how we used Deskcheck to establish memory safety of
the thttpd web server’s cache data structure, which uses linked lists, a
hash table, and reference counting in a single composite data structure.
Our work addresses some of the most complex data-structure invariants
considered in the shape-analysis literature.

1 Introduction

Many programs use data structures for which a proof of correctness requires a
combination of heap and numeric reasoning. Deskcheck, the tool described in
this paper, is targeted at such programs. For example, consider a program that
uses an array, table, whose entries point to heap-allocated objects. Each object
has an index field. We want to check that if table[k] = obj, then obj.index = k. In
verifying the correctness of the thttpd web server [22], this invariant is required
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even to prove memory safety. Formally, we write the following (ignoring array
bounds for now):

∀k:Z. ∀o:H. table[k] = o⇒ (o.index = k ∨ o = null) (1)

We call this invariant Inv1. It quantifies over both heap objects and integers.
Such quantified invariants over mixed domains are beyond the power of most
existing static analyzers, which typically infer either heap invariants or integer
invariants, but not both.

Our approach is to combine existing abstract domains into a single abstract
interpreter that infers mixed invariants. In this paper, we discuss examples us-
ing a particular heap domain (canonical abstraction) and a particular numeric
domain (difference-bound matrices). However, the approach supports a wide va-
riety of domain combinations, including combinations of two numeric domains,
and a combination of the separation-logic shape domain [9] and polyhedra.

Our goal is for the combined domain to be more than the sum of its parts:
to be able to infer facts that neither domain could infer alone. As in previous
research on combining domains, communication between the two domains is
the crucial ingredient. The combined domain of Gulwani and Tiwari [15], based
on the Nelson-Oppen technique for combining decision procedures [20], shares
equalities between domains. Our technique also uses a common predicate lan-
guage to share facts; however, in our approach shared facts can be predicates
from first-order logic with transitive closure.

Approach. We assume that each domain being combined reasons about a distinct
collection of abstract “individuals” (heap objects, or integers, say). Every domain
is responsible for grouping its individuals into sets, called classes. A heap domain
might create a class of all objects belonging to a linked list, while an integer
domain may have a class of numbers between 3 and 10.

Additionally, each domain D exposes a set of n-ary predicates to other do-
mains. Every predicate has a definition, such as “R(o1, o2) holds if object o1
reaches o2 via next edges.” Only the defining domain understands the mean-
ing of its predicates. However, quantified atomic facts are shared between
domains: a heap domain D might share with another domain the fact that
(∀o1 ∈ C1, o2 ∈ C2. R(o1, o2)), where C1 and C2 are classes of list nodes. Other
domains can define their own predicates in terms of R. They must depend on
shared information from D to know where R holds because they are otherwise
ignorant of R’s semantics.

Chains of dependencies can exist between predicates in different domains. A
predicate P2 in domain D′ can refer to a predicate P1 in D. Then a predicate P3
in D can refer to P2 in D′. The only restriction is that dependencies be acyclic.
As transfer functions execute, atomic facts about predicates propagate between
domains along the dependency edges. This flexibility enables our framework to
reason precisely about mixed heap and numeric invariants.

A Challenging Verification Problem. We have applied Deskcheck to the cache
module of the thttpd web server [22]. We chose this data structure because it
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relies on several invariants that require combined numeric and heap reasoning.
We believe this data structure is representative of many that appear in systems
code, where arrays, lists, and trees are all used in a single composite data struc-
ture, sometimes with reference counting used to manage deallocation. Along with
Deskcheck, our model of thttpd’s cache is available online for review [18].
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Fig. 1. thttpd’s cache data structure.

The thttpd cache maps files on disk to their contents in memory. Fig. 1
displays an example of the structure. It is a composite between a hash table
and a linked list. The linked list of cache entries starts at the maps variable and
continues through next pointers. These same cache entries are also pointed to by
elements of the table array. The rc field records the number of incoming pointers
from external objects (i.e., not counting pointers from the maps list nor from
table), represented by rounded rectangles. The reference count is allowed to be
zero.

Fig. 2 shows excerpts of the code to add an entry to the cache. Besides the
data structures already discussed, the variable free maps is used to track unused
cache entries (to avoid calling malloc and free). Our goal is to verify that
this code, as well as the related code for releasing and freeing cache entries, is
memory-safe. One obvious data-structure invariant is that maps and free maps
should point to acyclic singly linked lists of cache entries. However, there are
two other invariants that are more complex but required for memory safety.

Inv1 (from Eqn. (1)): When a cache entry e is freed, thttpd nulls out its
hash table entry via table[e.index] = null (this code is not shown in Fig. 2).
If the wrong element were overwritten, then a pointer to the freed entry would
remain in table, later leading to a segfault when accessed. Inv1 guarantees that if
table[i] = e, where e is the element being freed, then e.index = i, so the correct
entry will be set to null.

Inv2: This invariant relates to reference counting. The two main entry points
to the cache module are called map and unmap. The map call creates a cache entry
if it does not already exist and returns it to the caller. The caller can use the
entry until it calls unmap. The cache keeps a reference count of the number of
outstanding uses of each entry; when the count reaches zero, it is legal (although
not necessary) to free the entry. Outstanding references are shown as rounded
rectangles in Fig. 1. The cache must maintain the invariant that the number
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1 Map * map(...)

2 { /* Expand hash table if needed */

3 check_hash_size();

4 m = find_hash(...);

5 if (m != (Map*)0) {

6 /* Found an entry */

7 ++m->refcount;

8 ...

9 return m;

10 }

11 /* Find a free Map entry

12 or make a new one. */

13 if (free_maps != (Map*)0) {

14 m = free_maps;

15 free_maps = m->next;

16 } else {

17 m = (Map*)malloc(sizeof(Map));

18 }

19 m->refcount = 1;

20 ...

21 /* Add m to hashtable */

22 if (add_hash(m) < 0) {

23 /* error handling code */

24 }

25 /* Put m on active list. */

26 m->next = maps;

27 maps = m;

28 ...

29 return m;

30 }

31 static int add_hash(Map* m)

32 { ...

33 int i = hash(m);

34 table[i] = m;

35 m->index = i;

36 ...

37 }

Fig. 2. Excerpts of the thttpd map and add hash functions.

of outstanding references is equal to the value of an entry’s reference count
(rc) field—otherwise an entry could be freed while still in use. We can write this
invariant formally as follows. Assuming that cache entries are stored in the entry
field of the caller’s objects (the ones shown by rounded rectangles), we wish to
ensure that the number of entry pointers to a given object is equal to its rc field.

Inv2
def
= ∀o:H. o.rc = |{p:H | p.entry = o}| (2)

Verification. We give an example of how Inv1 is verified. §4.3 has a more detailed
presentation of this example. The program locations of interest are lines 34 and
35 of Fig. 2, where the hash table is updated. Recall that Inv1 requires that
if table[k] = e then e.index = k. After line 34, Inv1 is broken, although only
“locally” (i.e., at a single index position of table). As a first step, we parametrize
Inv1 by dropping the quantifier on k, allowing us to distinguish between index
positions at which Inv1 is broken and those where it continues to hold.

Inv1(k:Z)
def
= ∀o:H. table[k] = o⇒ (o.index = k ∨ o = null)

After line 34 we know that Inv1(x) holds for all x 6= i. Line 35 restores Inv1(i).

Neither domain fully understands the defining formula of Inv1: as we will
see, the variable table is understood only by the heap domain whereas the field
index is understood only by the integer domain. Consequently, we factor out the
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integer portion of Inv1 into a separate predicate, as follows.

Inv1(k:Z)
def
= ∀obj:H. table[k] = o⇒ (HasIdx(o, k) ∨ o = null)

HasIdx(o:H, k:Z)
def
= o.index = k

Now Inv1 is understood by the heap domain and HasIdx is understood by the
integer domain.

Deskcheck splits the analysis effort between the heap domain and the nu-
meric domain. Line 34 is initially processed by the heap domain because it
assigns to a pointer location. However, the heap domain knows nothing about i,
an integer. Before executing the assignment, the integer domain is asked to find
an integer class containing i. Call this class Ni. Assume that all other integers
are grouped into a class N6=i. Then the heap domain essentially treats the as-
signment on line 34 as table[Ni] := m. Since the predicate HasIdx(m, i) is false
at this point, the assignment causes Inv1 to be falsified at Ni. Given information
from the integer domain that Ni and N6=i are disjoint, the heap domain can
recognize that remains true at N 6=i.

Line 35 is handled by the integer domain because the value being assigned is
an integer. The heap domain is first asked to convert m to a class, Hm, so that
the integer domain knows where the assignment takes place. After performing
the assignment as usual, the integer domain informs the heap domain that (∀o ∈
Hm, n ∈ Ni. HasIdx(o, n)) has become true. The heap domain then recognizes
that Inv1 becomes true at Ni, restoring the invariant.

Limitations. It is important to understand the limitations of our work. The
most important limitation is that shared predicates, like Inv1 and HasIdx, must
be provided by the user of the analysis. Without shared predicates, our combined
domain is no more (or less) precise than the work of Gulwani et al. [14]. The
predicates that we supply in our examples tend to follow directly from the prop-
erties we want to prove, but supplying their definitions is still an obligation left to
the Deskcheck user. Another limitation, which applies to our implementation,
is that the domains we are combining sometimes require annotations to the code
being analyzed. These annotations do not affect soundness, but they may affect
precision and efficiency. We describe both the predicates and the annotations we
use for the thttpd web server in §5.

Two more limitations affect our implementation. First, it handles calls to
functions via inlining. Besides not scaling to larger codebases, inlining cannot
handle recursive functions. The use of inlining is not fundamental to our tech-
nique, but we have not yet developed a more effective method of analyzing
procedures. We emphasize, though, that we do not require any loop invariants
or procedure pre-conditions or post-conditions from the user. All invariants are
inferred by abstract interpretation. We seed the analysis with an initially empty
heap.

The final limitation is that our tool requires the user to manually translate
C code to a special analysis language similar to BoogiePL [7]. This step could
easily be automated, but we have not had time to do it.
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Contributions. The contributions of our work can be summarized as follows: (1)
We present a method to infer quantified invariants over mixed domains while
using separate implementations of the different domains. (2) We describe an
instantiation of Deskcheck based on canonical abstraction for heap properties
and difference constraints for numeric properties. We explain how this analyzer
is able to establish memory-safety properties of the thttpd cache. The system
is publicly available online [18]. (3) Along with the work of Berdine et al. [2],
our work addresses the most complex data-structure invariants considered in the
shape-analysis literature. The problems addressed in the two papers are comple-
mentary: Berdine et al. handle complex structural invariants for nests of linked
structures (such as “cyclic doubly linked lists of acyclic singly linked lists”),
whereas our work handles complex mixed-domain invariants for data structures
with both linkage and numeric constraints, such as the structure depicted in
Fig. 1.

Organization. §2 summarizes the modeling language and the domain-
communication mechanism on which Deskcheck relies. §4 describes how
Deskcheck infers mixed numeric and heap properties. §5 presents experimental
results. §6 discusses related work.

2 Deskcheck Architecture

2.1 Modeling of Programs

Programs are input to Deskcheck in an imperative language similar to Boo-
giePL [7]. We briefly describe the syntax and semantics, because this language is
used in all this paper’s examples. The syntax is Pascal-like. An example program
is given in Fig. 3. This program checks that each entry in a linked list has a data
field of zero; this field is then set to one.

Line 1 declares a type T of list nodes. Lines 3–5 define a set of uninterpreted
functions. Our language uses uninterpreted functions to model variables, fields,
and arrays uniformly. The next function models a field: it maps a list node to
another list node, so its signature is T→ T. The data function models an integer
field of list nodes. And head models a list variable; it is a nullary function. Note
that an array a of type T would be written as a[int]:T. At line 8, cur is a
procedure-local nullary uninterpreted function (another T variable).

The semantics of our programs is similar to the semantics of a many-sorted
logic. Each type is a sort, and the type int also forms a sort. For each sort there
is an infinite, fixed universe of individuals. (We model allocation and deallocation
with a free list.) A concrete program state maps uninterpreted function names
to mathematical functions having the correct signature. For example, if UT is
the universe of T-individuals, then the semantics of the data field is given by
some function drawn from UT → Z.
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1 type T;

2

3 global next[T]:T;

4 global data[T]:int;

5 global head:T;

6

7 procedure iter()

8 cur:T;

9 { cur := head;

10 while (cur != null) {

11 assert(data[cur] = 0);

12 data[cur] := 1;

13 cur := next[cur];

14 }

15 }

Fig. 3. A program for traversing a linked list.

2.2 Base Domains

Deskcheck combines the power of several abstract domains into a single com-
bined domain. In our experiments, we used a combination of canonical abstrac-
tion for heap reasoning and difference-bound matrices for numeric reasoning.
However, combinations using separation logic or polyhedra are theoretically pos-
sible.

Canonical abstraction [24] partitions heap objects into disjoint sets based on
the properties they do or do not satisfy. For example, canonical abstraction might
group together all objects reachable from a variable x but not reachable from
y . When two objects are grouped together, only their common properties are
preserved by the analysis. A canonical abstraction with many groups preserves
more distinctions between objects but is more expensive. Using fewer groups is
faster but less precise.

Canonical abstraction is a natural fit for Deskcheck because it already relies
on predicates. Each canonical name corresponds fairly directly to a class in the
Deskcheck setting. Deskcheck allows each domain to decide how objects
are to be partitioned into classes: in canonical abstraction we use predicates
to decide. We use a variant of canonical abstraction in which a summary node
summarizes 0 or more individuals [1] (rather than 1 or more as in most other
systems).

Our numeric domain is the familiar domain of difference-bound matrices. It
tracks constraints of the form t1 − t2 ≤ c, where t1 and t2 are uninterpreted
function terms such as f [x]. We use a summarizing numeric domain [12], which
is capable of reasoning about function terms as dimensions in a sound way.

The user is allowed to define numeric predicates. These predicates are de-
fined using a simple quantifier-free language permitting atomic numerical facts,
conjunction, and disjunction. A typical predicate might be Bounded(n) := n ≥
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0 ∧ n < 10. Similar to canonical abstraction, we use these numeric predicates
to partition the set of integers into disjoint classes. These integer classes permit
array reasoning, as explained later in §4.2.

2.3 Combining Domains

In the Deskcheck architecture, work is partitioned between n domains. Typ-
ically n = 2, although all of our work extends to an arbitrary number of base
domains. Besides the usual operations like join and assignment, these domains
must be equipped to share quantified atomic facts and class information.

Each domain is responsible for some of the sorts defined above. In our im-
plementation, the numeric domain handles int and the heap domain handles all
other types. An uninterpreted function is associated with an abstract domain
according to the type of its range. In Fig. 3, next and head are handled by the
heap domain and data by the numeric domain. Assignments statements to un-
interpreted functions are initially handled by the domain with which they are
associated.

Predicates are also associated with a given domain. Each domain has its own
language in which its predicates are defined. Our heap domain supports univer-
sal and existential quantification and transitive closure over heap functions. Our
numeric domain supports difference constraints over numeric functions along
with cardinality reasoning. A predicate associated with one domain may refer to
a predicate defined in another domain, although cyclic references are forbidden.
The user is responsible for defining all predicates. The precision of an analy-
sis depends on a good choice of predicates; however, soundness is guaranteed
regardless of the choice of predicates.

Classes. A class, as previously mentioned, represents a set of individuals of a
given sort (integers, heap objects of some type, etc.). A class can be a singleton,
having one element, or a summary class, having an arbitrary number of elements
(including zero). Summary classes are written in bold, as in N 6=i, to distinguish
them.

The grouping of individuals into classes may be flow-sensitive—we do not
assume that the classes are known prior to the analysis. At any time a domain is
allowed to change this grouping, in a process called repartitioning. Classes of a
given sort are repartitioned by the domain to which that sort is assigned. When
a domain repartitions its classes, other domains are informed as described below.

Semantics. Each domain Di can choose to represent its abstract elements how-
ever it desires. To define the semantics of a combined element 〈E1, E2〉, we require
each domain Di to provide a meaning function, γ̂i(Ei), that gives the meaning of
Ei as a logical formula. This formula may contain occurrences of uninterpreted
functions that are managed by Di as well as classes and predicates managed by
any of the domains.

We will define a function γ(〈E1, E2〉) that gives the semantics of a combined
abstract element. Instead of evaluating to a logical formula, this function returns
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a set of concrete states that satisfy the constraints of E1 and E2. A concrete state
is an interpretation that assigns values to all the uninterpreted functions used
by the program.

Naively, we could define γ(〈E1, E2〉) as the set of states that satisfy formulas
γ̂1(E1) and γ̂2(E2). However, these formulas refer to classes and predicates, which
do not appear in the state. To solve the problem, we let γ(〈E1, E2〉) be the set
of states satisfying γ̂1(E1) and γ̂2(E2) for some interpretation of predicates and
classes. We can state this formally using second-order quantification. Here, each
Pi is a predicate defined by D1 or D2. Each Ci is a class appearing in E1 or E2.
The number of classes, n(E1, E2), depends on E1 and E2.

γ(〈E1, E2〉)
def
= {S : S |= ∃P1. · · · ∃Pm. ∃C1. · · · ∃Cn(E1,E2). γ̂1(E1) ∧ γ̂2(E2)}

Typically, γ̂i(Ei) is the conjunction of three subformulas. One subformula
gives meaning to the predicates defined by Di and another gives meaning to the
classes defined by Di. The third subformula, the only one specific to Ei, gives
meaning to the constraints in Ei.

We can be more specific about the forms of these three subformulas. A sub-
formula defining a unary predicate P that holds when its argument is positive
would look as follows.

∀x. P(x) ⇐⇒ x > 0

In our implementation of the analysis, all predicate definitions must be given by
the user. Note that a predicate definition may refer to another predicate (possibly
one defined by another base domain). For example, the following predicate might
apply to heap objects, stating that their data field is positive.

∀o. Q(o) ⇐⇒ P(data[o])

A subformula that defines a class C containing the integers from 0 to n would
look as follows.

C = {x : 0 ≤ x < n}

Our implementation uses canonical abstraction [24] to decide how individuals
are grouped into classes. Therefore, the definition of a class will always have the
following form:

C = {x : P(x) ∧ Q(x) ∧ ¬R(x) ∧ · · · }

That is, the class contains exactly those object satisfying a set of unary predi-
cates and not satisfying another set of unary predicates. Such unary predicates
are called abstraction predicates. The user chooses which subset of the unary
predicates are abstraction predicates. In theory there can be one class for every
subset of the abstraction predicates, but in practice most of these classes are
empty and thus not used. Because each class is defined by the abstraction pred-
icates it satisfies (the non-negated ones), this subset of predicates is called the
class’s canonical name.

Subformulas that give meaning to the constraints in Ei are specific to the
domainDi. For example, an integer domain would include constraints like x−y ≤
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c. A heap domain might include constraints about reachability. Both domains
will often include quantified facts of the following form:

∀o ∈ C. Q(o)

A domain may quantify over a class defined by any of the domains and it may use
predicates from any of the domains. The predicate that appears may optionally
be negated. Facts like this may be exchanged freely between domains because
they are written in a common language of predicates and classes. To distinguish
the more domain-specific facts like x− y ≤ c from the ones exchanged between
domains, we surround them in angle brackets. A fact 〈 · 〉H is specific to a heap
domain and 〈 · 〉N is specific to a numeric domain.

3 Domain Operations

This section describes the partial order and join operation of the combined do-
main and also the transfer function for assignment. These operations make use
of their counterparts in the base domains as well as some additional functions
that we explain below.

3.1 Partial Order

We can define a very naive partial-order check for the combined domain as
follows.

〈EA
1 , E

A
2 〉 v 〈EB

1 , E
B
2 〉 ⇐⇒ (EA

1 v1 E
B
1 ) ∧ (EA

2 v2 E
B
2 )

Here, we have assumed that v1 and v2 are the partial orders for the base
domains.

However, there are two problems with this approach. The first problem is
illustrated by the following example. (Assume that class C and predicate P are
defined by D1.)

EA
1 = ∀x ∈ C. P(x) EB

1 = true

EA
2 = true EB

2 = ∀x ∈ C. P(x)

If we work out γ(〈EA
1 , E

A
2 〉) and γ(〈EB

1 , E
B
2 〉), they are identical. Thus, we should

obtain 〈EA
1 , E

A
2 〉 v 〈EB

1 , E
B
2 〉. However, the partial-order check given above does

not, because it is not true that EA
2 v2 E

B
2 .

To solve this problem, we saturate EA
1 and EA

2 before applying the base
domains’ partial orders. That is, we strengthen these elements by exchanging
any facts that can be expressed in a common language. (Note that EA

1 and EA
2

are individually strengthened but γ(〈EA
1 , E

A
2 〉) remains the same; saturation is

a semantic reduction.) In the example, the fact ∀x ∈ C. P(x) is copied from EA
1

to EA
2 .
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Any fact drawn from the following grammar can be shared.

F ::= ∀x ∈ C. F | ∃x ∈ C. F | P(x, y, . . .) | ¬P(x, y, . . .) (3)

Here, C is an arbitrary class and P is an arbitrary predicate. All variables ap-
pearing in P(x, y, . . .) must be bound by quantifiers.

function Saturate(E1, E2):
F := ∅
repeat:

F0 := F
F := F ∪ Consequences1(E1) ∪ Consequences2(E2)
E1 := Assume1(E1, F )
E2 := Assume2(E2, F )

until F0 = F
return 〈E1, E2〉

Fig. 4. Implementation of combined-domain saturation.

To implement sharing, each domain Di is required to expose an Assume i

function and a Consequences i function. Consequences i takes a domain ele-
ment and returns all facts of the form above that it implies. Assume i takes a
domain element E and a fact f of the form above and returns an element that
approximates E ∧ f . The pseudocode in Fig. 4 shows how facts are propagated.
They are accumulated via Consequences i and then passed to the domains with
Assume i. Because we require that the number of predicates and classes in any
element is bounded, this process is guaranteed to terminate.

We update the naive partial-order check as follows. If 〈EA
1
∗
, EA

2
∗〉 =

Saturate(EA
1 , E

A
2 ), then

〈EA
1 , E

A
2 〉 v 〈EB

1 , E
B
2 〉 ⇐⇒ (EA

1

∗ v1 E
B
1 ) ∧ (EA

2

∗ v2 E
B
2 )

Note that we only saturate the left-hand element; strengthening the right-hand
element is sound, but it does not improve precision.

This ordering is still too imprecise. The problem is that the A and B elements
may use different class names to refer to the same set of individuals. As an
example, consider the following.

EA
1 = ∀x ∈ C. P(x) EB

1 = ∀x ∈ C ′. P(x)

EA
2 = (C = {x : x > 0}) EB

2 = (C ′ = {x : x > 0})

It’s clear that C and C ′ both refer to the same sets. Therefore, γ(〈EA
1 , E

A
2 〉) is

equal to γ(〈EB
1 , E

B
2 〉); the difference in naming between C and C ′ is irrelevant

to γ because it projects out class names using an existential quantifier. However,
our naive partial-order check cannot discover the equivalence.
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To solve the problem, we rename the classes appearing in 〈EA
1 , E

A
2 〉 so that

they match the names used in 〈EB
1 , E

B
2 〉. This process is done in two steps: (1)

match up the classes in the A element with those in the B element, (2) rewrite
the A element’s classes according to step 1. In the example above, we get the
rewriting {C 7→ C ′} in step 1, which is used to rewrite EA

1 and EA
2 as follows.

EA
1 = ∀x ∈ C′. P(x) EB

1 = ∀x ∈ C ′. P(x)

EA
2 = (C′ = {x : x > 0}) EB

2 = (C ′ = {x : x > 0})

We only rewrite the A elements because rewriting may weaken the abstract
element and it is unsound to weaken the B elements in a partial order check.
Our partial order is sound with respect to γ, but it may be incomplete. Its
completeness depends on the completeness of the base domain operations like
MatchClasses i, and typically these operations are incomplete.

Recall that each class is managed by one domain but may still be referenced
by other domains. In the matching step, each domain is responsible for matching
its own classes. In our implementation, we match up classes according to their
canonical names. Then the rewritings for all domains are combined and every
domain element is rewritten using the combined rewriting. In the example above,
D2 defines classes C and C ′, so it is responsible for matching them. But both
EA

1 and EA
2 are rewritten.

function 〈EA
1 , E

A
2 〉 v 〈EB

1 , E
B
2 〉:

〈EA
1 , E

A
2 〉 := Saturate(EA

1 , E
A
2 )

R1 := MatchClasses1(EA
1 , E

B
1 )

R2 := MatchClasses2(EA
2 , E

B
2 )

EA
1
′

:= Repartition1(EA
1 , R1 ∪R2)

EA
2
′

:= Repartition2(EA
2 , R1 ∪R2)

return (EA
1
′ v1 E

B
1 ) ∧ (EA

2
′ v2 E

B
2 )

Fig. 5. Pseudocode for combined domain’s partial order.

Pseudocode that defines the partial-order check for the combined domain
is shown in Fig. 5. First, EA is saturated and its classes are matched to the
classes in EB . Each domain is required to expose a MatchClasses i operation
that matches the classes it manages. The rewritings R1 and R2 are combined
and then EA is rewritten via the Repartition i operations that each domain
must also expose. Finally, we apply each base domain’s partial order to obtain
the final result.
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3.2 Join and Widening

The join algorithm is similar to the partial-order check. We perform saturation,
rewrite the class names, and then apply each base domain’s join operation inde-
pendently. The difference is that join is handled symmetrically: both elements
are saturated and rewritten. Instead of matching the classes of EA to the classes
of EB , we allow both inputs to be repartitioned into a new set of classes that
may be more precise than either of the original sets of classes. Thus, we require
domains to expose a MergeClasses i operation that returns a mapping from
either element’s original classes to new classes.

function 〈EA
1 , E

A
2 〉 t 〈EB

1 , E
B
2 〉:

〈EA
1 , E

A
2 〉 := Saturate(EA

1 , E
B
2 )

〈EB
1 , E

B
2 〉 := Saturate(EB

1 , E
B
2 )

〈RA
1 , R

B
1 〉 := MergeClasses1(EA

1 , E
B
1 )

〈RA
2 , R

B
2 〉 := MergeClasses2(EA

2 , E
B
2 )

EA
1
′

:= Repartition1(EA
1 , R

A
1 ∪RA

2 )

EA
2
′

:= Repartition2(EA
2 , R

A
1 ∪RA

2 )

EB
1
′

:= Repartition1(EB
1 , R

B
1 ∪RB

2 )

EB
2
′

:= Repartition2(EB
2 , R

B
1 ∪RB

2 )

return 〈(EA
1
′ t1 EB

1
′
), (EA

2
′ t2 EB

2
′
)〉)

Fig. 6. Pseudocode for combined domain’s join algorithm.

The pseudocode for join is shown in Fig. 6. First, EA and EB are saturated.
Then MergeClasses 1 and MergeClasses 2 are called to generate four rewritings.
The rewriting RA

i describes how to rewrite the classes in EA that are managed
by Di into new classes. Similarly, RB

i describes how to rewrite the classes in EB

that are managed byDi. Finally, EA and EB are rewritten and the base domains’
joins are applied. When rewriting EA, we need both RA

1 and RA
2 because classes

managed by one base domain can be referenced by the other.
We must define a widening operation for the combined domain as well. The

widening algorithm is very similar to the join algorithm. Recall that the purpose
of widening is to act like a join while ensuring that fixed-point iteration will
terminate eventually. Due to the termination requirement, we make some changes
to the join algorithm.

The challenging part of widening is that some widenings that are “obviously
correct” may fail to terminate. Miné [19] describes how this can occur in an
integer domain. Widening typically works by throwing away facts, producing a
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less precise element, to reach a fixed point more quickly. The problem occurs if
we try to saturate the left-hand operand. Saturation will put back facts that we
might have thrown away, thereby defeating the purpose of widening. So to ensure
that a widened sequence terminates, we never saturate the left-hand operand.
The code is in Fig. 7.

function 〈EA
1 , E

A
2 〉 ∇ 〈EB

1 , E
B
2 〉:

〈EB
1 , E

B
2 〉 := Saturate(EB

1 , E
B
2 )

R1 := MatchClasses1(EB
1 , E

A
1 )

R2 := MatchClasses2(EB
2 , E

A
2 )

EB
1
′

:= Repartition1(EB
1 , R1 ∪R2)

EB
2
′

:= Repartition2(EB
2 , R1 ∪R2)

return 〈(EA
1 ∇1 E

B
1
′
), (EA

2 ∇2 E
B
2
′
)〉

Fig. 7. Combined domain’s widening algorithm.

This code is very similar to the code for the join algorithm. Besides avoiding
saturation of EA, we also avoid repartitioning EA. Our goal is to avoid any
changes to EA that might cause the widening to fail to terminate. Because we
do not repartition EA, we use MatchClasses i instead of MergeClasses i.

3.3 Assignment

Assignment in the combined domain must solve two problems. First, each base-
domain element must be updated to account for the assignment. Second, any
changes to the shared predicates and classes must be propagated between do-
mains. We simplify the matter somewhat by declaring that an assignment op-
eration cannot affect classes. That is, the set of individuals belonging to a class
is not affected by assignments. However, a predicate that once held over the
members of a class may no longer hold, and vice versa.

Base facts. We deal with updating the base domains first, and we deal with
predicates later. We require each base domain to provide an assignment trans-
fer function to process assignments. An assignment operation has the form
f [e1, . . . , ek] := e, where f is an uninterpreted function and e, e1, . . . , ek are all
terms made up of applications of uninterpreted functions. The assignment trans-
fer function of domain Di is invoked as Assigni(Ei, f [e1, . . . , ek], e). Each unin-
terpreted function is understood by only one base domain; we use the transfer
function of the domain that understands f . The other domain is left unchanged.

14



Assume that D1 understands f so that Assign 1 is invoked. The problem is
that any of e or e1, . . . , ek may use uninterpreted functions that are understood
by D2 and not by D1. In this case, D1 will not know the effect of the assignment.
To overcome this problem, we ask D2 to replace any “foreign” term appearing
in e and e1, . . . , ek with a class that is guaranteed to contain the individual to
which the term evaluates. Because classes have meaning to both domains, it is
now possible for D1 to process the assignment.

Replacement of foreign terms with classes must be done recursively, because
function applications may contain other function applications. The process is
shown in pseudocode in Fig. 8 via the TranslateFulli functions. The function
TranslateFull1 replaces any D2 terms with classes. When it sees a D2 function
application, it translates the arguments of the function application to terms
understood by D2 and then asks D2, via the Translate 2 function that it must
expose, to replace the entire application with a class.

As an example, consider the term f [c], where f is understood by D1 and c
is understood by D2. If we call TranslateFull1 on this term, then c is converted
by D2 to a class, say C, that contains the value of c. The resulting term is f [C],
which is understandable by D1. If, instead, we called TranslateFull2 on f [c], we
would again convert c to a class C. Then we would ask D1 to convert f [C] to a
class, say F , which must contain the value of f [x] for any x ∈ C. The result is a
class, say F , which is understood by D2.

Predicates. Besides returning an updated domain element, we require that the
Assign i transfer function return information about how the predicates defined
by Di were affected by the assignment. As an example, suppose that the assign-
ment sets x := 0 and predicate P is defined as P() := x ≥ 0. If the old value of x
was negative, then the assignment causes P to go from false to true. The other
domain should be informed of the change because it may contain facts about P
that need to be updated.

The changes are conveyed via two sets, U and C. The set C contains predicate
facts that may have changed. Its members have the form P(C1, . . . , Ck), where
each Ci is a class; this means that the truth of P(x1, . . . , xk) may have changed
if xi ∈ Ci for all i. If some predicate fact is not in C, then it is safe to assume
that its truth is not affected by the assignment.

The set U holds facts that are known to be true after the assignment. Its
members have same form as facts returned by Consequences i. For example, if
an assignment causes P to go from true to false for all elements of a class C0,
then C would contain P(C0) and U would contain ∀x ∈ C0. ¬P(x).

The Assign i transfer functions are required to return U and C. However,
when one predicate depends on another, Assign i may not know immediately
how to update it. For example, if D1 defines the predicate P() := x ≥ 0 and D2

defines Q() := ¬P(), then Assign 1 has no way to know that a change in x might
affect Q, because it is unaware of the definition of Q.

We use a post-processing step to update predicates like Q. We require
predicates to be stratified. A predicate in the jth stratum can depend
only on predicates in strata < j. Each domain must provide a function
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function TranslateFull1(E1, E2, f [e1, . . . , ek]):
if f ∈ D1:

for i ∈ [1..k]: e′i := TranslateFull1(E1, E2, ei)
return f [e′1, . . . , e

′
k]

else:
for i ∈ [1..k]: e′i := TranslateFull2(E1, E2, ei)
return Translate2(E2, f [e′1, . . . , e

′
k])

function TranslateFull2(E1, E2, f [e1, . . . , ek]):
defined similarly to TranslateFull1

function Assign(〈E1, E2〉, f [e1, . . . , ek], e):
〈E1, E2〉 := Saturate(E1, E2)

if f ∈ D1:
l := TranslateFull1(E1, E2, f [e1, . . . , ek])
r := TranslateFull1(E1, E2, e)
〈E′1, U, C〉 := Assign1(E1, l, r)
E′2 := E2

else:
l := TranslateFull2(E1, E2, f [e1, . . . , ek])
r := TranslateFull2(E1, E2, e)
〈E′2, U, C〉 := Assign2(E2, l, r)
E′1 := E1

j := 1
repeat:
〈E′1, U, C〉 = PostAssign1(E1, E

′
1, j, U, C)

〈E′2, U, C〉 = PostAssign2(E2, E
′
2, j, U, C)

j := j + 1
until j = num strata

return 〈E′1, E′2〉

Fig. 8. Pseudocode for assignment transfer function. num strata is the total
number of shared predicates.

PostAssigni(Ei, E
′
i, j, U, C). Here, Ei is the domain element before the assign-

ment and E′i is the element that accounts for updates to base facts and to
predicates in strata < j. U and C describe how predicates in strata < j are af-
fected by the assignment. The function’s job is to compute updates to predicates
in the jth stratum, returning new values for E′i, U , and C. Fig. 8 gives the full
pseudocode. It assumes that variable num strata holds the number of strata.
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4 Examples

4.1 Linked Lists

We begin by explaining how we analyze the code in Fig. 3. Although analysis
of linked lists using canonical abstraction is well understood [24], this section
illustrates our notation. First, some predicates must be specified by the user.
These are standard predicates for analyzing singly linked lists with canonical
abstraction [24]. The definition formulas use two forms of quantification: tc for
irreflexive transitive closure and ex for existential quantification. All of these
predicates are defined in the heap domain.

1 predicate NextTC(n1:T, n2:T) := tc(n1, n2) next;

2 predicate HeadReaches(n:T) := head = n || NextTC(head, n);

3 predicate CurReaches(n:T) := cur = n || NextTC(cur, n);

4 predicate SharedViaHead(n:T) := ex(n1:T) head = n && next[n1] = n;

5 predicate SharedViaNext(n:T) :=

6 ex(n1:T, n2:T) next[n1] = n && next[n2] = n && n1 != n2;

The predicate in line 1 holds between two list nodes if the second is reachable
from the first via next pointers. The Reaches predicates hold when a list node
is reachable from head/cur. The Shared predicates hold when a node has two
incoming pointers, either from head or from another node’s next field; they are
usually false. These five predicates can constrain a structure to be an acyclic
singly linked list.

On entry to the iter procedure in Fig. 3, we assume that head points to
an acyclic singly linked list whose data fields are all zero. We abstract all the
linked-list nodes into a summary heap class L.

We describe the classes and shared predicates of the initial analysis state
graphically as follows. Nodes represent classes and predicates are attached to
these nodes.

L

HeadReaches

This diagram means that there is a single class, L, whose members satisfy the
HeadReaches predicate and do not satisfy the CurReaches, SharedViaHead, or
SharedViaNext predicates. The double circle means the node represents a sum-
mary class. We could write this state more explicitly as follows.

∀x ∈ L. HeadReaches(x) ∧ ¬CurReaches(x)

∧ ¬SharedViaHead(x) ∧ ¬SharedViaNext(x)

This state exactly characterizes the family of acyclic singly linked lists. Pred-
icate HeadReaches ensures that there are no unreachable garbage nodes ab-
stracted by L, and the two sharing predicates exclude the possibility of cycles.
Note that no elements are reachable from cur because cur is assumed to be
invalid on entry to iter.
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In addition to these shared predicate facts, each domain also records its own
private facts. In this case, we assume that the numeric domain records that the
data field of every list element is zero: 〈 ∀x ∈ L. data[x] = 0 〉N . The remainder
of the analysis is a straightforward application of canonical abstraction.

4.2 Arrays

In this section, we consider a loop that initializes to null an array of pointers
(Fig. 9). The example demonstrates how we abstract arrays. A similar loop is
used to initialize a hash table in the thttpd web server that we verify in §5.

1 type T;

2 global table[int]:T;

3

4 procedure init(n:int)

5 i:int;

6 { i := 0;

7 while (i < n) {

8 table[i] := null;

9 i := i+1;

10 }

11 }

Fig. 9. Initialize an array.

Most of this code is analyzed straightforwardly by the integer domain. It
easily infers the loop invariant that 0 ≤ i < n. Only the update to table is
interesting.

Just as the heap domain partitions heap nodes into classes, the integer do-
main partitions integers into classes. We define predicates to help it determine
a good partitioning.

1 predicate Lt(x:int) = 0 <= x && x < i;

2 predicate Eq(x:int) = x = i;

3 predicate Gt(x:int) = i < x && x < n;

With these predicates, we obtain four integer classes via canonical abstraction,
Ilt, Ii, Igt, and X. The first three classes contain elements satisfying the three
predicates above, respectively. The last class contains all other integers (those
that are negative or ≥ n). Given these classes, we infer the following loop invari-
ant.

Ilt

Lt

Ii

Eq

Igt

Gt

〈 ∀x ∈ Ilt. table[x] = null 〉H
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The fact on the right is a private heap-domain fact but it can still refer to the
integer class Ilt. The ability of one domain to refer to another domain’s classes
is what enables mixed quantification in our system.

Using abstract interpretation, our analysis makes several passes over the loop
before it infers this invariant. We write Pn to denote the state resulting from
analyzing the nth iteration of the loop. In state P0, i = 0 and so Ilt is empty.
The fact 〈 ∀x ∈ Ilt. table[x] = null 〉H is vacuously true here, but our analysis
does not infer facts about empty classes, so it is not included in P0. However, it
is implied by P0 because Ilt is empty.

In state P1, where i = 1, Ilt is non-empty and 〈 ∀x ∈ Ilt. table[x] = null 〉H
is inferred from the assignment. To obtain a loop invariant, we join P0 and P1.
Our join algorithm recognizes that the fact 〈 ∀x ∈ Ilt. table[x] = null 〉H , which
is present in P1, is implied by P0 (because Ilt is empty there) and so it includes
this fact in the join result.

The assignment to table on line 8 of Fig. 9 proceeds as follows. Because
the function table is heap-defined while i is defined in the numeric domain,
the combined domain asks the numeric domain to “translate” i into a class.
Ideally, the translation should generate the smallest possible class containing
the value of i. In this case, the numeric domain can return the singleton class Ii,
because it knows that Ii satisfies the Eq predicate. Then the heap domain can
add 〈 ∀x ∈ Ii. table[x] = null 〉H to the analysis state.

The increment to i re-arranges the class structure (although this happens
outside the assignment transfer function, which requires classes to remain con-
stant). The numeric domain materializes a new class for i + 1, which becomes Ii
and merges the existing Ii with Ilt. The resulting domain element implies the
loop invariant.

After the loop exits, the loop invariant implies that table is null at all indexes
in Ilt, which now includes all valid array indexes.

4.3 Numeric Predicates

We now show how Inv1 (Eqn. (1)) is established in thttpd. The code contains
the following variable definitions and predicates.

1 global table[int]:T, index[T]:int, size:int;

2 predicate HasIdx(e:T, x:int) := index[e] = x;

3 predicate Inv1(x:int) := all(e:T) table[x]=e => HasIdx(e, x) || e=null;

The intent is that table[k] = e should imply index[e] = k. Variable size is the size
of the table array. Note that HasIdx is defined in the numeric domain because it
references index, while Inv1 is defined in the heap domain.

The procedures of interest to us are those that add and remove elements from
the table. Our goal will be to prove that add preserves Inv1 and that remove,
assuming Inv1 holds initially, does not leave any dangling pointers.

1 procedure add(i:int)

2 o:T;
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3 { o := new T;

4 table[i] := o;

5 index[o] := i;

6 }

7 procedure remove(o:T)

8 i:int;

9 { i := index[o];

10 table[i] := null;

11 delete o;

12 }

Addition. Besides the predicates above, we create numeric predicates to partition
the integers into five classes: Ilt, Ii, Igt. Respectively, these are the integers
between 0 and i−1, equal to i, greater than i but less than size. As before, class
X holds the out-of-bounds integers.

Assume that upon entering the add procedure, we infer the following invariant
(recall that we treat all functions via inlining).

Ilt

Inv1

Ii

Inv1

Igt

Inv1

E
〈 ∀x ∈ Ii. table[x] = null 〉H

All existing T objects are grouped into the class E. table is unconstrained at Ilt
and Igtand we do not have any information about the HasIdx predicate.

Initially, Inv1 holds at Ii because table is null there. When table is updated in
line 4, Inv1 is potentially broken because index[o] may not be i. The assignment
on line 5 correctly sets index[o], restoring Inv1 at Ii.

The object allocated at line 3 is placed in a fresh class E′. We do not have
information about HasIdx for this new class. When line 4 sets table[i] := obj,
the assignment is initially handled by the heap domain because table is a heap
function. In order for Inv1 to continue to hold after line 4, we would need to
know that ∀x ∈ E′. ∀y ∈ Ii. HasIdx(x, y). But this fact does not hold because
E′ is a new object whose index field is undefined.

Inv1 is restored in line 5. The assignment is handled by the numeric domain.
Besides the private fact that 〈 ∀x ∈ E′. index[x] = i 〉N , it recognizes that
∀x ∈ E′. ∀y ∈ Ii. HasIdx(x, y). This information is shared with the heap domain
in the PostAssign i phase of the assignment transfer function. The heap domain
then recognizes that Inv1 has been restored at Ii. Thus, procedure add preserves
Inv1.

Removal. We use the same numeric abstraction used for procedure add. On entry
we assume that the object that o points to is contained in a singleton class E′.
All other T objects are in a class E. All table entries are either null or members
of E or E′. The verification challenge is to prove that 〈 ∀x ∈ (Ilt ∪ Igt). ∀y ∈
E′. table[x] 6= y 〉H . Without this fact, after E′ is deleted, we might have pointers
from table to freed memory. These pointers might later be accessed, leading to
a segfault.
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Luckily, Inv1 implies the necessary disequality, as follows. We start by ana-
lyzing line 9. The integer domain handles this assignment and shares the fact
that ∀x ∈ E′. ∀y ∈ Ii. HasIdx(x, y) holds afterwards. Importantly, because
the integer domain knows that i is not in either Ilt or Igt, it also propa-
gates ∀x ∈ E′. ∀z ∈ (Ilt ∪ Igt). ¬HasIdx(x, z). We assume as a precondition
to remove that Inv1 holds of Ilt, Ii, and Igt. The contrapositives of the impli-
cations in these Inv1 facts, together with the negated HasIdx facts, imply that
〈 ∀x ∈ (Ilt ∪ Igt). ∀y ∈ E′. table[x] 6= y 〉H .

The assignment on line 10 is straightforward to handle in the heap domain. It
recognizes that 〈 ∀x ∈ Ii. table[x] = null 〉H while preserving Inv1 at Ii(because
the definition of Inv1 has a special case for null). Finally, line 11 deletes E′,
Because the heap domain knows that 〈 ∀x ∈ (Ilt ∪ Ii ∪ Igt). ∀y ∈ E′. table[x] 6=
y 〉H , there can be no dangling pointers.

4.4 Reference Counting

In this final example, we demonstrate the analysis of the most complex feature
of thttpd’s cache: reference counting. To analyze reference counting we have
augmented the integer domain in two ways.

The first augmentation allows the numeric domain to make statements about
the cardinality of a class. For each class C we introduce a numeric dimension #C,
called a cardinality variable. Thus, we can make statements like 〈 #C ≤ n+1 〉N .
This augmentation was described by Gulwani et al. [14]. Usually, information
about the cardinality of a class is accumulated as the class grows. The typical
class starts as a singleton, so we infer that #C = 1. As it is repeatedly merged
with other singleton classes, its cardinality increments by one. Often we can
derive relationships between the cardinality of a class and loop-iteration variables
as a data structure is constructed.

Besides cardinality variables, we also introduce cardinality functions. These
functions are private to the numeric domain. We give an example below in the
context of reference counting.

1 type T, Container;

2 global rc[T]:int, contains[Container]:T;

3

4 predicate Contains(c:Container, o:T) := contains[c] = o;

5 function RealRC(o:T) := card(c:Container) Contains(c, o); // see below

6 predicate Inv2(o:T) := rc[o] = RealRC[o];

There are two types here: Container objects hold references to T objects. Each
Container object has a contains field to some T object. Each T object records
the number of incoming contains edges in its rc field.

The heap predicate Contains merely exposes contains to the numeric domain.
The cardinality function RealRC is private to the numeric domain. RealRC [e]
equals the number of incoming contains edges to e. It equals the cardinality of
the set {c : Container | Contains(c, e)}. The Inv2 predicate holds if rc[e] equals
this value.
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Our goal is to analyze the functions that increment and decrement an object’s
reference count. We check for memory safety.

1 procedure incref(c:Container, o:T)

2 { assert(contains[c]=null);

3 rc[o]:=rc[o]+1;

4 contains[c]:=o;

5 }

6

7 procedure decref(c:Container)

8 o:T;

9 { o := contains[c];

10 contains[c]:=null;

11 rc[o]:=rc[o]-1;

12 if (rc[o]=0)

13 delete o;

14 }

Increment. When we start, we assume that class C ′ holds the object pointed
to by c and E′ holds the object pointed to by o. Class E holds all the other T

objects and class C contains all the other Container objects. Then contains[c],
for any c ∈ C, points to an object from either E or E′, while contains[c′], for
c′ ∈ C ′, is null. We also assume reference counts are correct, so Inv2 at E and
E′. This fact implies 〈 ∀x ∈ E′. RealRC [x] = rc[x] 〉N . The assignment on line
3 updates this fact to 〈 ∀x ∈ E′. RealRC [x] = rc[x]− 1 〉N and makes Inv2 false
at E′.

The assignment on line 4 is initially handled by the heap domain, which
recognizes that ∀x ∈ C ′. ∀y ∈ E′. Contains(x, y) now holds. When this new fact
is shared with the numeric domain, it realizes that RealRC increases by 1 at E′,
thereby restoring Inv2 at E′ as desired.

Decrement. Analysis of lines 9, 10, and 11 are similar to incref. We assume
that the singleton class E′ holds the object pointed to by obj. Similarly, C ′ holds
the object pointed to by c. Other Container objects belong to the class C and
other T objects belong to E. Line 10 breaks Inv2 at E′ and line 11 restores it.

However, lines 12 and 13 are different. After line 12, the numeric domain
recognizes that 〈 ∀x ∈ E′. rc[x] = 0 〉N holds. Therefore, it knows that 〈 ∀x ∈
E′. RealRC [x] = 0 〉N holds, based on the just-restored Inv2 invariant at E′.
Given the definition of RealRC , it is then able to infer ∀x ∈ (C ∪ C ′). ∀y ∈
E′. ¬Contains(x, y). Therefore, when obj is freed at line 13, we know that there
are no pointers to it, which guarantees that there will be no accesses to this freed
object in the future.

5 Experiments

Our experiments were conducted on the caching code of the thttpd web server
discussed in §1. Interested readers can find our complete model of the cache,
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as well as the code for Deskcheck, online [18]. The web-server cache has four
entry-points. The map and unmap procedures are described in §1. Additionally,
the cleanup entry-point is called optionally to free cache entries whose reference
counts are zero; this happens in thttpd only when memory is running low.
Finally, a destroy method frees all cache entries regardless of their reference
count.

This functionality corresponds to 531 lines of C code, or 387 lines of code
in the modeling language described in §2.1. The translation from C was done
manually. The model is shorter because it elides the system calls for opening
files and reading them into memory; instead, it simply allocates a buffer to hold
the data. It also omits logging code and comments.

Our goal is to check that the cache does not contain any memory errors—that
is, the cache does not access freed memory or fail to free unreachable memory.
We also check that all array accesses are in bounds, that unassigned memory
is never accessed, and that null is never dereferenced. We found no bugs in the
code.

We verify the cache in the context of a simplified client. This client keeps a
linked list of ongoing HTTP connections, and each connection stores a pointer
to data retrieved from the cache. In a loop, the client calls either map, unmap,
or cleanup. When the loop terminates, it calls destroy. At any time, many
connections may share the same data.

All procedure calls are handled via inlining. There is no need for the user
to specify function preconditions or postconditions. Because our analysis is an
abstract interpretation, there is no need for the user to specify loop invariants
either. This difference distinguishes Deskcheck from work based on verification
conditions.

All of the invariants described in §1 appear as predicate definitions in the ver-
ification. In total, thirty predicates are defined. Fifteen of them define common
but important linked-list properties, such as reachability and sharing. These are
all heap predicates. Another ten predicates are simple numeric range properties
to define the array abstraction that is used to check the hash table. The final
five are a combination of heap and numeric predicates to check Inv1 and Inv2;
they are identical to the ones appearing in §4.3 and §4.4.

Deciding which predicates to provide to the analysis was a fairly simple
process. However, the entire verification process took several weeks because it
was intermingled with the development and debugging of Deskcheck itself. It
is difficult to estimate the effort that would be required for future verification
work in Deskcheck.

The experiments were performed on a laptop with a 1.86 GHz Pentium M
processor and 1 GB of RAM (although memory usage was trivial). Tab. 1 shows
the performance of the analysis. The total at the bottom is slightly larger than
the sum of the entry-point times because it includes analysis of the client code as
well. We currently handle procedure calls via inlining, which increases the cost
of the analysis.
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Entry-point Analysis time
map 28.23 s
unmap 9.08 s
cleanup 76.81 s
destroy 5.80 s
Total 123.47 s

Table 1. Analysis times of thttpd analysis.

Annotations. Currently, we require some annotations from the user. These an-
notations never compromise the soundness of the analysis. Their only purpose
is to improve efficiency or precision. One set of annotations marks a predicate
as an abstraction predicate in a certain scope. There are 5 such scopes, mak-
ing for 10 lines of annotations. We also use annotations to decide when to split
an integer class into multiple classes. There are 14 such annotations. It seems
possible to infer these annotations with heuristics, but we have not done so yet.
All of these annotations are accounted for in the line counts above, as are the
predicate definitions.

To give an example of the sorts of annotations required, we present our model
of the mmc map function in Fig. 10. The C code for this function is in Fig. 2. Note
that all of our models are available online [18].

Virtually all of the code in Fig. 10 is a direct translation of Fig. 2 to our
modeling language. The only annotations are at lines 14 and 23. These annota-
tions temporarily designate free maps as an abstraction predicate. This means
that the node pointed to by free maps is distinguished from other nodes in the
canonical abstraction. Outside the scope of the annotations, every node reach-
able from the free maps linked list is represented by a summary node. Because
lines 16–18 remove the head of the list, it is necessary to treat this node sepa-
rately or else the analysis will be imprecise. These two annotations are typical
of all the abstraction-predicate annotations.

As a side note, a previous version of our analysis required loop invariants and
function preconditions and postconditions from the user. We used this version of
the analysis to check only the first two entry points, map and unmap. We found
the annotation burden to be excessive. These two functions, along with their
callees, required 1613 lines of preconditions, postconditions, and loop invariants.
Undoubtedly a more expressive language of invariants would allow for more con-
cise specifications, but more research would be required. This heavy annotation
burden motivated us to focus on inferring these annotations as we do now via
joins and widening.

6 Related Work

There are several methods for implementing or approximating the reduced prod-
uct [6], which is the most precise refinement of the direct product. Granger’s
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1 procedure mmc_map(key:int):Buffer

2 m:Map;

3 b:Buffer;

4 {

5 check_hash_size();

6

7 m := find_hash(key);

8 if (m != null) {

9 Map_refcount[m] := Map_refcount[m]+1;

10 b := Map_addr[m];

11 return b;

12 }

13

14 @enable(free_maps);

15 if (free_maps != null) {

16 m := free_maps;

17 free_maps := Map_next[m];

18 Map_next[m] := null;

19 } else {

20 m := new Map;

21 Map_next[m] := null;

22 }

23 @disable(free_maps);

24

25 Map_key[m] := key;

26 Map_refcount[m] := 1;

27 b := new Buffer;

28 Map_addr[m] := b;

29

30 add_hash(m);

31

32 Map_next[m] := maps;

33 maps := m;

34

35 return b;

36 }

Fig. 10. Our model of the mmc map function from Fig. 2.

method of local descending iterations [13] uses a decreasing sequence of reduc-
tion steps to approximate the reduced product. The method provides a way to
refine abstract states; in abstract transformers, domain elements can only in-
teract either before or after transformer application. The open-product method
[5] allows domain elements to interact during transformer application. Reps et
al. [23] present a method that can implement the reduced product, for either
abstract states or transformers, provided that one has a sat-solver for a logic
that can express the meanings of both kinds of domain elements.
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Combining Heap and Numeric Abstractions. The idea to combine numeric and
pointer analysis to establish properties of memory was pioneered by Deutsch
[8]. His abstraction deals with may-aliases rather precisely, but loses almost all
information when the program performs destructive memory updates.

A general method for combining numeric domains and canonical abstraction
was presented by Gopan et al. [12] (and was subsequently broadened to a general
domain construction for functions [16]). A general method for tracking partition
sizes (along with a specific instantiation of the general method) was presented by
Gulwani at al. [14]. The work of Gopan et al. and Gulwani et al. are orthogonal
methods: the former addresses how to abstract values of numeric fields; the
latter addresses how to infer partition sizes. The present paper was inspired by
these two works and generalizes both of them in several ways. For instance, we
support more kinds of partition-based abstractions than the work of Gopan et
al. [12], which makes the result more general, and may allow more scalable heap
abstractions.

Gulwani and Tiwari [15] give a method for combining abstract interpreters,
based on the Nelson-Oppen method for combining decision procedures. Their
method also creates an abstract domain that is a refinement of the reduced
product. As in Nelson-Oppen, communication between domains is solely via
equalities, whereas in our method communication is in terms of classes and
quantified, first-order predicates.

Emmi et al. [11] handle reference counting using auxiliary functions and pred-
icates similar to the ones discussed in §4.4. As long as only a finite number of
sources and targets are updated in a single transition, they automatically gener-
ate the corresponding updates to their auxiliary functions. For abstraction, they
use Skolem variables to name single, but arbitrary, objects. Their combination
of techniques is specifically directed at reference counting; it supports a form
of universal quantification (via Skolem variables) to track the cardinality of ref-
erence predicates. In contrast, we have a parametric framework for combining
domains, as well as a specific instantiation that supports universal and existen-
tial quantification, transitive closure, and cardinality. Their analyzer supports
concurrency and ours does not. Because their method is unable to reason about
reachability, their method would not be able to verify our examples (or thttpd).

Reducing Pointer to Integer Programs. In [10, 3, 17], an initial transformation
converts pointer-manipulating programs into integer programs to allow integer
analysis to check the desired properties. These “reduction-based approaches”
uses various integer analyzers on the resulting program. For proving simple prop-
erties of singly linked lists, it was shown in [3] that there is no loss of precision;
however, the approach may lose precision in cases where the heap and integers
interact in complicated ways. The main problem with the approach is that the
proof of the integer program cannot use any quantification. Thus, while it can
make statements about the size of a local linked list, it cannot make a statement
about the size of every list in a hash table. In particular, Inv1 and Inv2 both lie
outside the capabilities of reduction-based approaches. Our approach alternates
between the two abstractions, allows information to flow in both directions, and
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can use quantification in both domains. Furthermore, the framework is paramet-
ric; in particular, it can use a separation-logic domain [9] or canonical abstrac-
tion [24] (and is not restricted to domains that can represent only singly linked
lists). Finally, proving soundness in our case is simpler.

Decision Procedures for Reasoning about the Heap and Arithmetic. One of the
challenging problems in the area of theorem proving and decision procedures is
to develop methods for reasoning about arithmetic and quantification.

Nguyen et al. [21] present a logic-based approach that involves providing
an entailment procedure. The logic allows for user-defined, well-founded induc-
tive predicates for expressing shape and size properties of data structures. Their
approach can express invariants that involve other numeric properties of data
structures, such as heights of trees. However, their approach is limited to separa-
tion logic, while ours is parameterized by the heap and numeric abstractions and
can be used in more general contexts. In addition, their approach cannot handle
quantified cardinality properties, such as the refcount property from thttpd:

∀v : v.rc = |{u : u.f = v}|.

Finally, their approach does not infer invariants, which means that a heavy
annotation burden is placed on the user. In contrast, our approach is based
on abstract interpretation, and can thus infer invariants of loops and recursive
procedures.

The logic of Zee et al. [26, 25] also permits verification of invariants involving
pointers and cardinality. However, as above, this technique requires user-specified
loop invariants. Additionally, the logic is sufficiently expressive that user assis-
tance is required to prove entailment (similar to the partial order in an abstract
interpretation). Because the invariants that we infer are more structured, we
can prove entailment automatically. However, our abstraction annotations are
similar to the case-splitting information required by their analysis.

Work by Lahiri and Qadeer also uses a specialized logic coupled with the
verification-conditions approach. They use a decidable logic, so their is no need
for assistance in proving entailment. However, they still require manual loop
invariants.

Parameterized Model Checking. For concurrent programs, Clarke et al. [4] intro-
duce environment abstraction, along with model-checking techniques for formulas
that support a limited form of numeric universal quantification (the variable ex-
presses the problem size, à la parameterized verification) together with variables
that are universally quantified over non-numeric individuals (which represent
processes). Our methods should be applicable to broadening the mixture of nu-
meric and non-numeric information that can be used to model check concurrent
programs.
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