
Solving Multiple Dataflow Queries Using

WPDSs

Akash Lal1 and Thomas Reps1,2

1 University of Wisconsin; Madison, Wisconsin; USA. {akash, reps}@cs.wisc.edu
2 GrammaTech, Inc.; Ithaca, NY; USA.

Abstract. A dataflow query asks for the set of reachable (abstract)
states, given a starting set of states. In this paper, we show how to
optimize multiple queries on the same program (each with a different
starting set of states) for better overall running time. After a preprocess-
ing phase, we obtain an asymptotic improvement in answering dataflow
queries. We use weighted pushdown systems as the abstract model of
a program. Our techniques are interprocedural. They are general, yet
provide an impressive speedup. We applied our algorithm to three very
different applications, one based on finding affine relations using linear
algebra, and others for model checking Boolean programs, and obtained
1.5-fold to 7-fold speedups.

1 Introduction

Dataflow analysis is concerned with approximating program behavior. A
dataflow query asks for the set of (abstract) program states (forward or
backward) reachable from a given starting set of states, where a state is
a (program location, data store) pair. One common application of (forward)
dataflow analysis is to pose a single dataflow query from the initial state in which
program execution starts. This produces an over-approximation of all program
states that may arise during its execution. However, in certain situations, multi-
ple dataflow queries need to be posed on the same program, each with a different
starting set of states.

One such need arises in the analysis of concurrent programs, in the method
presented in [13], which tracks program evolution for a bounded number of con-
text switches. Here, a concurrent program consists of a set of threads that com-
municate via shared memory. For a thread t of interest, the environment (con-
sisting of the other threads) is only given control a fixed number of times. Each
time, the environment can change the state of shared memory, thus affecting the
execution of thread t. The analysis of such programs requires multiple dataflow
queries to be posed on t. Whenever the environment changes the state of shared
memory, a new query is posed on t, starting from this state

Multiple queries are also useful for program understanding, e.g., to find out
the net effect of executing from one statement to another (to find dependences
between them). Finding a loop summary for each loop is another example. Our
applications (§5) are based on these examples.

Answering multiple queries on the same program independently from each
other usually involves repeated work. In this paper, we do preprocessing to com-
pute certain basic facts about the program that can be reused each time a new
dataflow query is posed. This improves the running time needed for answering
multiple dataflow queries on the same program.

At the intraprocedural level, this work is inspired by our previous result
[9], where we showed how to use Tarjan’s path sequence algorithm [23], which
computes regular expressions to represent a set of paths in a graph, to obtain a
faster algorithm for answering a single dataflow query. In this paper, we show
that the information computed by Tarjan’s algorithm is also useful to avoid
having to repeat fixpoint computations for answering multiple queries.

At the interprocedural level, a set of program paths can no longer be captured
with a regular expression (the set may be a context-free language). We develop
new techniques to address this complication: we show what preprocessing can be
done to avoid recomputation across procedure boundaries, and how to isolate the
intraprocedural computation to be able to use our intraprocedural algorithm.

Overall, with our techniques, the preprocessing is quite efficient, usually faster
than solving two dataflow queries. After preprocessing, we obtain asymptotic
improvements in answering each dataflow query (for programs whose control
structure is mostly reducible), and only require iteration to a fixpoint when
the starting set of states is infinite (i.e., in other cases, we do not need to go
around program loops or recursive procedures). Our experiments show that this
approach is advantageous even if as few as two queries need to be answered.

Our approach applies to any dataflow-analysis problem in which one has a
domain of distributive dataflow-transfer functions closed under composition [22,
7]. Some examples can be found in [18, 17, 12]. This paper mainly presents the
work using the framework of weighted pushdown systems (WPDSs) [18], which
generalize previous work on interprocedural analysis frameworks [22, 8, 16]. For
details on how variants of the technique can be incorporated in solvers that work
over control-flow graphs (ICFGs) see [10].

The contributions of this paper can be summarized as follows:

– We show how information computed by Tarjan’s path sequence algorithm
can be used to obtain asymptotic improvements in answering multiple in-
traprocedural queries (§3).

– We give a new WPDS reachability algorithm for answering interprocedural
queries that carries over the above asymptotic improvements (§4).

– We sketch variants of the technique that allow the ideas to be applied in
other standard dataflow-analysis frameworks (§4).

– We applied our techniques to three applications (§5), and measured 1.5-fold
to 7-fold speedups over previous techniques, including optimized ones [9].

The rest of the paper is organized as follows: §2 gives background on WPDSs.
§3 presents our algorithm for the intraprocedural case, and §4 generalizes it to
the interprocedural case (WPDSs). §5 reports experimental results. §6 discusses
related work. Proofs and other details can be found in [10].

2 Program Model

Definition 1. A pushdown system is a triple P = (P, Γ, ∆) where P is the set
of states or control locations, Γ is the set of stack symbols and ∆ ⊆ P×Γ×P×Γ ∗

is the set of pushdown rules. A configuration of P is a pair 〈p, u〉 where p ∈ P

and u ∈ Γ ∗. A rule r ∈ ∆ is written as 〈p, γ〉 →֒ 〈p′, u〉 where p, p′ ∈ P , γ ∈ Γ

and u ∈ Γ ∗. These rules define a transition relation ⇒ on configurations of P
as follows: If r = 〈p, γ〉 →֒ 〈p′, u〉 then 〈p, γu′〉 ⇒ 〈p′, uu′〉 for all u′ ∈ Γ ∗. The
reflexive transitive closure of ⇒ is denoted by ⇒∗.

Without loss of generality, we restrict PDS rules to have at most two stack
symbols on the right-hand side [21]. The standard approach for modeling pro-
gram control flow with a PDS is as follows: P = {p}, Γ corresponds to program
locations, and ∆ corresponds to transitions in the interprocedural control-flow
graph (ICFG)3: A CFG edge u → v is modeled by a PDS rule 〈p, u〉 →֒ 〈p, v〉;
A call to procedure g at location l that returns to r as 〈p, l〉 →֒ 〈p, genter r〉; and
a return from procedure g as 〈p, gexit〉 →֒ 〈p, ε〉. In such an encoding, a PDS
configuration 〈p, γ1 γ2 · · · γn〉 stores the value of the program counter γ1 and the
stack of return addresses for unfinished calls as γ2, γ3, · · · , γn (in order).

A weighted PDS is obtained by supplementing a PDS with a weight domain
that is a bounded idempotent semiring [18, 2]. Such semirings are capable of
encoding a number of abstractions [17]. WPDSs can encode the IFDS framework
[16], and other dataflow analyses; see [18, 9] for more details.

Definition 2. A bounded idempotent semiring (or “weight domain”) is a
tuple (D,⊕,⊗, 0, 1), where D is a set of weights, 0, 1 ∈ D, and ⊕ (combine)
and ⊗ (extend) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
4. In the partial order ⊑ defined by ∀a, b ∈ D, a ⊑ b iff a⊕ b = a, there are no

infinite descending chains.

One may think of weights as dataflow transformers, extend as transformer
composition, combine as meet, 0 as the transformer for an infeasible path, and
1 as the identity transformer.

The height H of a weight domain is defined to be the length of the longest
descending chain in the semiring (if it exists). In this paper, we assume the
height to be finite for ease of discussing complexity results. (For cases when the
height is unbounded, the value H in the complexity results can be interpreted as
the length of the longest descending chain that occurs while solving a particular
problem instance, which is always bounded.)

3 An ICFG is a set of CFGs, one for each procedure, with additional edges going from
a call-site to the entry node of the callee and from its exit node to the return site.

n1

n3

n4

w2

n6

n7

n5

n2

bar()

bar()

proc foo proc bar

w1

w3

w4

(1) 〈p, n1〉 →֒ 〈p, n2〉 w2

(2) 〈p, n1〉 →֒ 〈p, n4〉 w1

(3) 〈p, n2〉 →֒ 〈p, n6 n3〉 1
(4) 〈p, n3〉 →֒ 〈p, n4〉 w3

(5) 〈p, n4〉 →֒ 〈p, n6 n5〉 1
(6) 〈p, n6〉 →֒ 〈p, n7〉 w4

(7) 〈p, n7〉 →֒ 〈p, ε〉 1

Fig. 1. A program with two procedures and its corresponding WPDS. Procedure calls
are represented using dashed arrows.

Definition 3. A weighted pushdown system is a triple W = (P ,S, f) where
P = (P, Γ, ∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring and f : ∆ → D is a map that assigns a weight to each pushdown rule.

Let σ = [r1, . . . , rk] ∈ ∆∗ be a sequence of rules. We define v(σ)
def

= f(r1) ⊗
. . .⊗f(rk). Moreover, if for two configurations c and c′ of P , σ is a rule sequence
that transforms c to c′, we say c ⇒σ c′.

Definition 4. Let W = (P ,S, f) be a WPDS, where P = (P, Γ, ∆), and let
S, T ⊆ P × Γ ∗ be sets of configurations. The interprocedural meet-over-all-
paths (IMOP) value IMOP(S, T) is defined as

⊕
{v(σ) | s ⇒σ t, s ∈ S, t ∈ T }.

The IMOP value is the net transformation that occurs when going from one
set of configurations to another. We write IMOP(s, t) for IMOP({s}, {t}).

Fig. 1 shows how a program can be encoded using a WPDS. Each ICFG edge
e is encoded as a PDS rule whose weight is the dataflow transformer for e. More
details on encoding programs as WPDSs can be found in [18, 17].
Model Semantics In WPDSs, program states are represented using weighted
configurations, which are configuration-weight pairs. The pair (c, w) describes
the control state of the program as the PDS stack c, and the data state of the
program using the weight w. A set of program states is represented by a function
β : P × Γ ∗ → D, standing for the set {(c, β(c)) | c ∈ P × Γ ∗}. The set of all
forward-reachable states starting from β is the set poststar(β) = {(c′,⊕c{β(c)⊗
IMOP(c, c′)}) | c′ ∈ P × Γ ∗}. In this case, we say that configuration c′ can be
reached with weight poststar(β)(c′) (which is 0 if c′ is not reachable).

For example, the initial state of the program in Fig. 1 is (〈p, n1〉, 1) and its
reachable states include (〈p, n6 n3〉, w2) and (〈p, n6 n5〉, w1 ⊕ (w2 ⊗ w4 ⊗ w3)).

3 Solving Multiple Intraprocedural Queries

Our interprocedural algorithm (§4) will need to solve multiple intraprocedural
queries. Thus, we address the latter case first. A directed graph is a special
case of a PDS (no call or return rules). When a weight domain is paired with

a directed graph, we obtain a model for intraprocedural analysis. To simplify
the discussion of intraprocedural algorithms, we specialize some definitions to
weighted graphs.

Definition 5. A weighted graph G is a tuple (V, E, λ), where (V, E) is a di-
rected graph, and λ : E → D is a function that labels each edge with a weight.

For vertices v1, v2 ∈ V , a path σ is defined as a sequence of edges that connect
v1 to v2, in the standard way. In such a case, we say v1 ⇒σ v2. The weight of
a path σ = [e1, e2, · · · , en], written as λ(σ), is defined to be λ(e1) ⊗ λ(e2) ⊗
· · · ⊗ λ(en). For sets of vertices S, T ⊆ V , the meet-over-all-paths (MOP) value
is defined as the combine of weights of all paths that lead from a vertex in S to
a vertex in T : MOP(S, T) =

⊕
{λ(σ) | s ⇒σ t, s ∈ S, t ∈ T }. When S = {s} and

T = {t} are singleton sets, we write MOP[s, t] as a shorthand for MOP(S, T).
Program states are vertex-weight pairs (vertices replace PDS configurations).

Computing reachable states reduces to solving the following query:

Definition 6. Given a weighted graph G, and a set of vertices S ⊆ V with a
weight assignment µ : S → D, the IntraQ-query is to compute the weights
IntraQG(S, µ)(v) =

⊕
s∈S{µ(s) ⊗ MOP[s, v]} for each v ∈ V .

IntraQG(S, µ) is the set of reachable states starting from {(s, µ(s)) | s ∈ S}.
We drop the subscript G in IntraQ when it is obvious from the context.

When the graph G is fixed, we can preprocess it to quickly answer subsequent
queries. We now present three different algorithms for solving this query, where
each of them trades off preprocessing time against time required to solve a query.
Alg1: The first algorithm is the standard way of solving such queries using
no preprocessing. It is a saturation algorithm: each vertex v has a weight l(v).
Initially, l(s) = µ(s) for s ∈ S, and 0 for other vertices. Next, the rules l(v) :=
l(v) ⊕ (l(u) ⊗ λ(u, v)) for each edge (u, v) are used to update the weights until
a fixpoint is reached. Then l(v) is the required value for IntraQ(S, µ)(v). This
requires time Os(|E|H), where H is the height of the weight domain, and the
notation Os(.) denotes the asymptotic number of semiring operations. (Because
we consider weights as black boxes, the algorithms in this paper seek to minimize
the number of semiring operations.)

The disadvantage of this method, which our other algorithms address, is that
it requires a fixpoint computation to be performed; this is reflected in the cost
by the dependence on the height H of the weight domain, which can be large.
Alg2: The second algorithm does the obvious preprocessing. It precomputes
the values MOP[v1, v2] for each v1, v2 ∈ V by solving IntraQ({v1}, (v1 7→ 1))
for each v1 using Alg1. Thus, preprocessing time is Os(|V ||E|H). Once these
MOP values are available, IntraQ(S, µ)(v) can be solved from its definition in
time Os(|S|). Thus, IntraQ(S, µ) can be solved in time Os(|S||V |), which is
independent of H. This may seem like the most efficient approach, but we show
next that one can do better.

Consider the graph in Fig. 2. Suppose that S = {v2, v3}, µ(v2) = w2, and
µ(v3) = w3. Then Alg2 would require approximately 2|V | semiring operations

because it considers v2 and v3 separately from each other. However, notice that
vertex v4 dominates all other vertices with respect to v2 and v3, i.e., any path
in the graph starting at v2 or v3 must pass through v4 before reaching vertices
v5 to vk (and vertex v1 is unreachable). Based on this observation, we can prove
that IntraQ(S, µ)(vi) = IntraQ(S, µ)(v4) ⊗ MOP[v4, vi] for vi ∈ {v5, · · · , vk}
Therefore, we only need to compute IntraQ(S, µ)(v4) and other values can
follow from this value using just one operation. This method would only require,
approximately, |V | number of operations.

v1

v2 v3

v4

v5

v6

vk

Fig. 2. A graph

This observation can be generalized to say that the weight
on a vertex should be computed before the weights on ver-
tices dominated by it are computed. This has been already
captured nicely by Tarjan’s algorithm [23] to solve path prob-
lems on graphs. However, it has only been used in the con-
text of solving a single query, which we generalize to multiple
queries. First, we summarize the essential details of Tarjan’s
algorithm.

Definition 7. A path expression is a regular expression
over the edges of a graph defined using the following gram-
mar: r := ∅ | ε | e | r1.r2 | r1∪r2 | r∗ where e is an edge in the

graph. A path expression r is said to represent the set of paths in the language
L(r) of r when interpreted as a regular expression. Furthermore, a path expres-
sion is said to be of type (u, v) if all paths in L(r) go from vertex u to vertex
v.

For example, for the graph in Fig. 2, the expression ((e12.e24 ∪ e13.e34).e45),
where eij is the edge (vi, vj), denotes the set of all paths from v1 to v5, and is
of type (v1, v5).

We extend λ to path expressions as follows: λ(∅) = 0, λ(ε) = 1, λ(r1.r2) =
λ(r1)⊗λ(r2), λ(r1 ∪ r2) = λ(r1)⊕λ(r2), and λ(r∗) = λ(r)∗. Here, we define the
weight w∗ as the infinite combine 1⊕w⊕(w⊗w)⊕(w⊗w⊗w)⊕ ..., which exists
because of Defn. 2(item 4). One can show that w∗ = (1 ⊕ w)H, and calculate it
using repeated squaring in time Os(logH). Consequently, the following lemma
holds. (We define |r| to be the length of the expression.)

Lemma 1. For a path expression r and λ defined as above, λ(r) =
⊕

{λ(σ) |
σ ∈ L(r)}. Moreover, it can be calculated in time Os(|r| logH).

Tarjan’s algorithm is based on computing path expressions to represent the
set of paths between each pair of vertices. However, instead of computing a
separate path expression for each pair of vertices, it computes a path sequence,
which is a more concise way of representing all paths in a graph.

Definition 8. A path sequence of a directed graph G = (V, E) is a sequence
(r1, u1, v1), (r2, u2, v2), · · · (rk, uk, vk), where ui, vi ∈ V , ri is a path expression
of type (ui, vi) such that for any nonempty path σ in G, there is a sequence of
indices 1 ≤ i1 < i2 < · · · < il ≤ k and a partition of σ into nonempty paths
σ = σ1σ2 · · ·σl and σj ∈ L(rij

) for all 1 ≤ j ≤ l.

1: // initialize
2: for all v ∈ V do

3: r[s, v] := ∅
4: end for

5: r[s, s] := ε

6: // solve
7: for i = 1 to k do

8: r[s, vi] := r[s, vi] ∪
(r[s, ui].ri)

9: end for

1: // initialize
2: for all v ∈ V do

3: MOP[s, v] := 0
4: end for

5: MOP[s, s] := 1
6: // solve
7: for i = 1 to k do

8: MOP[s, vi]:=MOP[s, vi]
⊕(MOP[s, ui] ⊗ λ(ri))

9: end for

(a) (b)

Fig. 3. Computing MOP values using the path se-
quence {(ri, ui, vi)}k

i=1.

Fig. 3(a) is an algo-
rithm that uses a path
sequence to create path
expressions r[s, v] that
represent the set of all
paths from s to v, for
each v ∈ V and a
fixed s ∈ V [23]. Us-
ing Lemma 1, we get
MOP[s, v] = λ(r[s, v]).
Equivalently, the path ex-
pressions can be evalu-
ated first and then put to-
gether to get the MOP
weights, as shown in Fig. 3(b).

Tarjan’s algorithm computes a path sequence for a graph in time O(|E| log |V |+
δ), where δ is a term that denotes the irreducibility factor of the graph. For re-
ducible graphs, δ = 0 and, in general, δ is bounded by |V |3. Because the graphs
we work with come from CFGs of procedures, they are mostly reducible and the
δ term can be ignored (which is confirmed by our experiments). Evaluating all
path expressions takes time Os((|E| log |V |+δ) logH). After that, given a vertex
s, solving for MOP[s, v] for all vertices v requires time Os(|E| log |V |+ δ), which
is almost linear in the size of the graph. We ignore δ in the rest of the paper.
Alg3: Suppose that we wish to solve IntraQ(S, µ) on G = (V, E, λ). We
construct a new graph G′ = (V ′, E′, λ′) by adding a new vertex to G: for some
v0 6∈ V , V ′ = V ∪ {v0}, E′ = E ∪ {(v0, s) | s ∈ S}, λ′ = λ ∪ {[(v0, s) 7→ µ(s)] |
s ∈ S}. Then MOPG′ [v0, v] = IntraQG(S, µ)(v). Thus, we need to compute
MOP values on G′. This trick is similar to the standard one of reducing a multi-
source reachability problem to a single-source reducibility problem. The following
observation shows that a path sequence for G′ can be computed from that of G:

Lemma 2. If ps is a path sequence of G, then by concatenating the sequence
{(v0, s, (v0, s)) | s ∈ S} (with any arbitrary order chosen to enumerate vertices
in S) in front of ps, one obtains a path sequence for G′.

The preprocessing step of Alg3 computes a path sequence for G and evalu-
ates the weight of each of its path expressions. Then to solve each query, Alg3

uses the path sequence for G′, constructed using Lemma 2, as input to the
algorithm in Fig. 3(b). This gives us the required weights IntraQG(S, µ)(v)
as MOPG′ [v0, v]. Alg3 requires Os(|E| log |V | logH) preprocessing time and
Os(|S| + |E| log |V |) time to solve each query. This is much better than Alg2

because for CFGs, |E| is usually O(|V |). We used Alg3 in our experiments.

4 Solving Multiple Queries on WPDSs

For graphs, the number of vertices is finite, but for WPDSs, the number of
configurations may be infinite (when the program is recursive), or very large

(exponential in the number of procedures when not recursive). For this reason,
sets of weighted configurations (or program states) are represented symbolically
using weighted automata [18].

Definition 9. A weighted automaton A is a finite-state automaton where each
transition is additionally labeled with a weight. The weight of a path in the au-
tomaton is obtained by taking an extend of the weights on the transitions in the
path in the backward direction. The automaton is said to accept a configuration
〈p, u〉 with weight w, denoted by A(〈p, u〉), if w is the combine of weights of all
accepting paths for u starting from state p in A (w = 0 if u is not accepted).
The set of states of A is assumed to contain P , the set of PDS states.

A weighted automaton A represents the set of states R(A) = {(c,A(c)) |
A(c) 6= 0}. An important result is that the set poststar(R(A)) (as defined in
§2) can also be represented by a weighted automaton [18]. For brevity, we call
such an automaton poststar(A). Our goal is to preprocess a given WPDS so that
poststar(A) can be computed quickly for any given A.

An example is shown in Fig. 4(a). Note how the weight for a configuration
〈p, n7 n3〉 is represented in a compositional way in the automaton. Procedure
bar is analyzed independently of its calling context, resulting in weight w4 for
transition (p, n7, q). The weight w2 at the call site n3 to bar is captured on the
transition (q, n3, acc), resulting in a total weight of w4⊗w2 for 〈p, n7 n3〉. We will
use the fact that procedures are analyzed independently of their calling context
(also customary in most summary-based interprocedural analyses) in our favor.
(As we shall see later, this implies that weights have to be propagated from a
procedure to its callers, but not to procedures that it calls.)

Fix W = ((P, Γ, ∆),S, f) to be a WPDS. Fix Astart to be the input query
automaton, for which we want to compute poststar(Astart). To simplify the dis-
cussion, assume that W was created from a program as described in §2, and
P = {p} is a singleton set (our implementation handles any WPDS, however).
Preprocessing (i) First, we compute a summary for each procedure. (For a
procedure starting at node e, it is defined as IMOP(〈p, e〉, 〈p, ε〉)). Using these
summaries, we construct a weighted graph for each procedure from its CFG:
the call edges (from call site to return site) are replaced with a summary of
the called procedure. For γ ∈ Γ , let Prγ be the procedure that contains γ, Gγ

be the weighted graph for Prγ , eγ its unique entry node, and xγ its unique
exit node. (Note that MOPGγ

[eγ , xγ] also equals the summary for Prγ .) Next,
for each weighted graph G of a procedure, we compute: (ii) its path sequence
(preprocessing for Alg3) and (iii) values MOPG[γ, xγ] and MOPG[eγ , γ] for
each node γ of the procedure.

The procedure summaries can be computed using standard algorithms, af-
ter which the path sequences can be constructed using Tarjan’s algorithm. This
would be an acceptable solution, but we can do better. We use our techniques
from [9] to compute both of these at the same time. Briefly, the call-return edge
in the CFG of a procedure is labeled with a variable whose value stands for the
(as yet uncomputed) summary of the called procedure. Then the procedure sum-
mary is represented using a path expression (from entry node to return node)

p

q

acc

n1, 1 n2, w2
n3, w2w4 n4, w1⊕w2w4w3
n5, (w1⊕w2w4w3) w4

n6, 1
n7, w4

n3, w2

n5, w1⊕w2w4w3

p

q

acc

n2, w0 n3, w0w4
n4, w0w4w3
n5, w0w4w3w4

n6, 1
n7, w4

n3,w0

n5, w0w4w3

(a) (b) (c)

(d) (e) (f)

p q acc
n6, wa

n3, wb

n5, wc

p q acc
n6, wa

n3, wb

n3, wbwaw4

p q acc
n6, wa

n3, wb

n3, wbwaw4

n , w w

n4, wbwaw4w3

p q acc
n6, wa

n3, wb

n3, wbwaw4

n4, wbwaw4w3

p q acc
n5, wc

n5, wcwaw4

acc
n5, wc

n5, wcwaw4 ⊕
wbwaw4w3w4

qbar

n6, 1
n7, w4

n7, waw4

n5, wbwaw4w3

p q acc
n5, wc

n5, wcwaw4 ⊕
wbwaw4w3w4

n7, waw4

Fig. 4. Various automata related to the WPDS of Fig. 1. In all the weighted automata,
juxtaposition of weights denotes their extend, acc is the accepting state, and parallel
transitions have sometimes been collapsed into a single edge. Labels on transitions
are (stack symbol, weight) pairs. (a) An automaton for poststar({(〈p, n1〉, 1)}). (b) An
automaton for poststar({(〈p, n2〉, w0)}). (c) Automaton Astart. (d) Automaton Apop

obtained after running the pop-phase.(e) Automaton Aint created while running the
growth phase on Apop. (f) The final result of running the growth phase on Apop.

computed from its path sequence. This expression will have variables standing
for summaries of called procedures. This gives rise to a set of equations whose
solution solves for all summaries. In [9], we showed that this technique provides
up to 5 times speedup over standard algorithms for computing procedure sum-
maries, and we obtain a path sequence as a by-product. The path sequences can
then be used to quickly compute the required MOP values for (iii) [23].

ICFG-version Before describing how our algorithm works with weighted au-
tomata, we briefly describe how it would work with ICFGs (after preprocessing).
(Full details are in [10].) Suppose that we are given a set R of node-weight pairs
(starting states), where the nodes may be from multiple procedures, and we want
to calculate the reachable set of node-weight pairs.

One challenge is to isolate the intraprocedural work. An IntraQ query on
a set S = {s1, · · · , sk} can also be solved by making a separate query for each
si and taking a combine of the results, but this is far less efficient than making
a single query on S. Thus, we want to minimize the number of IntraQ queries
made for each procedure. For example, for the program in Fig. 1, suppose R =
{(n6, wa), (n4, wb)}. Then the pair (n6, wa) can produce the pairs (n3, wa ⊗ w4)
and (n5, wa ⊗ w4) inside foo, when bar returns. We would then like to make
just one IntraQ query on foo with S = {n3, n4, n5} (and appropriate weights),

〈p, γ1 γ2 γ3 · · · γn〉 ⇒
σ1 〈p, γ2 γ3 · · · γk+1 γk+2 · · · γn〉

⇒σ2 〈p, γ3 · · · γk+1 γk+2 · · · γn〉
⇒∗ · · ·
⇒σk 〈p, γk+1 γk+2 · · · γn〉
⇒σk+1 〈p, u1 u2 · · ·uj γk+2 · · · γn〉

Fig. 5. A path in the PDS’s transition relation; ui ∈ Γ, j ≥ 1, k ≤ n, σh ∈ ∆∗.

instead of making a query with just n4 first, and then realizing that the procedure
has to be explored again from n3 and n5.

The algorithm proceeds in two phases. The first phase moves across procedure
boundaries: if (n, w) ∈ R then we propagate this weight to the callers of Prn. We
add (r, w⊗MOPGn

[n, xn]) to R for each return site r of calls to Prn (if the pair
(r, w′) was already present in R, then change w′ to w′ ⊕ (w ⊗ MOPGn

[n, xn])).
This continues until saturation. The use of (precomputed) MOP[n, xn] weights
allow us to quickly jump from a procedure to its callers.

The second phase is intraprocedural. If (n1, w1), · · · , (nk, wk) ∈ R and the
ni are from the same procedure, run IntraQ({n1, · · · , nk}, [ni 7→ wi]) to get
weights on all other nodes in the procedure. This is repeated for all procedures.
The resulting node-weight pairs represent all reachable states.

The extension of these ideas to WPDSs have two complications: First, config-
urations add constraints on how weights get propagated to callers. For example,
starting at configuration 〈p, γ1γ2〉 constrains weight propagation to γ2 when Prγ1

returns (and not to its other return sites). Second, the number of configurations
may be infinite, forcing us to use automata-based symbolic representations.

The above ICFG version only required at most one IntraQ query per pro-
cedure, which is ideal. The general version for WPDSs requires slightly more
queries: at most |Q| queries per procedure, where Q is the set of states of Astart.

WPDS-version Consider a path σ ∈ ∆∗ in the transition relation of a PDS
that starts from a configuration 〈p, γ1γ2 · · · γn〉. It can always be decomposed as
σ = σ1σ2 · · ·σkσk+1 (see Fig. 5), such that 〈p, γi〉 ⇒σi 〈p, ε〉 for 1 ≤ i ≤ k and
〈p, γk+1〉 ⇒σk+1 〈p, u1u2 · · ·uj〉 (or σk+1 is empty when k = n). In other words,
σi, i ≤ k is the rule sequence whose net effect is to pop off γi without looking at
the stack below it, and σk+1 is the rule sequence that does not look below γk+1

but can replace it and add more symbols on top of the stack. We call the part
where symbols are popped (σ1, · · · , σk) the pop phase and the part where the
stack grows (σk+1), the growth phase.

This property holds because PDS rules can only look at the top of the stack.
For σ to touch γ2, it must first pop off γ1. When it does pop it off, this prefix
would be σ1 (and repeat inductively). If it does not pop off γ1, then σ is already
in the growth phase.

We compute poststar(Astart) by separating these two phases: First, we com-
pute Apop that accepts all configurations reachable after the pop phase. Next, we
start from Apop and build Afinal that accepts all configurations reachable after
the growth phase. The former part is similar to the first phase of the ICFG-

version of the algorithm, and the latter will correspond to the intraprocedural
part (similar to the second phase of the ICFG-version). A running example is
shown in Fig. 4(c) − (f).

Terminology (i) A transition t with weight w is added to a weighted au-
tomaton A as follows: if t does not exist in A, then insert it with weight w. If
it exists in A with weight w′, then change its weight to w′ ⊕ w. (ii) We say
that A accepts a configuration c with weight at least w if A(c) ⊑ w (Defn. 2,
item 4). Note that all configurations are accepted with weight at least 0. (iii)
The pop and growth phases are saturation procedures. They convert input A to
output A′ by adding transitions to A until a fixpoint is reached; the fixpoint is
the desired output A′. Consequently, for all c, A′(c) ⊑ A(c), and thus for all c,
Afinal(c) ⊑ Apop(c) ⊑ Astart(c).

Pop Phase Let wγ be the weight with which γ can be popped, i.e., wγ =
IMOP(〈p, γ〉, 〈p, ε〉) = MOPGγ

[γ, xγ], which has been precomputed. We perform
saturation on Astart: if it accepts a configuration 〈p, γ γ′ u〉, for any u ∈ Γ ∗, with
weight w, we make it accept 〈p, γ′ u〉 with weight at least w ⊗ wγ , and repeat
until a fixpoint is reached. This is done as follows: if (p, γ, q1) and (q1, γ

′, q2) are
transitions in the automaton with weight w1 and w2, respectively, then add the
transition (p, γ′, q2) with weight w2 ⊗ w1 ⊗ wγ to the automaton. This process
terminates because the number of new transitions added is bounded by |T |, where
T is the set of transitions of Astart. (This is because a transition (q1, γ, q2) in
Astart can cause at most a single transition (p, γ, q2) to be added to Apop.) Defn. 2
(item 4) ensures that weights on them can change at most H times. Moreover,
the running time is bounded by Os(|T |H). Fig. 4(d) shows an example: Astart

accepts 〈p, n6n3〉 with weight wb ⊗wa, the weight with which n6 can be popped
is w4, and Apop accepts 〈p, n3〉 with weight wb ⊗ wa ⊗ w4.

Growth Phase For the growth phase, we need to consider all configu-
rations reachable from the top symbols of currently accepted configurations,
i.e., if 〈p, γ u〉, u ∈ Γ ∗, is accepted by Apop with weight w, and 〈p, γ〉 ⇒∗

〈p, u′〉, u′ ∈ Γ+ then 〈p, u′ u〉 should be accepted by Afinal with weight at least
w⊗ IMOP(〈p, γ〉, 〈p, u′〉). Now we make use of the observation that called proce-
dures are analyzed independently of their calling context, and reduce this phase
to an intraprocedural one. For instance, see Fig. 4(b)—the weight w0 need not
be propagated to transitions involving nodes from bar.

The growth phase proceeds in two parts. The first part constructs au-
tomaton Aint such that if Apop accepted configuration 〈p, γ u〉 with weight
w and 〈p, γ〉 ⇒∗ 〈p, γ′〉 then Aint accepts 〈p, γ′ u〉 with weight at least
w ⊗ IMOP(〈p, γ〉, 〈p, γ′〉). This part requires running IntraQ queries.

For the first part, note that if 〈p, γ〉 ⇒∗ 〈p, γ′〉, then γ′ must be from the
same procedure as γ (otherwise, the stack length would be different). Then
IMOP(〈p, γ〉, 〈p, γ′〉) = MOPGγ

[γ, γ′]. Hence, it suffices to do the following: if
(p, γ, q) is a transition with weight w in Apop then add transitions (p, γ′, q) to it,
for each γ′ in the same procedure as γ, with weight w⊗MOPGγ

[γ, γ′]. This may
add transitions with weight 0 if γ′ is not reachable from γ, but such transitions
can be removed without changing the meaning of a weighted automaton.

The above process can be optimized. Instead of looking at each transition in
isolation, we handle them in bulk. For a state q of Apop, and a procedure Pr,
let SPr

q be the set of nodes s in Pr such that (p, s, q) is a transition in Apop. Let

µPr
q be such that µPr

q (s) is the weight on (p, s, q). Then add transition (p, s′, q)

with weight IntraQ(SPr
q , µPr

q)(s′). It is easy to see that this imitates the above
process, but is more efficient. This results in automaton Aint. The running time
is bounded by that required to answer |Q||Proc| number of IntraQ queries,
where Q is the set of states of Apop (same as those of Astart), and |Proc| is the
number of procedures in the program.

An example is shown in Fig. 4(e): the algorithm invokes
IntraQ

bar
({n6}, [n6 7→ wa]) to add transitions between p and q. Next, it

invokes IntraQ
foo

({n3, n5}, [n3 7→ wb ⊗ wa ⊗ w4, n5 7→ wc ⊗ wa ⊗ w4]) to add
transitions between p and acc.

The second part of the growth phase adds transitions to accept configurations
of called procedures. For each procedure Pr, add a new state qPr to Aint, and let
Called(Pr) be false initially. Now repeat the following: if (p, γ, q) is a transition
with weight w1 and 〈p, γ〉 →֒ 〈p, c r〉 is a WPDS rule with weight w2, then (i) if
Called(Prc) is false, then set it to true and add transitions (p, γ′, qPrc

) with
weight MOPPrc

[c, γ′], for each node γ′ in Prc; (ii) add transition (qPrc
, r, q)

with weight w1 ⊗ w2.

The intuition here is that with σ = 〈p, γ〉 →֒ 〈p, c r〉, 〈p, γ u〉 ⇒σ 〈p, c r u〉
for any u ∈ Γ ∗. Addition of transitions (p, c, qPrc

) and (qPrc
, r, q) ensures that

the latter configuration is accepted (with appropriate weights). Next, c can reach
node γ′ in the same procedure with weight MOPPrc

[c, γ′], for which the tran-
sitions (p, γ′, qPrc

) are added. Note that the weight at the call site (w1 ⊗ w2)
gets stored on the transition (qPrc

, r, q). Thus, Prc is analyzed independently of
this weight and the weights on transitions (p, γ′, qPrc

), for each γ′ in Prc, are
independent of the input query.

This process terminates because only a finite number of states are added. The
trick of bounding the number of states is common in reachability algorithms for
PDSs [18, 21]. The running time is bounded by Os(|Ret||Q|)+O(|Γ |), where Ret
is the set of return sites in the program. This running time is subsumed by that
of the first part. Fig. 4(f) shows an example.

Complexity First, we discuss the complexity of solving a query after prepro-
cessing has been completed. Let Q be the set of states of Astart, and T the set
of its transitions. The pop phase has running time Os(|T |H). The growth phase,
when using Alg3 for IntraQ queries, has running time Os(|Q||Proc||E| log |V |),
where |Proc| is the number of procedures in the program, and |E| and |V | are
the average number of nodes per procedure. This gives a total worst-case run-
ning time of Os(|T |H+ |Q||Proc||E| log |V |). The number of nodes per procedure
usually remains constant even as program size increases. Treating log |V | as a
constant, and writing |E||Proc| as |∆| (the number of WPDS rules), we get a
total complexity of Os(|T |H + |Q||∆|). This is asymptotically better than the
complexity of previous algorithms [18, 9], which is Os(|T |H+(|Q|+ |Proc|)|∆|H)

in each case. Note the reduced dependence on H for our algorithm (hence less
fixpoint computation around loops and recursion).

If the initial set of configurations is finite (i.e., automaton Astart does not
have any cycles), the running time of the pop phase can be bounded by Os(|T |),
resulting in a total running time (after preprocessing) that is completely inde-
pendent of the height of the weight domain (which is not true for any other
WPDS reachability algorithm).

The complexity for preprocessing is dominated by the step that computes
procedure summaries (and path sequences as a by-product). This just requires
a single dataflow query, whose complexity is Os(|Proc||∆|H) [9]. Using path
sequences to compute the other preprocessing information is fairly quick.

5 Experiments

We refer to the implementation of the algorithm in this paper as SWPDS
(Summary-WPDS). We compare against saturation-based [18] and optimized
[9] approaches for solving WPDS queries, of which we pick the better running
time and refer to it as OWPDS (Old-WPDS).

We carried out experiments on WPDSs obtained from three different applica-
tions. The first application is affine-relation analysis (ARA) of x86 programs [1].
A WPDS is produced from the x86 program using the weight domain for ARA
described in [12]. The goal is to discover affine relationships (linear equalities)
between machine registers.

The first experiment is to find out loop invariants (where loops are discov-
ered by Bourdoncle’s decomposition technique [3]). For outermost loops in a pro-
cedure, a loop summary is obtained as the weight IMOP(〈p, head〉, 〈p, head〉),
where head is the head of the loop. This can be calculated by computing
A = poststar({(〈p, head〉, 1)}), and A(〈p, head〉). Loop invariants can be cal-
culated easily from these summaries. These invariants give the conditions that
hold at the head of the loop and are re-established after each iteration of the
loop. We use common Windows executables, including code for the called li-
braries, and ran the experiments on a 3.2 GHz P4 processor with 3.3GB RAM
running Windows XP.

A conventional way to solve these queries would be to compute the procedure
summaries, plug them at the call-sites and then solve each loop as an intrapro-
cedural problem. We call this technique OWPDS2. It uses Alg1 to solve each
loop. Tab. 1 reports the following timings: the time taken to answer each query
independently (OWPDS); the time taken by OWPDS2 (after procedure sum-
maries have been computed); the preprocessing time for SWPDS (Setup); and
the time taken to answer all queries using SWPDS, after preprocessing. We make
two comparisons: (SWPDS+Setup) versus OWPDS, for which we are about 17
times faster (not shown in the table), and SWPDS versus OWPDS2, for which
we are 1.5 times faster. We do not take the setup times into account in the second
comparison because SWPDS preprocessing only computes procedure summaries
(other preprocessing is unnecessary for this application).

Time (s) Constant Registers Other Invariants

Prog Insts Procs Loops OWPDS OWPDS2 Setup SWPDS Speedup 0 1-3 4-6 7-8 0 1 2 ≥ 3

latex 63711 609 280 168 5.7 28 4.3 1.3 53 44 152 31 124 125 31 0
attrib 103473 964 537 290 8.3 46 5.1 1.7 97 114 271 55 227 254 56 0
ftp 130352 1271 634 731 13.5 26 8.7 1.6 130 126 320 58 290 280 64 0
notepad 167430 1609 749 597 12.1 43 8.2 1.5 162 156 369 62 325 336 87 1
cmd 192579 1783 869 3415 24.1 64 18.0 1.3 256 156 391 66 431 355 80 3

Table 1. ARA experiments. The speedup is reported for SWPDS versus OWPDS2.

Forward Reach. Backward Reach. CBMC

Prog Nodes Procs Setup SWPDS OWPDS Speedup SWPDS OWPDS Speedup SWPDS OWPDS Speedup

bugs5 36971 291 11.9 4.2 18.4 4.4 1.4 8.4 5.8 98 183 1.7

unified-serial 38234 291 15.4 5.3 24.5 4.7 1.7 12.1 7.1 129 238 1.6

slam 7161 97 3.5 2.7 14.2 5.3 0.4 2.1 6.0 87 115 1.3

iscsiprt1 4803 82 0.6 0.27 0.84 3.1 0.06 0.36 6.0 6.3 12 1.7

ufloppy13 5679 64 1.5 0.6 2.0 3.1 0.07 0.7 10.3 12 20 1.5

Table 2. Experiments on Boolean programs: (i) Forward and backward reachability
from the set of configurations n Ret∗. The node n was chosen randomly, and running
times, reported in seconds, were averaged across 5 queries. The speedup is reported per
query, ignoring the setup time. (ii) Simulated CBMC queries. The speedup reported
takes the setup time into account.

Tab. 1 also shows a distribution of the obtained loop invariants. Loop invari-
ants that indicate that a register remains unchanged after each loop iteration
(even though it may get modified inside the loop) are reported separately from
other kinds of invariants. The last eight columns show the number of loops that
have a certain number of constant registers or affine invariants. For example, in
latex, 53 loops do not have any constant registers, and 31 loops have 2 linearly
independent invariants. These invariants can be beneficial to other analysis (e.g.,
they identify loop-induction variables).

The second application is Boolean program verification using Moped [21].
Boolean programs are converted to WPDSs, and dataflow analysis is used for
proving properties of the program. In our experiments, the Boolean programs
were obtained as a result of predicate abstraction. The following experiments
were run on a 3GHz P4 processor with 2GB RAM running Linux, and the
results are reported in Tab. 2.

We ran queries starting from the set of configurations (nRet∗), where n is
a program node and Ret is the set of return-site nodes. Such queries are useful
for finding out the net effect in going from one program statement to another
(for finding dependencies between the two). After the setup time, SWPDS was
4 times than OWPDS on forward reachability queries, and 7 times faster on
backward reachability (our algorithm for solving backward reachability is given
in [10]). This experiment also shows that two dataflow queries are enough to
recover the SWPDS preprocessing time.

The third application (also based on Moped, running on the same Linux
platform), considers context-bounded model checking (CBMC) [13], which aims
to find all reachable states of a concurrent program under a bound on the number
of context switches. Because we lack a front-end to abstract concurrent programs,

we performed simulated experiments on sequential programs. We assume that
the global variables of the program are shared with an environment that can
randomly change their value, and the environment itself does not possess any lo-
cal state. We ran one branch of CBMC along which control is transferred to the
environment 5 times. Essentially, this requires the following: for random global
states g1, · · · , g5, if A0 describes the initial configuration of the (sequential) pro-
gram, then compute A1 = poststar(A0) and Ai+1 = poststar(Modify(Ai, gi))
for i = 1 to 5. Here, Modify(A, g) is an automaton that represents the same
set of states as A, but with the shared state changed to g. Because the result
of running poststar is a bigger automaton than the original one, we report the
total time taken to run all the queries. The average speedup was 1.6 times.

The varying amount of speedups in the different applications seems to be
related to the size of S in IntraQ(S, µ) queries. For the ARA experiments, |S|
was always 1 (maximum speedup over OWPDS); for the second application, S

was usually the set of return sites in a procedure; for CBMC, S consisted of all
nodes in a procedure (least amount of speedup). Worst-case complexity does not
predict this effect; this is an observation about measured behavior.

6 Related Work

The goal of incremental program analysis [4, 14, 11, 20, 5] is to reuse as much
information as possible from previous fixpoint computations to calculate a new
fixpoint when a small change is made to the program. Our work has aspects
that resemble incremental computing in that we avoid recomputing the same
information in response to changes in the query. However, we have a single pre-
processing step to compute summaries and path sequences; this information is
used by multiple dataflow queries, but there is no additional information tab-
ulated during one query for use by a later query. This is because we do not
look into the weights (and avoid caching computations over them), and base our
optimizations only on the program control structure.

Another closely related category of work is that on demand-driven dataflow
analysis [15, 19, 6]. There the focus is to do only as much work as is required to
solve a query, and not redo it in a subsequent query. However, these techniques
assume a particular form for the weights, and do look inside them (to work with
exploded CFGs). We make fewer assumptions about the weights. These tech-
niques would not be applicable to the weight domain we considered in our first
application or be able to work with BDDs, as required by the other applications.

Technically, the most closely related piece of work is our previous work on
speeding up a single dataflow query [9] called FWPDS. It used Tarjan’s algo-
rithm at the intraprocedural level to compute regular expressions for solving
MOP values, and combined it with techniques like incremental computation of
regular expressions to extend it for interprocedural analysis. In this paper, we
use Tarjan’s algorithm to compute path sequences. We combine it with a new
WPDS reachability algorithm that shows how to summarize and reuse informa-
tion at the interprocedural level. Moreover, FWPDS required the starting set of

configurations to be in hand before it built the graphs on which it ran Tarjan’s
algorithm and may build different graphs for different queries, preventing it from
sharing information between them. SWPDS outperforms FWPDS (included as
OWPDS in §5).

References

1. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
CC, 2004.

2. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. In POPL, 2003.

3. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In FMPA,
1993.

4. J. Cai and R. Paige. Program derivation by fixed point computation. SCP, 11(3),
1989.

5. C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards. Incremental algo-
rithms for inter-procedural analysis of safety properties. In CAV, 2005.

6. E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven computation of inter-
procedural data flow. In POPL, 1995.

7. S. Graham and M. Wegman. A fast and usually linear algorithm for global flow
analysis. J. ACM, 23(1), 1976.

8. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In CC, 1992.
9. A. Lal and T. Reps. Improving pushdown system model checking. In CAV, 2006.

10. A. Lal and T. Reps. Solving multiple dataflow queries using WPDSs. Technical
Report 1632, University of Wisconsin-Madison, Mar. 2008.

11. Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental com-
putation. TOPLAS, 20(3), 1998.

12. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In ESOP, 2005.
13. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.

In TACAS, 2005.
14. G. Ramalingam and T. W. Reps. A categorized bibliography on incremental com-

putation. In POPL, 1993.
15. T. Reps. Solving demand versions of interprocedural analysis problems. In CC,

1994.
16. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via

graph reachability. In POPL, 1995.
17. T. Reps, A. Lal, and N. Kidd. Program analysis using weighted pushdown systems.

In FSTTCS, 2007.
18. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and

their application to interprocedural dataflow analysis. In SCP, volume 58, 2005.
19. S. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with

applications to constant propagation. Theor. Comput. Sci., 167(1&2), 1996.
20. D. Saha and C. R. Ramakrishnan. Incremental evaluation of tabled logic programs.

In ICLP, 2003.
21. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of

Munich, Munich, Germany, July 2002.
22. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

In Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.
23. R. E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3):594–614,

1981.

