
A Relational Approach to Interprocedural Shape Analysis

Bertrand Jeannet
�
, Alexey Loginov

�
, Thomas Reps

�
, and Mooly Sagiv

�
�

IRISA; Bertrand.Jeannet@irisa.fr�
Comp. Sci. Dept., University of Wisconsin;

�
alexey,reps � @cs.wisc.edu�

School of Comp. Sci., Tel Aviv University; msagiv@post.tau.ac.il

Abstract. This paper addresses the verification of properties of imperative programs with
recursive procedure calls, heap-allocated storage, and destructive updating of pointer-valued
fields—i.e., interprocedural shape analysis. It presents a way to harness some previously
known approaches to interprocedural dataflow analysis—which in past work have been ap-
plied only to much less rich settings—for interprocedural shape analysis.

1 Introduction

This paper concerns techniques for static analysis of recursive programs that manipulate
heap-allocated storage and perform destructive updating of pointer-valued fields. The
goal is to recover shape descriptors that provide information about the characteristics
of the data structures that a program’s pointer variables can point to. Such information
can be used to help programmers understand certain aspects of the program’s behavior,
to verify properties of the program, and to optimize or parallelize the program.

The work reported in the paper builds on past work by several of the authors on static
analysis based on � -valued logic [1, 2] and its implementation in the TVLA system [3].
In this setting, two related logics come into play: an ordinary 	 -valued logic, as well as a
related � -valued logic. A memory configuration, or store, is modeled by what logicians
call a logical structure, which consists of a predicate (i.e., a relation of appropriate
arity) for each predicate symbol of a vocabulary
 . A store is modeled by a 	 -valued
logical structure; a set of stores is abstracted by a (finite) set of bounded-size � -valued
logical structures. An individual of a � -valued structure’s universe either models a single
memory cell or, in the case of a summary individual, a collection of memory cells.

The constraint of working with limited-size descriptors entails a loss of information
about the store. Certain properties of concrete individuals are lost due to abstraction,
which groups together multiple individuals into summary individuals: a property can
be true for some concrete individuals of the group but false for other individuals. It
is for this reason that � -valued logic is used; uncertainty about a property’s value is
captured by means of the third truth value, �
��	 .

One of the opportunities for scaling up this approach is to exploit the compositional
structure of programs. In interprocedural dataflow analysis, one avenue for accomplish-
ing this is to create a summary transformer for each procedure � , and use the summary
transformer at each call site at which � is called. Each summary transformer must
capture (an over-approximation of) the net effect of a call on � . To be able to create
summary transformers, the abstract transformers for individual transitions must have
a “composable representation”; that is, given the representations of two abstract trans-
formers, it must be possible to represent their composition as an object of roughly the
same size. One then carries out a fixed-point-finding procedure on a collection of equa-
tions in which each variable in the equation set has a transformer-valued value—i.e., a
value drawn from the domain of transformers—rather than a dataflow value proper.

A number of approaches to interprocedural dataflow analysis based on summary
transformers are known [4–9]. However, not all program-analysis problems have ab-
stract transformers that have a composable representation.

For some problems, it is possible to address this issue by working pointwise, tabulat-
ing composed transformers as sets of pairs of input/output values [7, 8, 10]. However,
for interprocedural shape analysis, this approach fails to produce useful information.
The � -valued-logic approach to shape analysis is a storeless one: individuals, which
model memory cells, do not have fixed identities; they are identified only up to their
“distinguishing characteristics”, namely, their values for a specific set of unary predi-
cates. Because these “distinguishing characteristics” can change during the course of
a procedure call, there is no way to identify individuals in an input abstract structure
with their corresponding individuals in the output abstract structure. In essence, a pair
of input/output � -valued structures loses track of the correlations between the input and
output values of an individual’s unary predicates. Consequently, an approach based on
tabulating composed transformers as sets of pairs of � -valued structures is not promis-
ing: the representation provides only a weak characterization of a procedure’s net effect.

All is not lost, however: instead of “abstracting and then pairing” (as discussed
above), the solution is to “pair and then abstract”.

Observation 1. By using � -valued structures over a doubled vocabulary
��
�� , where

������
	��
��	��
�� and � denotes disjoint union, one obtains a finite abstraction that
relates the predicate values for an individual at the beginning of a transition to the
predicate values for the individual at the end of the transition.

This abstraction provides a way to create much more accurate composable represen-
tations of transformers, and hence much more accurate summary transformers, for a
broad class of problems. Moreover, by extending the abstract domain of � -valued logi-
cal structures [1] with some new operations, it is possible to perform abstract interpre-
tation of call and return statements without losing too much precision (see � 4). We have
used these ideas to create a context-sensitive shape-analysis algorithm for recursive
programs that manipulate heap-allocated storage and perform destructive updating.

Context-sensitive interprocedural shape analysis was also studied in [11]. A major
difference is that [11] augments the store to include the runtime stack as an explicit
data structure (an idea proposed in [12, 13]); the storage abstraction used in [11] is an
abstraction of the store augmented in this fashion. In contrast, in our work the stack is
not materialized as an explicit data structure; our approach is based on the creation of
summary transformers, in the style of [4–6].

The contributions of our work include the following:
– It provides a method to create a summary transformer for each procedure � , which

can be used at each call site at which � is called.
– Our analysis obtains more general information than that obtained in [11]:� In [11], the result of the analysis for the exit node ��� of a procedure � is (an

approximation of) the reachable memory configurations that can arise at � �� In this paper, the result for � � is (an approximation of) the relation between the
input memory configurations at the start node � � of � and the configurations
at � � , restricted to the memory configurations that are reachable at � � .

Because of the different nature of the information obtained, our analysis is able to
verify that reversing a list twice restores the original list, whereas the method of
[11] would only show that it yields a list with the same head and the same set of
memory cells (in some order).

– We have been able to apply our method successfully to a richer set of programs.
In particular, [11] only studied how to perform interprocedural analysis for recur-
sive list-manipulation programs. The method described in this paper is capable of
handling certain programs that manipulate binary trees. (While list-manipulation
programs can often be implemented in tail-recursive fashion—and hence can be
converted easily into loop programs—tree-manipulation programs are much less
easily converted to non-recursive form.)

The remainder of the paper is organized as follows: � 2 describes the features of
the language to which our analysis applies. � 3 reviews the abstract domain of � -valued
logical structures [1]. � 4 describes how abstractions of logical structures over a dou-
bled vocabulary are used to create summary transformers and perform interprocedural
analysis. � 5 discusses experimental results. � 6 discusses related work.

2 Programs and Memory Configurations

typedef struct node{
struct node *n;
int data;

} *List;

List res;
void main(List l){
res = rev(l);

}

List rev(List x){
List y, z;
z = x->n;
x->n = NULL;
if (z != NULL){
y = rev(z);
z->n = x;

}
else y = x;
return y;

}

Fig. 1. Recursive list-reversal program.

The analysis applies to programs
written in an imperative program-
ming language in which (i) it is for-
bidden to take the address of a local
variable, global variable, or parame-
ter; and (ii) parameters are passed by
value. These two features prevent di-
rect aliasing among variables; thus,
only heap-allocated structures can be
aliased. (Both JAVA and ML follow
these conventions.) The running ex-
ample used in the paper is the list-
reversal program of Fig. 1.

2.1 Program Syntax

smain

srev

erev

call rev

return site call rev

return site

if(z==NULL)

emain

z
=
=
N
U
L
L

z!=NULL

y
=
x

z-
>n
=x

x->n=NULL

z=x->n

�c
a
l
l

r
e
s
=
r
e
v
(
l
)
�

�r
e
t

r
e
s
=
r
e
v
(
l
)
�

�call y=rev(z)
�

�ret
y=re

v(z)
�

Fig. 2. Interprocedural CFG of the list-
reversal program.

A program is defined by a set of proce-
dures ��� , �������	�

. Each procedure has
a set of local variables, and has a number
of formal input parameters and output pa-
rameters. To simplify our notation, we will
assume that each procedure has only one
input (resp. output) parameter and one lo-
cal variable; the generalization to multiple
parameters and local variables is straight-
forward. We also assume that an input pa-
rameter is not modified during the execu-
tion of the procedure. (This assumption is
made solely for convenience, and involves
no loss of generality because it is always
possible to copy input parameters to addi-
tional local variables.) Thus, a procedure
�
� ����
���� ���
���� ����� ����� ��� ��� is defined by its
input parameter
���� � , its output parameter
���� � , its local variable � ��� � , and � � , its in-
traprocedural control flow graph (CFG).

A program is represented by a directed graph ��� � ��� �������	� called an interpro-
cedural CFG. � � consists of a collection of intraprocedural CFGs � � � � � ��
	
�
 ���
� ,
one of which, � main, represents the program’s main procedure. Each CFG � � contains
exactly one start node � � and exactly one exit node � � . The other nodes of a CFG rep-
resent individual statements and branches of a procedure in the usual way,4 except that
a procedure call is represented by two nodes, a call node and a return-site node. For� � � � , proc

� � � denotes the (index of the) procedure that contains � . In addition to
the ordinary intraprocedural edges that connect the nodes of the individual flowgraphs
in � � , each procedure call, represented by call-node � and return-site node � , has two
edges: (i) a call-to-start edge from � to the start node of the called procedure, and (ii) an
exit-to-return-site edge from the exit node of the called procedure to � . The functions
call and ret record matching call and return-site nodes: call

� � � ��� and ret
� � � ��� . We

assume that a start node has no incoming edges except call-to-start edges.

2.2 Representing Memory Configurations with Logical Structures

Predicate Intended Meaning������� ��� � ��� Do � � and � � denote the same memory cell?����� � Does pointer variable q point to memory cell � ?����� � � � � � Does the n-field of � � point to � � ?� � �!��� ��� � ��� Is the data-field of � �#" the data-field of � � ?
Table 1. Core predicates used for representing the stores
manipulated by programs that use type List. (We write
predicate names in italics and code in typewriter
font.)

As in the static-analysis
framework defined in [1],
concrete memory configura-
tions—or stores—are mod-
eled by logical structures.
A logical structure is as-
sociated with a vocabu-
lary of predicate symbols
(with given arities):
 �
� eq � 	 � ��
	
�
�� 	%$ � is a finite
set of predicate symbols, where
'& denotes the set of predicate symbols of arity ((and
eq �
 �). A logical structure supplies a predicate for each of the vocabulary’s pred-
icate symbols. A concrete store is modeled by a 	 -valued logical structure for a fixed
vocabulary of core predicates,) . Core predicates are part of the underlying semantics
of the language to be analyzed; they record atomic properties of stores. For instance,
Tab. 1 lists the predicates that would be used to represent the stores manipulated by
programs that use type List from Fig. 1, such as the store shown in Fig. 3. 	 -valued
logical structures then represent memory configurations: the individuals are the set of
memory cells; a nullary predicate represents a Boolean variable of the program; a unary
predicate represents either a pointer variable or a Boolean-valued field of a record; and
a binary predicate represents a pointer field of a record.5

NULL
x

y
5 2 39

Fig. 3. A possible store, consisting of a
four-node linked list pointed to by x and y.

The 	 -valued structure * , shown in
the left-hand side of Fig. 4, encodes the
store of Fig. 3. * ’s four individuals, + � ,
+ � , + � , and +-, , represent the four list
cells.

4 Alternatively, nodes can represent basic blocks.
5 To simplify matters, our examples do not involve modeling numeric-valued variables and

numeric-valued fields (such as data). It is possible to do this by introducing other predi-
cates, such as the binary predicate

� � � (which stands for “data less-than-or-equal-to”) listed
in Tab. 1;

� � � captures the relative order of two nodes’ data values. Alternatively, numeric-
valued entities can be handled by combining abstractions of logical structures with previously
known techniques for creating numeric abstractions [14].

The following graphical notation is used for depicting 	 -valued structures:

– An individual is represented by a circle with its name inside.
– A unary predicate 	 is represented by having a solid arrow from 	 to each individual

+ for which 	 � + � � � , and by the absence of a 	 -arrow to each individual + � for
which 	 � + � � � �

. (If predicate 	 is
�

for all individuals, 	 is not shown.)
– A binary predicate � is represented by a solid arrow labeled � between each pair

of individuals + � and +�� for which � � + � � +�� � � � , and by the absence of a � -arrow
between pairs + �� and + �� for which � � + �� � + �� � � �

.

Thus, in structure * , pointer variables x and y point to individual + � , whose n-field
points to individual + � ; pointer variable z does not point to any individual.

unary preds. binary preds.
indiv. � � ���� 	 	

���

��

���

n � � � � �
 � �
���
 	

���

 	
��

 	���

eq � � � � �
 � �
��� 	

���
 	

��

 	
���

 	

x // GFED@ABC����� // GFED@ABC����� // GFED@ABC��
�� // GFED@ABC���
� y

OO

abstracts
to�����������

unary preds. binary preds.
indiv. � � �� 	 	

���

n � ���
�
 	����
� �
 	����

eq � ���
� 	

���
 	����

x // ?>=<89:;� � // ONMLHIJKGFED@ABC���
���

! y

OO

Fig. 4. The abstraction of 	 -valued structure * to � -valued structure " when we use
��# ��$ ��% � -abstraction.

Often we only want to use a restricted class of logical structures to encode stores.
To exclude structures that do not represent admissible stores, integrity constraints can
be imposed. For instance, the predicate # �'& � of Fig. 4 captures whether pointer variable
x points to memory cell

&
; # would be given the attribute “unique”, which imposes the

integrity constraint that # ��& � can hold for at most one individual in any structure.
The concrete operational semantics of a programming language is defined by spec-

ifying a structure transformer for each kind of edge � that can appear in a control-flow
graph. Formally, the structure transformer (�) for edge � is defined using a collection of
predicate-update formulas, � �'& � ��
�
	
 � & & � �*(�+�,) ��& � ��
�
	
�� & & � , one for each core predi-
cate � (e.g., see [1]). These formulas define how the core predicates of a logical structure
* that arises at the source of � are transformed by � to create a logical structure * � at
the target of � ; they define the value of predicate � in * � as a function of � ’s value
in * . Edge � may optionally have a precondition formula, which filters out structures
that should not follow the transition along � . (In Fig. 2, edges are labeled with state-
ments and conditions of the programming language, rather than with such collections
of predicate-update formulas.)

The set of all 	 -valued structures over vocabulary
 is denoted by - ��.
0/ .
3 The Abstract Domain of 1 -Valued Logical Structures
To create abstractions of 	 -valued logical structures (and hence of the stores that they
encode), we use the related class of � -valued logical structures over the same vocab-
ulary. In � -valued logical structures, a third truth value, denoted by � ��	 , is introduced
to denote uncertainty: in a � -valued logical structure, the value 	 ��2+ � of predicate 	 on
a tuple of individuals

2+ is allowed to be � � 	 . The set of all � -valued structures over
vocabulary
 is denoted by - �3.
0/ . (We drop “[
]” when
 is clear from the context.)

Definition 1. The truth values
�

and � are definite values; � � 	 is an indefinite value.
For � � � � � ��� � � � ��	 � � � , the information order is defined as follows: � ��� � � iff � � ��� �
or � � � � � 	 . The symbol � denotes the least-upper-bound operation with respect to � .

The abstract stores used for program analysis are � -valued logical structures that, by
the construction discussed below, are a priori of bounded size. In general, each � -valued
logical structure corresponds to a (possibly infinite) set of 	 -valued logical structures.
Members of these two families of structures are related by canonical abstraction.

The principle behind canonical abstraction is illustrated in Fig. 4, which shows how
	 -valued structure * is abstracted to � -valued structure " . The abstraction function
is determined by a subset � of the unary predicates. The predicates in � are called
the abstraction predicates. Given � , the act of applying the corresponding abstrac-
tion function is called � -abstraction. The canonical abstraction illustrated in Fig. 4 is
��# ��$ ��% � -abstraction.

Abstraction is driven by the values of the “vector” of abstraction predicates
for each individual � —i.e., for * , by the values # � � � , $ � � � , and % � � � , for � �
�	+ � � + � � + � � +-, � —and, in particular, by the equivalence classes formed from the in-
dividuals that have the same vector of values for their abstraction predicates. In * , there
are two such equivalence classes: (i) � + � � , for which # , $, and % are � , � , and

�
, re-

spectively, and (ii) � + � � + � � +-,�� , for which # , $, and % are all
�
. (The boxes in the table

of unary predicates for * show how individuals of * are grouped into two equivalence
classes.) All of the members of each equivalence class are mapped to the same individ-
ual of the � -valued structure. Thus, all members of �	+ � � + � � + , � from * are mapped to
the same individual in " , called + � ;6 similarly, all members of �	+ � � from * are mapped
to the same individual in " , called + .

For each non-abstraction predicate 	�� of 	 -valued structure * , the corresponding
predicate 	
	 in � -valued structure " is formed by a “truth-blurring quotient”. The value
for a tuple

2+
� in 	�	 is the join (�) of all 	
� tuples that the equivalence relation on
individuals maps to

2+
� . For instance,
– In * , � � � + � � + � � equals

�
. Therefore, the value of � 	 � + � + � is

�
.

– In * , � � � + � � + � � , � � � + � � + � � , and � � � +-, � + � � all equal
�
. Therefore, the value of� 	 � + � � + � is

�
.

– In * , � � � + � � + � � and � � � + � � +%, � both equal
�
, whereas � � � + � � + � � equals � ; there-

fore, the value of � 	 � + � + � � is � � 	 (� � � �).
– In * , � � � + � � + � � and � � � + � � +%, � both equal � , whereas � � � + � � + � � , � � � + � � +-, � ,� � � + � � + � � , � � � + � � + � � , � � � +-, � + � � , � � � +-, � + � � , and � � � +%, � +-, � all equal

�
; there-

fore, the value of � 	 � + � � + � � is �
��	 (� � � �).
In Fig. 4, the boxes in the tables for predicates � and ��� indicate these four groupings.

In a 	 -valued structure, the ��� predicate represents the equality relation on indi-
viduals. In general, under canonical abstraction some individuals “lose their identity”
because of uncertainty that arises in the ��� predicate. For instance, ��� 	 � + � + � � � be-
cause + in " represents a single individual of * . On the other hand, + � represents three
individuals of * and the quotient operation causes ����	 � + � � + � � to have the value �
��	 .
An individual like + � is called a summary individual.

A � -valued logical structure " is used as an abstract descriptor of a set of 	 -valued
logical structures. In general, a summary individual models a set of individuals in each

6 The names of individuals are completely arbitrary: what distinguishes ��� is the value of its
vector of abstraction predicates.

of the 	 -valued logical structures that " represents. The graphical notation for � -valued
logical structures (cf. structure " of Fig. 4) is derived from the one for 	 -valued struc-
tures, with the following additions:

– Individuals are represented by circles containing their names. (In Fig. 5, discussed
in � 5, we also place non-

�
-valued unary predicates that do not correspond to pointer-

valued program variables inside the circles.)
– A summary individual is represented by a double circle.
– Unary and binary predicates with value � � 	 are represented by dotted arrows.

Thus, in every concrete structure �* that is represented by abstract structure " of Fig. 4,
pointer variables x and y definitely point to the concrete node of �* that + represents.
The n-field of that node may point to one of the concrete nodes that + � represents; + � is
a summary individual, i.e., it may represent more than one concrete node in �* . Possibly
there is an n-field in one or more of these concrete nodes that points to another of the
concrete nodes that + � represents, but there cannot be an n-field in any of these concrete
nodes that points to the concrete node that + represents.

Note that � -valued structure " also represents

– the acyclic lists of length � or more that are pointed to by x and y.
– the cyclic lists of length � or more that are pointed to by x and y, such that the

backpointer is not to the head of the list, but to the second, third, or later element.
– some additional memory configurations with a cyclic or acyclic list pointed to by x

and y that also contain some garbage cells that are not reachable from x and y.

That is, " is a finite representation of an infinite set of (possibly cyclic) concrete lists,
each of which may also be accompanied by some unreachable cells. Later in this sec-
tion, we discuss options for fine-tuning an abstraction. For instance, it is possible to use
canonical abstraction to define abstractions in which the acyclic lists and the cyclic lists
are mapped to different � -valued structures (and in which the presence or absence of
unreachable cells is readily apparent).

Canonical abstraction ensures that each � -valued structure has an a priori bounded
size, which guarantees that a fixed-point will always be reached by an iterative static-
analysis algorithm. Another advantage of using 	 - and � -valued logic as the basis for
static analysis is that the language used for extracting information from the concrete
world and the abstract world is identical: every syntactic expression—i.e., every logical
formula—can be interpreted either in the 	 -valued world or the � -valued world. 7

The consistency of the 	 -valued and � -valued viewpoints is ensured by a basic the-
orem that relates the two logics, which eliminates the need for the user to write the
usual proofs required with abstract interpretation—i.e., to demonstrate that the abstract
descriptors that the analyzer manipulates correctly model the actual heap-allocated data
structures that the program manipulates. Thanks to a single meta-theorem (the Em-
bedding Theorem [1, Theorem 4.9]), which shows that information extracted from a
� -valued structure " by evaluating a formula � is sound with respect to the value of� in each of the 	 -valued structures that " represents, an abstract semantics falls out
automatically from a specification of the concrete semantics (which has to be provided

7 Formulas are first-order formulas with transitive closure: a formula over the vocabulary ����
eq ��� � ���	��� ����
 � is defined as follows (where �
� ��� � � � � � stands for the reflexive transitive

closure of � ��� ��� � ���):��� � ����� Formulas �� � Variables

����� ��������� � ��� ��������� � ��� � � � � � ��� � � � �"!�� ��� � � � �$#�� � �
� � %�� �&� � � � �(' � ��� � � � �)� ��� � � � � �

in any case whenever abstract interpretation is employed). In particular, the formulas
that define the concrete semantics when interpreted in 	 -valued logic define a sound
abstract semantics when interpreted in � -valued logic. Soundness of all instantiations
of the analysis framework is ensured by the Embedding Theorem.

Instrumentation predicates. Unfortunately, unless some care is taken in the design of
an analysis, there is a danger that as abstract interpretation proceeds, the indefinite value
� ��	 will become pervasive. This can destroy the ability to recover interesting informa-
tion from the � -valued structures collected (although soundness is maintained). A key
role in combating indefiniteness is played by instrumentation predicates, which record
auxiliary information in a logical structure. They provide a mechanism for the user to
fine-tune an abstraction: an instrumentation predicate 	 of arity (, which is defined by
a logical formula ��� ��& � ��
	
�
�� & & � over the core predicate symbols, captures a property
that each (-tuple of nodes may or may not possess. In general, adding additional in-
strumentation predicates refines the abstraction, defining a more precise analysis that
is prepared to track finer distinctions among stores. This allows more properties of the
program’s stores to be identified during analysis.
� �����	�
���
���������������
� ���
�	� ��� ��� � � � ��� Is � � reachable from � � along n-fields? � � ��� ��� � ���
� � � � ������� � Is � reachable from pointer variable q along n-fields? � � � � ��� � ��! �	� ��� ��� � � � �
" � ������� � Is � on a directed cycle of n-fields? � � � � ��� � � � ��! �#� ��� ��� � � � �

Table 2. Defining formulas of some commonly used instrumentation predicates. Typi-
cally, there is a separate predicate symbol � . � � ��/ for every pointer-valued variable q.

The introduction of unary instrumentation predicates that are then used as abstrac-
tion predicates provides a way to control which concrete individuals are merged to-
gether into summary nodes, and thereby to control the amount of information lost by
abstraction. Instrumentation predicates that involve reachability properties, which can
be defined using transitive closure, often play a crucial role in the definitions of ab-
stractions. For instance, in program-analysis applications, reachability properties from
specific pointer variables have the effect of keeping disjoint sublists or subtrees summa-
rized separately. This is particularly important when analyzing a program in which two
pointers are advanced along disjoint sublists. Tab. 2 lists some instrumentation predi-
cates that are important for the analysis of programs that use type List.

From the standpoint of the concrete semantics, instrumentation predicates represent
cached information that could always be recomputed by reevaluating the instrumenta-
tion predicate’s defining formula in the current store. From the standpoint of the abstract
semantics, however, reevaluating a formula in the current (� -valued) store can lead to
a drastic loss of precision. To gain maximum benefit from instrumentation predicates,
an abstract-interpretation algorithm must obtain their values in some other way. This
problem, the instrumentation-predicate-maintenance problem, is solved by incremen-
tal computation; the new value that instrumentation predicate 	 should have after a
transition via abstract state transformer (from state $ to $ � is computed incrementally
from the known value of 	 in $. An algorithm that uses (and 	 ’s defining formula
� � ��& � ��
	
�
 � & & � to generate an appropriate incremental predicate-maintenance formula
for 	 is presented in [2].

The problem of automatically identifying appropriate instrumentation predicates,
using a process of abstraction refinement, is addressed in [15]. In that paper, the input

required to specify a program analysis consists of (i) a program, (ii) a characterization
of the inputs, and (iii) a query (i.e., a formula that characterizes the intended output).
That work, along with [2], provides a framework for eliminating previously required
user inputs for which TVLA has been criticized in the past. Although the abstraction-
refinement mechanism was not available for the experiments reported on in the present
paper, we believe that it will work equally well when applied to the analysis of programs
with recursive procedure calls. In particular, we have observed that the abstraction-
refinement mechanism is capable of generating instrumentation predicates that record
in/out relationships: most of the experiments described in [15] involved 	 -vocabulary
structures similar to those used in the present paper, and several of the instrumentation
predicates identified relate pairs of predicates 	 . � � / � 	 . � + � / .
Other operations on logical structures. Thanks to the fact that the Embedding The-
orem applies to any pair of structures for which one can be embedded into the other,
most operations on � -valued structures need not be constrained to manipulate � -valued
structures that are images of canonical abstraction. Thus, it is not necessary to per-
form canonical abstraction after the application of each abstract structure transformer.
To ensure that abstract interpretation terminates, it is only necessary that canonical ab-
straction be applied as a widening operator somewhere in each loop, e.g., at the target
of each backedge in the CFG.

Several additional operations on logical structures help prevent an analysis from
losing precision:

– Focus is an operation that can be invoked to elaborate a � -valued structure—allowing
it to be replaced by a set of more precise structures (not necessarily images of
canonical abstraction) that represent the same set of concrete stores.

– Coerce is a clean-up operation that may “sharpen” a � -valued logical structure by
setting an indefinite value (�
��) to a definite value (

�
or �), or discard a structure

entirely if the structure exhibits some fundamental inconsistency (e.g., it cannot
represent any possible concrete store).

4 The Use of Logical Structures for Interprocedural Analysis
Given an abstract value � � that represents a set of initial stores, the goal is to compute—
for each control point of each procedure—an overapproximation to the set of values for
the local variables and the heap that can arise at that point. More precisely, the goal is
to compute the “join-over-valid-paths” value for each node � :

JOVP ��� � � ���� ValidPaths �	� main

��
pf � ��
�� �

where ValidPaths
� � main � � � denotes the set of paths from � main to � in which the call-to-

start and exit-to-return-site edges in path � form a string in which each exit-to-return-site
edge is balanced by a preceding call-to-start edge, and pf � is the composition, in order,
of the dataflow transformers for the edges of � .

Let Id � � denote the identity transformer restricted to inputs in � . For dataflow trans-
formers that distribute over � , the JOVP solution can be obtained by finding the least
solution to the following set of equations:� ���

main
� � Id � ���
 � describes the set of initial stores at � main (1)� ��� � � � Id � � � � � StartNodes, ���� main, and ��� ����
 �! � � CallToStartEdges

range � � � " � � (2)

� ��� � � ����

�� �����
� �

�� � �
	 � for � ��� � , � �� � ReturnSites
 StartNodes � (3)

� ��� � � � � � � � � � � call ��� � � for � � ReturnSites, and call ��� � calls � (4)

Eqns. (1)–(4) can be understood as a variant of the “functional approach” of Sharir
and Pnueli [5]; in [5], this is expressed with two fixed-point-finding phases: the first
phase propagates transformer-valued values; the second phase propagates dataflow val-
ues proper. Eqns. (1)–(4) combine these into a single phase that propagates transformer-
valued values only. Each summary transformer � � � � is a partial function: the domain
of � � � � overapproximates the set of reachable states at � proc � $�� from which it is possi-
ble to reach � ; the range of � � � � equals JOVP

� � � , which overapproximates the set of
reachable states at � . (A two-phase approach à la Sharir and Pnueli [5] could also be
used.8)

To simplify the presentation, in � 4.1 we will assume that the language does not
support either local variables or parameter passing. In � 4.2, we extend the approach to
handle local variables and parameters.

4.1 A Simplified Setting: No Local Variables or Parameters

To use Eqns. (1)–(4) for interprocedural shape analysis, we follow Observation 1 and
represent each � � � � transformer as a set of 	 -vocabulary � -valued structures. As de-
scribed below, suitable operations on � -valued structures provide a way to compose
such transformers.

The composition operation � � � � ��� � � call
� � � � in Eqn. (4), which represents an

interprocedural-propagation step, involves transformers represented by two sets of 	 -
vocabulary � -valued structures. Intuitively, this involves collecting up a set of structures,
where each structure is the “natural join” of two structures—one from each argument
set. Below, we define the operation " � � " � for a single pair, " � and " � .

In fact, to do this really requires three vocabularies: for each original predicate 	 ,
we use three predicates 	 . in / , 	 . out/ , and 	 . tmp/ . A 	 -vocabulary � -valued structure uses
only 	 . in / and 	 . out/ —or rather, the values of the 	 . tmp / predicates are “irrelevant”.
(When a predicate 	 is irrelevant, then 	 ��2+ � evaluates to � � 	 for every tuple of indi-
viduals

2+ .) Another obstacle is to reconcile the values of the predicates in the different
	 -vocabulary � -valued structures. The solution has several parts:

– We need an operation to move predicates in one vocabulary to predicates in another
vocabulary. The notation " . tmp � out � out � � � 	�/ denotes the (simultaneous)
transformation on structure " in which the 	 . out / predicates are moved to 	 . tmp / ,
and the 	 . out/ predicates are all set to � ��	 . For instance, to perform the composition
" � � " � , we use " � . tmp � out � out � � ��	�/ and " � . tmp � � � � � � � � � 	�/ .

– We need structures that have the same sets of individuals. Because the individuals
in � -valued structures are identified by the values they have for the (unary) ab-
straction predicates, we use the operation ����������������� : - � �"! � - � � , which refines a
� -valued structure " into a set of structures—each member of which is in the im-

8 In the two-phase approach, the first phase is defined by Eqns. (1)–(4), except that the right-hand
sides of Eqns. (1) and (2) are both replaced by Id. This permits summary transformers to be
computed in a more modular fashion—i.e., bottom-up over the call graph’s strongly-connected
components. However, it also causes the analysis to consider more input possibilities for each
procedure, which is an important consideration in our context. Eqns. (1)–(4) (as written) lead
to a less modular analysis that requires a fixed-point iteration over the entire program.

age of canonical abstraction—such that the set describes the same set of concrete
structures as " [16].

– We define the meet of two � -valued structures that have the same set of individuals.
Let * � � ��� ��� � � and * � � ��� ��� � � be two logical structures with the same universe�

and vocabulary
 . The interpretations � � ��� � map each relation symbol 	 �
 &
to a (-ary truth-valued function: � � � 	 ��� � & � � � � �
��	 � ��� . For convenience, we
implicitly add a bottom element � to the lattice

� � � � � � �
��	 � � � � of Def. 1. The
meet operator * �
	 * � is defined as� �
� � �
������

� ��� ��� � ��� � � if � � ��� � ����� otherwise

where

� ����� �
�������� ! � if � � � � � ��"� �#��� � � � � �$"� � ���
for some ��� � � and "� � � �% ��� � � � % "� � � � � � � � � � �$"� �&��� � � � � �$"� � otherwise

If a predicate is irrelevant in * � , its value in * �
	 * � is its value in * � .
– We extend the previous definition to any pair of 3-valued structures by� �'� � � � � � �� � � �� � � �� �)(+*-,�./,10�(+*32 � � � � ! � �� �4(5*/,�.-,60�(+*32 � � � � ! �87:9; � �87:9< �>= � � �

(5)

With this notation, the composition of transformers " � � " � , where " � and " � are 	 -
vocabulary � -valued structures (which are really � -vocabulary � -valued structures) is
expressed as follows:

" � � " � def�@? " � . tmp � out � out � � � 	�/ 	 " �3. tmp � � � � � � � �
��	�/BA . tmp � �
��	�/ (6)

The effect is to perform a natural join on the 	 . tmp/ predicates to create structures that
have " � ’s 	 . in / predicates, " � ’s 	 . out / predicates, and common 	 . tmp/ predicates. The
	 . tmp/ predicates are then eliminated by setting them to �
��	 .9

The composition operation is extended to sets of structures in the usual way:

SS � � SS � �DC � * � � * � � * � � SS �FE * � � SS � �

In contrast, the composition operation (3G , $ � � ��H � in Eqn. (3), which represents an

intraprocedural-propagation step, is heterogeneous: (IG , $ is defined using a collection
of predicate-update formulas, � ��& � �	
�
	
�� & & � � (+�, � G , $�� �'& � �	
�
	
�� & & � , whereas � ��H � is a
set of 	 -vocabulary � -valued structures. Thus, the composition operation in Eqn. (3) can
be implemented merely by performing the standard TVLA intraprocedural-propagation
step for (G , $ on the out predicates (only) for each of the structures in � ��H � . (Note that
the � operation in Eqn. (3) is union of sets of � -valued structures. Each (G , $ operates
elementwise on a set of � -valued structures, and hence distributes over � .)

In practice, Eqns. (1)–(4) are solved by propagating changes in values, rather than
full values. Such a differential algorithm is presented in [17].

9 A different view of this step is that making the � � tmp � predicates irrelevant corresponds to ex-
istentially quantifying them out. If expressed by means of a formula, the operation of making� � tmp � irrelevant would involve second-order quantification over � � tmp � ; however, the opera-
tion is performed directly on a logical structure, and hence it is not a problem for us that the
operation cannot be expressed by means of a first-order formula.

4.2 Local Variables and Parameters
Until now, we have assumed that a state of a program is defined by a memory con-
figuration, and that relations between states are represented using structures over dou-
bled vocabularies. Things are actually a bit more complicated: a state also includes the
values of local variables, formal input parameters, and formal output parameters. The
summary transformer � � � � must thus also relate the values of formal input parameters
at node � proc � $�� to the state of the heap and the values of local variables at � .

To incorporate local variables and parameters, we merely have to expand the vocab-
ulary to
 loc �
�� . in/ �
�� . out / �
�� . tmp / , where the vocabulary
 loc captures Boolean-
valued and pointer-valued local variables and parameters, and
 � is the tripled vocab-
ulary from � 4.1. The assumption that formal input parameters are not modified in the
body of a procedure makes it unnecessary to duplicate/triplicate the predicate symbols
for parameters in
 loc. Eqn. (2) then becomes:� ��� � � � Id � � � � � StartNodes, ���� main, and

� � ����
 �! � � CallToStartEdges
and the call is y:=p(x)

range � ��� ��� 	�
�� � � � " � � � loc

 ������� � ��������� � (7)

where (�� � ��� denotes the transformer generated by update formulas that correspond to
the assignment in the subscript. Eqn. (7) reflects the binding of the actual parameter x
at node � to the formal input parameter
���� � at node � � . All relations corresponding to
the other local variables and parameters are set to irrelevant at this node.

For a call statement of the form y:=q(x), where " � � � � � � � and " � � � � call
� � � � ,

the transformer-composition operation " � � " � used in Eqn. (4) to implement the ab-
stract procedure-return operation can be expressed as� � � � � def�

 !!" �$# �
 � ��% � !!" � ��� ��� �
�� � � � � � tmp � out & out �'���(� ��
� �)� �*� �
 � �*� +�,� �-% �
 � ��% + � � ���/. tmp �10 � &20 � �������	&

loc �'�$��� 3
4�556 4�556 . tmp �����(��&������� � ���(7 ���'�$���83

(8)
where
���� and
���� are fresh unary core predicates (not in
 loc or
��) that are used to

impose parameter-passing constraints as follows:
���� is bound to the value of the actual
input parameter x of " � ;
���� is also bound to the value of formal input parameter
���� � of
" � ; and
���� is bound to the value of formal output parameter
���� � of " � . In particular,
the
���� relation and all of the tmp relations are common in the meet operation performed
in Eqn. (8). Then, because the local variables in " � are set to be irrelevant, the values
for the local variables in the structures of the answer set are the values from " � , with the
exception of the actual output parameter $, which is assigned the value of
���� �
���� � .
4.3 An Efficient Implementation of the Meet Operation
There are two sources of combinatorial explosion in Eqns. (4), (5), (6), and (8):
1. The number of pairs

� * � � * � � � � � � � �:9 � � call
� � � � (quadratic explosion);

2. The cardinality of the sets ����� ����������� � * � � and ����� ����������� � * � � in Eqn. (5) defining
the meet operator 	 (exponential explosion).

Point 1 is inherited from the nature of our abstract lattice, which is a powerset domain,
and the fact that we apply a binary operation (composition) to values in the domain. We
do not address this problem here.

Point 2 is specific to our abstract lattice and concerns only the meet operation, espe-
cially when it is used to implement relational composition. Consider a pair of � -valued
structures " � and " � for which a composition is performed in Eqn. (4). In " � , the core

predicates that represent variables of the called procedure � are irrelevant, so they have
the value � � 	 . This means that the operation ����������������� will enumerate all possible
definite interpretations for these predicates; the number of these interpretations is expo-
nential in the number of such predicates. A similar situation holds for " � .

More generally, consider a structure * � � � � ��� � � with � irrelevant unary core
predicates; the cost of ��������� ������� is � ��� 	�� � � � � $ � . Even if the unary predicates represent
only pointer-valued variables, which means that such predicates may evaluate to 1 on
at most one individual, there are still � � � � � $ � possible interpretations.

In our case, this combinatorial explosion is all the more frustrating because it is
only temporary: the meet * �
	 * � will reject (by evaluating to �) most of the structures
obtained by enumerating definite interpretations of irrelevant predicates in * � (resp. * �).
Indeed, predicates that are irrelevant in one structure and relevant in the other usually
have definite interpretations in the latter.

A better implementation of � . The approach that we actually followed in our ex-
tended version of TVLA was to implement an approximation to the meet operation
using systems of � -valued constraints [1], which were already supported by the base
TVLA system. In TVLA, there is a global set of constraints � � that is used to express
integrity constraints on the set of 	 -valued structures that a � -valued structure repre-
sents. For instance, some of the constraints in � � express the fact that a unary predicate
that represents a pointer-valued variable can evaluate to 1 on at most one individual.
For convenience, we will associate a constraint set � � with each structure, so that a
� -valued structure * is now a triple: � � � ��� � � � � � . (� � is generally � � .)

A set of constraints � represents the set of concrete structures that satisfy � :

� + � � �
�
	��
� � * � - � � * � �
� � (9)

in the same way that a 3-valued structure * represents the set of concrete structures� � � * � � that can be embedded into * via canonical abstraction [1].
Assume now that we have an operation ������� � - � �"! �) � that associates to a given

structure a set of constraints such that for any * , � � � * � ��� � + � ������� � * ��� . In other
words, constraint set ������� � * � overapproximates * . For any logical structures * � �
� � � ; ��� � ; � � � ; � and * � � � � � < ��� � < � � � < � , we now define the operation 	 + :

* � 	 + * � �
	��� � � � ; ��� � ; � � � ;�� ������� � * � � �

This operator has the following property: � � �!* � 	 + * � � ��� � � � * � � ��� � � � * � � � , with
equality if the ������� operation is exact.

To summarize, the approximate meet operator consists of adding ������� � * � � to * �
temporarily, then performing Focus and Coerce operations to transfer the information
that is initially contained in the additional constraints to the universe

�
� ; and the inter-

pretation � � ; . Afterwards, the additional constraints are removed.
For instance, when we use the meet operation in Eqns. (6) and (8), we replace

* �� 	 *
�� in Eqn. (5) by Coerce
�
Focus

� * �� 	 + * �� � �
���� ��& � � � � . This forces
���� to be given
a definite interpretation that is constrained by the set ������� � * � � , which represents the
summary transformer of the callee.

Converting a � -valued structure to a set of constraints. To achieve this, we adapted
a result from [18], which shows how to characterize a � -valued logical structure that
is in the image of canonical abstraction by means of a formula in first-order logic with
transitive closure. The resulting formula can easily be converted to a set of constraints

that satisfy the restricted syntax given in [1]. However, one of the constraints that would
be generated according to [18] would be too expensive to check from an algorithmic
point of view, so this constraint is dropped, which induces a safe overapproximation.
(Roughly, this constraint captures the fact that any concrete structure represented by the
abstract structure should contain a number of individuals greater than or equal to the
number of individuals in the abstract structure.)

5 Implementation and Experiments
To perform interprocedural shape analysis by the method that is described in � 4, we
created a modified version of TVLA [3], an existing shape-analysis system, to allow it
to support the following features:

– We replaced the built-in notion of an intraprocedural CFG by the more general
notion of equation system.

– We designed a more general language in which to specify equation systems.
– We implemented an approximation to the meet operation on � -valued structures

(and hence to the composition operation), as described in � 4.3.

Const. unary predicates

list

n[in] n[out]

n[in] n[out]

id_succ[n,in,out]
id_succ[n,out,in]
id_pred[n,in,out]
id_pred[n,out,in]

r[n,in,list]
r[n,out,list]

res=1/2
r[n,in,res]=1/2
r[n,out,res]=1/2

reverse_n_succ[in,out]=1/2
reverse_n_succ[out,in]=1/2

Const. unary predicates

list

id_succ[n,out,in]
id_pred[n,in,out]

r[n,out,list]

id_succ[n,in,out]
id_pred[n,out,in]

r[n,in,res]

n[in]

res

n[out]

r[n,in,list]
r[n,out,res]

reverse_n_succ[in,out]
reverse_n_succ[out,in]

Const. unary predicates

list

id_succ[n,out,in]
id_pred[n,in,out]

r[n,out,list]
id_succ[n,in,out]=1/2
id_pred[n,out,in]=1/2

id_succ[n,in,out]=1/2
id_succ[n,out,in]=1/2
id_pred[n,in,out]=1/2
id_pred[n,out,in]=1/2

n[in]

res

id_succ[n,in,out]
id_pred[n,out,in]

r[n,in,res]
id_succ[n,out,in]=1/2
id_pred[n,in,out]=1/2

n[out]

n[out]

n[in]

n[in] n[out]

r[n,in,list]
r[n,out,res]

reverse_n_succ[in,out]
reverse_n_succ[out,in]

(a) ��� (b) ��� (c) ���
Fig. 5. List-reversal example. (In each structure, unary predicates that have the same
non-

�
value for all individuals are displayed in the box labeled “Const. unary predi-

cates”. The values of the “irrelevant” predicates of the vocabulary are not shown.)
Fig. 5 shows how the summary information we obtain captures the behavior of the

recursive list-reversal procedure of Figs. 1 and 2. The descriptor of the initial summary
transformer at start node � main was the � -valued structure * � , shown in Fig. 5(a), which
represents (the identity transformation on) all linked lists of length at least two that
are pointed to by program-variable list. The head of the answer list is pointed to
by program-variable res. At the program’s exit node � main, the summary transformers
were the structures * � and * � of Fig. 5(b)–(c), which represent the transformations that
reverse lists of length two, and all lists of length greater than two, respectively.

As discussed in � 3, to prevent the loss of essential information, several families of
instrumentation predicates were introduced:

– The unary predicates id succ . � � H � � H � / and id pred . � � H � � H � / , where
H � � H � �

� in � out � and
H ���� H � , record information about the values of different modes

of predicate � , in particular, whether the value of predicate � . H � / implies � . H � / .
These are defined by

id succ . � � H � � H � / ��& � ��� & � � � � . H � / ��& � & � ��� � . H � / �'& � & � ���
id pred . � � H � � H � / ��& � ��� & � � � � . H � / ��& � � & ��� � . H � / �'& � � & ����

The fact that id succ . � � in � out / �'& � E id succ . � � out � in/ ��& � E id pred . � � in � out / �'& � E
id pred . � � out � in/ ��& � holds globally in * � (cf. Fig. 5(a)) captures the condition that
the � . in / and � . out / predicates are identical at the entry node of the procedure. The� . in / predicates serve as an indelible record of the state of the n-links at the entry
node.

– The unary predicates reverse n succ . H � � H � / , again with
H � � H � � � in � out � andH � �� H � , record whether � . H � / is an inverse of � . H � / . These are defined by

reverse n succ . H � � H � / ��& � ��� & � � � � . H � / ��& � & � ��� � . H � / ��& � � & � �

The values for these predicates in * � and * � show that for each n-link � . in / �'& � � & � �
at the entry node � main, we have an n-link � . out / �'& � � & � � at the exit node � main. In
other words, the procedure has reversed all the n-links.

In addition, during the composition operation, some additional constraint rules were
needed for the system to be able to deduce a relationship between � . in/ and � . out/ .
These are defined by

id succ . � � in � tmp / �'& � E reverse n succ . tmp � out/ ��& ��� reverse n succ . in � out/ �'& �
reverse n succ . in � tmp / ��& � E id pred . tmp � out/ ��& ��� reverse n succ . in � out/ �'& �

Notice that only the reverse n succ . H � � H � / predicates and the related constraint rules
are particular to the list-reversal example. The other predicates that appear in Fig. 5 were
already used in previous papers on shape analysis of list-manipulation programs (see
[1]): for instance, � . � � out � list / ��& � holds the value � for individuals that are reachable
from variable list through a chain of � . out / links. From the above definitions of the
instrumentation predicates, it should be clear that the set of � -valued structures �!* � � * � �
accurately captures the fact that the output list is the reversal of the input list, and that
the result is a list of length at least two.

Our method Method of [11]
Program # of Time Space # of Time Space

structs. (sec) (Mb) structs. (sec) (Mb)
reverse 7/3 11 26 � /3 37 17
insert 23/9 188 43 � /9 70 18
delete 32/13 222 43 � /7 47 17

tree exch. 22/10 92 33 —

The experiments were performed on a PC equipped
with a 2 GHz Pentium 4 processor and 768 Mb of
memory. Time and Space information were obtained
with the time and top commands. The two numbers
in each entry of the columns labeled # of structs. give
the number of structures for the summary transformer
of the recursive procedure and the number of struc-
tures at the end of the main procedure, respectively.

Fig. 6. Experimental results

Our second experiment involved
comparing our results with [11] on
the following examples: (i) list re-
versal (as discussed above), and
(ii) non-deterministic insertion and
deletion of a cell in a list. Results
are shown in Fig. 6. Our method
performs better than that of [11]
for the list-reversal program, but
worse for the latter two programs.
For those, we considered programs
where the cell to be inserted is
passed as an input parameter (in the
insert example), and the deleted cell
is received back as an output pa-
rameter (in the delete example); this
provides information about where
the cell has been inserted (resp. deleted). For the versions of the programs analyzed
by the method of [11], we added a global variable cell, which plays a similar role.

Concerning the slower computation times, we think they are mainly due to the
higher number of predicates to be manipulated (because of the different modes) and
the cost of the meet operation. However, it is important to keep in mind that our method
computes a summary transformer for each procedure, which [11] does not. The sum-
mary transformer � � � � � at an exit node � � is a partial function: the domain of � � � � �
overapproximates the set of reachable states at � proc �) + � from which it is possible to
reach � � ; the range of � � � � � overapproximates the set of reachable states at � � . This has
an impact on the results: for the delete example, the method of [11] is not able to keep
track of the original position in the list of the deleted cell, unlike our method. (For the
insert example, however, the two methods are similar w.r.t. this kind of information.)

Our third experiment was to analyze a procedure that recursively exchanges the
right and left subtrees of a binary tree. This example is interesting because it would
be difficult to implement this operation as a non-recursive procedure. The analysis was
able to establish that after the procedure finishes, the subtrees of all cells reachable from
the root have been exchanged, whereas the other cells have not been modified.

Statistics are given in Fig. 6. More information about the experiments is available
at http://www.irisa.fr/prive/bjeannet/interproctvla/interproctvla.html.

6 Related Work

The analysis described in this paper uses � -valued structures over a doubled vocabu-
lary. A similar approach is standard when concrete transition relations are expressed by
means of formulas. For instance, the semantics of a statement x := y+1 can be ex-
pressed as

� # � � $�� � � E � $ � � $ � . Statements such as x := y+1 can be transformed
into composable abstract transformers for programs that manipulate numeric data, using
several numeric lattices (e.g., polyhedra [19], octagons [20], etc.). In contrast, Obser-
vation 1 provides a way to create composable abstract transformers for the analysis of
programs that support both dynamically-allocated storage and destructive updating of
pointer-valued fields of structures. A key feature of the approach is that instrumentation
predicates can refer to both the
 . in / and
 . out/ vocabularies. For instance, the family
of unary predicates reverse n succ . H � � H � / discussd in � 5 (with

H � � H � � � in � out �
and

H � �� H �) records whether � . H � / is an inverse of � . H � / .
As discussed in the introduction, interprocedural shape analysis was also studied in

[11]. The approach used in the present paper was inspired by the functional approaches
of [4–6]. In contrast, the approach used in [11] is more reminiscent of the “call-strings”
approach of [5].

A method for performing interprocedural shape analysis using procedure speci-
fications and assume-guarantee reasoning is presented in [16]. There it is assumed
that a specification for each procedure—a pre- and post-condition—is already known;
the technique presented in [16] can be used to interpret a procedure’s pre- and post-
condition in the most precise way (for a given abstraction). For every procedure invo-
cation, one checks if the current abstract value potentially violates the precondition; if
it does, a warning is produced. At the point immediately after the call, one can assume
that the post-condition holds. Similarly, when a procedure is analyzed, the pre-condition
is assumed to hold on entry, and at end of the procedure the post-condition is checked.
The work described in the present paper is complementary to [16]: the work described
here—particularly in the modified form sketched in footnote 8—provides a way to iden-
tify procedure specifications (in the form of sets of 	 -vocabulary � -valued structures)
that can be used with the method from [16].

A second connection is that [16] provides a method to compute the most-precise
overapproximation of the meet of two abstract values, which is the operation needed
for composing transformers that are expressed as sets of 	 -vocabulary � -valued struc-
tures (see Eqns. (6) and (8)). Consequently, [16] provides a more precise alternative to
the approximate meet operation described in � 4.3. (At present, implementations of the
methods from [16] are based on theorem provers, and are much slower than the method
from � 4.3, which does not involve a theorem prover.)

Acknowledgments. We thank Viktor Kuncak for several helpful discussions about the
approach taken in this paper.

References
1. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. Trans. on

Prog. Lang. and Syst. 24 (2002) 217–298
2. Reps, T., Sagiv, M., Loginov, A.: Finite differencing of logical formulas for static analysis.

In: European Symp. on Programming. (2003) 380–398
3. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: Static

Analysis Symp. (2000) 280–301
4. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive procedures.

In Neuhold, E., ed.: Formal Descriptions of Programming Concepts, (IFIP WG 2.2, St. An-
drews, Canada, August 1977). North-Holland (1978) 237–277

5. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In Much-
nick, S., Jones, N., eds.: Program Flow Analysis: Theory and Applications. Prentice-Hall,
Englewood Cliffs, NJ (1981) 189–234

6. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Comp. Construct.
(1992) 125–140

7. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reach-
ability. In: Princ. of Prog. Lang., New York, NY, ACM Press (1995) 49–61

8. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications
to constant propagation. Theor. Comp. Sci. 167 (1996) 131–170

9. Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to inter-
procedural dataflow analysis. In: Static Analysis Symp. (2003) 189–213

10. Ball, T., Rajamani, S.: Bebop: A path-sensitive interprocedural dataflow engine. In: Prog.
Analysis for Softw. Tools and Eng. (2001) 97–103

11. Rinetzky, N., Sagiv, M.: Interprocedural shape analysis for recursive programs. In: Comp.
Construct. Volume 2027 of Lec. Notes in Comp. Sci. (2001) 133–149

12. Jones, N., Muchnick, S.: A flexible approach to interprocedural data flow analysis and pro-
grams with recursive data structures. In: Princ. of Prog. Lang. (1982) 66–74

13. Deutsch, A.: On determining lifetime and aliasing of dynamically allocated data in higher-
order functional specifications. In: Princ. of Prog. Lang. (1990) 157–168

14. Gopan, D., DiMaio, F., N.Dor, Reps, T., Sagiv, M.: Numeric domains with summarized
dimensions. In: Tools and Algs. for the Construct. and Anal. of Syst. (2004) 512–529

15. Loginov, A., Reps, T., Sagiv, M.: Abstraction refinement for � -valued-logic analysis. Tech.
Rep. 1504, Comp. Sci. Dept., Univ. of Wisconsin (2004)

16. Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract operations for
shape analysis. In: Tools and Algs. for the Construct. and Anal. of Syst. (2004) 530–545

17. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interprocedural shape
analysis. Tech. Rep. 1505, Comp. Sci. Dept., Univ. of Wisconsin (2004)

18. Yorsh, G.: Logical characterizations of heap abstractions. Master’s thesis, School of Com-
puter Science, Tel Aviv University, Israel (2003)

19. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among variables of a
program. In: Princ. of Prog. Lang. (1978) 84–96

20. Miné, A.: The octagon abstract domain. In: 8th Working Conf. on Rev. Eng. (2001) 310–322

