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A b s t r a c t  

Programs are hierarchical compositions of formulae satis- 
fying structural and extra-structural relationships. A pro- 
gram editor can use knowledge of such relationships to 
detect and provide immediate feedback about violations of 
them. The Synthesizer Generator is a tool for creating 
such editors from language descriptions. An editor 
designer specifies the desired relationships and the feed- 
back to be given when they are violated, as well as a user 
interface; from the specification, the Synthesizer Generator 
creates a full-screen editor for manipulating programs in 
the language. 

1. I n t r o d u c t i o n  

With the Cornell Program Synthesizer, we demonstrated 
the power of full-screen, syntax-directed editing for block- 
structured languages, especially when coupled with incre- 
mental compilation and structured interpretation and 
debt/gging [Teitelbaum & Reps lg81]. The success of the 
initial, hand-crated Synthesizer encouraged us to create 
the Synthesizer Generator, a system for building such 
environments from language descriptions. 

At  the same time, our gum was to explore methods for 
integrating additional program analysis and translation 
tools into interactive program development systems. The 
desire to enforce context-sensitive syntactic constraints, 
perform incremental translation, and detect dat~-flow- 
anomalies implied we needed a way of incorporating 
knowledge of a languw~e's semantic relations. 

As argued in our earlier paper [Demers et aL 1981], 
attribute grammars are an attraetive underlying formalism 
for systems such as the Synthesizer Generator because: 

• They extend the descriptive power of context-fres 
grammars, thereby permitting expremion of context,- 
sensitive relationships, such as type consistent T in a 
program. 
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• They are declarative definitions of relations that  must 
hold among the parts of a program, thereby ensuring 
that context-sensitive analyses defined with attribute 
grammars cannot depend on the order in which a pro- 
gram is developed. Consequently, a system designer 
can never create an editor having order-dependent 
errors. 

• They allow automatic reestablishment of consistent 
relationships among attributes when a syntax tree is 
modified, without explicit "undoing" or "rollback" 
actions, for propagation of semantic information 
through the tree is implicit in the formalism. Further- 
more, this updating process can be performed in an 
asymptotically time-optimal manner [Reps 1984, Reps 
et ~.  lOSa}. 

Beeanse of these properties, we have based the Synthesizer 
Generator on attribute grammars. 

The Synthesizer Generator is a tool for specifying how 
structured objects may be manipulated in the presence of 
eontext-sensitive relationships. The editor designer 
prepares an attribute-grammar specification that includes 
rules defining abstract syntax, attribution, display format, 
and concrete input syntax. From this specification, the 
Generator creates a full-screen editor for manipulating 
objects according to these rules. 

In an editor generated with the Synthesizer Generator, 
a program is represented as a consistently attributed 
derivation tree. Programs are modified by operations that 
restructure the derivation tree, such as pruning, grat ing,  
and deriving. Restructuring a derivation tree directly 
affects the values of the attributes at the modification 
point; some of the attributes may no longer have con- 
sistent values. IncrementM analysis is performed by 
updating attribute values throughout the tree in response 
to modifications. 

Apart from its use to generate programming-language 
editors, the Synthesizer Generator has also been used for 
creating a variety of other tools that  manipulate struc- 
tured data, including a desk eMculator, a proof checker, 
and severffil text.formatting editom. 

The use of attribute grammars for the underlying for- 
realism of the Synthesizer Generator distinguishes our 
approach from the ones used in MENTOR IDonzean- 
Gonge et al. 1975] and GANDALF [Medina-Mora & Not- 
kin 1081]. The use of attribute grammam for specifying 
interactive environments distinguishes our work from com- 
piler writing systems such as GAG [Kastens et al. 1983]. 
Other projects currently using attribute grammars in 
interactive environments include TRIAD [Ramanathan & 
Soni lgS0] and POE [Johnson 1983]. 
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The foundations of the attribute-grammar approach to 
building language-based environments are discussed in 
[Reps 1984, Repe et aL 1983]. Applications of the Syn- 
thesizer Generator are discussed in [Reps 1983] and in 
[Reps & Alpern 1984]. This paper gives an overview of 
the Synthesizer Generator's facilities for specifying 
language-based editors. 

2. A b s t r a c t  s y n t a x  

The core of an editor specification for a given language is 
the definition of the language's abstract syntax, given as a 
set of grammar rules. An object being edited is 
represented by its derivation tree with respect to the 
grammar, and regardless of user interface, be it textual or 
structural, the effect of each editing modification is to 
change this underlying syntax tree. 

The abstract syntax is specified as a collection of 
phyla and operators, a formulation of context-free gram- 
mars more appropriate for defining abstract syntax and 
better suited for defining structure editors [Donsean-Gouge 
e ta l .  1975, Medins~Mora & Notkin 1981]. An operator is 
a unlquely-named (possibly 0-ary) Cartesian product of 
phyla. A pA#lum is a non-empty set of operators. A rule 
of the form 

declares membership in phyo of a k-ary operator op with 
srcumcnts  phslb phltz • " • phyt,  and is analogous to the 
context free production 

ph;Io -* ph;ll pltIla • • • phyt 

with the differences that  (1) the  operator name op 
differentiates this production from all other structurally 
identical alternatives of phy~ and (2) the given operator 
op may be a member of other phyla, necessarily with the 
same arity and arguments. 

For defining structure editors, the phylum/operator 
formalism offers several advantages over the 
nonterminal/production notion: (1) during editing, a 
pruned subtree is identified as an instance of a given 
operator, not as an instance of a given production, and 
accordingly may be grafted in the tree as an instance of 
any of the other phyla containing that  operator; (2) the 
possibility of intersecting phyla eliminates from the gram- 
mar (and therefore from abstract-syntax tree) the need for 
nonterminals introduced only for the purpose of factoring. 

As will be described later in the paper, the concept of 
an operator plays a key role in the notation used in the 
Synthesizer Generator's attribute grammar definitions. 
(1) As discussed in Section 4, operator names are used to 
express construction and selection operations on struc- 
tures. (2)As discussed in Section 5, operator names are 
used to support modularity in editor specifications. 

As the phyla/operator formalism coincides with the 
nonterminal/production formalism when all phyla are dis- 
joint, and as the nonterminal/production vocabulary is 
more widely known, we shall refer to phyla synonymously 
as nonterminals, and refer to an occurrence of a given 
operator in a phylum as a production. 

E#smplc.  To illustrate the Synthesizer Generator's 
specification language, we present, as a running example, 
the definition of a simple, full-screen desk calculator that  
allows creation and modification of an integer expression, 
during which time the expression's current value is incre- 
mentally computed and displayed. The abstract syntax of 
the desk calculator's arithmetic expressions is defined by 
the following rules: 

exp: NullExp0 
[ Sum(exp exp) 
[ Dhff(exp exp) 
[ Prod(exp exp) 
[ Quot(exp exp) 
[ Const(INT) 

In these rules, the definitions of the different operators of 
phylum exp are separated by vertical bars, and INT refers 
to a primitive, predefined phylum containing the nullary 
operators 0, -1, 1, -2, 2, etc. Other predefined phyla 
include CHAR, STR, FLOAT, DOUBLE, and BOOL. 

The first declared operator of a phylum, such as 
NullExp in the example above, is termed the completin¢ 
operator, and is used, by default, at  unexpanded 
occurrences of that phylum in the derivation tree. Thus, 
a tree that  the user considers to be a partial derivation 
tree, such as Sum(exp,exp), is really a complete derivation 
tree from the sys tem's  point of view, e.g. the tree 
Sum(NullExp 0,NullExp 0). 

3. A t t r i b u t e s  a n d  s eman t i c  equa t ions  

A declarative specification of context-dependent computa- 
tions on the set of abstract-syntax trees of a language is 
conveniently provided by the semantic rules of an attri- 
butte grammar, a context-free grammar extended by 
attaching attributes to the nonterminals of the grammar 
[Knuth 1968]. 

Associated with each production is a set of semsnt lc  
equations, each of which defines an attribute of one of the 
production's nontermina]s as the value of a sement ic  [unc- 
tion applied to other attributes of nonterminals in the pro- 
duction. Attributes are divided into two disjoint classes: 
suntheslzcd and inheri te~ each semantic equation defines 
a value for a synthesized attribute of the left-side nonter- 
minal or an inherited attribute of a right-side nonterminal, 
attributes termed the output attributes of the production. 
The semantic equations of a specification must obey two 
constraints: there must be equations for a/l output attri- 
butes of each production, and it must not be possible to 
build a derivation tree in which attribute# are defined cir- 
cularly. 

An attribute is attached to s nonterminal by specify- 
ing the name of the nontermlnal, the type of the attribute, 
and whether the attribute is synthesized or inherited. An 
attribute's type can either be one of the predefined phyla 
{see above) or a user-defined phylum (see below). For 
example, the declaration: 

exp { synthesized INT v; }; 
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associates a synthesized INT-valued attribute v with the 
nonterminal exp. Attribute a of the ith occurrence of non- 
terminal n in a given production is referred to as n$i.a, 
where $i is optional if there is only one occurrence of n in 
the production. 

Esample. The following semantic equations define the 
v attribute of each exp in the syntax tree to be the value 
of the arithmetic suhexpression with root exp. The equa- 
tions below illustrate the use of synthesized attributes; the 
use of inherited attributes will be illustrated in Section 5. 

exp: NullExp { exp.v == 0; ) 
I Sum { exp$1.v I exp$2.v ÷ exp$3.v; } 
I Diff ( exp$1.v - -  exp$2.v - exp$3.v; } 
[Prod { exp$1.v - -  exp$2.v * exp$3.v; } 
l Quot { exptl .v - (expS3.v - -  0) 

? exp$2.v 
: (exp$2.v / exp$3.v); 

local STR error, 
error == (exp~.v - - - -  O) 

! "*-Division By 0 ~ "  
• ¢¢". 

P 

) 
I Const { exp.v - -  INT; } 

The equation associated with the operator NullExp defines 
the value of an unexpanded expression to be 0. The equa- 
tions associated with the operators Sum, Diff, and Prod 
define the value attribute as one would expect for such 
operators. Because the equations of the grammar must be 
total, the first equation associated with the operator Quot 
defines the value of a quotient with denominator 0 to be 
the value of the numerator• The notation 

expression .t expression : expression 

denotes a conditional expression. 

The second equation for operator Quot illustrates the 
use of loced ettributeo. Local attributes of a production 
permit defining a computation in one operator of a phy- 
lum without imposing the requirement that definitions be 
provided in every production of the phylum, as would be 
the case, for example, if the error attribute were a syn- 
thesized attribute of the phylum exp. 

4. Defining semant ic  d o m a i n s  

As already illustrated above, primitive phyla (such as 
INT) serve both as atoms in abstract syntax and as primi- 
tive attribute types. One must also provide a way to 
define new attribute types from these primitive ones. In 
other attribute grammar systems, the language for 
defining new attribute types is distinct from the grammat- 
ical mechanism for defining syntax [Paulson 1981, Kastens 
et al. 1983]. In the Synthesizer Generator, precisely the 
same sort of rules are used to define new attribute types 
and abstract syntax; as in SIS [Mosses 1979] and as in a 
recent proposal by Ganzinger and Giegerich [Ganzinger &~ 
Giegerich 1984], there is a uniform treatment of syntactic 
and semantic domains. Thus, the abstract-syntax tree 
being edited and the attributes attached to its nontermi- 
nals are all just typed obiects in a unified domain. 

Ezamflc. Suppose our desk calculator were extended 
with let czpres~oao of the form 

let ~ n s m e ~  =- ~ e x p ~  in ~ e x p ~  

which evaluates the second expression with the name 
hound to the value of the first expression. The scoping of 
names is block-structured, so each exp must be evaluated 
in an environment of appropriate local name b inding  pro- 
vided by an (inherited) environment attribute. A 
representation for such environment attributes as a list of 
identlfier-value pairs is defined by giving abstract-syntax 
rules to define phylum ENV: 

ENV: NulIEnv0 
[ EnvConcat(BINDING ENV) 

BINDING: Bindins(ID INT); 
< [#l ita-,A-Zlia-,A-Zl. >; 

Paraphrased, an ENV is either the null list of bindings, or 
it is a BINDING concatenated with an ENV. A BINDING 
is an ID,INT pair. The definition of the phylum ID illus- 
trates regular expressions, which permit defining subclasses 
of the phylum STR. An ID is either a hash mark, or it is 
an alphabetic strinS. (The hash mark will represent an 
unknown name). 

As we have already seen, the expression language for 
semantic equations permits infix expressions computing 
primitive values from other primitive values. Now, follow- 
ins a style originally proposed in [Burstall 1969], the 
(user-defined) operator names are employed both as con- 
structors and as discriminators: 

(I) A k-ary operator can be applied to k argument expres- 
sions of the appropriate phyla to construct a new, 
composite object. For example, the operator Binding 
may be used to create an object such as 
Binding("#",0). 

(2) A composite object of a given phylum can he analyzed 
by a multi-branch selection expression {in our termi- 
nology a tdt/~ ezpression), where the different cases are 
labeled by operator names. Each alternative of a with 
expression is a local scope, and variable names appeax- 
ins in argument positions of a case-selection operator 
are bound to the appropriate constituents within that 
scope. For example, a value of phylum ENV can be 
analyzed using a with expression of the form: 

with (env) ( 
NullEnv0: . . . ,  
EnvConcat(b, e ) : . . .  
) 

The variables b and e would be bound to the first and 
second components, respectively, in the EnvConcat 
branch of such a with expression. 

Ezample. The recursive function lookup, which 
returns the binding for a given identifier if it exists in the 
given environment and returns Bindins("~",  0) if the 
identifier does not exist in the environment, is written as 
follows, using two with expressions: 
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BINDING lookup(id,env) 
ID id; ENV env; 
{ 
return( 

with (env) ( 
NullEnv0: Binding("¥ ' ,  0), 
gnvConcat(b, e): with (b) ( 

Binding(s, i): (id~==s ? b : Iookup(id, e))) 
) 

); 
}; 

8. S u p p o r t i n g  m o d u l a r  speci f ica t ions  

The Synthesizer Generator's specification language incor- 
porates notation that permits the specifications of separate 
aspects of a language to be placed in separate portions of 
a specification. Such modularity enhances the comprehen- 
sibility of editor specifications. It  also facilitates the gen- 
eration of a collection of related editors that  offer different 
degrees of static-semantic analysis for different language 
dialects. Three concepts permit specifications to be fac- 
tored in this way: (I) the specification language allows us 
to add a new attribute to an existing phylum, (2) it allows 
us to add new semantic equations to existing operators, 
and (3) it allows us to add new operators and their seman- 
tics to an existing phylum. 

E#ample. The definitions given in the previous section 
for the phyla ENV, BINDING, ID, and the function 
lookup, together with the rules given below, extend the 
desk calculator with the abstract syntax and evaluation 
semantics for let expressions and the use of bound names. 
These definitions may he factored into a module separate 
from the rules of Section 2 and 3, which define expression 
evaluation. 

First, we add to the previously defined nonterminal 
exp, an additional declaration for an inherited environ- 
ment attribute env of type ENV. A new nonterminal for 
the < n a m e >  in a let expression is also required. 

exp { inherited ENV env; }; 
name { synthesized ID id; }; 

Second, the semantics of the existing arithmetic operators 
is extended by adding semantic equations to pass the 
inherited environment to both the left and right operands. 

exp: Sum, Diff, Prod, Quot { 
expS2.env - exp$1.env; 
expS3.env - exp$1.env; 
} 

Third, new operators are added to the existing phyla exp 
for both the let expression and the use of a bound name. 

exp: Let(name exp exp) ( 
exp$2.env m exp$1.env; 
exp$3.env - -  EnvConcat(Binding(name.id, exp$2.v), 

exp$1.env); 
exp$1.v == exp$3.v; 
} 

IUse(tD) { 
local STR error; 
error ~ with(lookup(ID, exp.env))( 

Binding(s, i): s f = m " ¥ '  
.~ "~Undef ined"  
• 6 5 "  

); 
exp.v ~, with(lookup(ID, exp.env))(Binding(s, i): i); 
} 

name: NullDeq) { name.id == " ¥ ' ;  } 
[ Def(ID) { name.id ~ ID; } 

The specification of the desk calculator's underlying 
(attributed) abstract syntax is completed by identifying 
the root symbol and giving its semantics: 

root ealc; 
calc: Top(exp) ( exp.env - -  NullEnvO; }; 

6. Def in ing user  in te r faces  

Thus far, we have defined only an attributed abstract syn- 
tax for edited objects; we turn now to specification of their 
external representations. 

6.1. U n p a r s i n g  schemes  

The display of an object is defined by an unparsing 
scheme given for each production consisting of a sequence 
of strings, names of attribute occurrences, and names of 
right-side nonterminals. The display is generated by a 
left-to-right traversal of the tree that  interprets these 
unparsing schemes• Formatting is defined by control char- 
acters that  can be included in the strings of an unparsing 
scheme. For example, the character ~n means "llne-feed 
carriage-return to the current left-margin". 

Ezsmfle. The following unparsing scheme specifies 
that  an expression of the desk calculator is to be 
displayed, fully parenthesized, together with the value 
computed for the expression, the attribute exp.v of the 
operator Top. 
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calc: Top [ exp 'qtnVALUE •ffi " exp.v ] 

exp: NullExp [ " < e x p > "  ] 
I Sum [ "("  exp$2 " +  " exp$3 " ) " ]  
[Dirt [ "(" exp$2 "-" exp$3 ")" ] 
IProd [ "(" exp$2 "*" exp$3 ")" ] 
[quot {"C expS2 "/" error exp$3 "}" ! 
]Let I "(let " name " == " exp$2 " in " exp$3 ")"  ] 
]Use [ ID error ] 
I Const [ I N T  ] 

name: NullDef ["<name>" ] 
IDef l i D ]  

The display is also annotated with error messages at the 
locations of undefined names and quotients with zero- 
valued denominators. This is specified above by incor- 
porating the "error" attributes in the unparsing schemes 
for Quot and Use. With this unparsing scheme, the 
abstract tree ToplLet(x , Quot(1, 0), Sum(x, y))) would be 
unparsed as: 

(let x =ffi (I/*--Division By 0~0)  in (x+ y~-Undeflned)) 
VALUE ~ 1 

The incremental attribute evaluation implicit in every 
editing modification guarantees that  each unparslng 
reflects appropriate error messages (null strings when no 
error exists) and the correct value of the expression. 

Note that  print representations of attribute values are 
also defined with unparsing schema, by giving schema 
associated with each phyla's abstract syntax. 

6.2. Def ining i n p u t  in te r faces  

For the purpose of specifying flexible input interfaces, we 
have availed ourselves of the full power of the attribution 
mechanism. In particular, we allow any grammar rule 
(including syntactic type definitions) to be a valid attri- 
bute type definition, and we let syntactic values be con- 
structed by attribute computations. 

To specify the input interface, productions are given 
for a concrete input syntax, along with semantic equations 
that define a translation to abstract syntax. The tilde 
re/e,  specify the correspondance between cursor positions 
in the abstract syntax tree and entry points within the 
concrete syntax; a tilde rule of the form "n  ~ N.a;" says 
that  when the cursor is positioned at nonterminal n in the 
abstract-syntax tree, input is to be parsed as an N, artd 
attribute a is to be inserted in the abstract-syntax tree at 
the position of the editing cursor. 

This mechanism for translating input text to an 
abstract-syntax tree provides an editor designer with the 
ability to define textual and structural interfaces in what- 
ever balance is desired. As input languages need not be 
restricted to legal fragments of programs, a degree of 
input error tolerance can also be specified. 

Ezamplc. Continuing our desk-calculator example, 
suppose we want a textual interface for the arithmetic 
expressions, and a structural interface for let expressions 

using the command "ffiffi". The following rules define a 
concrete syntax for expression input as an "Exp",  and 
designate "Exp" as an entry point to the parser when the 
cursor is positioned at an "exp" nonterminal in the 
abstract syntax tree. 

Exp { synthesized exp abe; }; 

exp ~ Exp.abs; 

INTEGER: < [0-0]+ >;  

left ' +  ' ' - ' ;  
left '* '  ' / ' ;  

Exp: Exp '+  ' Exp 
{ Exp$1.abs ~ Sum(Exp$2.abs, Exp$3.abs); } 

I Exp ' - '  Exp 
{ Exp$1.abs ~= Diff(Exp$2.abs, Exp$3.abs); } 

Exp '*'  Exp 
{ ExpSl.abs ~ Prod(Exp$2.abs, Exp$3.abs); } 

Exp ' / '  Exp 
{ Exp$1.abs ~ Quot(Exp$2.abs, Exp$3.ahs); } 

] INTEGER { Exp.abs ~ Const(STRtoINT(INTEGER)); } 
I m { Exp.abs .= Use(m}; } 
[ 'C Exp ')' { Exp$1.abs ~, Exp$2.abs; } 

In this example, the translation of concrete syntax to 
abstract syntax uses only synthesized attributes, but 
inherited attributes may be used as well. Note that con- 
crete syntax can be specified with ambiguous productions 
and disambiguating precedence rules, as is done above for 
the tokens '+ ', '-', '*', and '/'. 

To define the commands for template-style insertion 
that are legM when the cursor is positioned at an exp non- 
terminM, we give an second set of input rules: 

ExpCommand { synthesized exp abe; }; 

exp ~ ExpCommand.abs; 

ExpCommand: 'u' { 
ExpCommand.abs =ffi Let(NullDef0,NuUExp0,NullExp()); 
}; 

We also permit contczt.,enslti~e translations by allow- 
ing attributes at the cursor position in the abstract tree to 
be inherited into the parse tree. For example, the follow- 
ing additional rules define input of the form " .name" to 
mean "insert, at  the current cursor position, the value of 
the given name in the scope containing the cursor": 

ExpCommand { inherited ENV env; }; 

exp ~ ExpCommand.abe 
{ ExpCommand.env == exp.env; }; 

ExpCommand: ' . '  ID { 
ExpCommand.abs 

with(lookup(ID, ExpCommand.env)) { 
Binding, s, i): Const(i) 
}; 

}; 
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In the tilde rule •hove, exp.env refers to the environment 
attribute of the exp nonterminal at which the cursor is 
positioned when the command " .name" is typed. Note 
that the typed text is not • fragment of the concrete 
representation of our desk calculator language; rather, it is 
an editor command interpreted in the context of the 
current cursor position. In an editor for • language such 
as Pascal, templates that  depend on user defined types 
and procedures can be defined in • similar fashion. 

7. Syn tac t i c  re fe rences  wi th in  s e m a n t i c s  

It  is often the case that • piece of the abstract-syntax tree 
is itself a sufficiently convenient representation of • 
semantic value needed for attribute computations. In • 
system such as GAG, where a syntax tree is • different 
sort of value from an attribute value, one mmst resort to 
replicating the syntactic tree in the semantic domain. 
However, as • result of defining attribute types with gram- 
mar rules, we can permit attribute values to refer to and 
to perform computations on syntactic components. In 
fact, scrutiny of the semantic equations in Section 3 will 
reveal that  we have already been using this feature to 
define the exp.v attribute in the equations associated with 
the Const operator. 

E~smple. Consider extending the desk calculator with 
• block-structured, editing-macro facility allowing s name 
to be bound, not to • value, as in the let expression, but 
to • symbolic expression. To represent such bindings in 
the environment attributes we must extend the phylum 
BINDING with an additional operator. 

BINDING: MacroBinding(ID exp); 

We then extend the phylum exp with • new operator for 
macro definitions: 

exp: Macro{name exp exp) { 
exp$3.env R EnvConcat(MacroBindin~name.id, exp$2), 

exp$1.env); 
exp$1.v == exp~3.v; 
}; 

Note that  the macro binding created by the first equation 
uses • syntactic reference to exp$2. We also extend our 
previous input rule so that  a macro body can be inserted 
by invoking the macro name: 

ExpCommand: ' . '  ID { 
ExpCommand.abs - -  

with(lookup(ID, ExpCommand.env)) ( 
Binding(s, i): Coast(i), 
MacroBinding(s, e): e 
}; 

}; 
Finally, the lookup function needs to be modified to han- 
dle the additional binding operator (not shown}. 

Allowing syntactic references within semantic equa- 
tions complicates the problem of incremental attribute 
updating, but not unduly. The value of an attribute 
defined with a syntactic reference to node N may become 
inconsistent whenever a modification is made inside the 
subtree rooted at N; consequently, a modification s t  node 

M may introduce inconsistencies in attributes at nodes 
along the "spine" of the tree from M to the tree's root, 
rather than just in the immediate neighborhood of M. 
However, an incremental updating algorithm can be 
• pplled as long as the region containing all initial incon- 
sistent attributes is known [Reps 1984, R e p s e t  al. 1983]. 
Note that  the inconsistent region does not necessarily 
extend all the way to the tree's root, for only certain pro- 
ductions have equations with syntactic references. 

Although in general concrete and abstract syntaxes are 
distinct, in practice, they are nearly isomorphic (especially 
when concrete syntax can be specified with ambiguous 
productions and disambiguating precedence rules). This 
leads to the possibility of uniting phyla for abstract and 
concrete syntax (e.g. exp and Exp), with self-referential 
syntactic references defining the abs attribute in produc- 
tions where the parse tree and abstract tree are iso- 
morphic. The result is a far more succinct specification. 

8. C o m p u t i n g  with  h ie ra rch ies  o f  a t t r i b u t a b l e  
t r ees  

In Section 4 we discussed how attribute types are defined 
with grammar rules, giving the specification language a 
uniform approach to defining structured data in the sys- 
tem. In Section 6, this approach allowed us to define 
translations from concrete to abstract syntax according to 
semantic equations of the concrete-syntax grammar. In 
doing so, we made the additional assumption that  the 
grammar rules defining s~latactlc tltpes were valid 
definitions of attribute types. The consequence of this step 
is that  the denotable values in our specification language 
are attributable, tree-structured objects whose attributes 
are themselves attributable, tree-structured objects, ad 
i•li•itum. 

However, with the language operations described thus 
far, the power of such attribute hierarchies cannot be fully 
exploited. The expression language permits infix expres- 
sions computing primitive values, construction expressions 
computing composite values, and selection expressions; 
missing from the language is • way of forcing the attribu- 
tion of a {previously unattributed) structure. To fill this 
need, the specification language permits attribatioB 
¢zpressfoas of the form "ezpresdon{cqaatioas}.attribate". 
The value of such an expression is computed as follows: 
(•) the ezpression is evaluated, yielding some attributable 
(but as yet  unattributed) object S, (b) the inherited •ttrl- 
butes of S are defined by the given equations, (c) the value 
of S.attribate is computed by demand and is returned. 

Example. In Section 4, the lookup operation was writ.. 
ten as a recursive procedure that  received an environment 
as argument. Alternatively, it could be written as an 
attribute computation of environment objects themselves 
by letting each ENV object inherit the argument id to be 
looked up, and synthesize the appropriate found binding. 

ENV { inherited ID target; 
synthesized BINDING result; 

}; 
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ENV: NullEnv 0 { ENV.result - -  Binding('~' ,  0); } 
[EnvConcat(BINDING ENV) { 

ENV$1.result R with(BINDING) { 
Binding(s,v}: s ==~ ENV$1.target 

? BINDING : ENV$2.result 
); 

ENV$2.target - -  ENV$1.ta~et; 
} 

Calls on lookup(id,exp.env) to find the binding of id in the 
environment env axe then replaced by the attribution 
expression 

any{any.target == id;).result 

As a second example of a computation using an attri- 
bute hieraxchy, we return to the macro example of Section 
8 and consider how macro uses are evaluated. The seman- 
tics of the Use operator is revised eo th~4~ if it is a macro 
use, then e, the exp bound to the macro name, is extracted 
from the environment attribute and • itsel[ is attributed 
in the environment of the use in order to find its value v: 

exp: Use(ID) { 
exp.v == with{lookup(ID, exp.env}){ 

Binding(s, i}: i, 
MacroBinding(s, e): e{e.env I exp.env;}.v 
}; 

); 

We note that this approach allows us to support a 
SMALLTALK-Iike, object-oriented programming style in 
editor specifications, insofar as an attribute that is itself 
an attributed tree can be viewed as an object able to 
respond to messages that provide its inherited attributes 
and demand its synthesized attributes. 
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