
The Synthesizer Generator

Thom=s Reps and Tim Teitelbanm
Cornell University

A b s t r a c t

Programs are hierarchical compositions of formulae satis-
fying structural and extra-structural relationships. A pro-
gram editor can use knowledge of such relationships to
detect and provide immediate feedback about violations of
them. The Synthesizer Generator is a tool for creating
such editors from language descriptions. An editor
designer specifies the desired relationships and the feed-
back to be given when they are violated, as well as a user
interface; from the specification, the Synthesizer Generator
creates a full-screen editor for manipulating programs in
the language.

1. I n t r o d u c t i o n

With the Cornell Program Synthesizer, we demonstrated
the power of full-screen, syntax-directed editing for block-
structured languages, especially when coupled with incre-
mental compilation and structured interpretation and
debt/gging [Teitelbaum & Reps lg81]. The success of the
initial, hand-crated Synthesizer encouraged us to create
the Synthesizer Generator, a system for building such
environments from language descriptions.

At the same time, our gum was to explore methods for
integrating additional program analysis and translation
tools into interactive program development systems. The
desire to enforce context-sensitive syntactic constraints,
perform incremental translation, and detect dat~-flow-
anomalies implied we needed a way of incorporating
knowledge of a languw~e's semantic relations.

As argued in our earlier paper [Demers et aL 1981],
attribute grammars are an attraetive underlying formalism
for systems such as the Synthesizer Generator because:

• They extend the descriptive power of context-fres
grammars, thereby permitting expremion of context,-
sensitive relationships, such as type consistent T in a
program.

~ork wffi, uapported In ~ by the Natkm, l Sciem:= Pouads..
tion under She.an I~'~rt-04218, sad M~S82-/~ffrL

Antlmn' addmm: Depa.~me~t ~' Compute" S, '~,~ Ulmm
Cccmdl University, Itha~i, N.Y. 148b$.

Permission to copy without fee all or part of this matedal is granted
provided that the copies are not made or distributed for direct corn-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Assooation for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-89791-131-8/84/0400/0042500.75

• They are declarative definitions of relations that must
hold among the parts of a program, thereby ensuring
that context-sensitive analyses defined with attribute
grammars cannot depend on the order in which a pro-
gram is developed. Consequently, a system designer
can never create an editor having order-dependent
errors.

• They allow automatic reestablishment of consistent
relationships among attributes when a syntax tree is
modified, without explicit "undoing" or "rollback"
actions, for propagation of semantic information
through the tree is implicit in the formalism. Further-
more, this updating process can be performed in an
asymptotically time-optimal manner [Reps 1984, Reps
et ~. lOSa}.

Beeanse of these properties, we have based the Synthesizer
Generator on attribute grammars.

The Synthesizer Generator is a tool for specifying how
structured objects may be manipulated in the presence of
eontext-sensitive relationships. The editor designer
prepares an attribute-grammar specification that includes
rules defining abstract syntax, attribution, display format,
and concrete input syntax. From this specification, the
Generator creates a full-screen editor for manipulating
objects according to these rules.

In an editor generated with the Synthesizer Generator,
a program is represented as a consistently attributed
derivation tree. Programs are modified by operations that
restructure the derivation tree, such as pruning, grat ing,
and deriving. Restructuring a derivation tree directly
affects the values of the attributes at the modification
point; some of the attributes may no longer have con-
sistent values. IncrementM analysis is performed by
updating attribute values throughout the tree in response
to modifications.

Apart from its use to generate programming-language
editors, the Synthesizer Generator has also been used for
creating a variety of other tools that manipulate struc-
tured data, including a desk eMculator, a proof checker,
and severffil text.formatting editom.

The use of attribute grammars for the underlying for-
realism of the Synthesizer Generator distinguishes our
approach from the ones used in MENTOR IDonzean-
Gonge et al. 1975] and GANDALF [Medina-Mora & Not-
kin 1081]. The use of attribute grammam for specifying
interactive environments distinguishes our work from com-
piler writing systems such as GAG [Kastens et al. 1983].
Other projects currently using attribute grammars in
interactive environments include TRIAD [Ramanathan &
Soni lgS0] and POE [Johnson 1983].

42

The foundations of the attribute-grammar approach to
building language-based environments are discussed in
[Reps 1984, Repe et aL 1983]. Applications of the Syn-
thesizer Generator are discussed in [Reps 1983] and in
[Reps & Alpern 1984]. This paper gives an overview of
the Synthesizer Generator's facilities for specifying
language-based editors.

2. A b s t r a c t s y n t a x

The core of an editor specification for a given language is
the definition of the language's abstract syntax, given as a
set of grammar rules. An object being edited is
represented by its derivation tree with respect to the
grammar, and regardless of user interface, be it textual or
structural, the effect of each editing modification is to
change this underlying syntax tree.

The abstract syntax is specified as a collection of
phyla and operators, a formulation of context-free gram-
mars more appropriate for defining abstract syntax and
better suited for defining structure editors [Donsean-Gouge
e ta l . 1975, Medins~Mora & Notkin 1981]. An operator is
a unlquely-named (possibly 0-ary) Cartesian product of
phyla. A pA#lum is a non-empty set of operators. A rule
of the form

declares membership in phyo of a k-ary operator op with
srcumcnts phslb phltz • " • phyt, and is analogous to the
context free production

ph;Io -* ph;ll pltIla • • • phyt

with the differences that (1) the operator name op
differentiates this production from all other structurally
identical alternatives of phy~ and (2) the given operator
op may be a member of other phyla, necessarily with the
same arity and arguments.

For defining structure editors, the phylum/operator
formalism offers several advantages over the
nonterminal/production notion: (1) during editing, a
pruned subtree is identified as an instance of a given
operator, not as an instance of a given production, and
accordingly may be grafted in the tree as an instance of
any of the other phyla containing that operator; (2) the
possibility of intersecting phyla eliminates from the gram-
mar (and therefore from abstract-syntax tree) the need for
nonterminals introduced only for the purpose of factoring.

As will be described later in the paper, the concept of
an operator plays a key role in the notation used in the
Synthesizer Generator's attribute grammar definitions.
(1) As discussed in Section 4, operator names are used to
express construction and selection operations on struc-
tures. (2)As discussed in Section 5, operator names are
used to support modularity in editor specifications.

As the phyla/operator formalism coincides with the
nonterminal/production formalism when all phyla are dis-
joint, and as the nonterminal/production vocabulary is
more widely known, we shall refer to phyla synonymously
as nonterminals, and refer to an occurrence of a given
operator in a phylum as a production.

E#smplc. To illustrate the Synthesizer Generator's
specification language, we present, as a running example,
the definition of a simple, full-screen desk calculator that
allows creation and modification of an integer expression,
during which time the expression's current value is incre-
mentally computed and displayed. The abstract syntax of
the desk calculator's arithmetic expressions is defined by
the following rules:

exp: NullExp0
[Sum(exp exp)
[Dhff(exp exp)
[Prod(exp exp)
[Quot(exp exp)
[Const(INT)

In these rules, the definitions of the different operators of
phylum exp are separated by vertical bars, and INT refers
to a primitive, predefined phylum containing the nullary
operators 0, -1, 1, -2, 2, etc. Other predefined phyla
include CHAR, STR, FLOAT, DOUBLE, and BOOL.

The first declared operator of a phylum, such as
NullExp in the example above, is termed the completin¢
operator, and is used, by default, at unexpanded
occurrences of that phylum in the derivation tree. Thus,
a tree that the user considers to be a partial derivation
tree, such as Sum(exp,exp), is really a complete derivation
tree from the sys tem's point of view, e.g. the tree
Sum(NullExp 0,NullExp 0).

3. A t t r i b u t e s a n d s eman t i c equa t ions

A declarative specification of context-dependent computa-
tions on the set of abstract-syntax trees of a language is
conveniently provided by the semantic rules of an attri-
butte grammar, a context-free grammar extended by
attaching attributes to the nonterminals of the grammar
[Knuth 1968].

Associated with each production is a set of semsnt lc
equations, each of which defines an attribute of one of the
production's nontermina]s as the value of a sement ic [unc-
tion applied to other attributes of nonterminals in the pro-
duction. Attributes are divided into two disjoint classes:
suntheslzcd and inheri te~ each semantic equation defines
a value for a synthesized attribute of the left-side nonter-
minal or an inherited attribute of a right-side nonterminal,
attributes termed the output attributes of the production.
The semantic equations of a specification must obey two
constraints: there must be equations for a/l output attri-
butes of each production, and it must not be possible to
build a derivation tree in which attribute# are defined cir-
cularly.

An attribute is attached to s nonterminal by specify-
ing the name of the nontermlnal, the type of the attribute,
and whether the attribute is synthesized or inherited. An
attribute's type can either be one of the predefined phyla
{see above) or a user-defined phylum (see below). For
example, the declaration:

exp { synthesized INT v; };

43

associates a synthesized INT-valued attribute v with the
nonterminal exp. Attribute a of the ith occurrence of non-
terminal n in a given production is referred to as n$i.a,
where $i is optional if there is only one occurrence of n in
the production.

Esample. The following semantic equations define the
v attribute of each exp in the syntax tree to be the value
of the arithmetic suhexpression with root exp. The equa-
tions below illustrate the use of synthesized attributes; the
use of inherited attributes will be illustrated in Section 5.

exp: NullExp { exp.v == 0;)
I Sum { exp$1.v I exp$2.v ÷ exp$3.v; }
I Diff (exp$1.v - - exp$2.v - exp$3.v; }
[Prod { exp$1.v - - exp$2.v * exp$3.v; }
l Quot { exptl .v - (expS3.v - - 0)

? exp$2.v
: (exp$2.v / exp$3.v);

local STR error,
error == (exp~.v - - - - O)

! "*-Division By 0 ~ "
• ¢¢".

P

)
I Const { exp.v - - INT; }

The equation associated with the operator NullExp defines
the value of an unexpanded expression to be 0. The equa-
tions associated with the operators Sum, Diff, and Prod
define the value attribute as one would expect for such
operators. Because the equations of the grammar must be
total, the first equation associated with the operator Quot
defines the value of a quotient with denominator 0 to be
the value of the numerator• The notation

expression .t expression : expression

denotes a conditional expression.

The second equation for operator Quot illustrates the
use of loced ettributeo. Local attributes of a production
permit defining a computation in one operator of a phy-
lum without imposing the requirement that definitions be
provided in every production of the phylum, as would be
the case, for example, if the error attribute were a syn-
thesized attribute of the phylum exp.

4. Defining semant ic d o m a i n s

As already illustrated above, primitive phyla (such as
INT) serve both as atoms in abstract syntax and as primi-
tive attribute types. One must also provide a way to
define new attribute types from these primitive ones. In
other attribute grammar systems, the language for
defining new attribute types is distinct from the grammat-
ical mechanism for defining syntax [Paulson 1981, Kastens
et al. 1983]. In the Synthesizer Generator, precisely the
same sort of rules are used to define new attribute types
and abstract syntax; as in SIS [Mosses 1979] and as in a
recent proposal by Ganzinger and Giegerich [Ganzinger &~
Giegerich 1984], there is a uniform treatment of syntactic
and semantic domains. Thus, the abstract-syntax tree
being edited and the attributes attached to its nontermi-
nals are all just typed obiects in a unified domain.

Ezamflc. Suppose our desk calculator were extended
with let czpres~oao of the form

let ~ n s m e ~ =- ~ e x p ~ in ~ e x p ~

which evaluates the second expression with the name
hound to the value of the first expression. The scoping of
names is block-structured, so each exp must be evaluated
in an environment of appropriate local name b inding pro-
vided by an (inherited) environment attribute. A
representation for such environment attributes as a list of
identlfier-value pairs is defined by giving abstract-syntax
rules to define phylum ENV:

ENV: NulIEnv0
[EnvConcat(BINDING ENV)

BINDING: Bindins(ID INT);
< [#l ita-,A-Zlia-,A-Zl. >;

Paraphrased, an ENV is either the null list of bindings, or
it is a BINDING concatenated with an ENV. A BINDING
is an ID,INT pair. The definition of the phylum ID illus-
trates regular expressions, which permit defining subclasses
of the phylum STR. An ID is either a hash mark, or it is
an alphabetic strinS. (The hash mark will represent an
unknown name).

As we have already seen, the expression language for
semantic equations permits infix expressions computing
primitive values from other primitive values. Now, follow-
ins a style originally proposed in [Burstall 1969], the
(user-defined) operator names are employed both as con-
structors and as discriminators:

(I) A k-ary operator can be applied to k argument expres-
sions of the appropriate phyla to construct a new,
composite object. For example, the operator Binding
may be used to create an object such as
Binding("#",0).

(2) A composite object of a given phylum can he analyzed
by a multi-branch selection expression {in our termi-
nology a tdt/~ ezpression), where the different cases are
labeled by operator names. Each alternative of a with
expression is a local scope, and variable names appeax-
ins in argument positions of a case-selection operator
are bound to the appropriate constituents within that
scope. For example, a value of phylum ENV can be
analyzed using a with expression of the form:

with (env) (
NullEnv0: . . . ,
EnvConcat(b, e) : . . .
)

The variables b and e would be bound to the first and
second components, respectively, in the EnvConcat
branch of such a with expression.

Ezample. The recursive function lookup, which
returns the binding for a given identifier if it exists in the
given environment and returns Bindins("~", 0) if the
identifier does not exist in the environment, is written as
follows, using two with expressions:

44

BINDING lookup(id,env)
ID id; ENV env;
{
return(

with (env) (
NullEnv0: Binding("¥ ' , 0),
gnvConcat(b, e): with (b) (

Binding(s, i): (id~==s ? b : Iookup(id, e)))
)

);
};

8. S u p p o r t i n g m o d u l a r speci f ica t ions

The Synthesizer Generator's specification language incor-
porates notation that permits the specifications of separate
aspects of a language to be placed in separate portions of
a specification. Such modularity enhances the comprehen-
sibility of editor specifications. It also facilitates the gen-
eration of a collection of related editors that offer different
degrees of static-semantic analysis for different language
dialects. Three concepts permit specifications to be fac-
tored in this way: (I) the specification language allows us
to add a new attribute to an existing phylum, (2) it allows
us to add new semantic equations to existing operators,
and (3) it allows us to add new operators and their seman-
tics to an existing phylum.

E#ample. The definitions given in the previous section
for the phyla ENV, BINDING, ID, and the function
lookup, together with the rules given below, extend the
desk calculator with the abstract syntax and evaluation
semantics for let expressions and the use of bound names.
These definitions may he factored into a module separate
from the rules of Section 2 and 3, which define expression
evaluation.

First, we add to the previously defined nonterminal
exp, an additional declaration for an inherited environ-
ment attribute env of type ENV. A new nonterminal for
the < n a m e > in a let expression is also required.

exp { inherited ENV env; };
name { synthesized ID id; };

Second, the semantics of the existing arithmetic operators
is extended by adding semantic equations to pass the
inherited environment to both the left and right operands.

exp: Sum, Diff, Prod, Quot {
expS2.env - exp$1.env;
expS3.env - exp$1.env;
}

Third, new operators are added to the existing phyla exp
for both the let expression and the use of a bound name.

exp: Let(name exp exp) (
exp$2.env m exp$1.env;
exp$3.env - - EnvConcat(Binding(name.id, exp$2.v),

exp$1.env);
exp$1.v == exp$3.v;
}

IUse(tD) {
local STR error;
error ~ with(lookup(ID, exp.env))(

Binding(s, i): s f = m " ¥ '
.~ "~Undef ined"
• 6 5 "

);
exp.v ~, with(lookup(ID, exp.env))(Binding(s, i): i);
}

name: NullDeq) { name.id == " ¥ ' ; }
[Def(ID) { name.id ~ ID; }

The specification of the desk calculator's underlying
(attributed) abstract syntax is completed by identifying
the root symbol and giving its semantics:

root ealc;
calc: Top(exp) (exp.env - - NullEnvO; };

6. Def in ing user in te r faces

Thus far, we have defined only an attributed abstract syn-
tax for edited objects; we turn now to specification of their
external representations.

6.1. U n p a r s i n g schemes

The display of an object is defined by an unparsing
scheme given for each production consisting of a sequence
of strings, names of attribute occurrences, and names of
right-side nonterminals. The display is generated by a
left-to-right traversal of the tree that interprets these
unparsing schemes• Formatting is defined by control char-
acters that can be included in the strings of an unparsing
scheme. For example, the character ~n means "llne-feed
carriage-return to the current left-margin".

Ezsmfle. The following unparsing scheme specifies
that an expression of the desk calculator is to be
displayed, fully parenthesized, together with the value
computed for the expression, the attribute exp.v of the
operator Top.

45

calc: Top [exp 'qtnVALUE •ffi " exp.v]

exp: NullExp [" < e x p > "]
I Sum ["(" exp$2 " + " exp$3 ") "]
[Dirt ["(" exp$2 "-" exp$3 ")"]
IProd ["(" exp$2 "*" exp$3 ")"]
[quot {"C expS2 "/" error exp$3 "}" !
]Let I "(let " name " == " exp$2 " in " exp$3 ")"]
]Use [ID error]
I Const [I N T]

name: NullDef ["<name>"]
IDef l i D]

The display is also annotated with error messages at the
locations of undefined names and quotients with zero-
valued denominators. This is specified above by incor-
porating the "error" attributes in the unparsing schemes
for Quot and Use. With this unparsing scheme, the
abstract tree ToplLet(x , Quot(1, 0), Sum(x, y))) would be
unparsed as:

(let x =ffi (I/*--Division By 0~0) in (x+ y~-Undeflned))
VALUE ~ 1

The incremental attribute evaluation implicit in every
editing modification guarantees that each unparslng
reflects appropriate error messages (null strings when no
error exists) and the correct value of the expression.

Note that print representations of attribute values are
also defined with unparsing schema, by giving schema
associated with each phyla's abstract syntax.

6.2. Def ining i n p u t in te r faces

For the purpose of specifying flexible input interfaces, we
have availed ourselves of the full power of the attribution
mechanism. In particular, we allow any grammar rule
(including syntactic type definitions) to be a valid attri-
bute type definition, and we let syntactic values be con-
structed by attribute computations.

To specify the input interface, productions are given
for a concrete input syntax, along with semantic equations
that define a translation to abstract syntax. The tilde
re/e, specify the correspondance between cursor positions
in the abstract syntax tree and entry points within the
concrete syntax; a tilde rule of the form "n ~ N.a;" says
that when the cursor is positioned at nonterminal n in the
abstract-syntax tree, input is to be parsed as an N, artd
attribute a is to be inserted in the abstract-syntax tree at
the position of the editing cursor.

This mechanism for translating input text to an
abstract-syntax tree provides an editor designer with the
ability to define textual and structural interfaces in what-
ever balance is desired. As input languages need not be
restricted to legal fragments of programs, a degree of
input error tolerance can also be specified.

Ezamplc. Continuing our desk-calculator example,
suppose we want a textual interface for the arithmetic
expressions, and a structural interface for let expressions

using the command "ffiffi". The following rules define a
concrete syntax for expression input as an "Exp", and
designate "Exp" as an entry point to the parser when the
cursor is positioned at an "exp" nonterminal in the
abstract syntax tree.

Exp { synthesized exp abe; };

exp ~ Exp.abs;

INTEGER: < [0-0]+ >;

left ' + ' ' - ' ;
left '* ' ' / ' ;

Exp: Exp '+ ' Exp
{ Exp$1.abs ~ Sum(Exp$2.abs, Exp$3.abs); }

I Exp ' - ' Exp
{ Exp$1.abs ~= Diff(Exp$2.abs, Exp$3.abs); }

Exp '*' Exp
{ ExpSl.abs ~ Prod(Exp$2.abs, Exp$3.abs); }

Exp ' / ' Exp
{ Exp$1.abs ~ Quot(Exp$2.abs, Exp$3.ahs); }

] INTEGER { Exp.abs ~ Const(STRtoINT(INTEGER)); }
I m { Exp.abs .= Use(m}; }
['C Exp ')' { Exp$1.abs ~, Exp$2.abs; }

In this example, the translation of concrete syntax to
abstract syntax uses only synthesized attributes, but
inherited attributes may be used as well. Note that con-
crete syntax can be specified with ambiguous productions
and disambiguating precedence rules, as is done above for
the tokens '+ ', '-', '*', and '/'.

To define the commands for template-style insertion
that are legM when the cursor is positioned at an exp non-
terminM, we give an second set of input rules:

ExpCommand { synthesized exp abe; };

exp ~ ExpCommand.abs;

ExpCommand: 'u' {
ExpCommand.abs =ffi Let(NullDef0,NuUExp0,NullExp());
};

We also permit contczt.,enslti~e translations by allow-
ing attributes at the cursor position in the abstract tree to
be inherited into the parse tree. For example, the follow-
ing additional rules define input of the form " .name" to
mean "insert, at the current cursor position, the value of
the given name in the scope containing the cursor":

ExpCommand { inherited ENV env; };

exp ~ ExpCommand.abe
{ ExpCommand.env == exp.env; };

ExpCommand: ' . ' ID {
ExpCommand.abs

with(lookup(ID, ExpCommand.env)) {
Binding, s, i): Const(i)
};

};

46

In the tilde rule •hove, exp.env refers to the environment
attribute of the exp nonterminal at which the cursor is
positioned when the command " .name" is typed. Note
that the typed text is not • fragment of the concrete
representation of our desk calculator language; rather, it is
an editor command interpreted in the context of the
current cursor position. In an editor for • language such
as Pascal, templates that depend on user defined types
and procedures can be defined in • similar fashion.

7. Syn tac t i c re fe rences wi th in s e m a n t i c s

It is often the case that • piece of the abstract-syntax tree
is itself a sufficiently convenient representation of •
semantic value needed for attribute computations. In •
system such as GAG, where a syntax tree is • different
sort of value from an attribute value, one mmst resort to
replicating the syntactic tree in the semantic domain.
However, as • result of defining attribute types with gram-
mar rules, we can permit attribute values to refer to and
to perform computations on syntactic components. In
fact, scrutiny of the semantic equations in Section 3 will
reveal that we have already been using this feature to
define the exp.v attribute in the equations associated with
the Const operator.

E~smple. Consider extending the desk calculator with
• block-structured, editing-macro facility allowing s name
to be bound, not to • value, as in the let expression, but
to • symbolic expression. To represent such bindings in
the environment attributes we must extend the phylum
BINDING with an additional operator.

BINDING: MacroBinding(ID exp);

We then extend the phylum exp with • new operator for
macro definitions:

exp: Macro{name exp exp) {
exp$3.env R EnvConcat(MacroBindin~name.id, exp$2),

exp$1.env);
exp$1.v == exp~3.v;
};

Note that the macro binding created by the first equation
uses • syntactic reference to exp$2. We also extend our
previous input rule so that a macro body can be inserted
by invoking the macro name:

ExpCommand: ' . ' ID {
ExpCommand.abs - -

with(lookup(ID, ExpCommand.env)) (
Binding(s, i): Coast(i),
MacroBinding(s, e): e
};

};
Finally, the lookup function needs to be modified to han-
dle the additional binding operator (not shown}.

Allowing syntactic references within semantic equa-
tions complicates the problem of incremental attribute
updating, but not unduly. The value of an attribute
defined with a syntactic reference to node N may become
inconsistent whenever a modification is made inside the
subtree rooted at N; consequently, a modification s t node

M may introduce inconsistencies in attributes at nodes
along the "spine" of the tree from M to the tree's root,
rather than just in the immediate neighborhood of M.
However, an incremental updating algorithm can be
• pplled as long as the region containing all initial incon-
sistent attributes is known [Reps 1984, R e p s e t al. 1983].
Note that the inconsistent region does not necessarily
extend all the way to the tree's root, for only certain pro-
ductions have equations with syntactic references.

Although in general concrete and abstract syntaxes are
distinct, in practice, they are nearly isomorphic (especially
when concrete syntax can be specified with ambiguous
productions and disambiguating precedence rules). This
leads to the possibility of uniting phyla for abstract and
concrete syntax (e.g. exp and Exp), with self-referential
syntactic references defining the abs attribute in produc-
tions where the parse tree and abstract tree are iso-
morphic. The result is a far more succinct specification.

8. C o m p u t i n g with h ie ra rch ies o f a t t r i b u t a b l e
t r ees

In Section 4 we discussed how attribute types are defined
with grammar rules, giving the specification language a
uniform approach to defining structured data in the sys-
tem. In Section 6, this approach allowed us to define
translations from concrete to abstract syntax according to
semantic equations of the concrete-syntax grammar. In
doing so, we made the additional assumption that the
grammar rules defining s~latactlc tltpes were valid
definitions of attribute types. The consequence of this step
is that the denotable values in our specification language
are attributable, tree-structured objects whose attributes
are themselves attributable, tree-structured objects, ad
i•li•itum.

However, with the language operations described thus
far, the power of such attribute hierarchies cannot be fully
exploited. The expression language permits infix expres-
sions computing primitive values, construction expressions
computing composite values, and selection expressions;
missing from the language is • way of forcing the attribu-
tion of a {previously unattributed) structure. To fill this
need, the specification language permits attribatioB
¢zpressfoas of the form "ezpresdon{cqaatioas}.attribate".
The value of such an expression is computed as follows:
(•) the ezpression is evaluated, yielding some attributable
(but as yet unattributed) object S, (b) the inherited •ttrl-
butes of S are defined by the given equations, (c) the value
of S.attribate is computed by demand and is returned.

Example. In Section 4, the lookup operation was writ..
ten as a recursive procedure that received an environment
as argument. Alternatively, it could be written as an
attribute computation of environment objects themselves
by letting each ENV object inherit the argument id to be
looked up, and synthesize the appropriate found binding.

ENV { inherited ID target;
synthesized BINDING result;

};

47

ENV: NullEnv 0 { ENV.result - - Binding('~' , 0); }
[EnvConcat(BINDING ENV) {

ENV$1.result R with(BINDING) {
Binding(s,v}: s ==~ ENV$1.target

? BINDING : ENV$2.result
);

ENV$2.target - - ENV$1.ta~et;
}

Calls on lookup(id,exp.env) to find the binding of id in the
environment env axe then replaced by the attribution
expression

any{any.target == id;).result

As a second example of a computation using an attri-
bute hieraxchy, we return to the macro example of Section
8 and consider how macro uses are evaluated. The seman-
tics of the Use operator is revised eo th~4~ if it is a macro
use, then e, the exp bound to the macro name, is extracted
from the environment attribute and • itsel[is attributed
in the environment of the use in order to find its value v:

exp: Use(ID) {
exp.v == with{lookup(ID, exp.env}){

Binding(s, i}: i,
MacroBinding(s, e): e{e.env I exp.env;}.v
};

);

We note that this approach allows us to support a
SMALLTALK-Iike, object-oriented programming style in
editor specifications, insofar as an attribute that is itself
an attributed tree can be viewed as an object able to
respond to messages that provide its inherited attributes
and demand its synthesized attributes.

References

[Burstall l~}6g]
BurstMl, R.M. Proving properties of programs by
structural induction. Comp. $. I~, 1 (Feb. 1969), 41-
48.

[Darners etal. 1981]
Darners, A., Raps, T., and Teitelbaum, T. Incremental
evaluation for attribute grammars with application to
syntax-directed editors. In Conference Record of the
8th ACM Symposium on Principles of Programming
Languages, Williamsburg, Vs., Jan. 20.28, 1981, pp.
105-116.

IDonseau-Gouge etal . 1975]
Donzeau-Gouge, V., Huet, G., Kahn, G., Lartg B., and
Levy, J.J. A structure-oriented program editor. Rep.
No. 114, IRIA-LABORIA, Rocquencourt, France, Apr.
1975.

[Ganzinger & Giegerich I~}84]
Ganzinger, H. and Giegerich, R. Attribute coupled
grammars. To appear in Proceedings of the SIGPLAN
Symposium on Compiler Construction, Montreal,
Can., June 20-22, 1984.

[Johnson 1983]
Johnson, G.F. An approach to incremental semantics.
Ph.D. dissertation, Dept. of Computer Science, Univ.
of Wisconsin, Madison, Wisc., 1983.

[Kastens etal. 19982]
Kastens, U., tlutt, B., arid Zimmermann, E. Lecture
Notes in Computer Science, vol. 141: GAG: a Praclf-
col Compiler Generator. Springer-Verlag, New York,
1982.

~Knuth 1968]
Knuth, D.E. Semantics of context-free languages.
Math. Sys. Theory ~, 2 (June 1968), 127-145. Correc-
tion. ibid. 5, 1 (Mar. 1971), 95-96.

[Medina-Morn & Notkin 1981]
Medina-Mora, R. and Notkin, D.S. ALOE users' and
implementors' guide. Tech. Rap. CMU-CS-81-145,
Dept. of Computer Science, Carnegie-Mellon Univ.,
Pittsburgh, Pa., Nov. 1981.

[Mosses 19'/0]
Mosses, P. SIS -- Semantics Implementation System:
Reference manuM and user guide. Tech. Rep. DAIMI
MD-30, Computer Science Dept., Ant-bus Univ.,
.A~.rhus, Denmark, Aug. 1979.

~Panlson lgSl]
Paulson, L. A compiler generator for semantic gr~rn-
mars. Ph.D. dissertation, Dept. of Computer Science,
Stanford Univ., Stanford, Calif., Dec. 1981.

[Ramanathan & Soni 1980]
Ramanathan, L and Soni, D. The model for program
development and analysis used in TRIAD. Tech. Rep.
TRIAD-TR1-80, Dept. of Computer and Information
Science, Ohio State Univ., Columbus, Ohio, May 1980.

[Raps 10S4I
Reps, T. GeBcratlnf lanfea,3e-ba,ed eaeirortments.
The M.I.T. Press, Cambridge, Mass., 1984.

ns31
Reps, T. Static-semantic analysis in language-based
editors. In Digest of Papers of the IEEE Spring
CompCon 83, San Francisco, CMif., Mar. 1583, pp.
411-414.

[Raps & Alpern 1984]
Raps, T. and Alpern, B. Interactive proof checking.
In Conference Record of the l ib ACM Symposium on
Principles of Programming Languages, Salt Lake City,
Utah, Jan. 15-18, 1984, pp. 38-45.

[Reps et al. 1983]
Raps, T., Teitelbaum, T., and Demers, A. Incremental
context-dependent analysis for language-based editors.
ACM Trans. Program. Lang. Syst. 5, 3 (July 1983),
449-477.

[Teitelbaum &Reps 1981 l
The Cornell Program Synthesizer. A syntax-directed
programming environment. Commun. ACM 2~, 9
(Sept. 1981), 563-573.

48

