
A Semantics for Procedure Local Heaps
and its Abstractions

Noam Rinetzky∗ Jörg Bauer† Thomas Reps‡ Mooly Sagiv‡ Reinhard Wilhelm
Tel Aviv Univ. Univ. des Saarlandes Univ. of Wisconsin Tel Aviv Univ. Univ. des Saarlandes
Tel Aviv, Israel Saarbrücken, Germany Madison, USA Tel Aviv, Israel Saarbrücken, Germany

maon@tau.ac.il joba@cs.uni-sb.de reps@cs.wisc.edu msagiv@tau.ac.il wilhelm@cs.uni-sb.de

ABSTRACT
The goal of this work is to develop compile-time algorithms for
automatically verifying properties of imperative programs that ma-
nipulate dynamically allocated storage. The paper presents an anal-
ysis method that uses a characterization of a procedure’s behavior
in which parts of the heap not relevant to the procedure are ig-
nored. The paper has two main parts: The first part introduces
a non-standard concrete semantics,LSL, in which called proce-
dures are only passedpartsof the heap. In this semantics, objects
are treated specially when they separate the “local heap” that can
be mutated by a procedure from the rest of the heap, which—from
the viewpoint of that procedure—is non-accessible and immutable.
The second part concerns abstract interpretation ofLSL and devel-
ops a new static-analysis algorithm using canonical abstraction.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and Theory—
Semantics; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs—assertions;invariants;
Semantics of Programming Languages—Operational semantics; Pro-
gram analysis

General Terms
Languages, Theory, Verification

Keywords
Abstract interpretation, shape analysis, static analysis, 3-valued logic

∗Supported in part by a grant from the the Israeli Academy of Sci-
ence.
†Supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verifica-
tion and Analysis of Complex Systems” (SFB/TR 14 AVACS). See
www.avacs.org for more information.
‡Supported by the office of Naval Research under contract
N00014-01-1-0796.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05,January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

1. INTRODUCTION
The long-time research goal of our work is to develop compile-

time algorithms for automatically verifying properties of impera-
tive programs that manipulate dynamically allocated storage. The
goal is to verify properties such as the absence of null dereferences,
the absence of memory leaks, and the preservation of data-structure
invariants. The ability to reason about the effects of procedure
calls is a crucial element in program verification, program analy-
sis, and program optimization. This paper presents an approach to
the modular analysis of imperative languages with procedures and
dynamically allocated storage, based on an abstract interpretation
of a novel non-standard storeless semantics.

1.1 Store-based vs. Storeless Semantics
A straightforward way to specify semantics of programs with

dynamically allocated objects and pointers is by a store-based op-
erational semantics, e.g., see [15]. This semantics is very natural
because it closely corresponds to concepts of the machine architec-
ture. Moreover, it is possible to compute the effect of a procedure
on a large heap from its effect on subheaps. This is the semantic ba-
sis for O’Hearn’s “frame rule” [8,15], which uses assertions about
disjoint parts of the heap: the post condition of a procedure call is
inferred by combining assertions that hold before the call with ones
that characterize the effect of the procedure call.

In programming languages such as Java, where addresses cannot
be used explicitly (in contrast to C’scast statements), it is possi-
ble to represent states in a more abstract way because any two heaps
with isomorphic reachable parts are indistinguishable. In particu-
lar, garbage cells have no significance. This leads to the notion of
storeless semantics, which was pioneered by [10]. There, states are
represented as aliases between pointer access paths.

A first step in many heap-abstractions is to abstract away from
specific memory addresses, e.g., [5, 7, 9, 18, 20, 21]. A storeless
concretesemantics has already done this step, which relieves the
designer of an abstraction from having to do it. Thus, it is natural to
base powerful pointer (shape) analysis algorithms on storeless se-
mantics. Unfortunately, existing storeless semantics associate the
entire heap with each procedure invocation and class instantiation,
which makes it difficult to support procedure and data abstraction.
Another problem with storeless semantics is that it is hard to relate
properties of memory cells before and after a call. As a result, it
is hard to scale these methods to prove properties of real-life pro-
grams. By “scaling”, we mean not just cost issues but also preci-
sion. In particular, after a procedure call some information about
the calling context may be lost.

In this paper, we present a first step towards addressing the afore-
mentioned scaling issues by (i) developing a storeless semantics
that allows representation of parts of the heapand relating proper-

ties before and after a call, and (ii) presenting an abstraction of this
semantics.

1.2 Main Results
In this paper, we develop a method to characterize a procedure’s

behavior in a way that ignores parts of the heap that are not relevant
to the procedure. Toward this end, the paper introduces a non-
standard storelessconcretesemantics,LSL, for Localized-heap
Store-Less. In this semantics, a called procedure is only passed
a part of the heap. Based on this semantics, a new static-analysis
algorithm is developed using canonical abstraction [20]. This al-
lows us to prove properties of programs that were not automati-
cally verified before. We believe that the modular treatment of the
heap will allow the implementation of these abstractions to scale
better on larger code bases. The approach also provides insights
into Deutsch’s may-analysis algorithm [7].

The paper has two main parts: The first part (Sec. 4) concerns
LSL, the non-standard concrete storeless semantics. The second
part (Sec. 5) concerns abstract-interpretation of this semantics.

LSL is based on the following ideas: Objects in the heap reach-
able from an actual parameter are treated differently when they sep-
arate the “local heap” that can be accessed by a procedure from the
rest of the heap, which—from the viewpoint of that procedure—is
non-accessible and immutable. We call these objectscutpoints. An
objectbelongs to the local-heapwhen it is reachable from a pro-
cedure’s actual parameters. Such an object is acutpointwhen it is
reached via a pointer-access path that starts at a variable of apend-
ing call and does nottraversethe local-heap. When a procedure
returns, the cutpoints are used to update the caller’s local-heap with
the effect of the call. Because our goal is to perform static analy-
sis,LSL is astoreless semantics[10]; every dynamically allocated
objecto is represented by the set ofaccess pathsthat reacho. In
particular, unreachable objects are not represented.LSL is dif-
ferent from previous storeless semantics based on pointer-access
paths [5,21] in the following way. It does not represent access paths
that start from variables of pending calls in the “local state” of the
current procedure. This means that a procedure has a local view
that only includes objects that are reachable from the procedure’s
parameters and, in addition, any objects that it allocates.

We characterize the manner in whichLSL simulates a standard
store-based semantics and identify a class of observations for which
LSL is equivalent to the standard store-based semantics. This al-
lows us to prove properties ranging from the absence of runtime
errors to partial and total correctness with respect to the standard
store-based semantics.

The second part of the paper usesLSL as the starting point
for static-analysis algorithms that treat the heap in a more local,
more modular way than previous work. In this part of the pa-
per, we present a new interprocedural shape-analysis algorithm for
programs that manipulate dynamically allocated storage. The algo-
rithm is based on an abstraction ofLSL. The new algorithm can
prove properties of programs that were not automatically verified
before (e.g., destructive merge of two singly-linked lists by a re-
cursive procedure, see Fig. 18). Furthermore, the analysis is done
in a way that is more likely to scale up. In particular, our analysis
benefits from the fact that the heap is localized: the behavior of
a procedure only depends on the contents of its local-heap. This
allows analysis results to be reused for different contexts.

1.3 Outline
The remainder of the paper is organized as follows: Sec. 2 sets

the scene by definingEAlgol, a simple imperative language, and
defining its standard store-based semantics. It also introduces our

P ∈ prog ::= rcdeclfndecl
rcdecl ::= record t := { tname f}
tname ::= int | t
fndecl ::= tnamep(tnamex) :=vdeclst
vdecl ::= tnameVarId

st ∈ stms ::= x=c | x=y | x=y opz | x=y.f |
x.f= null | x.f=y | x = alloc t |
y=p(x) | lb : st | while (cnd) do st od |
st ; st | if (cnd) then st else st fi

cnd ::= x == y | x ! = y | x == c | x ! = c
c ∈ const ::= null | n

Figure 1: Syntax of EAlgol.

running example. Sec. 3 defines cutpoints and describes their use
in LSL. Sec. 4 definesLSL semantics forEAlgol and states its
properties. Sec. 5 presents the shape-analysis algorithm. Sec. 6
reviews closely related work. Sec. 7 concludes our work.

2. PRELIMINARIES
In this section, we introduce a simple imperative language called

EAlgol. We define its standard semantics, which is operational,
large-step, store-based (as opposed to storeless), and global, i.e.,
the entire heap is passed to a procedure. We refer to this semantics
asGSB, for Global-heap Store-Based.

2.1 Syntax of EAlgol

Programs inEAlgol consist of a collection of functions includ-
ing a main function. The programmer can also define her own
types (à laC structs) and refer to heap-allocated objects of these
types using pointer variables. Parameters are passed by value. For-
mal parameters cannot be assigned to. Functions return a value by
assigning it to a designated variableret.

The syntax ofEAlgol is defined in Fig. 1. The notation̄z de-
notes a sequence ofz’s. We define the syntactic domainsx, y ∈
VarId , f ∈ FieldId , p ∈ FuncId , t ∈ TypeId , andlb ∈ Labels
of variables, field names, functions identifiers, type names, and
program-labels, respectively. For a functionp, Vp denotes the set
of its local variables andFp denotes the set of its formal parame-
ters. We assumeFp ⊆ Vp and that all the variables inVp \ Fp are
declared at the beginning of a function declaration.

2.2 Running Example
The EAlgol program shown in Fig. 2 is our running exam-

ple. The program consists of a type definition for an element in a
linked list (Sll); three list-manipulating functions: create (crt),
destructive append (app), and destructive reverse (reverse); and
amain function.

The program allocates three acyclic linked lists. It then destruc-
tively appends the list pointed-to byt2 to the tails of the lists
pointed-to byt1 andt3. As a result, at program pointlbc, just
beforereverse is invoked,x points-to an acyclic list with five
elements,z points-to an acyclic list with five elements, and the two
lists share their last two elements as a common tail.

The invocation ofreverse, which is the core of our running
example, (destructively) reverses the list passed as an argument.
As a result, atlbr, reverse’s return-site,y points-to the head of
the reversed-list. Note that the shared tail of the list pointed-to by
z has also changed.

record Sll := { Sll n; int d }
Sll reverse(Sll h):= lbe :

Sll p,q,t;
p=h;
while (p!=null) do

q=p.n; p.n=t; t=p; p=q od;
ret = t lbx :

int main():=
Sll x,y,z,t1,t2,t3;
t1=crt(3); t2=crt(2); t3=crt(3);
x=app(t1,t2);
z=app(t3,t2);
t1=null; t2=null; t3=null;

lbc : y = reverse(x); lbr :
ret=0

Figure 2: The running example. The code of functions crt and
app appears in App. A.

l ∈ Loc
v ∈ Val = Loc ∪ {null}
ρ ∈ Envp = Vp → Val
h ∈ HeapG = Loc × FieldId → Val
σG, 〈L, ρ, h〉 ∈ Σp

G = 2Loc × Envp × HeapG

Figure 3: Semantic domains of the GSB semantics.

2.3 Global-Heap Store-Based Semantics
We now define theGSB semantics forEAlgol. For simplic-

ity, the semantics tracks only pointer values and assumes that every
pointer-valued field or variable is assignednull before being as-
signed a new value.1 In addition, we assume that before a function
terminates it assign anull value to every pointer variable that is
not a formal parameter.2

Fig. 3 defines the semantic domains.Loc is an unbounded set
of memory locations. Amemory statefor a functionp, σp

G ∈ Σp
G,

keeps track of the allocated memory locations,L, an environment
mappingp’s local variables to values,ρ, and a mapping from fields
of allocatedlocations to values,h. Due to our simplifying assump-
tions, a value is either a memory location ornull.

The meaning of statements is described by a transition relation
G�⊆ (σG × stms) × σG. Fig. 4 shows theaxiomsfor assignments.
The inference rulefor function calls is given in Fig. 5. All other
statements are handled as usual using a two-level store semantics
for pointer languages.

Example. The memory state atlbc, the call-site toreverse, is
depicted graphically in Fig. 6 (labeledσc

G). Allocated locations are
depicted as rectangles labeled by the location name. The value of
each variable is depicted as an arrow from the variable name to the

1Special care need to be taken when handling statements in which
the same variable appears both in left-side of the assignment and in
its right-side, e.g.,x = x.f. Such statements require additional
source-to-source transformations and the introduction of temporary
variables.
2These conventions simplify the definition of bothGSB semantics
andLSL; in principle, different ones could be used with minor
effects on the capabilities of our approach. For clarity, our example
programs do not adhere to these restrictions.

〈x = null, 〈L, ρ, h〉〉 G� 〈L, ρ[x �→ null], h〉
〈x = y, 〈L, ρ, h〉〉 G� 〈L, ρ[x �→ ρ(y)], h〉
〈x = y.f, 〈L, ρ, h〉〉 G� 〈L, ρ[x �→ h(ρ(y), f)], h〉 (1)

〈x.f = null, 〈L, ρ, h〉〉 G� 〈L, ρ, h[(ρ(x), f) �→ null]〉 (2)

〈x.f = y, 〈L, ρ, h〉〉 G� 〈L, ρ, h[(ρ(x), f) �→ ρ(y)]〉 (2)

〈x = alloc t, 〈L, ρ, h〉〉 G� 〈L∪{l}, ρ[x �→ l], h∪I(l)〉 (3)

Figure 4: Axioms for atomic statements in the GSB semantics.
The side-conditions are: (1) ρ(y) �= null, (2) ρ(x) �= null, and
(3) l �∈ L. I initializes all pointer fields at l to null.

〈body ofp, 〈Le, ρe, he〉〉 G� 〈Lx, ρx, hx〉
〈y = p(x1, . . . , xk), 〈Lc, ρc, hc〉〉 G� 〈Lr, ρr, hr〉

where

Le = Lc, ρe(v) =

�
ρc(xi) v = zi

null otherwise
, he = hc

Lr = Lx, ρr = ρc[y �→ ρx(ret)], hr = hx

Figure 5: Inference rule for function invocation in the GSB se-
mantics, assuming the formal variables of p are z1, . . . , zk and
that p’s return value is a pointer.

memory location it points-to. The value of a field is depicted by a
directed edge labeled with the field name.

The invocation ofreverse starts in stateσe
G. The heap ofσe

G

is identical to the one ofσc
G, but its environment only mapsh,

reverse’s formal parameter, tol0, the value of the actual param-
eterx. The execution ofreverse’s body ends withret pointing
to the head of the reversed list. The memory state at the exit point,
lbx, is denoted byσx

G, the state after the invocation ofreverse
is denoted byσr

G. Note that the heap inσr
G is as inreverse’s

exit-point, and the environment is as in the call-site, except that the
return value (ret) is assigned toy.

2.4 Observable Properties
In this section, we introduce access paths, which are the only

means by which a program can observe a state. Note that the pro-
gram cannot observe location names.

DEFINITION 2.1 (FIELD PATHS). Afield path δ ∈ ∆ = FieldId ∗

is a (possibly empty) sequence of field identifiers. The empty se-
quence is denoted byε.

DEFINITION 2.2 (ACCESS PATH). Anaccess path α = 〈x, δ〉 ∈
Vp × ∆ of a functionp is a pair consisting of a local variable ofp
and a field path.AccPathp denotes the set of all access paths of
functionp. AccPath denotes the union of all access paths of all
functions in a program.

Apart from the above formal definitions, we will sometimes use
the notationx.n.n for access paths, because its syntax is famil-
iar from a number of programming languages, where it denotes a
sequence of field dereferences. Because states and access paths
are always associated with a (unique) functionp, in the rest of the
paper, we omitp whenever it is clear from the context. Also, to
simplify notation, we assume that we work with a fixed arbitrary
programP .

σc
G :

x �� l0
n �� l1

n �� l2
n �� l3

n �� l4

z �� l5
n �� l6

n �� l7

n
��

Ac :
{x}, {x.n}, {x.n.n}, {x.n.n.n, z.n.n.n}, {x.n.n.n.n, z.n.n.n.n},
{z}, {z.n}, {z.n.n}

σe
G :

h �� l0
n �� l1

n �� l2
n �� l3

n �� l4

l5
n �� l6

n �� l7

n
��

Ae : { h } , { h.n } , { h.n.n } ,

�
h.n.n.n,

cpl

�
,

�
h.n.n.n.n

cpl.n

�

σx
G :

h �� l0 l1
n�� l2

n�� l3
n�� l4

n��

l5
n �� l6

n �� l7

n
��

ret

��
Ax :

�
h, cpl.n.n.n
ret.n.n.n.n

�
,

�
cpl.n.n,
ret.n.n.n

�
,

�
cpl.n,
ret.n.n

�
,

�
cpl

ret.n

�
, {ret}

σr
G :

x �� l0 l1
n�� l2

n�� l3
n�� l4

n��

z �� l5
n �� l6

n �� l7

n
��

y

��
Ar :

�
x, y.n.n.n.n,
z.n.n.n.n.n.n

�
,

�
y.n.n.n,

z.n.n.n.n.n

�
,

�
y.n.n,

z.n.n.n.n

�
,

�
y.n,

z.n.n.n

�
, { y },

{ z }, { z.n }, { z.n.n }

global heap local heap cpl = ̂{h.n.n.n}

Figure 6: Memory states that arise during the execution of the running example according to the GSB semantics (left column)
and the LSL semantics (right column). We show the memory states at lbc, the call-site to reverse (first row); lbe, the entry to
reverse (second row); lbx, reverse’s exit point (third row); and lbr , the return-site from reverse (fourth row). For the local-
heap semantics, the figure shows only the heap (sets of aliased access paths); the memory states at lbc, lbe, lbx, and lbr are defined as
σc

L = 〈∅, Ac〉, σe
L = 〈{ ̂{h.n.n.n}}, Ae〉, σx

L = 〈{ ̂{h.n.n.n}}, Ax〉, and σr
L = 〈∅, Ar〉 respectively.

The value of an access pathα = 〈x, δ〉 in state〈L, ρ, h〉, denoted
by [[α]]G〈L, ρ, h〉, is defined to bêh(ρ(x), δ), where

ĥ : Val× ∆ → Val such that

ĥ(v, δ) =

��
�

v ifδ = ε

ĥ(h(v, f), δ′) ifδ = fδ′, v ∈ Loc
null otherwise

Note that the value of an access path that traverses anull-valued
field is defined to benull. This definition simplifies the notion of
equivalence between theGSB semantics andLSL, our new se-
mantics. Alternatively, we could have defined the value of such a
path to be⊥. The semantics given in Fig. 4 checks that a null-
dereference is not performed (see the side-conditions listed in the
caption).

DEFINITION 2.3 (ACCESS-PATH EQUALITY). Access pathsα
andβ are equal in a given stateσG, denoted by[[α = β]]G(σG), if
they have the same value in that state, i.e.,[[α]]G(σG) = [[β]]G(σG).
An access path isequal to null, denoted by[[α = null]]G(σG),
if [[α]]G(σG) = null.

Our semantics is a natural semantics; the stack of activation records
is maintained implicitly. However, we need the notion of an access
path that starts at a variable of a pending call (i.e., not the current
call). In a small-step semantics, this would be an access path that
starts at a variable allocated in the activation record of a pending
call. We use the term apending variablefor a local variable of
a pending call, and apending access pathfor an access path that
starts at a pending variable. When we wish to emphasize that a
variable (resp. access path) is of the current call, we use the term
a current variable (resp. acurrent access path). For example, in
stateσe

G, at the entry toreverse, x is a pending variable, and
z.n.n.n is a pending access path; the only current variable ish
andh.n.n.n is a current access path.

3. CUTPOINTS AND THEIR USE
In this section, we define cutpoints and describe their use in

LSL. To assist the reader, we provide some intuition by referring
to the global store-based semantics (see Sec. 2.3) and to a small-
step (stack-based) operational semantics.LSL is a storeless se-
mantics, i.e., memory cells are not identified by locations. Thus,
we cannot talk about locations as in Sec. 2.3. Instead, we use the
termobjects.

In LSL, every dynamically allocated objecto is represented by
the set of pointer-access paths that reacho. Unlike existing store-
less semantics [5], inLSL, pending access paths are not repre-
sented as parts of the local state of the current procedure. The
advantage of our approach is that when a procedure is invoked,
it operates only on a part of the heap, namely, the objects that are
reachable from the procedure’s actual parameters. The downside
of this approach is that the memory state just after the call cannot
always be defined in terms of the state prior to the call. The intu-
itive reason for this deficiency is that the description of an object
may change due to destructive updates. For example, in the run-
ning example, to determine that the pointer-access pathsy.n.n
andz.n.n.n are aliased after the invocation ofreverse, we
need to know that the list element pointed-to byh.n.n.n when
the execution ofreverse begins, is pointed-to byret.n when
the execution ends. To capture this kind of temporal relationship,
LSL tracks the effect of a function oncutpoints. Cutpoints are the
objects that separate the part of the heap that an invoked function
can access from the rest of the heap (excluding the objects pointed-
to by actual parameters).

DEFINITION 3.1. (Cutpoints) A cutpoint for an invocation of
functionp is a heap-allocated object that, in the program state in
which the execution ofp’s body starts, is: (i) reachable from a
formal parameter ofp (but not pointed-to by one) and (ii) pointed-
to by a pending access path that does notpass throughany object
that is reachable from one ofp’s formal parameters.

f1

f2

f1

f1

f1

f2

f1

f1 f2

f1

u10

u11
u12

u7
u8 u9u6

u5

u1
u2

u3

u4

f2
f1

Stack Heap

S
ta

ck
 g

ro
w

s
th

is
 w

ay

f1

zoo

bar

foo

main z1

h

y

x2

x1

z3

z2

Figure 7: An illustration of the cutpoints for an invocation in
a store-based small-step (stack-based) operational semantics.
The figure depicts the memory state at the entry to zoo. The
stack of activation record is depicted on the left side of the di-
agram. Each activation record is labeled with the name of the
function it is associated with. Heap-allocated objects are de-
picted as rectangles labeled with their location. The value of
a pointer variable (resp. field) is depicted by an edge labeled
with the name of the variable (resp. field). The shaded cloud
marks the part of the heap that zoo can access. The cutpoints
for the invocation of zoo (u7 and u9) are heavily shaded. Note
that u10 is not a cutpoint although it is pointed-to by pending
access paths that do not traverse through the shaded part of
the heap, e.g., x2 and y.f1.f1. This is because u10 is also
pointed-to by h , zoo’s formal parameter.

For example, in memory stateσc
G, the list element at location

l3 is a cutpoint because it is pointed-to by then-field of the list
element at locationl7, which is not reachable from the (only) actual
parameterx. For an additional example, see Fig. 7.

Technically,LSL usescutpoint-labelsto relate the post-state of
the function with its pre-state. Cutpoint-labels mark the cutpoints
at—and throughout—an invocation.

DEFINITION 3.2. (Cutpoint Labels) A cutpoint-label cpl ∈
2Fp×∆ for functionp is a set of access paths that start at a for-
mal parameter ofp. The set2Fp×∆ is denoted byCPLbsp.

In every function invocation,LSL labels all the cutpoints. A
cutpoint-label is the set of all access paths that start with a for-
mal parameter (of the invoked function) and point-to the cutpoint
when the function execution starts. The label of a cutpoint does not
change throughout the execution of the function’s body, even if the
heap is modified by destructive updates.

For example, the fourth list element inx’s list is a cutpoint for the
invocationy=reverse(x). The label of this cutpoint is{h.n.n.n}
becauseh.n.n.n is the (only) access path that points-to the cut-
point at the entry to the function. A good analogy for the role of
cutpoint-labels in our semantics is the use of auxiliary variables in
formal verification. Auxiliary variables are used to record variable
values at the entry to a function; a cutpoint-label is used to record
the access paths that reach a cutpoint at function entry. To empha-
size this similarity, we use the notation�a wherea ∈ CPLbsp for
cutpoint-labels for functionp.

LSL is able to infer the effect of an invoked function on the heap
of its caller by including in the representation of an object all the
field paths that reach it and start at a cutpoint.

DEFINITION 3.3 (CUTPOINT-ANCHORED PATHS). Acutpoint-
anchored path α = 〈cpl, δ〉 ∈ CPLbsp × ∆ for a functionp is a
cutpoint-label for function p and a (possibly empty) sequence of
fields.

For example, at the memory state after the execution ofreverse’s

body, the cutpoint-anchored patĥ{h.n.n.n}.n is aliased with the
access pathret .n.n. From this information, our semantics can in-
fer that in themain function, at the state after the invocation of
reverse, z.n.n.n.n is aliased withy.n.n.

Technically, during the invocation of a function, an object is rep-
resented by the access paths and cutpoint-anchored paths that point-
to it.

DEFINITION 3.4 (GENERALIZED ACCESS PATHS). A gener-
alized access path for a functionp is either an access path ofp
or a cutpoint-anchored path ofp. GAccPathp denotes the set of
all access paths of functionp. GAccPath denotes the union of all
access paths of all functions in a program.

When there is no risk of confusion, we abbreviate a generalized
access path of the form〈r, ε〉 by r. Note thatr can be either a
variable, or a cutpoint-label.

REMARK 3.5. Cutpoint-labels isolate the information about the
part of the heap that a function cannot access, to thesharing pat-
ternof the cutpoints, i.e., to the set of access paths that—at the entry
to the function—point-to a cutpoint. Furthermore, the isolation is
achieved in a parametric way: although a cutpoint-label expresses
the fact that an object is also pointed-to by a pending access path,
it is described in terms of the invoked function’s formal parame-
ters. This allows us to infer the meaning of a cutpoint-label in a
context-independent way.

REMARK 3.6. Note that because of the “garbage-collecting na-
ture” of storeless semantics, there is a non-trivial technical dif-
ficulty in obtaining a local semantics for the storeless model. If
a garbage-collection scan was to collect the heap using only the
procedure’s local variables as the roots, then elements would be
garbage collected that are accessible in the global state; adding the
cutpoint-labels to the set of “roots” prevent this potential source of
unsoundness.

4. THE LOCALIZED-HEAP STORELESS
SEMANTICS

In this section, we defineLSL, the Localized-heap Store-Less
semantics. The semantics is a natural semantics and, as before,
tracks only pointer values.

To define the semantics, we use the function·.·, defined in Fig. 9.
It is used as an infix operator. The applicationα.δ concatenates
the sequence of field identifiersδ to α. We say that a generalized
access pathα is aprefixof a generalized access pathβ, denoted by
α ≤ β, when there is a field pathδ ∈ ∆, such thatβ = α.δ. We
say thatα is aproper prefixof β, denoted byα < β, whenδ �= ε.
The function·.· is lifted to handle sets of access paths and sets of
sequences of field identifiers.

In addition, we make use of theflat functional, well-known from
functional programming.flat M returns the set of all elements of

M , if M is a set of sets. Formally,flat M
def
= {x | ∃A ∈ M :

x ∈ A}.

r ∈ Rootp = Vp ∪ CPLbsp

α, β ∈ GAccPathp = Rootp × ∆
o ∈ Obj p

L = 2GAccPathp Objects
A,Ap ∈ Heapp

L = 2Obj
p
L Heaps

σL ∈ Σp
L = 2CPLbsp × Heapp

L Memory state

Figure 8: Semantic domains of memory states for function p.
We use the syntactic domains Vp, CPLbsp, and GAccPathp as
semantic domains, too (and use italics font to denote a seman-
tics value.)

4.1 Memory States
In this section, we define the representation of memory states in

LSL. Traditionally, a storeless semantics represents the heap by an
equivalence relation over a set of access paths, where equivalence
classes (implicitly) represent allocated objects. For readability, we
use the equivalence classes directly.

A memory statefor a functionp is a pair〈CPLp, Ap〉 of a set of
cutpoint-labels, (denoted byCPLp) and a heap (denoted byAp).
A heap is a finite (but unbounded) set of objects. An object (de-
noted byo) is described by a (possibly infinite) set ofgeneralized
access paths. Fig. 8 gives the semantic domains used inLSL for a
memory state of a functionp.

A memory state〈CPLp, Ap〉 at a given point in an execution is
composed of the labels of all the cutpoints of the current invocation
(CPLp) and a representation of the heap (Ap) at that the point in
the execution. To exclude states that cannot arise in any program,
we now define the notion ofadmissible states.

DEFINITION 4.1 (ADMISSIBLE MEMORY STATES). A memory
state〈CPLp, Ap〉 for a functionp at a given point in an execution
is admissible iff (i) A generalized access path points-to (at most)
one object, i.e.,∀o, o′ ∈ Ap if o �= o′, theno ∩ o′ = ∅; (ii) A
is right-regular, i.e.,∀o1, o2 ∈ Ap if α, β ∈ o1 and α.δ ∈ o2

thenβ.δ ∈ o2; (iii) Ap is prefix-closed, i.e., ifα.f ∈ flat Ap, then
α ∈ flat Ap; and (iv) a root of every access path in the description
of any object is either a local variable ofp or a label of one of the
cutpoints, i.e., if〈r, δ〉 ∈ flat Ap then eitherr ∈ Vp or r ∈ CPLp;
(v) ∅ �∈ A; (vi) CPLp satisfies the following requirements: (a) the
cutpoint-labels inCPLp are mutually disjoint, (b)CPLp is right-
regular (but not necessarily-prefix closed), (c)∅ �∈ CPLp.

The first three conditions are standard in storeless semantics.
The fourth condition limits the set of cutpoint-anchored paths that
are tracked during an invocation to be rooted at a cutpoint of the in-
vocation. The fifth condition is because we only represent objects
that are pointed-to by a current or a pending access path. The sixth
requirement captures the fact that the set of cutpoints is actually a
subset of the objects in the heap when the function is invoked.

BecauseLSL preserves admissibility of states (see [17]), in the
sequel, whenever we refer to anLSL state, we mean anadmissible
LSL state.

It is possible to extract aliasing relationships from the sets of
generalized access paths that describe the objects in a heap, and
in particular to observe the heap structure as follows: a current
variablex points-toan objecto iff the access path〈x, ε〉 is in o.
Similarly, cutpoint-labelcpl labelsobjecto iff 〈cpl, ε〉 is in o. The
field f of an objecto1 points-toobjecto2 iff for every generalized
access path〈r, δ〉 in o1, the generalized access path〈r, δf〉 is in
o2. A generalized access pathα points-to(resp.passes through) an
objecto, if α ∈ o (resp.∃β < α such thatβ ∈ o). An objecto is

reachablefrom a variablex, if there exists a field pathδ ∈ ∆ such
that〈x, δ〉 ∈ o.

Example. The heap of the running example at the state in which
reverse is invoked is shown in the first row in the second col-
umn of Fig. 6 (labeledAc). It shows eight sets of generalized ac-
cess paths. Each set represents one allocated list-element. AtAc,
x.n.n.nandz.n.n.npoint-to the same object. The set of cutpoint-
labels at the call site is empty. This is always the case for the main
function. The fourth element inx’s list is a cutpoint for the invo-
cation ofreverse: it is reachable from an actual parameter (its
representation includesx.n.n.n) and by a field of an object that
is not passed to the invoked function (then-field of the third ob-
ject inz’s list). The heap at the beginning ofreverse (shown in
Fig. 6, labeled byAe) differs fromAc in three ways: (i) there are
only five objects in the heap; (ii) the set of cutpoint-labels contains

̂{h.n.n.n}, which labels the fourth element in the list; and (iii) ob-
jects are represented in terms of the generalized access paths that

start either withh or with ̂{h.n.n.n}.

4.2 Inference Rules
The meaning of statements is described by a transition relation

L�⊆ (σL×stms)×σL. We give axioms for assignments and an in-
ference rule for procedure calls in Fig. 10 and Fig. 11, respectively.
All other statements are handled in the standard way [11]. To sim-
plify notation, we assumeA with a certain index (resp. prime) to
be the heap component of a stateσL with the same index (resp.
prime). We use the same convention for indexed (or primed) ver-
sions ofCPLand a state’s cutpoint-labels component.

4.2.1 Helper Functions
To define the inference rules, we use the following functions:

[·]·, rem(·, ·) andadd(·, ·), which are defined in Fig. 9. We usea as
a metavariable ranging over sets of generalized access paths, which
are not necessarily objects, whereaso always stands for objects.

The function[α]A returns the object thatα points-to in heapA.
Whenα does not point-to any object,[α]A returns the empty set
(which by definition never describes an object pointed-to by a cur-
rent, or even a pending, access path).

The functionrem takes as its arguments a heapA and a set of
generalized access pathsa. It removes from the description of ev-
ery object in heapA all the access paths that have a prefix ina.
Wheneverrem removes all the (generalized) access paths from the
description of an object, that object is removed from the description
of the heap. The functionadd(A, a,α) yields a modified version
of heapA, where to every objecto ∈ A reachable fromα by fol-
lowing some field pathδ ∈ ∆, the generalized access pathsa.δ are
added.

In addition, we make use ofmap() , another well known func-
tional from functional programming. The functionalmap(f) M
appliesf to every element ofM and returns the resulting set. For-

mally, map(f) M
def
= {f(x) | x ∈ M}.

4.2.2 Atomic Statements
Theaxiomsfor atomic statements are given in Fig. 10. We sim-

plify the semantics by making the same assumptions as in Sec. 2.3.
Assigningnull to a variablex does not modify the link struc-

ture of the heap. We only need to eliminate all the access paths that
start withx, using therem function.

The semantics for the assignmentx = y copies the value of the
variabley into x by adding an access path〈x, δ〉 to any objecto
that can be reached fromy by following a field pathδ, i.e., 〈y, δ〉
points-too. This is accomplished by applyingadd to the given

. : GAccPath × ∆ → GAccPath s.t.

〈r, δ〉.δ′ def
= 〈r, δδ′〉

. : 2GAccPath × ∆ → 2GAccPath s.t.

a.δ
def
= {α.δ | α ∈ a}

. : 2GAccPath × 2∆ → 2GAccPaths.t.

a.D
def
= {α.δ | α ∈ a, δ ∈ D}

[] : GAccPath × HeapL → Obj L s.t.

[α]A
def
= {β ∈ a | a ∈ A,α ∈ a}

rem : HeapL × 2GAccPath → HeapL s.t.

rem(A, a)
def
= (map(λo.o \ a.∆) A) \ {∅}

add : HeapL × 2GAccPath × GAccPath → HeapL s.t.

add(A, a, α)
def
= map(λo. o ∪ a.{δ ∈ ∆ | α.δ ∈ o}) A

Figure 9: Helper functions.

〈x = null, 〈CPL, A〉〉 L� 〈CPL, rem(A, {x})〉
〈x = y, 〈CPL, A〉〉 L� 〈CPL, add(A, {x}, y)〉
〈x = y.f, 〈CPL, A〉〉 L� 〈CPL, add(A, {x}, y.f)〉 (1)

〈x.f = null, 〈CPL, A〉〉 L� 〈CPL, rem(A, [x]A.f)〉 (2)

〈x.f = y, 〈CPL, A〉〉 L� 〈CPL, add(A, [x]A.f, y)〉 (2)

〈x = alloc t, 〈CPL, A〉〉 L� 〈CPL, A ∪ {{x}}〉

Figure 10: Axioms for atomic statements in the local heap se-
mantics. Note that the set of cutpoint-labels is not changed.
The side-conditions are: (1) y ∈ flat A and (2) x ∈ flat A.
The side-condition x ∈ flat A (resp. y ∈ flat A) means that x’s
(resp. y) value is not null.

heap, the singleton set{x}, and the access pathy.
The rule for field dereferencex = y.f is similar. It adds the

access path〈x, δ〉 to any object that can be reached fromy by fol-
lowing field f, and then continuing with field pathδ. Note, how-
ever, that the rule can be applied only ify points-to an object, i.e.,
the semantics checks that a null-dereference is not performed.

A destructive updatex.f = null (potentially) modifies the
link structure of the heap. Thus, everygeneralizedaccess path that
has a prefix aliased with〈x, f〉 is removed from the description of
every object in the heap. Note, that[x]A returns all the access paths
that are aliased withx. Concatenating[x]A with f returns the set
of prefixes of affected access paths. Again, the rule can be applied
only if x points-to an object.

An assignmentx.f = y also has a (potential) effect on all the
access paths that are aliased withx. After this assignment, any
objecto that can be reached by following the field pathδ from y,
i.e., 〈y, δ〉 ∈ o, is also reachable by traversing some (generalized)
access path aliased withx, followed by anf-field, and continuing
with δ. As this is a place where cycles can be created,add does
not necessarily return a right-regular heap. Therefore we apply the

operator̄·. Ā is defined to be the set of equivalence classes obtained
from the least right-regular, prefix-closed, equivalence relation that
is a superset of the equivalence relation induced byA.3 Note that
this definition may only add access paths to the description of ex-
isting objects.

The (deterministic) semantics of memory allocationx = alloc
t adds a new object that is described by{x} to the heap. Note that
this definition (implicitly) initializes the fields of the new object to
null.

4.2.3 Function Calls
The inference rulefor function calls is defined in Fig. 11. The

rule defines the program stateσr
L that results from an invocation

y=p(x1, . . . , xk) at memory stateσc
L, assuming that the execu-

tion of the body ofp at memory stateσe
L results in memory state

σx
L. The heapsAc and Ar are described by sets of generalized

access paths starting at the caller’s variables and cutpoint-labels,
whereas the heapsAe andAx are described by sets of generalized
access paths that start at the callee’s formal parameters, cutpoint-
labels, and return variable. The rule provides the means to reconcile
the different representations.

The rule uses the functionsCall
y=p(x1,... ,xk)
q andRet

y=p(x1,... ,xk)
q ,

which are parameterized for each call statement in the program.
Call

y=p(x1,... ,xk)
q computes the memory stateσe

L that results at
the entry ofp wheny = p(x1, . . . , xk) is invoked byq in mem-
ory stateσc

L. The caller’s memory state after the invocation is re-
stored by the functionRet

y=p(x1,... ,xk)
q . This function computes

the memory state of the caller at the return-site (σr
L) according

to q’s memory state at the call-site (σc
L) andp’s memory state at

the exit-site (σx
L). In the rest of this section we describe the rule

for an arbitrary call statementy = p(x1, . . . , xk) by an arbitrary
functionq. The rule utilizes additional helper functions, defined in
Fig. 12, which we gradually explain.

The main idea behind the rule is to utilize the fact that a function
cannot modify objects that are not in its local-heap (i.e., in the part
of the heap that isnot reachable from any actual parameter when
the function is invoked). In particular, becauseLSL describes ob-
jects in terms of the (generalized) access paths that point-to them,
these “inaccessible” objects have the same description before and
after the call. Thus, only the description of the objects in the func-
tion’s local-heap (i.e., in the part of the heap that the function can
access) is (possibly) updated. The update is carried out using the
cutpoints of the invocation.4 In essence, the semantics freezes the
initial descriptions of the cutpoints and arranges for them to persist
throughout the execution of the called function. This sets up a re-
lation between values on entry to values on exit. At the return, the
frozen information is used to update the description of objects in
the called function’s local-heap via an operation that is (roughly)
similar to a relational join [3]. (The operation is not a “pure” rela-
tional join because of some name adjustments that are needed due
to the different representation of objects by the caller and by the
callee.)

To find which objects are in the local-heap of the called func-
tion, i.e., reachable from the actual parameters (x1, . . . , xk), we
first compute the set of objects that arepointed-toby p’s actual
parameters (Oargs

c). Then, the auxiliary functionRObjsfinds the
part of the caller’s heap (Ac) that is reachable from these objects
(Opassed

c).
The description of the objects after the call should account for

3The operator̄· is similar to theρrstc operator in [6].
4The same mechanism is used to compute the description of objects
that the callee allocates.

Call
y=p(x1,... ,xk)
q : Σq

L → Σp
L s.t .

Call
y=p(x1,... ,xk)
q (〈CPLc, Ac〉) def

=
Let

�

����������
���������

Oargs
c = {[xi]Ac | 1 ≤ i ≤ k, [xi]Ac �= ∅}

Opassed
c = RObjs(Ac) Oargs

c

Ocp
c = CPObjsq(〈CPLc, Ac〉) (Oargs

c , Opassed
c)

bindargs = λo ∈ Oargs
c .{〈hi, ε〉 | 1 ≤ i ≤ k, xi ∈ o}

bindcp = λo ∈ Ocp
c .{〈sub(bindargs) o, ε〉}

bindcall = λo ∈ Oargs
c ∪ Ocp

c .

�
bindargs(o) o ∈ Oargs

c

bindcp(o) o ∈ Ocp
c

in
〈map(sub(bindargs)) Ocp

c , map(sub(bindcall)) Opassed
c 〉

Ret
y=p(x1,... ,xk)
q : Σq

L × Σp
L → Σq

L s.t .

Ret
y=p(x1,... ,xk)
q (〈CPLc, Ac〉, 〈CPLx, Ax〉) def

=
Let
�
bind ret = λa ∈ range(bindcall) ∪ {{〈ret , ε〉}}.� {〈y, ε〉} a = {〈ret , ε〉}

Bypass(Opassed
c) ◦ bind−1

call (a) otherwise
in
〈CPLc, (Ac \ Opassed

c) ∪ map(sub(bind ret)) Ax〉

〈body ofp, σe
L〉 L� σx

L

〈y = p(x1, . . . , xk), σc
L〉 L� σr

L

where

σe
L = Cally=p(x1,... ,xk)

q (σc
L)

σr
L = Rety=p(x1,... ,xk)

q (σc
L, σx

L)

Figure 11: The inference rule for function calls in LSL. The
rule is given for an arbitrary call statement y = p(x1, . . . , xk)
by an arbitrary function q. We assume that the formal param-
eters of p are h1, . . . , hk.

the mutations (destructive updates) of the heap performed by the
callee. However, because the invoked function cannot modify ob-
jects that it cannot access, it can only modify fields of objects in
Opassed

c . Thus, to compute the (possibly) updated description of
objects inOpassed

c (as well as of objects that the callee allocates) it
is sufficient to have a description of every object inOpassed

c (and
of every object allocated by the callee) comprised of the (general-
ized) access paths that start at objects that separateOpassed

c from
the rest of the caller’s heap: When the function returns, we just re-
place any (generalized) access paths〈rp, δp〉 in the description of
every object in the heap of the callee (Ax) that start at a “separating
object”o′, by access paths of the caller〈rq, δqδp〉 such that〈rq, δq〉
points-too′, but does not pass throughOpassed

c (and thus cannot be
modified). Technically, this is done as described below.

The auxiliary functionCPObjsq (cf. Fig. 12) determines the
cutpoints for this function invocation (Ocp

c). Cutpoints are the ob-
jects that “separate”Opassed

c from the rest of the caller’s heap. For
expository reasons, we do not want to consider objects that are
pointed-to by actual parameters as cutpoints. Thus, the function
CPObjsq , which is passed the caller’s memory state as well as the
previously computedOargs

c andOpassed
c , considers only objects in

Odeep = Opassed
c \ Oargs

c as possible cutpoints. Following the in-
tuition of cutpoints as “separating objects”, an objecto ∈ Odeep is

RObjs: HeapL → (2ObjL → 2ObjL) s.t.

RObjs(A) O
def
= {o ∈ A | o′ ∈ O, δ ∈ ∆, o′.δ ⊆ o}

Bypass : 2ObjL → (Obj L → 2GAccPath) s.t.

Bypass(O) o
def
= {〈r, δ〉 ∈ o | ∀δ′ < δ. 〈r, δ′〉 �∈ flat O}

sub : (2GAccPath → 2GAccPath) → (ObjL → 2GAccPath)
s.t.

sub(bind) o
def
= flat

�
bind(a).δ

���� a ∈ dom(bind),
δ ∈ ∆, a.δ ⊆ o

�

CPObjsq : Σq
L → (2Obj

q
L × 2Obj

q
L → 2Obj

q
L) s.t.

CPObjsq(〈CPLc, Ac〉) (Oargs
c , Opassed

c)
def
=

Let
Odeep = Opassed

c \ Oargs
c

Ovars = {[〈x, ε〉]Ac ∈ Odeep | x ∈ Vq}
Ofld =

�
o ∈ Odeep

���� ∃o′ ∈ Ac \ Opassed
c ,

∃f ∈ FieldId , o′.f ⊆ o

�
Ocpl = {[〈cpl , ε〉]Ac ∈ Odeep | cpl ∈ CPLc}

in
Ovars ∪ Ocpl ∪ Ofld

Figure 12: Helper functions for the function-call rule. The
function CPObjsq is parameterized for every function q in the
program. Recall that Vq is the set of q’s local variables.

qualified as a cutpoint if (and only if) one of the following holds:

• o is pointed-to by a local variable of the caller (Ovars), or

• o is pointed-to by an object in the part of the caller’s heap
that is not passed to the function (Ofld), or

• o separates the heap of thecaller from the heap of one of
the pending calls, i.e.,o is a cutpoint of the invocation of the
caller (Ocpl).

Back in Fig. 11 we define several binding mappings to bridge the
gap between the two different representations of objects (in terms
of access paths of the caller and in terms of access paths of the
callee). The functionbindargs maps objects pointed-to by actual
parameters to the set of “trivial” access paths that are made up of
the corresponding formal parameters. The functionbindcp maps
every cutpoint (in the caller representation) to the set of access
paths that start with a formal parameter of the caller and point-to
that cutpoint at the entry to the function, i.e.,bindcp maps a cut-
point to its label (see Sec. 3). To compute the label of a cutpoint
o, we applysub(bindargs). The latter denotes a function that re-
places every access path that starts with an actual parameter〈xi, δ〉
in the representation ofo by an access path〈hi, δ〉 that starts with
the corresponding formal parameter. (sub is defined in Fig. 12.)
Thebindcall combines the previous two mappings trivially as they
have disjoint domains.

Having defined these mapping functions, computing the mem-
ory state ofp in which its body will be evaluated (i.e., the descrip-
tion of the heap at the function entry) is straightforward. The set
of cutpoint-labels (CPLe) is computed by applyingbindcp to ev-
ery cutpoint. The heap component (Ae) is constructed by applying
bindcall to every object inOpassed

c . Note that in the resulting de-
scription, objects are described by the set of (generalized) access
paths that point-to them and start either at a formal parameter or at
a cutpoint object.

To handle the return of functionp, we use an additional binding,
bind ret . This mapping is the inverse ofbindcall (hence getting
back to the caller’s representation of the object) composed with
the functionBypass(Opassed

c), which filters out generalized access
paths (of the caller) thatpass throughthe part of the heap thatp
had access to (Opassed

c). In addition, it also takes care of replacing
access paths starting with special variableret with the same access
paths starting with result variabley. Note that applyingbindret is
well defined becauseCPLx andCPLe are equal (the callee cannot
modify the set of objects that separate its own local-heap from the
local-heap of of some pending call5).

The cutpoint-labels component of the state after the return of
p is the same as before the invocation (CPLc) because the callee
(p) cannot modify the set of objects that separate the heap of its
caller (q) from the heap of some other (earlier) pending-call. The
new heap is calledAr. It is derived by removing from the heap
at the call-site the passed objects (Opassed

c), plugging in the heap
that results from evaluatingp’s body (Ax), and substituting the de-
scription of all the objects by applyingsub(bindret) to every object
in Ax.

Example. Applying the function-call rule for the invocation of
reverse in our running example results in the following sets and
mappings:

Oargs
c = {{x}}

Opassed
c = {{x}, {x.n}, {x.n.n}, {x.n.n.n, z.n.n.n},

{x.n.n.n.n, z.n.n.n.n}}
Ocp

c = {z.n.n.n, x.n.n.n}
bindargs = {x} �→ {h}
bindcp = {z.n.n.n, x.n.n.n} �→ { ̂{h.n.n.n}}
bindret = {{x} �→ {h}, { ̂{h.n.n.n}} �→ {z.n.n.n}, {ret} �→ {y}}

In particular, the fourth element inx’s list is a cutpoint for the in-

vocation ofreverse (see Sec. 4.1) and its label iŝ{h.n.n.n}.
Thus, when the execution ofreverse’s body starts, the cutpoint
is represented by the following set of (generalized) access paths:

{h.n.n.n, ̂{h.n.n.n}}. When the execution of the function body
ends, the cutpoint-anchored paths in the representation of every
object in Ax (see Fig. 6) are replaced by access paths that start
with z.n.n.n, the only access path that points-to the cutpoint at the
call-site andbypassesthe objects that were passed toreverse.

For example, the cutpoint-anchored patĥ{h.n.n.n}.n in the rep-
resentation of the third element in the returned list is replaced by
z.n.n.n.n.

4.3 Properties of the Semantics
The only means by which a program can observe a state is by ac-

cess paths. In particular, the program cannot refer to the cutpoint-
labels component of the state. To state the theorems, we need
some preliminary definitions about access-path equality and ob-
servational equivalence. We use the same simplifying notational
conventions as in Sec. 4.2. Note that in both semantics an access
path is equal tonull when it has a prefix which is equal tonull.

DEFINITION 4.2 (ACCESS PATH EQUALITY). Access pathsα
andβ are equal in a given stateσL, denoted by[[α = β]]L(σL), if
∀a ∈ A.α ∈ a ⇐⇒ β ∈ a. An access pathα is equal to null in
stateσL, denoted by[[α = null]]L(σL), if α �∈ flat A.

5Note that in any transition〈σL, st〉 L� σ′
L, the cutpoint-labels

component inσL andσ′
L is the same.

DEFINITION 4.3 (OBSERVATIONAL EQUIVALENCE). Letp be
a function. The statesσL ∈ Σp

L andσG ∈ Σp
G are observationally

equivalent if for all α, β, γ ∈ AccPathp,

(i) [[α = β]]L(σL) ⇔ [[α = β]]G(σG), and

(ii) [[γ = null]]L(σL) ⇔ [[γ = null]]G(σG).

4.3.1 Semantic Equivalence
The following theorem is the main theorem in the paper. It

states thatLSL is equivalent toGSB, in the sense that both be-
have equivalently w.r.t. termination, and that execution of state-
ments preserves observational equivalence. A proof of the theorem
is given in [17].

THEOREM 4.4 (EQUIVALENCE). Letp be a function. LetσL ∈
Σp

L andσG ∈ Σp
G be observationally equivalent states. Letst be

an arbitrary statement inp. The following holds:

〈st , σL〉 L� σ′
L ⇐⇒ 〈st , σG〉 G� σ′

G.

Furthermore,σ′
L andσ′

G are observationally equivalent.

The following theorem states thatLSL can be used to: (i) verify
data-structure invariants that are expressed by access-path equali-
ties at a program point; and (ii) assert the absence ofnull-valued
pointer dereferences. Formally, a property is an invariant at a (la-
beled) statement if is satisfied in any memory-state that occurs just
before the (labeled) statement is executed.

COROLLARY 4.5. Let P be a program,p a function ,lb a pro-
gram point inp. For any α, β ∈ AccPathp, [[α = β]]L is an
invariant ofP at lb iff [[α = β]]G is an invariant ofP at lb.

The following theorem states thatLSL can detect memory leaks6

without investigating reachability fromrootsof pending access paths.
A memory leak can occur only when a variable or a field is assigned
null. The “leaked objects” are the ones that are not pointed-to
only by suffixes of the nullified variable (or field).

COROLLARY 4.6. A memory leak can occur only when a vari-
able or a field is assignednull. Furthermore,

• Executing a statementx = null in a memory state〈CPL, A〉
leaks an objecto iff o ⊆ x.∆.

• Executing a statementx.f = null in a memory state〈CPL, A〉
leaks an objecto iff o ⊆ [〈x, ε〉]A.f .∆.

Both Cor. 4.5 and Cor. 4.6 are corollaries of The. 4.4. In [17]
we define a language of assertions over access paths and show that
LSL preserves partial and total correctness of assertions expressed
in this language.

6By a memory leak we mean an object that is not pointed-to by any
access path; i.e., neither by an access path of the current call nor by
one of a pending call.

5. SHAPE ANALYSIS
In this section, we use theLSL semantics to automatically com-

pute a safe approximation to the set of possible program states us-
ing an iterative abstract-interpretation algorithm. The main idea
is that every abstract state finitely represents a potentially infinite
number of concreteLSL states. The program is interpreted ac-

cording to an abstract semantics (
L�

�) that over-approximates the

concrete transition relation (
L�). Termination of the the abstract-

interpretation algorithm is guaranteed by the finiteness of the set of
abstract states.

The algorithm isconservative, it describes any memory state that
can arise (at any program point) in any execution. This means that
we can conservatively determine properties of the program such
as the absence of null-dereferences, absence of garbage, and va-
lidity of invariants by checking these properties on the (generated)
abstract states. However, because the description isconservative,
the algorithm might represent concrete states that are infeasible ac-
cording to the concrete semantics. This leads to incompleteness in
the sense that we may fail to establish assertions that hold for every
execution.

We present a new interprocedural shape-analysis algorithm for
programs that manipulate singly-linked lists. The algorithm finds
a finite description of all the memory states that arise during pro-
gram execution. Useful information regarding the program’s be-
havior can be extracted from the computed descriptors. For exam-
ple, an analysis of the running example successfully verifies that
the program does not reference null; does not create garbage; and
that whenreverse returns, the variablesz andy point-to acyclic
linked lists with a shared tail.

The algorithm is presented in terms of the3-valued-logic frame-
work for program analysis of [20]. Technically,3-valued logical
structures are used to represent unbounded memory states. The
tracked properties are encoded as predicates.

In this paper, we focus on the abstraction ofLSLmemory states.
Due to lack of space, we do not give the full details of the analyses.
In particular, the abstract transfer functions are not defined. Instead,
we specify the analysis using thebest abstract transformer[4]. A
detailed description of the shape-analysis algorithm is given in [19].

5.1 RepresentingLSL Memory States by 3-Valued
Logical Structures

Kleene’s3-valued logic is an extension of ordinary2-valued logic
with the special value of1

2
(unknown) for cases in which predicates

could have either value,1 (true) or0 (false). We say that0 and1
aredefinitevalues, whereas1

2
is an indefinitevalue. The informa-

tion partial order on the set{0, 1
2
, 1} is defined as0 � 1

2
� 1, and

0 � 1 = 1
2
.

A 3-valued logical structureS is comprised of a set of individu-
als (nodes) called a universe, denoted byUS , and an interpretation
over that universe for a (finite) set of predicate symbols. The inter-
pretation of a predicate symbolp in S is denoted bypS . For every
predicatep of arity k, pS is a functionpS : (US)k → {0, 1

2
, 1}.

A 2-valued structure is a3-valued structure with an interpretation
limited to {0, 1}. The set of2-valuedlogical structure is denoted
by 2-Struct, and the set of3-valuedlogical structures is denoted by
3-Struct.

To establish the Galois connection between the set of program
states (ordered by set inclusion) and3-Struct, it suffices to show
a representation functionthat maps a program state to its “most-
precise representation” in3-Struct(e.g., see [14]). We define the
function βshape: ΣL → 3-Struct, which maps a local-heap to its
most precise representation as a3-valued logical structure.βshapeis

to2VLS: ΣL → 2-Structs.t.
to2VLS(〈CPL, A〉) = S where US = A ∪ CPL and

isListS(v) = v ∈ A
isLabelS(v) = v ∈ CPL
xS(v) = v ∈ A andx ∈ v
nS(v1, v2) = v1 ∈ A, v2 ∈ A andv1.n ⊆ v2

rS
x (v1) = ∃α ∈ v1 s.t. 〈x, ε〉 ≤ α

ilsS(v) = ∃α.n ∈ v, β.n ∈ v s.t. [α]A �= [β]A
cS(v) = ∃α ∈ v, β ∈ v s.t. α < β
eqS(v1, v2) = v1 = v2

lblS(v1, v2) = v1 ∈ CPL, v2 ∈ A and〈v1, ε〉 ∈ v2

cpS(v) = ∃r ∈ CPL s.t. 〈r, ε〉 ∈ v
rS
cp(v) = ∃r ∈ CPL, δ ∈ ∆ s.t. 〈r, δ〉 ∈ v

Figure 13: The function to2VLS maps states in ΣL to 2-valued
logical structures.

Predicate Intended Meaning
isList(v) Is v a list element?
isLabel(v) Is v a cutpoint-label?

x(v) Is v pointed-to by a (current) variablex?
n(v1, v2) Does then-field of v1 point-tov2?
rx (v) Is v2 reachable from (current) variablex using

n-fields?
ils(v) Is v locally shared? i.e., isv pointed-to by more

than onen-fields of objects in thelocal-heap?
c(v) Doesv reside on a directed cycle ofn-fields?

eq(v1, v2) Are v1 andv2 the same object or cutpoint-label?

lbl(v1, v2) Is list elementv2 labeled by cutpoint-labelv1?
cp(v) Is list elementv a cutpoint?
rcp(v) Is the list elementv reachable from a cutpoint

usingn-fields?

Table 1: The predicates used to represent states in ΣL. There
are separate predicates x and rx for every program variable x.

a composition of two functions: (i)to2VLS: ΣL → 2-Struct, which
maps a local-heapσL to an unbounded2-valuedlogical structure
S, and (ii)canonical abstraction: 2-Struct→ 3-Structwhich con-
servatively boundsS (defined as usual in [20]).

5.1.1 Representing a Local-Heap by a2-Valued Log-
ical Structure

The functionto2VLS, defined in Fig. 13, maps a local heapσL =
〈CPL, A〉 to a 2-valuedlogical structureS. Every objecto ∈ A
and every cutpoint-labelcpl ∈ CPL is represented by a unique
node inUS . Tracked properties of the memory state are recorded
by the predicates given in Tab. 1. We denote the set of predicates
used to represent a memory state byP .

2-valued logical structures are depicted as directed graphs. A
directed edge between nodesu1 andu2 that is labeled with binary
predicate symbolp indicates thatpS(u1, u2) = 1. Also, for a unary
predicate symbolp, we drawp inside a nodeu whenpS(u) = 1;
conversely, whenpS(u) = 0 we do not drawp in u.

We explain the predicates’ intended meanings through an exam-
ple. In the example, we applyto2VLSto σe

L, the memory state
at the entry point ofreverse (shown in Fig. 6). The resulting
2-valued logical structure, denoted bySe, is depicted in Fig. 14.

The universe ofSe contains six nodes. The nodesu0–u3 rep-
resent the list elements. The nodeu6 represents the cutpoint-label

̂{h.n.n.n}.

• The predicatesisList andisLabel record whether a node repre-
sents a list element or a cutpoint. We draw nodesu that repre-
sent list elements, i.e.,isListS(u) = 1, as rectangles, e.g., nodes
u0–u3; and we draw nodesv that represent cutpoint-labels, i.e.,
isLabelS(v) = 1, as circles, e.g., nodeu6.

• The predicatesh, n, rh , ils, c, andeq are an adaptation to local-
heaps of the standard predicates used in the analysis of singly
linked lists [13,20].

- For each pointer variableh, there is a unary predicateh. The
value ofhS(u) is 1 if variableh points-to the list element rep-
resented byu. The value of theh-predicate is depicted via an
edge from the predicate nameh to the node that represents the
list element thath points-to.

- The pointed-to-by-a-field relation between list elements is rep-
resented by the binary predicaten, i.e.,nS(v1, v2) = 1 if the
n-field of the list element represented byv1 points-to the list
element represented byv2.

- The unary predicaterh holds for list elements that are reach-
able by an access path that starts at a local variableh of the
currentcall.

- The unary predicateils captureslocal-heapsharing informa-
tion. The predicate has the value1 at a nodeu that represents
a list element that is pointed-to by then-fields of two or more
list elements in thelocal heap. Note that the predicate records
only local sharing. In particular,ilsSe(u2) = 0, although in a
“global-view” of the heap, the list element represented byu2

is then-successor of two list elements: one in the local heap
(represented byu1b) and one not in the local heap (the third
element in the list pointed-to byz).

- The unary predicatec holds at a node that resides on a cycle of
n-fields.

- The binary predicateeq records the equality relation. It is not
drawn in the pictures.

• The predicateslbl , cp, andrcp record information that is special
for the abstraction of anLSL state.

- The binary predicatelbl relates a node that represents a cutpoint-
label to the node that represents the corresponding cutpoint.
For example,lblS(u6, u2) = 1, becauseu6 represents the la-
bel of the cutpoint represented byu2.

- The unary predicatecp records the property that a list element
is a cutpoint, e.g.,cpSe(u2) = 1 becauseu2 represents the
(only) cutpoint inSe; for all other nodesu, cpSe(u) = 0.

- The unary predicatercp records the property that a list ele-
ment is reachable by a cutpoint-anchored path. For example,
rSe
cp (u2) = 1 andrSe

cp (u3) = 1 because (only)u2 andu3 rep-
resent list elements that can be reached from the cutpoint (by

the cutpoint-anchored paths〈 ̂{h.n.n.n}, ε〉 and〈 ̂{h.n.n.n}, n〉,
respectively). For all other nodesu, rSe

cp (u) = 0.

The predicatescp andrcp are used to record information regard-
ing cutpoint-anchored paths in a similar manner to the wayh andrh
record information regarding access-paths. However, unlike local
variables, the number of cutpoints is unbounded. Thus, we cannot
have a predicate recording the reachable list-elements from every
cutpoint. Instead, we use individuals to represent cutpoint-labels,
and “mark” cutpoint objects with thecp predicate.

〈st, S〉 L�
�

{βshape(σ
′
L) | σL ∈ γ(S), 〈st, σL〉 L� σ′

L}

Figure 16: A specification of the abstract inference rules for
atomic statements.

5.1.2 Canonical Abstraction
The main idea in canonical abstraction is to represent several

list elements (or cutpoint-labels) by a single node, i.e., the map-
ping from list elements and cutpoint-labels to the universe of the
3-valued logical structure is a surjective function, but not neces-
sarily an injective function. A node that represents more than one
list element (or more than one cutpoint-labels), is called asummary
node.

Formally, a3-valuedlogical structureS� is acanonical abstrac-
tion of a 2-valued logical structureS if there exists a surjective

functionf : US → US�

satisfying the following conditions: (i) For
all u1, u2 ∈ US , f(u1) = f(u2) iff for all unary predicatesp ∈ P ,
pS(u1) = pS(u2), and (ii) For all predicatesp ∈ P of arity k and

for all k-tuplesu�
1, u

�
2, . . . , u�

k ∈ US�

,

pS�

(u�
1, u

�
2, . . . , u�

k) =
�

u1,... ,uk∈Us

f(ui)=u
�
i

pS(u1, u2, . . . , uk).

We say that a nodeu� ∈ US�

represents nodeu ∈ U , when
f(u) = u�.

Example. The3-valuedlogical structureS�
e, depicted in Fig. 15

(first row, second column), (conservatively) represents the memory
stateσe

L, represented bySe.
3-valued logical structures are also drawn as directed graphs.

Definite values are drawn as for 2-valued structures. Binary in-
definite predicate values (1

2
) are drawn as dotted directed edges.

Summary nodes are depicted by a double frame.
The universe ofSe contains 6 nodes. The only nodes that have

the same values for all the unary predicates areu1a andu1b. Thus,
the universe ofS�

e contains five nodes. The mappingf : USe →
US�

e induced by the canonical abstraction isf(u0) = u�
0, f(u1a) =

f(u1b) = u�
1, f(u2) = u�

2, f(u3) = u�
3, andf(u6) = u�

6. The
only summary node isu�

1.
We see that any memory state represented byS�

e contains one
cutpoint label (the nodeu�

6 is not a summary node). The cutpoint
is represented byu�

2. This is recorded in two ways: (i) the value

of the predicatelblS
�
e(u�

6, u
�
2) = 1 and (ii)u�

2 represents a list ele-
ment that is labeled, as indicated by the value of the unary predicate

cpS�
e(u�

2) = 1.

5.2 Abstract Interpretation
The specification of the abstract interpretation is given by “ab-

stract” inference rules in the same style as the natural semantics.
The abstract inference rules operate on3-valuedlogical structures.
Fig. 16 and Fig. 17 shows the specification of the abstract inference
rules for atomic statements and function-calls respectively. These
rules are declarative in the style of the best abstract transformer [4]:
every abstract inference rule emulates a corresponding concrete in-
ference rule using represented states .

Example. Fig. 15 shows an application of the function-call infer-
ence rule from Fig. 17 to the running example. The logical struc-
tures are:S�

c, which arises atlbc, the call-site toreverse; S�
e,

h �� u0 :
rh

n �� u1a :
rh

n �� u1b :
rh

n �� u2 : cp,
rh , rcp

n �� u3 :
rh , rcp

��������u6

lbl

�����������

u0 = {h }, u1a = { h.n }, u1b = {h.n.n }, u2 =

�
h.n.n.n,

̂{h.n.n.n}
�

, u3 =

�
h.n.n.n.n,

̂{h.n.n.n}.n

�
,

u6 = ̂{h.n.n.n}

Figure 14: The 2-valued logical structure that results by applying to2VLS to σe
L, the memory state at the entry point of reverse

(σe
L is shown in Fig. 6). We denote this structure by Se.

x �� u�
0 :
rx

n �� u�
1 :
rx

n ��

n
��

u�
2 : ils

rx , rz

n �� u�
3 :

rx , rz

z �� u�
4 :
rz

n �� u�
5 :
rz

n ��
n

��

h �� u�
0 :
rh

n �� u�
1 :
rh

n ��

n
��

u�
2 : cp,

rh , rcp

n �� u�
3 :

rh , rcp

��������u�
6

lbl

��������

S�
c S�

e

x �� u�
0 : rx ,
ry , rz

u�
1 :

ry , rz

n��

n
		

u�
2 : ils
ry , rz

n�� u�
3 :
ry

n�� y��

z �� u�
4 :
rz

n �� u�
5 :
rz

n ��
n

		

h �� u�
0 : rh ,

rret , rcp

u�
1 :

rret , rcp

n��

n
		

u�
2 : rret ,
cp, rcp

n�� u�
3 :

rret

n�� ret��

��������u�
6

lbl

�������

S�
r S�

x

Figure 15: Representative 3-valued logical structures that arise during the analysis of the running example at lbc, the call-site to
reverse (first row, first column); lbe, the entry to reverse (first row, second column); lbx, reverse’s exit point (second row,
second column); and lbr , the return-site from reverse (second row, first column).

which ariseslbe, the entry toreverse; S�
x which arises atlbx,

the exit-point ofreverse; andS�
r , the structurecomputedat the

return-site.
In S�

x, the list pointed-to byret is reversed. As a result,u�
0 is

now reachable from the cutpoint at the exit-site. Therefore, even
though the list-element pointed-to byz is not explicitly represented
in S�

x, the inference rule allows us to conclude that atS�
r, the return-

site’s logical structure,u�
0 becomes reachable fromz. Similarly,u�

3

is no longer reachable fromz. To conclude, definite values of many
of the tracked properties ofz can be established after the function
call returns.

5.3 Discussion
In our abstraction, when a program state is mapped to a2-valued

logical structure, no information is tracked regarding the contents
of their labels. Furthermore, we do not differentiate between differ-
ent cutpoints. This may lead to a significant loss of precision when
multiple cutpoints arise. For example, passing two lists with shared
tails will be handled very conservatively.

Nevertheless, even with this simple abstraction, our abstract do-
main is precise enough to analyze the singly-linked-list-manipulating
programs analyzed in [9, 18] and verify that they do not derefer-
ence null-valued pointers, do not create garbage, and do not create

cyclic lists. Moreover, we can handle programs not handled before
by [9,18]. For example, we can verify that a recursive function that
destructively merges two acyclic lists, returns an acyclic list.

It is straightforward to allow multiple cutpoints for functions
with multiple formal arguments by discriminating cutpoints reach-
able from different formal parameters. This will improve the preci-
sion of handling functions that are passed multiple lists.

6. RELATED WORK
Storeless Semantics. Storeless semantics was first introduced

by Jonkers [10]. The original work does not handle procedure calls.
Intraprocedural storeless semantics is also used in [1] to develop a
logic that allows to express regular properties of unbounded data
structures.

A storeless semantics that handles function-calls is defined in [6].
The semantics is used to develop a may-alias algorithm. In contrast
to LSL, in [6] pending access paths are explicitly represented.

May-Alias Analysis. May-alias algorithms find an upper ap-
proximation for the sets of aliased access paths at every program
point. Deutsch’s interprocedural may-alias algorithm of [7] uses a
storeless representation of the heap. The algorithm is polynomial
and can handle function calls, dynamic memory allocation and de-
structive updates.

〈body ofp,XSp〉 L�
�

XS′
p

〈y = p(x1, . . . , xk), XSq〉 L�
�

XS′
q

where

{Callpq(σ
c
L) | σc

L ∈ γ(XSq)} ⊆ γ(XSp)��
�Retp

q(σ
c
L, σx

L)

������
σc

L ∈ γ(XSq),
σx

L ∈ γ(XS′
p),

compatible(σc
L, σx

L)

	

� ⊆ γ(XS′

q)

Figure 17: A specification of the abstract inference rules
for function calls. The functions Call

y=p(x1,... ,xk)
q and

Ret
y=p(x1,... ,xk)
q are defined in Fig. 11. Note that we apply

Ret
y=p(x1,... ,xk)
q only for compatible pairs of memory states.

Memory states σc
L and σx

L are compatible when the sharing pat-
tern that results from the invocation of p at σc

L matches the de-
scription of the context in σx

L, the state of p at the exit-site. For-
mally, compatible(σc

L, σx
L) ⇐⇒ (CPLe = CPLx ∧ ∀h, h′ ∈

Fp.[[h = h′]]L(σe
L) ⇐⇒ [[h = h′]]L(σx

L) ∧ ∀h ∈
Fp.[[h = null]]L(σe

L) ⇐⇒ [[h = null]]L(σx
L)), where

σe
L = Call

y=p(x1,ldots,xk)
q (σc

L).

LSL provides insight into Deutsch’s work on static may-alias
analyses based on pointer-access paths [7]—in particular, the treat-
ment of variables of pending calls, which is one of the most compli-
cated aspects of [7]. For instance, a surprising aspect of the method
given in [7] is that recursive procedures are handled in a more pre-
cise way than loops. The intuitive reason is that the abstractions
of values of variables in the current procedure is different from the
abstraction used for values of variables in pending procedures. Fur-
thermore, in [17], we show that Deutsch’s algorithm can be seen as
an abstraction of theLSL semantics by we defining a Galois con-
nection between memory states inLSL with the abstract domain
of [7].

Interprocedural Shape Analysis. The original motivation for
our work comes from our attempt to apply interprocedural shape
analysis (e.g., [20]) to heap-manipulating programs in a modular
fashion. In [16, Chap. 6] this objective was achieved, but based
on a weaker technique: (i) a procedure operates on the part of the
heap that is reachable from the actual parameters, where the heap
is considered as anundirectedgraph; and (ii) pending access paths
that point-to objects in the passed part of the heap are represented.
In this paper, the heap is treated as a directed graph and pending
access paths are not represented. In addition, [16] does not handle
recursive procedures.

Interprocedural shape analysis has been studied in [9,18]. In [18],
the main idea is to make the runtime stack an explicit data structure
and abstract it as a linked list. In this method, the entire heap and
run-time stack are represented at every program point. As a result,
the abstraction may lose information about properties of the heap,
for parts of the heap that cannot be affected by the procedure at all.
In [9], procedures are considered as transformers from the (entire)
program heap before the call, to the (entire) program heap after the
call. Every heap-allocated object is represented at every program
point; on the other hand, only the values of the local variables of the
current procedure are represented, which means that the irrelevant
parts of the heap are summarized to a single summary node during
the analysis of an invoked procedure.

A modular interprocedural shape-analysis algorithm is presented
in [2]. A procedure is analyzed only in the part of the heap that is
reachable from its parameters. The algorithm is able to relate the
memory states at the procedure-entry with the memory states at
the procedure-exit by labelingeveryabstract node. However, the
mapping is determined by the sharing within the part of the heap
that is passed to the procedure, and not by the sharing pattern with
the context—which is what is needed.

7. CONCLUSIONS
In this paper, we developLSL, a storeless semantics for lan-

guages with dynamic memory allocation, destructive updating and
procedure calls. Our storeless semantics is unique in that called
procedures are only passedpartsof the heap.

Our main insight is that the side-effects of a procedure invoca-
tion onR-values of pending access paths can be delayed to the pro-
cedure return—even though the memory cells do not have unique
identifiers, e.g., locations. The main idea is to track the effect of
destructive updates on access paths that start with the set of objects
that separate the part of the heap the procedure can reach from the
rest of the heap (objects that we call thecutpointsof the invocation).
A similar observation regarding the uniform effect of a procedure
on pending access paths was made by [5, 12] for pointer analysis.
We believe we are the first ones to use it in semantics.

LSL was designed with its precise and efficient abstractions in
mind: information about the context provided by the rest of the
heap is isolated to the sharing patterns of the cutpoints—which are
expressible in a context-independent manner. An analysis benefits
from the fact that the heap is localized: the behavior of a procedure
only depends on the part of the heap that is reachable from actual
parameters, and on the sharing patterns that create cutpoints. Fur-
thermore, analysis results can be reused for different contexts that
have similar sharing patterns.

Using an abstraction of the non-standard concrete semantics, we
present a new interprocedural shape-analysis algorithm for pro-
grams that manipulate dynamically allocated storage. Our approach
is markedly different from previous works that analyze a function
invocation in the calling context [9, 18]. The new algorithm can
prove properties of programs that were not automatically verified
before, (e.g., to establish that a recursive, destructive merge of two
acyclic singly-linked lists returns an acyclic singly-linked list—
see Fig. 18). In particular, it provides a way to establish proper-
ties with fewer program-specific instrumentation predicates. We
believe that the modular treatment of the heap will allow the im-
plementation of these abstractions to scale better on larger pieces
of code. The approach also provides insights into an existing may-
analysis algorithm [7].

Two design choices were made during the development of the
new shape-analysis algorithm: One is to use a “storeless” seman-
tics. The other is to concentrate on a superset of a program’s foot-
print, based on reachability, rather than the actual footprint. While
the ideas underlying our approach apply also to store-basedseman-
tics, the choice of a storeless semantics was a natural one to make
(see Sec. 1.2). We specified the semantics using an equivalence
relation of pointer access-paths (and not, for example, by logical
structures as done in [20]) because the naming scheme we use for
cutpoints (cutpoint-labels) fits naturally with the explicit manipu-
lation of access paths done in this type of semantics. The decision
to concentrate on a superset of a program’s footprint (inferable via
static analysis), was a pragmatic choice for the present study. In fu-
ture work, we plan to investigate the use of user-supplied assertions
about preserved portions of the heap.

The notion of acutpointseems to be an important concept both
in storeless semantics and in store-based semantics. For instance,
garbage collection of local heaps becomes unsound unless cutpoints
are considered as part of the root set. Our storeless semantics takes
sets of access paths ascutpoint-labels. This provides a context-
independent representation for the cutpoints of the invocation.

In some sense, the approach used in this paper is in the spirit of
local reasoning [8,15], which provides a way to prove properties of
a procedure independent of its calling contexts. In local reasoning,
the “frame rule” allows proofs to be carried out in a local fashion:
the main idea is to partition the heap into disjoint parts and reason
about the parts separately. Our semantics resembles the frame rule
in the sense that the effect of a procedure call on a large heap can
be obtained from its effect on a subheap.

Acknowledgments. We are grateful for the helpful comments of
E. Yahav, G. Yorsh, and the anonymous referees.

8. REFERENCES
[1] M. Bozga, R. Iosif, and Y. Laknech. Storeless semantics and alias

logic. In Proceedings of the 2003 ACM SIGPLAN workshop on
Partial evaluation and semantics-based program manipulation,
pages 55–65. ACM Press, 2003.

[2] S. Chong and R. Rugina. Static analysis of accessed regions in
recursive data structures. InSAS, 2003.

[3] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[4] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. InSymp. on Princ. of Prog. Lang., pages 269–282, New
York, NY, 1979. ACM Press.

[5] A. Deutsch.Operational Models of Programming Languages and
Representations of Relations on Regular Languages with Application
to the Static Determination of Dynamic Aliasing Properties of Data.
PhD thesis, LIX, Ecole Polytechnique, F-91128, Palaiseau, France,
1992.

[6] A. Deutsch. A storeless model for aliasing and its abstractions using
finite representations of right-regular equivalence relations. InIEEE
International Conference on Computer Languages, pages 2–13,
Washington, DC, 1992. IEEE Press.

[7] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In SIGPLAN Conf. on Prog. Lang. Design and Impl.,
pages 230–241, New York, NY, 1994. ACM Press.

[8] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. InSymposium on Principles of Programming
Languages, pages 14–26, 2001.

[9] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach
to interprocedural shape analysis. InStatic Analysis Symposium,
2004.

[10] H.B.M. Jonkers. Abstract storage structures. In de Bakker and van
Vllet, editors,Algorithmic Languages, pages 321–343. IFIP, North
Holland, 1981.

[11] G. Kahn. Natural semantics. In4th Annual Symposium on
Theoretical Aspects of Computer Sciences on STACS 87, pages
22–39. Springer-Verlag, 1987.

[12] W. Landi and B. G. Ryder. A safe approximate algorithm for
interprocedural aliasing. InProceedings of the ACM SIGPLAN 1992
conference on Programming language design and implementation,
pages 235–248. ACM Press, 1992.

[13] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static
analysis to work for verification: A case study. InProc. of the Int.
Symp. on Software Testing and Analysis, pages 26–38, 2000.

[14] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program
Analysis. Springer, 1999.

[15] J. Reynolds. Separation logic: a logic for shared mutable data
structures. InLogic in Computer Science, pages 55–74, 2002.

[16] N. Rinetzky. Interprocedural shape analysis. Master’s thesis,
Technion Israel Institute of Technology, Haifa, Israel, 2001.

[17] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm.
A semantics for procedure local heaps and its abstractions. Tech.
Rep. 1, AVACS, October 2004. Available at “http://www.avacs.org”.

typedef struct List{
struct List* n; int d;

} *L;

L merge(L p, L q) {
L r;
if (p == NULL) return q;
if (q == NULL) return p;
if (p->d < q->d) {
r = merge(p->n,q);
p->n = r;
return p;

} else {
r = merge(p,q->n);
q->n = r;
return q;

}
}

Figure 18: A recursive C procedure that merges two singly
linked lists using destructive updates.

Sll crt(int k) :=
Sll p,q;
int t;
if (k==0) then
ret = null

else
p = alloc Sll;
p.d = k;
t = k-1;
q = crt(t);
p.n = q;
ret = p

fi

Sll app(Sll p,
Sll q) :=

Sll t1,t2;
if (p==null) then
ret = q

else
t1 = p.n;
t2 = app(t1,q);
p.n = t2;
ret = p

fi

(a) (b)

Figure 19: (a) crt creates a list with k elements; (b) app de-
structively appends list q at the tail of list p;

[18] N. Rinetzky and M. Sagiv. Interprocedural shape analysis for
recursive programs. InInt. Conf. on Comp. Construct., pages
133–149, 2001.

[19] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural functional
shape analysis using local heaps. Tech. Rep. 26, Tel Aviv Uni.,
November 2004. Available at “http://www.math.tau.ac.il/∼maon”.

[20] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic.ACM Transactions on Programming Languages and
Systems, 24(3):217–298, 2002.

[21] A. Venet. Automatic analysis of pointer aliasing for untyped
programs.Science of Computer Programming, 35(2):223–248, 1999.

APPENDIX

A. ADDITIONAL CODE
Fig. 18 shows the code for themerge function. Fig. 19 shows

the code for the functionscrt andapp used in the running exam-
ple.

