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ABSTRACT 1. INTRODUCTION

The goal of this work is to develop compile-time algorithms for ~ The long-time research goal of our work is to develop compile-
automatically verifying properties of imperative programs that ma- time algorithms for automatically verifying properties of impera-
nipulate dynamically allocated storage. The paper presents an analtive programs that manipulate dynamically allocated storage. The
ysis method that uses a characterization of a procedure’s behaviogoal is to verify properties such as the absence of null dereferences,
in which parts of the heap not relevant to the procedure are ig- the absence of memory leaks, and the preservation of data-structure
nored. The paper has two main parts: The first part introduces invariants. The ability to reason about the effects of procedure
a non-standard concrete semantiés§.L, in which called proce- calls is a crucial element in program verification, program analy-
dures are only passeuhrts of the heap. In this semantics, objects Sis, and program optimization. This paper presents an approach to
are treated specially when they separate the “local heap” that canthe modular analysis of imperative languages with procedures and
be mutated by a procedure from the rest of the heap, which—from dynamically allocated storage, based on an abstract interpretation
the viewpoint of that procedure—is non-accessible and immutable. of a novel non-standard storeless semantics.

The second part concerns abstract interpretatiah®f and devel-

ops a new static-analysis algorithm using canonical abstraction. 11 Store-based vs. Storeless Semantics

A straightforward way to specify semantics of programs with
Categories and Subject Descriptors dynamically allocated objects and pointers is by a store-based op-
erational semantics, e.g., see [15]. This semantics is very natural
because it closely corresponds to concepts of the machine architec-

ing and Verifying and Reasoning about Programs—assertions;invari%%' Moreover, itis possible to compute the effect of a procedure

Semantics of Programming Languages—Operational semantics; Pr3" a1arg’e heap’fr?m . eﬁec} on SUbhea.pS' This s the s_emantic ba-
gram analysis sis for O'Hearn'’s “frame rule” [8, 15], which uses assertions about

disjoint parts of the heap: the post condition of a procedure call is
inferred by combining assertions that hold before the call with ones
General Terms that characterize the effect of the procedure call.
Languages, Theory, Verification In programming languages such as Java, where addresses cannot
be used explicitly (in contrast to Ctsast statements), it is possi-
ble to represent states in a more abstract way because any two heaps
Keywords with isomorphic reachable parts are indistinguishable. In particu-
Abstract interpretation, shape analysis, static analysis, 3-valued logi@', garbage cells have no significance. This leads to the notion of
storeless semantics, which was pioneered by [10]. There, states are
represented as aliases between pointer access paths.
“Supported in part by a grant from the the Israeli Academy of Sci- A first step in many heap-abstractions is to abstract away from
ence. specific memory addresses, e.g., [5, 7,9, 18, 20, 21]. A storeless

;rs;npsegg%%:e/ égﬁa%gig]tilg RRee?see%rr%?] (C::%%rt]girl ‘guﬁg%gﬁcpsgﬁ%lg‘econcretesemantics has already done this step, which relieves the
tion and Analysis of Complex Systems” (SFB/TR 14 AVACS). See designer of an abstraction from having to do it. Thus, itis natural to

D.3.1 [Programming L anguages]: Formal Definitions and Theory—
Semantics; F.3.1LJogics and Meanings of Programs]: Specify-

WM, avacs. or g for more information. base powerful pointer (shape) analysis algorithms on storeless se-
tSupported by the office of Naval Research under contract Mantics. Unfortunately, existing storeless semantics associate the
N00014-01-1-0796. entire heap with each procedure invocation and class instantiation,

which makes it difficult to support procedure and data abstraction.

Another problem with storeless semantics is that it is hard to relate

properties of memory cells before and after a call. As a result, it
Permission to make digital or hard copies of all or part of this work for IS hard to scale these methods to prove properties of real-life pro-
personal or classroom use is granted without fee provided that copies aregrams. By “scaling”, we mean not just cost issues but also preci-
not made or distributed for profit or commercial advantage and that copiession. In particular, after a procedure call some information about
bear this notice and the full citation on the first page. To copy otherwise, 10 the calling context may be lost.

republish, to post on servers or to redistribute to lists, requires prior specific | this paper, we present a first step towards addressing the afore-
permission and/or a fee. X

POPL'05, January 12—14, 2005, Long Beach, California, USA. mentioned scaling issues by (i) developing a storeless semantics
Copyright 2005 ACM 1-58113-830-X/05/0001$5.00. that allows representation of parts of the heapl relating proper-



ties before and after a call, and (ii) presenting an abstraction of this
semantics. P € prog := rcdeclfndecl
rcdecl := recordt:= {thame f}

1.2 Main Results thame := int|¢ L

In this paper, we develop a method to characterize a procedure’s fndecl ::= tnamep(tnamez) :=vdeclst
behavior in a way that ignores parts of the heap that are not relevant vdecl := tnameVarld
to the procedure. Toward this end, the paper introduces a non{ st € sStms = z=c|z=y| z=yopz|z=y.f |
standard storelessoncretesemantics,LS L, for Localized-heap z.f=null [z.f=y |z = alloct|
Store-Less In this semantics, a called procedure is only passed y=p(Z) | lb: st | while (cnd) do st od |
apart of the heap. Based on this semantics, a new static-analysis st;st | 1f (cnd) then st else st £i
algorithm is developed using canonical abstraction [20]. This al- cnd n= r==yl|r!l=ylr==clzl=c
lows us to prove properties of programs that were not automati-| ¢ € const := null|n
cally verified before. We believe that the modular treatment of the

heap will allow the implementation of these abstractions to scale
better on larger code bases. The approach also provides insights
into Deutsch’s may-analysis algorithm [7].

The paper has two main parts: The first part (Sec. 4) concerns

LS L, the non-standard concrete storeless semantics. The secongunning example. Sec. 3 defines cutpoints and describes their use

part (Sec. 5) concerns abstract-interpretation of this semantics. in £LSL. Sec. 4 define£S L semantics foEAlgol and states its
LSL is based on the following ideas: ObJ_ects in the heap reach- properties. Sec. 5 presents the shape-analysis algorithm. Sec. 6
able from an actual parameter are treated differently when they SeP-reviews closely related work. Sec. 7 concludes our work.

arate the “local heap” that can be accessed by a procedure from the
rest of the heap, which—from the viewpoint of that procedure—is
non-accessible and immutable. We call these objadsoints An 2. PRELIMINARIES

Figure 1. Syntax of EAlgol.

objectbelongs to the local-heaghen it is reachable from a pro- In this section, we introduce a simple imperative language called
cedure’s actual parameters. Such an objectostpointwhen it is EAlgol. We define its standard semantics, which is operational,
reached via a pointer-access path that starts at a variablpenfca large-step, store-based (as opposed to storeless), and global, i.e.,

ing call and does notraversethe local-heap. When a procedure the entire heap is passed to a procedure. We refer to this semantics
returns, the cutpoints are used to update the caller’s local-heap withasGS, for Global-heap Store-Based

the effect of the call. Because our goal is to perform static analy-

sis, LS L is astoreless semanti¢$0]; every dynamically allocated 21 Syntax of EAlgol

objecto is represented by the set afcess paththat reacho. In Programs ifEAlgol consist of a collection of functions includ-
particular, unreachable objects are not represenef. is dif- ing amai n function. The programmer can also define her own
ferent from previous storeless semantics based on pointer-accessypes @ la C structs) and refer to heap-allocated objects of these
paths [5,21] in the following way. It does not represent access pathstypes using pointer variables. Parameters are passed by value. For-

that start from variables of pending calls in the “local state” of the  mal parameters cannot be assigned to. Functions return a value by
current procedure. This means that a procedure has a local viewassigning it to a designated variablet .

that only includes objects that are reachable from the procedure’s The syntax ofAlgol is defined in Fig. 1. The notation de-
parameters and, in addition, any objects that it allocates. notes a sequence ofs. We define the syntactic domainsy €

We characterize the manner in whick§ £ simulates a standard  Varld, f € Fieldld, p € Funcld, t € Typeld, andib € Labels
store-based semantics and identify a class of observations for whichof variables, field names, functions identifiers, type names, and
LS L is equivalent to the _standarq store-based semantics. Thi_s al-program-labels, respectively. For a functipn/, denotes the set
lows us to prove properties ranging from the absence of runtime of its local variables and’, denotes the set of its formal parame-
errors to partial and total correctness with respect to the standardters. We assume), C V,, and that all the variables ivi, \ F, are

store-based semantics. declared at the beginning of a function declaration.

The second part of the paper usé§L as the starting point .
for static-analysis algorithms that treat the heap in a more local, 2.2 Running Example
more modular way than previous work. In this part of the pa-  The EAlgol program shown in Fig. 2 is our running exam-
per, we present a new interprocedural shape-analysis algorithm forple. The program consists of a type definition for an element in a
programs that manipulate dynamically allocated storage. The algo-jinked list (SI | ); three list-manipulating functions: creater( ),
rithm is based on an abstraction 65L. The new algorithm can  qestructive appendipp), and destructive reversedver se); and
prove properties of programs that were not automatically verified 5 ngi n function.
before (e.g., destructive merge of two singly-linked lists by are-  The program allocates three acyclic linked lists. It then destruc-
cursive procedure, see Fig. 18). Furthermore, the analysis is dongjyely appends the list pointed-to hy2 to the tails of the lists
in a way that is more likely to scale up. In particular, our analysis pointed-to byt 1 andt 3. As a result, at program poiti,, just

a procedure only depends on the contents of its local-heap. Thisglementsz points-to an acyclic list with five elements, and the two

allows analysis results to be reused for different contexts. lists share their last two elements as a common tail.
. The invocation ofr ever se, which is the core of our running
1.3 Outline example, (destructively) reverses the list passed as an argument.

The remainder of the paper is organized as follows: Sec. 2 setsAs a result, atb,., r ever se’s return-sitey points-to the head of
the scene by defininBAlgol, a simple imperative language, and the reversed-list. Note that the shared tail of the list pointed-to by
defining its standard store-based semantics. It also introduces ouz has also changed.



record Sl
Sl

={ Sl n
reverse(Sll h):=
Sl p,q,t;
p=h;
while (p!
q=p. n;
ret =t
int main():=
Sl x,y,z,t1,t2,t3;
tl=crt(3); t2=crt(2);
x=app(tl,t2);
z=app(t3,t2);
tl=null; t2=null; t3=null;
y = reverse(x); [b,:
ret=0

int d}

=nul I') do
p.n=t; t=p;
| by:

p=q od;

t3=crt(3);

| b.:

Figure2: Therunningexample. Thecode of functionscrt and
app appearsin App. A.

l € Loc

v € Val = Loc U {null}

p € Eny =V, — Val

h € Heap, = Loc x Fieldld — Val
oG, (L,p,h) € XE =2 xEny, x Heap,

Figure 3: Semantic domains of the GSI5 semantics.

2.3 Global-Heap Store-Based Semantics
We now define th&;SB semantics folEAlgol. For simplic-

(x = null, (L, p, h)) GAL, plz — null], k)
(x=y,(L,p,h)) ~ <L plz = p(y)], h)
(x=y£,(L,p,h)) ~ <L plz — h(p(y), f)l, h) (1)
(x.f =null, (L, p, h>> &AL, p,hl(p(x), f) — null))  (2)
(xf =y,(L,p,h)) ~ <L p, hl(p(2), f) — p(y)]) (2)
(x = alloc ¢, (L, p, h)) g (LU{l}, plz — 1], RUI(1)) (3)

Figure4: Axiomsfor atomic statementsin the GS3 semantics.
The side-conditionsare: (1) p(y) # null, (2) p(z) # null, and
(3) 1 ¢ L. I'initializesall pointer fieldsat [ to null.

(body Ofp, (Le, pe, he)) % (La, pa, has)
G
<y = p(mlv o axk)v <LC, Pe; hC>> ~ <LT3 Pr, hT>
where
_ _f opelzi)  v=2z _
Le = Le, pe(v) = null otherwise ’ he = he

Ly =1Lz, pr = pc[y = pz(ret)], hr = hy

Figure5: Inferencerulefor function invocation in the GSB se-
mantics, assuming the formal variablesof pare z, ... , zx and
that p’sreturn valueisa pointer.

memory location it points-to. The value of a field is depicted by a
directed edge labeled with the field name.
The invocation of ever se starts in staterg,. The heap ob¢
is identical to the one of¢,, but its environment only mapis,
r ever se’s formal parameter, td), the value of the actual param-

ity, the semantics tracks only pointer values and assumes that evergterx. The execution of ever se’s body ends withr et pointing

pointer-valued field or variable is assigned! | before being as-
signed a new valukln addition, we assume that before a function
terminates it assign aul | value to every pointer variable that is
not a formal parametér.

Fig. 3 defines the semantic domainoc is an unbounded set
of memory locations. Anemory statéor a functionp, 0%, € 3%,
keeps track of the allocated memory locatiohsan environment
mappingp’s local variables to valueg, and a mapping from fields
of allocatedlocations to values;. Due to our simplifying assump-
tions, a value is either a memory locationnul.

The meaning of statements is described by a transition relation

G C (0@ X stmg x o¢. Fig. 4 shows thexiomsfor assignments.
The inference rulefor function calls is given in Fig. 5. All other

to the head of the reversed list. The memory state at the exit point,
Ib., is denoted by ¢, the state after the invocation oever se

is denoted bys¢,. Note that the heap in¢. is as inrever se’s
exit-point, and the environment is as in the call-site, except that the
return value (et ) is assigned tg .

2.4 Observable Properties

In this section, we introduce access paths, which are the only
means by which a program can observe a state. Note that the pro-
gram cannot observe location names.

DEFINITION 2.1 (RELD PATHS). Afieldpathd € A = Fieldld*
is a (possibly empty) sequence of field identifiers. The empty se-
quence is denoted ky

statements are handled as usual using a two-level store semantics

for pointer languages.
Example. The memory state #b., the call-site ta ever se, is
depicted graphically in Fig. 6 (labeletf;). Allocated locations are

DEFINITION 2.2 (ACCESS PATH. Anaccesspath o = (x,d) €
Vp» x A of a functionp is a pair consisting of a local variable gf
and a field path.AccPath, denotes the set of all access paths of

depicted as rectangles labeled by the location name. The value ofunctionp. AccPath denotes the union of all access paths of all
each variable is depicted as an arrow from the variable name to thefunctions in a program.

!Special care need to be taken when handling statements in which Apart from the above formal definitions, we will sometimes use

the same variable appears both in left-side of the assignment and ithe notationx. n. n for access paths, because its syntax is famil-

its right-side, e.g.x = x. f. Such statements require additional jar from a number of programming languages, where it denotes a

\s,gﬁ;%?etg source transformations and the introduction of temporarysequence of field dereferences. Because states and access paths

9 . L . . are always associated with a (unique) functignn the rest of the
These conventions simplify the definition of b@s 3 semantics paper, we omiy whenever it is clear from the context. Also, to

and LS L; in principle, different ones could be used with minor T, i . h K with a fixed arbi
effects on the capabilities of our approach. For clarity, our example SIMPIify TDotatlon, we assume that we work with a fixed arbitrary
programpP.

programs do not adhere to these restrictions.




{z}, {z.n}, {z.n.n}, {z.n.n.n, znnn}, {z.n.nnn, znnnn},

oG A

e . A { R}, {hn )}, { hnn} h.n.n.n, h.n.n.n.n
[eR . s . i n. N Cpl N Cpln

. - h, cpl.n.n.n cpln.n, cpln, cpl
G- A { retn.n.n.n }’ { retn.n.n }’ { retn.n () retn , {ret}

x, y.n.n.nn, y.n.n.mn, y.n.n, y.n,
ol AT zZ.n.n.n.nn.n ’ znnnnn [’ znnnn [’ znnn |’ {y},
global heap local heap cpl = {hﬁn}

Figure 6: Memory states that arise during the execution of the running example according to the GSB semantics (left column)
and the £LS £ semantics (right column). We show the memory states at |b., the call-site to r ever se (first row); Ib., the entry to
rever se (second row); lb,, r ever se’sexit point (third row); and Ib,, the return-sitefrom r ever se (fourth row). For thelocal-
heap semantics, the figure shows only the heap (sets of aliased access paths); the memory statesat Ib,, Ib,, Ib,, and Ib, are defined as

o8 = (0, A%, 0¢ = ({{hmnn}}, A%, 0% = ({{hnnn}}, A7), and o] = (0, A”) respectively.

The value of an access path= (z, §) in state(L, p, h),denoted 3. CUTPOINTSAND THEIR USE

by [a]c (L, p, h), is defined to bé(p(z), §), where In this section, we define cutpoints and describe their use in
LS L. To assist the reader, we provide some intuition by referring

h: Val x A — Valsuch that to the global store-based semantics (see Sec. 2.3) and to a small-

. v , !fé =€ , step (stack-based) operational semanti€sS L is a storeless se-
h(v,6) = ¢ h(h(v,f),d") ifé = f&', v e Loc mantics, i.e., memory cells are not identified by locations. Thus,
null otherwise we cannot talk about locations as in Sec. 2.3. Instead, we use the
termobjects
_ Note that the value of an access path that traversesi aalued In £LSL, every dynamically allocated objeatis represented by
field is defined to bewull. This definition simplifies the notion of  he set of pointer-access paths that reachinlike existing store-
equivalence between theSB semantics andCSL, our new se-  |ess semantics [5], ICSL, pending access paths are not repre-

mantics. Alternatively, we could have defined the value of such @ genteq as parts of the local state of the current procedure. The
path to bel. The semantics given in Fig. 4 checks that a null-  4qyantage of our approach is that when a procedure is invoked,
dere_ference is not performed (see the side-conditions listed in thej; operates only on a part of the heap, namely, the objects that are
caption). reachable from the procedure’s actual parameters. The downside
of this approach is that the memory state just after the call cannot
always be defined in terms of the state prior to the call. The intu-
itive reason for this deficiency is that the description of an object
may change due to destructive updates. For example, in the run-
. ning example, to determine that the pointer-access patims n
if [a]c(oc) = null. andz. n. n. n are aliased after the invocation oever se, we

ged to know that the list element pointed-tolyn. n. n when

e execution of ever se begins, is pointed-to byet . n when
the execution ends. To capture this kind of temporal relationship,
tCSﬁ tracks the effect of a function czutpoints Cutpoints are the
objects that separate the part of the heap that an invoked function
can access from the rest of the heap (excluding the objects pointed-
to by actual parameters).

DEFINITION 2.3 (ACCESSPATH EQUALITY). Access patha
and 3 are equal in a given statere, denoted b = Sl (oq), if
they have the same value in that state, [@]c (o¢) = [Bla (o).
An access path isqual to null, denoted byja = null]s (o),

Our semantics is a natural semantics; the stack of activation recor
is maintained implicitly. However, we need the notion of an access
path that starts at a variable of a pending call (i.e., not the current
call). In a small-step semantics, this would be an access path tha
starts at a variable allocated in the activation record of a pending
call. We use the term pending variablefor a local variable of
a pending call, and pending access patior an access path that
starts at a pending variable. When we wish to emphasize that a DEeFINITION 3.1. (Cutpoints) A cutpoint for an invocation of
variable (resp. access path) is of the current call, we use the termfunctionp is a heap-allocated object that, in the program state in
a current variable (resp. &urrentaccess path). For example, in  which the execution gf's body starts, is: (i) reachable from a
statecg, at the entry ta ever se, x is a pending variable, and  formal parameter op (but not pointed-to by one) and (ii) pointed-
z.n.n.nis apending access path; the only current variable is  to by a pending access path that does pass througlany object
andh. n. n. nis a current access path. that is reachable from one @fs formal parameters.
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Figure 7: An illustration of the cutpoints for an invocation in
a store-based small-step (stack-based) operational semantics.
The figure depicts the memory state at the entry to zoo. The
stack of activation record is depicted on the left side of the di-
agram. Each activation record islabeled with the name of the
function it is associated with. Heap-allocated objects are de-
picted as rectangles labeled with their location. The value of
a pointer variable (resp. field) is depicted by an edge labeled
with the name of the variable (resp. field). The shaded cloud
marksthe part of the heap that zoo can access. The cutpoints
for theinvocation of zoo (u7 and u9) are heavily shaded. Note
that w10 isnot a cutpoint although it is pointed-to by pending
access paths that do not traverse through the shaded part of
the heap, eg., x2 and y. f 1. f 1. Thisis because 10 is also
pointed-to by h, zoo’sformal parameter.

For example, in memory statef, the list element at location
I3 is a cutpoint because it is pointed-to by thdield of the list
element at locatiofy, which is not reachable from the (only) actual
parametek . For an additional example, see Fig. 7.
Technically,£S £ usescutpoint-labelgo relate the post-state of
the function with its pre-state. Cutpoint-labels mark the cutpoints
at—and throughout—an invocation.

DEFINITION 3.2. (Cutpoint Labels) A cutpoint-label cpl €
2F» XA for functionp is a set of access paths that start at a for-
mal parameter op. The sef»*2 is denoted byCPLbs,.

In every function invocationLSL labels all the cutpoints. A

DEFINITION 3.3 (QUTPOINT-ANCHORED PATHS. Acutpoint-
anchored path « = (cpl, §) € CPLbs, x A for a functionp is a
cutpoint-label for function p and a (possibly empty) sequence of
fields.

For example, at the memory state after the executioregker se’s

body, the cutpoint-anchored pa{hﬁn}.n is aliased with the
access pathet.n.n. From this information, our semantics can in-
fer that in themai n function, at the state after the invocation of
reverse, z.n.n.n.n is aliased withy.n.n.

Technically, during the invocation of a function, an object is rep-
resented by the access paths and cutpoint-anchored paths that point-
to it.

DEFINITION 3.4 (GENERALIZED ACCESS PATHS$. Agener-
alized access path for a functionp is either an access path g@f
or a cutpoint-anchored path gf. GAccPath, denotes the set of
all access paths of function GAccPath denotes the union of all
access paths of all functions in a program.

When there is no risk of confusion, we abbreviate a generalized
access path of the forr,¢) by r. Note thatr can be either a
variable, or a cutpoint-label.

REMARK 3.5. Cutpoint-labels isolate the information about the
part of the heap that a function cannot access, togharing pat-
ternof the cutpoints, i.e., to the set of access paths that—at the entry
to the function—point-to a cutpoint. Furthermore, the isolation is
achieved in a parametric way: although a cutpoint-label expresses
the fact that an object is also pointed-to by a pending access path,
it is described in terms of the invoked function’s formal parame-
ters. This allows us to infer the meaning of a cutpoint-label in a
context-independent way.

REMARK 3.6. Note that because of the “garbage-collecting na-
ture” of storeless semantics, there is a non-trivial technical dif-
ficulty in obtaining a local semantics for the storeless model. If
a garbage-collection scan was to collect the heap using only the
procedure’s local variables as the roots, then elements would be
garbage collected that are accessible in the global state; adding the
cutpoint-labels to the set of “roots” prevent this potential source of
unsoundness.

cutpoint-label is the set of all access paths that start with a for- 4. THE LOCALIZED-HEAP STORELESS

mal parameter (of the invoked function) and point-to the cutpoint

when the function execution starts. The label of a cutpoint does not
change throughout the execution of the function’s body, even if the

heap is modified by destructive updates.

For example, the fourth list elementirs list is a cutpoint for the
invocationy=r ever se( x) . The label of this cutpointi§h.n.n.n}
becauseh.n.n.n is the (only) access path that points-to the cut-
point at the entry to the function. A good analogy for the role of

cutpoint-labels in our semantics is the use of auxiliary variables in

formal verification. Auxiliary variables are used to record variable

values at the entry to a function; a cutpoint-label is used to record
the access paths that reach a cutpoint at function entry. To empha

size this similarity, we use the notatiaghwherea € CPLbs,, for
cutpoint-labels for functiomp.

LS Lis able to infer the effect of an invoked function on the heap
of its caller by including in the representation of an object all the
field paths that reach it and start at a cutpoint.

SEMANTICS

In this section, we defin€S L, the Localized-heap Store-Less
semantics. The semantics is a natural semantics and, as before,
tracks only pointer values.

To define the semantics, we use the functigrdefined in Fig. 9.

It is used as an infix operator. The applicatierd concatenates
the sequence of field identifiedsto «. We say that a generalized
access path is aprefixof a generalized access pathdenoted by

a < 3, when there is a field path € A, such that3 = a.§. We

say thatn is aproper prefixof 3, denoted byx < 3, whend # e.

The function-.- is lifted to handle sets of access paths and sets of

sequences of field identifiers.
In addition, we make use of thfént functional, well-known from
functional programmingflat M returns the set of all elements of

M, if M is a set of sets. Formallyjat M 9 {2 | 34 € 0
z € A}



r € Root, =V, U CPLbs,

a,8 € GAccPathy, = Root, X A

0 € Objh = 20AccPathy Objects

A A, € Heaph =2°%% Heaps

oL € XP =29Pr x Heap? Memory state

Figure 8: Semantic domains of memory states for function p.
We use the syntactic domains V,,, CPLbs,, and GAccPath, as
semantic domains, too (and use italics font to denote a seman-
ticsvalue.)

4.1 Memory States

In this section, we define the representation of memory states in

reachablefrom a variablez, if there exists a field path € A such
that (z, d) € o.

Example. The heap of the running example at the state in which
rever se is invoked is shown in the first row in the second col-
umn of Fig. 6 (labeledd®). It shows eight sets of generalized ac-
cess paths. Each set represents one allocated list-elemeAt, At
x.n.n.nandz.n.n.npoint-to the same object. The set of cutpoint-
labels at the call site is empty. This is always the case for the main
function. The fourth element ir’s list is a cutpoint for the invo-
cation ofr ever se: it is reachable from an actual parameter (its
representation includes.n.n.n) and by a field of an object that
is not passed to the invoked function (theield of the third ob-
jectinz’s list). The heap at the beginning péver se (shown in
Fig. 6, labeled byA®) differs from A€ in three ways: (i) there are
only five objects in the heap; (ii) the set of cutpoint-labels contains

LSL. Traditionally, a storeless semantics represents the heap by art2-7-7-1}, which labels the fourth element in the list; and (iii) ob-
equivalence relation over a set of access paths, where equivalencééCts are represented in terms of the generalized access paths that

classes (implicitly) represent allocated objects. For readability, we
use the equivalence classes directly.

A memory statéor a functionp is a pair(CPL,, A,) of a set of
cutpoint-labels, (denoted bg/PL,) and a heap (denoted b4,).
A heap is a finite (but unbounded) set of objects. An object (de-
noted byo) is described by a (possibly infinite) set géneralized
access paths. Fig. 8 gives the semantic domains uséd ihfor a
memory state of a functiop.

A memory state CPL,, A,) at a given point in an execution is
composed of the labels of all the cutpoints of the current invocation
(CPL,) and a representation of the heafy,) at that the point in

start either withk or with {hﬁn}.

4.2 Inference Rules
The meaning of statements is described by a transition relation

& (o x stmg x or.. We give axioms for assignments and an in-
ference rule for procedure calls in Fig. 10 and Fig. 11, respectively.
All other statements are handled in the standard way [11]. To sim-
plify notation, we assumel with a certain index (resp. prime) to
be the heap component of a state with the same index (resp.
prime). We use the same convention for indexed (or primed) ver-
sions ofCPL and a state’s cutpoint-labels component.

the execution. To exclude states that cannot arise in any program,

we now define the notion @fdmissible states

DEFINITION 4.1 (ADMISSIBLE MEMORY STATES). A memory
state(CPL,, A,) for a functionp at a given point in an execution
is admissible iff (i) A generalized access path points-to (at most)
one object, i.e.Yo,0’ € A, if o # o, thenon o = §; (i) A
is right-regular, i.e.,Vo1,02 € A, if a,8 € 01 anda.d € o2
thenp3.d € oo; (iii) A, is prefix-closed, i.e., ifv.f € flat Ap, then
a € flat Ap; and (iv) a root of every access path in the description
of any object is either a local variable gfor a label of one of the
cutpoints, i.e., ifr, 0) € flat A, then either € V,, or r € CPLy;
(V)0 ¢ A; (vi) CPL, satisfies the following requirements: (a) the
cutpoint-labels inCPL,, are mutually disjoint, (b)C'PL, is right-
regular (but not necessarily-prefix closed), (c¢ CPL,.

The first three conditions are standard in storeless semantics
The fourth condition limits the set of cutpoint-anchored paths that
are tracked during an invocation to be rooted at a cutpoint of the in-
vocation. The fifth condition is because we only represent objects

that are pointed-to by a current or a pending access path. The sixtr}io
requirement captures the fact that the set of cutpoints is actually a

subset of the objects in the heap when the function is invoked.
BecauseLS L preserves admissibility of states (see [17]), in the
sequel, whenever we refer to 4 L state, we mean admissible
LS L state.
It is possible to extract aliasing relationships from the sets of

4.2.1 Helper Functions

To define the inference rules, we use the following functions:
[[].,rem(-,-) andadd(-, -), which are defined in Fig. 9. We useas
a metavariable ranging over sets of generalized access paths, which
are not necessarily objects, whereasways stands for objects.

The function[a] , returns the object that points-to in heapA.
Whena does not point-to any objecliy] , returns the empty set
(which by definition never describes an object pointed-to by a cur-
rent, or even a pending, access path).

The functionrem takes as its arguments a hedpand a set of
generalized access pathslit removes from the description of ev-
ery object in heapA all the access paths that have a prefixin
Wheneveremremoves all the (generalized) access paths from the
description of an object, that object is removed from the description
of the heap. The functiondd(A, a, «) yields a modified version

‘of heapA, where to every objeat € A reachable from by fol-

lowing some field pathh € A, the generalized access pathé are
added.

In addition, we make use ofap() , another well known func-
nal from functional programming. The functionalap(f) M
appliesf to every element oM and returns the resulting set. For-

mally, map(f) M € { f(2) | 2 € M},

4.2.2 Atomic Statements
Theaxiomsfor atomic statements are given in Fig. 10. We sim-

generalized access paths that describe the objects in a heap, anplify the semantics by making the same assumptions as in Sec. 2.3.

in particular to observe the heap structure as follows: a current
variablex points-toan objecto iff the access pathiz, €) is in o.
Similarly, cutpoint-labetpl labelsobjecto iff (cpl, €) is ino. The
field f of an objecto; points-toobjectos iff for every generalized
access patljr, §) in o1, the generalized access pdthd f) is in

02. A generalized access paittpoints-to(resp.passes throughan
objecto, if a € o (resp.38 < a such that3 € o). An objecto is

Assigningnul | to a variablex does not modify the link struc-
ture of the heap. We only need to eliminate all the access paths that
start withx, using theremfunction.

The semantics for the assignment= y copies the value of the
variabley into x by adding an access pafle, §) to any objecto
that can be reached fromby following a field pathd, i.e., (y, )
points-too. This is accomplished by applyingdd to the given
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Figure9: Helper functions.

(x = null, (CPL, A)) % (CPL, rem(A, {z}))

(x =y,(CPL A)) % (CPL add(A, {z},y))

(x = y.£, (CPL A)) % (CPL add(A, {x},y.f)) (1)
(x.£ = null, (CPL A)) % (CPL, rem(A, [z] ,.f)) (2)
(x. =y, (CPL A)) % (CPL add(A,[2],.f,y)) (2)
(x = alloc t, (CPL, A)) &% (CPL AU {{z}})

Figure 10: Axioms for atomic statementsin the local heap se-
mantics. Note that the set of cutpoint-labels is not changed.
The side-conditions are: (1) y € flat A and (2) = € flat A.
The side-condition x € flat A (resp. y € flat A) meansthat x's
(resp. y) valueisnot null.

heap, the singleton sét:}, and the access path

The rule for field dereference = y. f is similar. It adds the
access patk, ) to any object that can be reached frgnby fol-
lowing field f , and then continuing with field path Note, how-
ever, that the rule can be applied onlyipoints-to an object, i.e.,
the semantics checks that a null-dereference is not performed.

A destructive updatex. f = nul | (potentially) modifies the
link structure of the heap. Thus, evaggneralizedaccess path that
has a prefix aliased witte, f) is removed from the description of
every object in the heap. Note, tHaf , returns all the access paths
that are aliased witke. Concatenatingx] , with f returns the set

operator. A is defined to be the set of equivalence classes obtained
from the least right-regular, prefix-closed, equivalence relation that
is a superset of the equivalence relation inducediByNote that
this definition may only add access paths to the description of ex-
isting objects.

The (deterministic) semantics of memory allocatior= al | oc
t adds a new object that is described{y} to the heap. Note that
this definition (implicitly) initializes the fields of the new object to
null.

4.2.3 Function Calls

Theinference rulefor function calls is defined in Fig. 11. The
rule defines the program stat§ that results from an invocation
y=p(xi1,...,x;) at memory statery, assuming that the execu-
tion of the body ofp at memory state;, results in memory state
of. The heapsA® and A" are described by sets of generalized
access paths starting at the caller's variables and cutpoint-labels,
whereas the heap$® and A” are described by sets of generalized
access paths that start at the callee’s formal parameters, cutpoint-
labels, and return variable. The rule provides the means to reconcile
the different representations.

The rule uses the function@ally =" ") and Rty =P" 1> *5)
which are parameterized for each call statement in the program.

Cally=P"1"x) computes the memory statg that results at
the entry ofp wheny = p(x1,... ,zx) is invoked byg in mem-
ory states;. The caller's memory state after the invocation is re-
stored by the functiorRet?=?*1»"*) This function computes
the memory state of the caller at the return-sig )(according

to ¢’'s memory state at the call-site'{) andp’s memory state at
the exit-site §7). In the rest of this section we describe the rule
for an arbitrary call statement = p(x1,...,zx) by an arbitrary
functiong. The rule utilizes additional helper functions, defined in
Fig. 12, which we gradually explain.

The main idea behind the rule is to utilize the fact that a function
cannot modify objects that are not in its local-heap (i.e., in the part
of the heap that isiot reachable from any actual parameter when
the function is invoked). In particular, becaus& L describes ob-
jects in terms of the (generalized) access paths that point-to them,
these “inaccessible” objects have the same description before and
after the call. Thus, only the description of the objects in the func-
tion’s local-heap (i.e., in the part of the heap that the function can
access) is (possibly) updated. The update is carried out using the
cutpoints of the invocatioh In essence, the semantics freezes the
initial descriptions of the cutpoints and arranges for them to persist
throughout the execution of the called function. This sets up a re-
lation between values on entry to values on exit. At the return, the
frozen information is used to update the description of objects in
the called function’s local-heap via an operation that is (roughly)
similar to a relational join [3]. (The operation is not a “pure” rela-
tional join because of some name adjustments that are needed due
to the different representation of objects by the caller and by the
callee.)

To find which objects are in the local-heap of the called func-
tion, i.e., reachable from the actual parameters (.. , zx), we

of prefixes of affected access paths. Again, the rule can be appliedfirst compute the set of objects that greinted-toby p's actual

only if x points-to an object.

An assignmenk. f = y also has a (potential) effect on all the
access paths that are aliased with After this assignment, any
objecto that can be reached by following the field patfrom y,

i.e., (y,d) € o, is also reachable by traversing some (generalized)

access path aliased with followed by anf -field, and continuing
with §. As this is a place where cycles can be creassft] does

parameters@:°). Then, the auxiliary functioiRObjsfinds the
part of the caller’'s heapA°©) that is reachable from these objects
(Ogassed).

The description of the objects after the call should account for

3The operatof is similar to thep,.;. operator in [6].
4The same mechanism is used to compute the description of objects

not necessarily return a right-regular heap. Therefore we apply thethat the callee allocates.
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Figure 12: Helper functions for the function-call rule. The
function CPObjs,, is parameterized for every function ¢ in the

€ L x
(body ofp, o7) ~ o7 program. Recall that V, isthe set of ¢’slocal variables.
L
(y =p(x1,...,2k),0%) <5 oF
where
oo = Callg:p(m,... ,ack)(o_z) qualified as a cutpoint if (and only if) one of the following holds:
o} =Ret Pt (g5 ot e ois pointed-to by a local variable of the calle.(,.), or
e 0 is pointed-to by an object in the part of the caller's heap
Figure 11: Theinference rule for function callsin LSL. The that is not passed to the functio@4.), or
ruleisgiven for an arbitrary call statement y = p(x1, .., zx) e o separates the heap of thaller from the heap of one of
by an arbitrary function ¢q. We assume that the formal param- - R . . -
the pending calls, i.eq is a cutpoint of the invocation of the
etersof pareha, ... , hg.

caller Ocpi).

Back in Fig. 11 we define several binding mappings to bridge the
gap between the two different representations of objects (in terms
the mutations (destructive updates) of the heap performed by theof access paths of the caller and in terms of access paths of the
callee. However, because the invoked function cannot modify ob- callee). The functiorbind ..,s Maps objects pointed-to by actual
jects that it cannot access, it can only modify fields of objects in parameters to the set of “trivial” access paths that are made up of
o1, Thus, to compute the (possibly) updated description of the corresponding formal parameters. The funcéiond,, maps
objects inOZ***** (as well as of objects that the callee allocates) it every cutpoint (in the caller representation) to the set of access

is sufficient to have a description of every obj_ect@@"’s‘““d (and paths that start with a formal parameter of the caller and point-to
of every object allocated by the callee) comprised of t!jie (general- that cutpoint at the entry to the function, i.éind., maps a cut-
ized) access paths that start at objects that sepa¥dté™ from point to its label (see Sec. 3). To compute the label of a cutpoint

the rest of the caller's heap: When the function returns, we just re- , we applysub(bind.,s). The latter denotes a function that re-
place any (generalized) access pafhs é,) in the description of  places every access path that starts with an actual paratmetéy
every object in the heap of the calle4”( that start at a “separating  in the representation af by an access patth;, §) that starts with

object"o’,/by access paths of the caller,, 5q§p> such that(rg, d,) the corresponding formal parameteruf is defined in Fig. 12.)
points-too’, but does not pass throug¥f***** (and thus cannot be  The bind..; combines the previous two mappings trivially as they
modified). Technically, this is done as described below. have disjoint domains.

The auxiliary functionCPObjs, (cf. Fig. 12) determines the Having defined these mapping functions, computing the mem-

cutpoints for this function invocationt”). Cutpoints are the ob-  ory state ofp in which its body will be evaluated (i.e., the descrip-
jects that “separate?***** from the rest of the caller's heap. For  tion of the heap at the function entry) is straightforward. The set
expository reasons, we do not want to consider objects that areof cutpoint-labels ¢PL) is computed by applyingind., to ev-
pointed-to by actual parameters as cutpoints. Thus, the functionery cutpoint. The heap component®) is constructed by applying
CPObjs,, which is passed the caller's memory state as well as the p;n4.,;, to every object in02*****. Note that in the resulting de-
previously computed??* and O?****, considers only objects in  scription, objects are described by the set of (generalized) access
Oudeep = OP**°4 \ 029 as possible cutpoints. Following the in-  paths that point-to them and start either at a formal parameter or at
tuition of cutpoints as “separating objects”, an obje@ Oge.p is a cutpoint object.



To handle the return of function we use an additional binding, DEFINITION 4.3 (OBSERVATIONAL EQUIVALENCE). Letpbe
bind,:. This mapping is the inverse dfind..; (hence getting afunction. The states; € ¥} ando¢ € X7, are observationally
back to the caller's representation of the object) composed with equivalent if for all «, 3,y € AccPathy,
the functionBypass(OﬁfaS“d), which filters out generalized access
paths (of the caller) thatass througtthe part of the heap that () [a=pB]e(or) < [a = Bla(oc), and
had access taj?****%). In addition, it also takes care of replacing
access pat_hs stgrting with sp_ecial variatatewith the_ same access (i) [y=null]s(or) < [y = null]e(oe).
paths starting with result variable Note that applyingind..; is
well defined becaus€PL® andCPL® are equal (the callee cannot
modify the set of objects that s%g]arate its own local-heap from the
local-heap of of some pending call : ;

The cutpoint-labels component of the state after the return of 431 Semantlc Equ_walencg ]

p is the same as before the invocatiagfHL°) because the callee The following theorem is the main theorem in the paper. It
(p) cannot modify the set of objects that separate the heap of its States thalSL is equivalent toGSB, in the sense that both be-
caller (g) from the heap of some other (earlier) pending-call. The have equivalently w.r.t. te_rmlnatlon_, and that execution of state-
new heap is called!”. It is derived by removing from the heap =~ Ments preserves observational equivalence. A proof of the theorem
at the call-site the passed objec@&?(****), plugging in the heap IS givenin [17].

that results from evaluatingjs body (A*), and substituting the de-

scription of all the objects by applying:b(bind...) to every object THEOREM4.4 (EQUIVALENCE). Letpbe afunction. Let, €

in A”. Y7 andog € X7, be observationally equivalent states. lsetbe

Example. Applying the function-call rule for the invocation of  an arbitrary statement ip. The following holds:
rever se in our running example results in the following sets and
mappings: (st,oL) % of, <= (st,06) < 06.

0 = {{z}} Furthermoreo, and o, are observationally equivalent.
oressed — [{g) {x.n}, {z.nn}, {z.nnn, znnn},

{znnnn, znnnn}} The following theorem states th&tS L can be used to: (i) verify

bOZ:j d_ {Z:n{z]?l .’—:I:?h?n} data-structure invariants that are expressed by access-path equali-
args — ties at a program point; and (ii) assert the absenceutifvalued

bindep = {z.n.n.n, m-n-"-”}/i{{h-n-"-”}} pointer dereferences. Formally, a property is an invariant at a (la-

bindre = {{z} — {h}, {{h.nn.n}} — {z.n.n.n}, {ret} — {y}} beled) statement if is satisfied in any memory-state that occurs just

) o ) ) before the (labeled) statement is executed.
In particular, the fourth element x's list is a cutpoint for the in-

vocation ofr ever se (§ee Sec. 4.1)’and its label {&.n.n.n}._ COROLLARY 4.5. Let P be a programp a function ,Ib a pro-
Thus, when the execution okver se’s body starts, the cutpoint gram point inp. For anya, 8 € AccPathy, [a = f]1 is an

is representgi_gy the following set of (generalized) access paths,ariant of P at b iff [ = Bl is an invariant ofP at b.
{h.n.n.n,{h.n.n.n}}. When the execution of the function body

ends, the cutpoint-anchored paths in the representation of every
object in A (see Fig. 6) are replaced by access paths that start
with z.n.n.n, the only access path that points-to the cutpoint at the
call-site andbypasseghe objects that were passedrtever se.

The following theorem states thétS £ can detect memory ledks
without investigating reachability fromootsof pending access paths.
A memory leak can occur only when a variable or afield is assigned
nul I . The “leaked objects” are the ones that are not pointed-to

For example, the cutpoint-anchored pgthn.n.n}.n in the rep- only by suffixes of the nullified variable (or field).
resentation of the third element in the returned list is replaced by
2T COROLLARY 4.6. A memory leak can occur only when a vari-
4.3 Properties of the Semantics able or a field is assignedul | . Furthermore,

The only means by which a program can observe a stateis by ac- 4 Executing a statemert = nul | inamemory statéCPL, A)
cess paths. In particular, the program cannot refer to the cutpoint- leaks an objech iff o C 2. A.

labels component of the state. To state the theorems, we need
some preliminary definitions about access-path equality and ob-
servational equivalence. We use the same simplifying notational
conventions as in Sec. 4.2. Note that in both semantics an access
path is equal tmul | when it has a prefix which is equal bl | .

e Executing astatemert f = nul | inamemory statéCPL, A)
leaks an object iff o C [(z, €)] ,.f.A.

DEFINITION 4.2 (ACCESS PATH EQUALITY). Access patha

and 3 are equal in a given stater;,, denoted byja = ). (o1.), if Both Cor. 4.5 and Cor. 4.6 are corollaries of The. 4.4. In [17]
Va€ A.a€a <= [ € a. Anaccess path is equal to null in we define a language of assertions over access paths and show that

stateo,, denoted bjor = null]. (o), if o & flat A. LS L preserves partial and total correctness of assertions expressed
' ' in this language.

5 - - L, ) 5By a memory leak we mean an object that is not pointed-to by any
Note that in any transitiofor, st) ~> of, the cutpoint-labels  access path; i.e., neither by an access path of the current call nor by
component inr;, ando?, is the same. one of a pending call.



5. SHAPE ANALYSIS to2VLS ¥, — 2-Structs.t.

In this section, we use théS £ semantics to automatically com- t02VL](CPL, A)) = S where U® = AU CPL and
pute a safe approximation to the set of possible program states ust isList®(v) = weA
ing an iterative abstract-interpretation algorithm. The main idea isLabel®(v) = wve€ CPL
is that every abstract state finitely represents a potentially infinite xs(v) = we Aandz €v
number of concrete&SL states. The program is interpreted ac- n®(vi,v2) = w1 € Avs € Aandvy.n C va
. Lt . -
cording to an abstract semantlc‘f&X that over-approximates the ngvl) = dJa€wv st (z,e) <a
concrete transition relation). Termination of the the abstract- Zlg (v) = 3an€v fnev st o, #[0],
c”(v) = Ja€v,fevsta<y

interpretation algorithm is guaranteed by the finiteness of the set of

S _ —
abstract states. eg” (vi,v2) = U1 =102
ithm i ivei i 1% (vi,v2) = wv1 € CPL ws € Aand(vy,e) € v
The algorithm isonservativeit describes any memory state that g b2 1 2 1, 2
can arise (at any program point) in any execution. This means that| Cg v) = JreCPLst (reev
we can conservatively determine properties of the program such Tep(v) = FIreCPLJcA st (rd)ev

as the absence of null-dereferences, absence of garbage, and va-
lidity of invariants by checking these properties on the (generated) Figure 13: The function to2VLS maps statesin X;, to 2-valued
abstract states. However, because the descriptioariservative logical structures.
the algorithm might represent concrete states that are infeasible ac-
cording to the concrete semantics. This leads to incompleteness in
the sense that we may fail to establish assertions that hold for every[ Predicate | Intended Meaning
execution.

We present a new interprocedural shape-analysis algorithm for
programs that manipulate singly-linked lists. The algorithm finds

wsList(v) | Iswv alist element?
wsLabel(v) | Iswv a cutpoint-label?

a finite description of all the memory states that arise during pro- | (V) Is v pointed-to by a (current) variable?
gram execution. Useful information regarding the program’s be- | 7(v1,v2) | Does then-field of v, point-tov,?
havior can be extracted from the computed descriptors. For exam-| 7z(v) Is v; reachable from (current) variabteusing
ple, an analysis of the running example successfully verifies that n-fields?
the program does not reference null; does not create garbage; and ls(v) Isv locally shared? i.e., is pointed-to by more
that wherr ever se returns, the variables andy point-to acyclic than onen-fields of objects in théocal-heaf?
linked lists with a shared tail. c(v) Doesv reside on a directed cycle offields?

The algorithm is presented in terms of th&alued-logic frame- | eq(v1,v2) | Are v; andv, the same object or cutpoint-labe||?

work for program analysis of [20]. Technically;valued logical 161 (
structures are used to represent unbounded memory states. The (
tracked properties are encoded as predicates.

In this paper, we focus on the abstraction0df £ memory states.
Due to lack of space, we do not give the full details of the analyses.
In particular, the abstract transfer functions are not defined. Instead
we specify the analysis using thest abstract transformdd]. A
detailed description of the shape-analysis algorithm is given in [19].

v1,v2) | Islist element; labeled by cutpoint-label; ?
v) Is list element a cutpoint?

Tep(v) Is the list element reachable from a cutpoint
usingn-fields?

"Table 1. The predicates used to represent statesin X;. There
are separ ate predicates z and r, for every program variable x.

5.1 RepresentingcscMemory Statesby 3-Valued

I—Ogl cal Structures a composition of two functions: (fp2VLS X; — 2-Struct which
Kleene’s3-valued logic is an extension of ordinatyalued logic maps a local-heap;, to an unbounde@-valuedlogical structure
with the special value of (unknown) for cases in which predicates S, and (i) canonical abstraction 2-Struct— 3-Structwhich con-

could have either valug, (true) or0 (false). We say thad and1 servatively bounds (defined as usual in [20]).
aredefinitevalues, wherea% is anindefinitevalue. The informa- ]
tion partial order on the s€0, 1,1} is defined a® C £ 3 1, and 5.1.1 Representing a Local-Heap by-&alued Log-
oul=3. ical Structure

A 3-valued logical structures is comprised of a set of individu- The functionto2VLS defined in Fig. 13, maps a local heap =

als (nodes) called a universe, denoted by, and an interpretation (CPL, A) to a2-valuedlogical structureS. Every objecto € A
over that universe for a (finite) set of predicate symbols. The inter- and every cutpoint-labetpl € CPL is represented by a unique

pretation of a predicate symbplin S is denoted by®°. For every node inU®. Tracked properties of the memory state are recorded
predicatep of arity k, p° is a functionp®: (U)* — {0, 11} by the predicates given in Tab. 1. We denote the set of predicates
A 2-valued structure is 8-valued structure with an interpretation  used to represent a memory state/y

limited to {0, 1}. The set of2-valuedlogical structure is denoted 2-valuedlogical structures are depicted as directed graphs. A
by 2-Struct and the set 08-valuedlogical structures is denoted by  directed edge between nodesandu. that is labeled with binary
3-Struct predicate symbaqb indicates thap® (u1, u2) = 1. Also, for a unary

To establish the Galois connection between the set of programpredicate symbop, we drawp inside a node: whenp® (u) = 1;
states (ordered by set inclusion) aBéStruct it suffices to show conversely, whep® (1) = 0 we do not drawp in .
a representation functiothat maps a program state to its “most- We explain the predicates’ intended meanings through an exam-
precise representation” B-Struct(e.g., see [14]). We define the ple. In the example, we applp2VLSto o7, the memory state
function Bsnape: X1, — 3-Struct which maps a local-heap to its  at the entry point of ever se (shown in Fig. 6). The resulting
most precise representation a%-galued logical structuré3napeis 2-valued logical structure, denoted By, is depicted in Fig. 14.



The universe ofS. contains six nodes. The nodes—us rep-
resent the list elements. The nodgrepresents the cutpoint-label (st ) LF {Bshapd o) | o1 € Y(S), (st o) L o}

e The predicategsList andisLabel record whether a node repre-
sents a list element or a cutpoint. We draw nodebat repre- Figure 16: A specification of the abstract inference rules for
sent list elements, i.ezst‘stS(u) = 1, asrectangles, e.g., nodes atomic statements.
uo—us; and we draw nodes that represent cutpoint-labels, i.e.,
isLabel® (v) = 1, as circles, e.g., Nod;.

e The predicatef, n, rp, ils, ¢, andeq are an adaptation to local-
heaps of the standard predicates used in the analysis of singlyIiS
linked lists [13, 20].

e The predicate®!, cp, andr,, record information that is special

5.1.2 Canonical Abstraction

The main idea in canonical abstraction is to represent several
t elements (or cutpoint-labels) by a single node, i.e., the map-
ping from list elements and cutpoint-labels to the universe of the
For each pointer variable, there is a unary predicate The 3-valuedlogical structure is a surjective function, but not neces-
value ofh”(u) is 1 if variableh points-to the list element rep-  sarily an injective function. A node that represents more than one
resented by:. The value of theéi-predicate is depicted via an  list element (or more than one cutpoint-labels), is callsdmmary
edge from the predicate nameo the node that represents the node.

list element thah points-to. Formally, a3-valuediogical structures® is acanonical abstrac-
The pointed-to-by-a-field relation between list elements is rep- tion of a 2-valuedlogical structuresS if there exists a surjective
resented by the binary predicatgi.e.,n” (v1,v2) = 1 if the functionf: U° — Us* satisfying the following conditions: (i) For
n-field of the list element represented by points-to the list alluy,uz € U, f(u1) = f(uz) iff for all unary predicatep € P,
element represented hy. p°(u1) = p°(u2), and (i) For all predicatep € P of arity k and
The unary predicate;, holds for list elements that are reach-  for all k-tuplesu?, uf, ... ,ul € U,

able by an access path that starts at a local varialdé the ;

currentcall. p° (ug,ug,... ,ui) = |_| ps(ul,ug,... ,UK).

The unary predicatéls capturedocal-heapsharing informa- ups up€US

tion. The predicate has the vallieat a nodeu that represents Flui)=uf

a list element that is pointed-to by thefields of two or more 4 "

list elements in théocal heap Note that the predicate records ~ We say tﬁhat anode’ € U~ represents nodew € U, when

only local sharing. In particularils® (u2) = 0, although in a flu) = v’ ) i . o
“global-view” of the heap, the list element representeduby _Example. The3-valuedlogical struct_ureS‘e, depicted in Fig. 15

is then-successor of two list elements: one in the local heap (first row, second column), (conservatively) represents the memory
(represented byi,) and one not in the local heap (the third ~Stateoi, represented bg.. _

element in the list pointed-to k). 3-valuedlogical structures are also drawn as directed graphs.
Definite values are drawn as for 2-valued structures. Binary in-

The unary predicateholds at a node that resides on a cycle of definite predicate vaIues}I are drawn as dotted directed edges.

n'f'eld_s' ) ] ) ) Summary nodes are depicted by a double frame.
The binary predicateq records the equality relation. Itis not The universe of5. contains 6 nodes. The only nodes that have
drawn in the pictures. the same values for all the unary predicatestareanduy,. Thus,

the universe of5? contains five nodes. The mappirg U —

for the abstraction of atS L state. US¢ induced by the canonical abstractiorfisuw ) = uf, f(u1a) =

fluie) = ul, fluo) = u, f(us) = ul, andf(us) = uf. The
only summary node s’ .

We see that any memory state representedsbygontains one
cutpoint label (the node’i6 is not a summary node). The cutpoint
is represented byg. This is recorded in two ways: (i) the value
of the predicatdblS¢ (uf, u5) = 1 and (i)} represents a list ele-
(only) cutpoint inS,; for all other nodes:, cp>c (1) = 0. ment that is labeled, as indicated by the value of the unary predicate

. . epSe(ul) =1

The unary predicate,., records the property that a list ele- P 2) = -
ment is reachable by a cutpoint-anchored path. For example, :
ro¢ (uz) = 1 andrig (us) = 1 because (only)z andus rep- 5.2 Abs_traqt Interpretatloh o )
resent list elements that can be reached from the cutpoint (by The sp}ecmcatlonl of thehabstract mtelrpreta’r[]lon is glVlen by “ab-

- — — stract” inference rules in the same style as the natural semantics.
g;i: :éﬁgg;;)ar::cor}o;ﬁ (étr;]aetrﬁlég @: ﬁi,(;))a:ndo({h.n.n.n}, n), The abstract inference rules operate3evaluedlogical structures.

' P ’ Fig. 16 and Fig. 17 shows the specification of the abstract inference

The binary predicaté! relates a node that represents a cutpoint-
label to the node that represents the corresponding cutpoint.
For examplelbls(ug, uz) = 1, becauseus represents the la-
bel of the cutpoint represented hy.

The unary predicatep records the property that a list element
is a cutpoint, e.g.cp®*(uz) = 1 becauseu, represents the

The predicatesp andr, are used to record information regard- rules for atomic statements and function-calls respectively. These
ing cutpoint-anchored paths in a similar manner to the ivagdr;, rules are declarative in the style of the best abstract transformer [4]:
record information regarding access-paths. However, unlike local every abstract inference rule emulates a corresponding concrete in-
variables, the number of cutpoints is unbounded. Thus, we cannotference rule using represented states .
have a predicate recording the reachable list-elements from every Example. Fig. 15 shows an application of the function-call infer-
cutpoint. Instead, we use individuals to represent cutpoint-labels, ence rule from Fig. 17 to the running example. The logical struc-
and “mark” cutpoint objects with thep predicate. tures are:S¥, which arises alb.., the call-site tor ever se; S?,



h uop - n Ulq - n Ulp -« n uz2: Cp, n us .
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h.n.an, hnnnn,
uo={h}, wia={hn}, wp={hnn}, UQI{ il }, U3:{ ilisdtl },
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ug = {h?n\n}

Figure 14: The 2-valued logical structure that results by applying to2VLSto o}, the memory state at the entry point of r ever se
(o7 isshown in Fig. 6). We denotethisstructureby S..
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Figure 15: Representative 3-valued logical structures that arise during the analysis of the running example at Ib., the call-site to
reverse (first row, first column); Ib., the entry tor ever se (first row, second column); Ib,, r ever se’s exit point (second row,
second column); and Ib,., thereturn-sitefrom r ever se (second row, first column).

which arisedb., the entry tor ever se; S which arises atb,, cyclic lists. Moreover, we can handle programs not handled before
the exit-point ofr ever se; andS? , the structureomputedat the by [9,18]. For example, we can verify that a recursive function that
return-site. destructively merges two acyclic lists, returns an acyclic list.

In S%, the list pointed-to by et is reversed. As a result:,g is It is straightforward to allow multiple cutpoints for functions

now reachable from the cutpoint at the exit-site. Therefore, even with multiple formal arguments by discriminating cutpoints reach-
though the list-element pointed-tobys not explicitly represented  able from different formal parameters. This will improve the preci-
in S%, the inference rule allows us to conclude tha§itthe return- sion of handling functions that are passed multiple lists.

site’s logical structurey’, becomes reachable fram Similarly,

is no longer reachable from To conclude, definite values of many 6. RELATED WORK

of the tracked properties af can be established after the function ] ) o
call returns. Storeless Semantics. Storeless semantics was first introduced

by Jonkers [10]. The original work does not handle procedure calls.
. . Intraprocedural storeless semantics is also used in [1] to develop a
5.3 Discussion logic that allows to express regular properties of unbounded data
In our abstraction, when a program state is mapped®toaued structures.
logical structure, no information is tracked regarding the contents A storeless semantics that handles function-calls is defined in [6].
of their labels. Furthermore, we do not differentiate between differ- The semantics is used to develop a may-alias algorithm. In contrast
ent cutpoints. This may lead to a significant loss of precision when to LS L, in [6] pending access paths are explicitly represented.
multiple cutpoints arise. For example, passing two lists with shared May-Alias Analysis. May-alias algorithms find an upper ap-
tails will be handled very conservatively. proximation for the sets of aliased access paths at every program
Nevertheless, even with this simple abstraction, our abstract do-point. Deutsch’s interprocedural may-alias algorithm of [7] uses a
main is precise enough to analyze the singly-linked-list-manipulatingstoreless representation of the heap. The algorithm is polynomial
programs analyzed in [9, 18] and verify that they do not derefer- and can handle function calls, dynamic memory allocation and de-
ence null-valued pointers, do not create garbage, and do not creatstructive updates.



A modular interprocedural shape-analysis algorithm is presented
in [2]. A procedure is analyzed only in the part of the heap that is

#
(body ofp, X S,) XS, . _ _
reachable from its parameters. The algorithm is able to relate the

(y=p(21,... ,78), XS) L X5, memory states at the procedure-entry with the memory states at
where the procedure-exit by labelingveryabstract node. However, the
{Calib(c%) | 0§ € (X Sq)} C y(XS,) mapping is determined by the sharing within the part of the heap
. that is passed to the procedure, and not by the sharing pattern with
oi € 7(XSy), the context—which is what is needed.
Retf(of,0r)| of € v(XS)), C (XSp)

compatible(c, o)

7. CONCLUSIONS

In this paper, we develogSL, a storeless semantics for lan-
guages with dynamic memory allocation, destructive updating and

Figure 17: A specification of the abstract inference rules
for function calls. The functions Cally="("t ") and
Ret?=P(*1:-7%) are defined in Fig. 11. Note that we apply

Ret?=?(*17%) only for compatible pairs of memory states.
Memory statesof and o7 arecompatiblewhen thesharing pat-
tern that resultsfrom theinvocation of p at o7 matchesthe de-

procedure calls. Our storeless semantics is unique in that called
procedures are only passgdrtsof the heap.

Our main insight is that the side-effects of a procedure invoca-
tion on R-values of pending access paths can be delayed to the pro-
cedure return—even though the memory cells do not have unique
identifiers, e.g., locations. The main idea is to track the effect of

destructive updates on access paths that start with the set of objects
that separate the part of the heap the procedure can reach from the
rest of the heap (objects that we call thepointsof the invocation).

A similar observation regarding the uniform effect of a procedure
on pending access paths was made by [5, 12] for pointer analysis.
We believe we are the first ones to use it in semantics.

LS L was designed with its precise and efficient abstractions in
mind: information about the context provided by the rest of the
heap is isolated to the sharing patterns of the cutpoints—which are
expressible in a context-independent manner. An analysis benefits
Jrom the fact that the heap is localized: the behavior of a procedure
only depends on the part of the heap that is reachable from actual
parameters, and on the sharing patterns that create cutpoints. Fur-
thermore, analysis results can be reused for different contexts that
have similar sharing patterns.

Using an abstraction of the non-standard concrete semantics, we
present a new interprocedural shape-analysis algorithm for pro-
grams that manipulate dynamically allocated storage. Our approach
is markedly different from previous works that analyze a function
invocation in the calling context [9, 18]. The new algorithm can
o Prove properties of programs that were not automatically verified
before, (e.g., to establish that a recursive, destructive merge of two

scription of thecontext in o7, the state of p at the exit-site. For-
mally, compatible(c§,0f) <= (CPL® = CPL* A VYh,h' €
F,.[h = R]r(o}) — [h = A]e(cf) AN Vh €
Fp.]h = null]r(cf) <= [h = null].(c})), where
o} = Callfj:p(“’ldom’w’“)(02).

LS L provides insight into Deutsch’s work on static may-alias
analyses based on pointer-access paths [7]—in particular, the treat
ment of variables of pending calls, which is one of the most compli-

given in [7] is that recursive procedures are handled in a more pre-
cise way than loops. The intuitive reason is that the abstractions
of values of variables in the current procedure is different from the
abstraction used for values of variables in pending procedures. Fur-
thermore, in [17], we show that Deutsch’s algorithm can be seen as
an abstraction of th€S L semantics by we defining a Galois con-
nection between memory statesfi$ £ with the abstract domain
of [7].

Interprocedural Shape Analysis. The original motivation for
our work comes from our attempt to apply interprocedural shap

fashion. I 16, Chap. 5] (s objectve was achieved, but based 2YCIE singyinked lisis returns an acyclc singly-lnked list—

on a weaker technique: (i) a procedure operates on the part of the € F'.g' 18). In particular, it _p_rO\_/ldes a way to establ_lsh proper-

heap that is reachable from the actual parameters, where the hea@es_ with fewer program-specific instrumentation predlcates. _We

is considered as amdirectedgraph; and (i) pending access paths elieve thz_at the modular treatn_1ent of the heap will allow the im-

that point-to objects in the passed part of the heap are representeol:.’lememat'on of these abstracuo_ns to sc_ale b_etter on Ia_1rg_er pIeces

In this paper, the heap is treated as a directed graph and pendin fcod(_a. The "’_‘pproaCh also provides insights into an existing may-
nalysis algorithm [7].

hs are not represented. In ition, [1 not handl - . .
access paths are not represented. In addition, [16] does not hand Two design choices were made during the development of the

recursive procedures. h vsis algorithm: One is t “storeless”
Interprocedural shape analysis has been studied in[9,18]. In [18],?eW _srhapet-hang y?s aigor tmt. ne s to use ta fs Oreless s’e;na?-
the main idea is to make the runtime stack an explicit data structure Ics. 1he otheris to concentraté on a Superset of a program s 100t-
print, based on reachability, rather than the actual footprint. While

and abstract it as a linked list. In this method, the entire heap andth id derlvi h v also t &
run-time stack are represented at every program point. As a result, . € ideas underlying our approach apply also to sharsedseman-
tics, the choice of a storeless semantics was a natural one to make

the abstraction may lose information about properties of the heap, Sec. 1.2). W ified th i . ival

for parts of the heap that cannot be affected by the procedure.at all (sleet_ ec'f ‘ ').t € specilie th € szmar: '(f:S using aln etc)qmlva _entlze

In [9], procedures are considered as transformers from the (entire)rf a |ton 0 po'g er a_cczzs-pba S (anthno , for exan;p €, by oglca}

program heap before the call, to the (entire) program heap after theSTUCLUres as done In [20]) Decause e naming scheme we use for

call. Every heap-allocated object is represented at every programcu.tpOIntS (cutpoint-labels) flt_s na}turally with the e_xpllcn manipu-

point; on the other hand, only the values of the local variables of the lation of access paths done in this type of :semantl_cs. _The deC'S'.On
fo concentrate on a superset of a program’s footprint (inferable via

current procedure are represented, which means that the irrelevan ati vsi tic choice for th tstudy. In f
parts of the heap are summarized to a single summary node durin atic analysis), was a pragmatic choice for the present study. n Tu-
ure work, we plan to investigate the use of user-supplied assertions

h lysis of an invok .
the analysis of an invoked procedure about preserved portions of the heap.



The notion of acutpointseems to be an important concept both
in storeless semantics and in store-based semantics. For instance,
garbage collection of local heaps becomes unsound unless cutpoints
are considered as part of the root set. Our storeless semantics takes
sets of access paths astpoint-labels This provides a context-
independent representation for the cutpoints of the invocation.

In some sense, the approach used in this paper is in the spirit of
local reasoning [8, 15], which provides a way to prove properties of
a procedure independent of its calling contexts. In local reasoning,
the “frame rule” allows proofs to be carried out in a local fashion:
the main idea is to partition the heap into disjoint parts and reason
about the parts separately. Our semantics resembles the frame rule
in the sense that the effect of a procedure call on a large heap can

typedef struct List{

struct List* n; int d;
bl
L merge(L p, L q) {
L r;
if (p == NULL) return q;
if (g == NULL) return p;

if (p->d <g->d) {
r = nerge(p->n,q);
p->n =r;
return p;

} else {
r = merge(p, q->n);

be obtained from its effect on a subheap.
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APPENDI X

A. ADDITIONAL CODE

Fig. 18 shows the code for threer ge function. Fig. 19 shows
the code for the functionsr t andapp used in the running exam-
ple.



