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Abstract
In this paper, we present a technique to synthesize machine-code in-
structions from a semantic specification, given as a Quantifier-Free
Bit-Vector (QFBV) logic formula. Our technique uses an instantia-
tion of the Counter-Example Guided Inductive Synthesis (CEGIS)
framework, in combination with search-space pruning heuristics to
synthesize instruction-sequences. To counter the exponential cost
inherent in enumerative synthesis, our technique uses a divide-
and-conquer strategy to break the input QFBV formula into in-
dependent sub-formulas, and synthesize instructions for the sub-
formulas. Synthesizers created by our technique could be used to
create semantics-based binary rewriting tools such as optimizers,
partial evaluators, program obfuscators/de-obfuscators, etc. Our ex-
periments for Intel’s IA-32 instruction set show that, in compari-
son to our baseline algorithm, our search-space pruning heuristics
reduce the synthesis time by a factor of 473, and our divide-and-
conquer strategy reduces the synthesis time by a further 3 to 5 or-
ders of magnitude.

Categories and Subject Descriptors D.1.2, I.2.2 [Automatic Pro-
gramming]: Program Synthesis

General Terms Algorithms

Keywords Machine-code synthesis, CEGIS, divide-and-conquer,
SMT, IA-32 instruction set

1. Introduction
The analysis of binaries has gotten an increasing amount of at-
tention from the academic community in the last decade (e.g.,
see references in [23, §7], [1, §1], [4, §1]). The results of bi-
nary analysis have been predominantly used to answer questions
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about the properties of binaries. Another potential use of analysis
results is to rewrite the binary via semantic transformations. Ex-
amples of semantics-based rewriting include offline optimization,
partial evaluation [11], and binary translation [3]. To rewrite a bi-
nary based on semantic criteria, an important primitive to have is a
machine-code synthesizer—a tool that emits machine-code instruc-
tions1 belonging to a specific Instruction Set Architecture (ISA) for
the transformed program semantics. Currently, there are no tools
that perform machine-code synthesis for a full ISA. Existing ap-
proaches either (i) work on small bit-vector languages that do not
have all the features of an ISA [9], or (ii) superoptimize instruction-
sequences [2]. A peephole-superoptimizer has the following type:

Superoptimize : InstrSequence→ InstrSequence

A machine-code synthesizer has the following type:

Synthesize : QFBVFormula→ InstrSequence

Because an instruction-sequence can be converted to a QFBV
formula via symbolic execution, a machine-code synthesizer can
be used for superoptimization; however, the converse is not possi-
ble. (See §7.) Moreover, search-space pruning techniques used by
superoptimizers cannot be used by a machine-code synthesizer.

In this paper, we present a technique to synthesize straight-
line machine-code instruction-sequences from a QFBV formula.
The synthesized instruction-sequence implements the input QFBV
formula (i.e., is equivalent to the QFBV formula). Our technique is
parameterized by the ISA of the target instruction-sequence, and is
easily adaptable to work on other semantic representations, such as
a Universal Assembly Language (UAL) [4].

A machine-code synthesizer allows us to create multiple binary-
rewriting tools that use the following recipe:
1. Convert instructions in the binary to QFBV formulas.
2. Use analysis results to transform QFBV formulas.
3. Use the synthesizer to produce an instruction-sequence that

implements each transformed formula.
One tool that could be created using the above framework is an of-
fline binary optimizer to improve unoptimized binaries. Analyses
like Value-Set Analysis (VSA) [1] and Def-Use Analysis (DUA)
[13] could be used in Step 2 to optimize QFBV formulas using
information about constants, live registers and flags, etc. Another
example is a machine-code partial evaluator. The partial evalu-
ator can use the synthesizer to produce residual instructions for
QFBV formulas specialized with respect to a partial static state.
A machine-code synthesizer can also be used to generate obfus-
cated instruction-sequences for testing malware detectors [5], and
to embed security policies in binaries [8].

1 We use the term “machine code” to refer generically to low-level code, and do not
distinguish between actual machine-code bits/bytes and the assembly code to which it
is disassembled.



We present a tool, called MCSYNTH, which synthesizes Intel
IA-32 instructions from a QFBV formula. The core synthesis loop
of our tool uses an instantiation of the Counter-Example Guided
Inductive Synthesis (CEGIS) framework [18]. MCSYNTH enumer-
ates instruction-sequences, and uses CEGIS to find an instruction-
sequence that implements the QFBV formula. To combat the expo-
nential cost of explicit enumeration, MCSYNTH uses two strategies
based on the following observations about QFBV formulas for ma-
chine code. First, if an instruction-sequence uses (kills) a location
(a register, flag, or memory location) that is not used (killed) by
a QFBV formula ϕ, that instruction-sequence will not implement
ϕ efficiently. Based on this observation, MCSYNTH uses heuristics
to prune away useless candidates from the synthesis search space.
Second, a QFBV formula for an instruction-sequence (e.g., a ba-
sic block) typically has many inputs and many outputs (i.e., regis-
ters, flags, and memory locations.) Based on this observation, MC-
SYNTH uses a divide-and-conquer strategy to break an input QFBV
formula into sub-formulas, and synthesizes instructions for the sub-
formulas.

The contributions of our work include the following:
• We present a technique for the synthesis of machine-code in-

structions from a QFBV formula. Our technique is parameter-
ized by the ISA, and can be easily adapted to other semantic
representations. Our technique is the first of its kind to be ap-
plied to a full ISA.

• The core synthesis loop of our technique is a new instantiation
of the CEGIS framework (§4.1).

• We have developed heuristics based on the footprint of
machine-code QFBV formulas to prune away useless candi-
dates, and reduce the synthesis search-space (§4.2).

• To counter the exponential cost of enumerative strategies, we
have developed a divide-and-conquer strategy to divide a QFBV
formula into independent sub-formulas, and synthesize instruc-
tions for the sub-formulas (§4.3). This strategy has been shown
to reduce the synthesis time by several orders of magnitude.

Our methods have been implemented in MCSYNTH, a machine-
code synthesizer for Intel’s IA-32 ISA. We tested MCSYNTH on
QFBV formulas obtained from basic blocks in the SPECINT
2006 benchmark suite. We found that, on an average, MCSYNTH’s
footprint-based search-space-pruning heuristic reduces the synthe-
sis time by a factor of 473, and MCSYNTH’s divide-and-conquer
strategy reduces synthesis time by a further 3 to 5 orders of mag-
nitude. In comparison to the x86 peephole superoptimizer [2] (the
only tool whose search space is comparable to that of MCSYNTH),
which takes several hours to synthesize an instruction-sequence
of length up to 3, MCSYNTH can synthesize certain instruction-
sequences of length up to 10 in a few minutes. We have also built
an IA-32 partial evaluator, and an IA-32 slicer as clients of MC-
SYNTH. (See §8.)

2. Background
The operational semantics of machine-code instructions can be
expressed formally by QFBV formulas. In this section, we describe
the syntax and semantics of the QFBV formulas that are used in the
rest of the paper.

2.1 Syntax
Consider a quantifier-free bit-vector logic L over finite vocabularies
of constant symbols and function symbols. We will be dealing
with a specific instantiation of L, denoted by L[IA-32]. (L can
also be instantiated for other ISAs.) In L[IA-32], some constants
represent IA-32’s registers (EAX, ESP, EBP, etc.), some represent
flags (CF, SF, etc.), and some are free constants (i, j, etc.). L[IA-
32] has only one function symbol “Mem,” which denotes memory.
The syntax of L[IA-32] is defined in Fig. 1. The term of the form

T ∈ Term, ϕ ∈ Formula, FE ∈ FuncExpr

c ∈ Int32 = {..., -1, 0, 1, ...} b ∈ Bool = {True, False}
IInt32 ∈ Int32Id = {EAX, ESP, EBP, ... , i, j, ...}

IBool ∈ BoolId = {CF, SF, ...} F ∈ FuncId = {Mem}
op ∈ BinOp = {+, −, ...} bop ∈ BoolOp = {∧, ∨, ...}

rop ∈ RelOp = {=, 6=, <, >, ...}
T ::= c | IInt32 | T1 op T2 | ite(ϕ, T1, T2) | F(T1)

ϕ ::= b | IBool | T1 rop T2 | ¬ϕ1 | ϕ1 bopϕ2 | F = FE

FE ::= F | FE1[T1 7→ T2]

Figure 1: Syntax of L[IA-32].

ite(ϕ, T1, T2) represents an if-then-else expression. A FuncExpr of
the form FE[T1 7→ T2] denotes a function-update expression.

The function 〈〈·〉〉 converts an IA-32 instruction-sequence into a
QFBV formula. The methodology for this conversion can be found
elsewhere [14]. To write formulas that express state transitions,
all Int32Ids, BoolIds, and FuncIds can be qualified by primes
(e.g., Mem′). The QFBV formula for an instruction-sequence is a
restricted 2-vocabulary formula of the form∧

m

(I′m = Tm) ∧
∧

n

(J′n = ϕn) ∧ F′ = FE, (1)

where I′m and J′n range over the constant symbols for registers and
flags, respectively. The primed vocabulary is the post-state vocabu-
lary, and the unprimed vocabulary is the pre-state vocabulary. The
QFBV formula for the IA-32 instruction “push ebp” is given be-
low. This instruction pushes the 32-bit value in the frame-pointer
register ebp onto the stack.

〈〈push ebp〉〉 ≡ ESP′ = ESP− 4∧ (2)

Mem′ = Mem[ESP− 4 7→ EBP]

In this section, and in the rest of the paper, we will show only
the relevant portions of QFBV formulas. QFBV formulas actually
contain identity conjuncts (of the form I′ = I or F′ = F ) for
constants or functions that are unmodified. Because we do not want
the synthesizer output to be restricted to an instruction-sequence
that uses a specific number of bytes, we drop the conjunct of the
form EIP′ = T. (EIP is the program counter for IA-32.) The QFBV
formula for the push instruction actually looks like the formula in
Eqn. (3), and omits the conjunct EIP′ = EIP + 1.

ESP′ = ESP− 4 ∧ EAX′ = EAX ∧ . . . (3)

CF′ = CF ∧ . . . ∧Mem′ = Mem[ESP− 4 7→ EBP]

2.2 Semantics
Intuitively, a QFBV formula represents updates made by an in-
struction to the machine state. QFBV formulas in L[IA-32] are in-
terpreted as follows: elements of Int32, Bool, BinOp, RelOp, and
BoolOp are interpreted in the standard way. An unprimed (primed)
constant symbol is interpreted as the value of the correspond-
ing register or flag from the pre-state (post-state). An unprimed
(primed) Mem symbol is interpreted as the memory array from the
pre-state (post-state). (To simplify the presentation, we pretend that
each memory location holds a 32-bit integer; however, in our im-
plementation memory is addressed at the level of individual bytes.)
The meaning of a QFBV formula in L[IA-32] is a set of machine-
state pairs (〈pre-state, post-state〉) that satisfy the formula. An IA-
32 machine-state is a triple of the form:

〈RegMap, FlagMap, MemMap〉
RegMap, FlagMap, and MemMap map each register, flag, and
memory location in the state, respectively, to a value. A 〈pre-state,



post-state〉 pair that satisfies Eqn. (2) is
σ ≡ 〈[ESP 7→ 100][EBP 7→ 200], [ ], [ ]〉
σ′ ≡ 〈[ESP 7→ 96][EBP 7→ 200], [ ], [96 7→ 200]〉.

Note that the location names in states are not italicized to distin-
guish them from constant symbols in QFBV formulas. By conven-
tion, all locations for which the range value is not shown explicitly
in a state have the value 0.

3. Overview
Given a QFBV formula ϕ, MCSYNTH synthesizes an instruction-
sequence for ϕ in the following way:
1. MCSYNTH enumerates templatized instruction-sequences of in-

creasing length. A templatized instruction-sequence is a se-
quence of instructions with template operands (or holes) instead
of one or more constant values.

2. MCSYNTH attempts to find an instantiation of a candidate tem-
platized instruction-sequence that is logically equivalent to ϕ
using CEGIS. If an instantiation is found, MCSYNTH returns it.
Otherwise, the next templatized sequence is considered.

3. MCSYNTH uses heuristics based on the footprints of QFBV
formulas to prune away useless candidates during enumeration.

To counter the exponential cost of brute-force enumeration, MC-
SYNTH uses a divide-and-conquer strategy; MCSYNTH breaks ϕ
into independent sub-formulas and synthesizes instructions for the
sub-formulas. This section presents an example to illustrate our ap-
proach. First, we illustrate MCSYNTH’s CEGIS loop along with
MCSYNTH’s footprint-based search-space pruning, and then we il-
lustrate MCSYNTH’s divide-and-conquer strategy.

3.1 CEGIS + Footprint-Based Pruning
In procedure calls, a common idiom in the prologue of the callee is
to save the frame pointer of the caller, and initialize its own frame
pointer. A QFBV formula ϕ for this idiom is

ϕ ≡ ESP′ = ESP− 4 ∧ EBP′ = ESP− 4∧ (4)

Mem′ = Mem[ESP− 4 7→ EBP].

MCSYNTH starts enumerating templatized one-instruction se-
quences. Let us assume that the first candidate is C1 ≡ “mov eax,
<Imm32>”. C1 is a template to move a 32-bit constant value into
the eax register. MCSYNTH converts C1 into a QFBV formula ψ1.
(MCSYNTH uses free constants for template operands.)

ψ1 ≡ 〈〈C1〉〉 ≡ EAX′ = i
Before processing ψ1 via CEGIS, MCSYNTH checks if ψ1 can

be pruned away. If an instruction-sequence uses (modifies) a loca-
tion that is not used (modified) by ϕ, intuitively, the instruction-
sequence can never implement ϕ in an efficient way. MCSYNTH
computes the abstract semantic USE-footprint (SFP#

USE), and the
abstract semantic KILL-footprint (SFP#

KILL) forϕ andψ1. SFP#
USE

(SFP#
KILL) is an over-approximation of the locations (registers,

flags, or memory) that might be used (modified) by a QFBV for-
mula. Concretely, SFP#

USE (SFP#
KILL) for a QFBV formula is a set

of constant symbols and/or function symbols from the vocabulary
of the QFBV formula. Symbols in SFP#

KILL are primed. SFP#
USE

and SFP#
KILL for ϕ and ψ1 are given below.

SFP#
USE(ϕ) = {ESP,EBP} SFP#

USE(ψ1) = ∅
SFP#

KILL(ϕ) = {ESP′,EBP′, SFP#
KILL(ψ1) = {EAX′}

Mem′}
SFP#

USE(ψ1) is ∅ because ψ1 does not use any registers, flags, or
memory locations. (Identity conjuncts like EBX′ = EBX do not
contribute to SFP#

USE and SFP#
KILL.) SFP#

KILL(ψ1) is {EAX′} be-

cause ψ1 might change the value of the eax register. SFP#
KILL(ϕ)

contains Mem′ because ϕ might modify some memory location.
Because SFP#

KILL(ψ1) 6⊆ SFP#
KILL(ϕ), C1 might modify a loca-

tion that is unmodified by ϕ, and thus, it cannot be equivalent
to ϕ. Consequently, MCSYNTH discards C1. Moreover, regardless
of the instruction-sequence that is appended to C1, the resulting
instruction-sequence will always be discarded at this step. We call
instruction-sequences such as C1 useless-prefixes. By discarding
useless-prefixes, any future candidate enumerated by MCSYNTH
has only useful-prefixes as its prefix.

Suppose that MCSYNTH chooses C2 ≡ “mov ebp, esp” as
the next candidate. C2 copies a 32-bit value from the stack-pointer
register esp to the frame-pointer register ebp. The QFBV formula
ψ2 for C2, and the SFP# sets for ψ2 are

ψ2 ≡ 〈〈C2〉〉 ≡ EBP′ = ESP

SFP#
USE(ψ2) = {ESP} SFP#

KILL(ψ2) = {EBP′}.
Because SFP#

KILL(ψ2) ⊆ SFP#
KILL(ϕ), and SFP#

USE(ψ2) ⊆
SFP#

USE(ϕ), MCSYNTH proceeds to process ψ2 via CEGIS.
Given a templatized candidate C, and a finite set of tests T

(where, a test is a 〈pre-state, post-state〉 pair), MCSYNTH performs
the following steps in its core CEGIS loop:
1. MCSYNTH attempts to find values for the template operands in

C, such that the instantiated sequence Cconc and ϕ produce iden-
tical post states for each test in test set T . If such an instance
cannot be found, MCSYNTH discontinues further processing of
C via CEGIS, but retains C as a useful-prefix.

2. If MCSYNTH finds an instance Cconc that works for the finite
set of tests T , MCSYNTH uses an SMT solver to determine
whether 〈〈Cconc〉〉 is equivalent to ϕ. If the check succeeds,
MCSYNTH returns Cconc.

3. If the check fails, MCSYNTH adds the counter-example pro-
duced by the SMT solver to T , and repeats Step 1.
Suppose that T has only one test, 〈σ1, σ

′
1〉.

σ1 ≡ 〈[ESP 7→ 100][EBP 7→ 200], [ ], [ ]〉
σ′1 ≡ 〈[ESP 7→ 96][EBP 7→ 96], [ ], [96 7→ 200]〉

One can see that 〈σ1, σ
′
1〉 |= ϕ. MCSYNTH evaluates ψ2 with

respect to 〈σ1, σ
′
1〉 (i.e., checks satisfiability), and finds that

〈σ1, σ
′
1〉 6|= ψ2. Hence, MCSYNTH discontinues further process-

ing of ψ2 via CEGIS, but retains C2 as a useful-prefix. MCSYNTH
uses C2 as a prefix when enumerating future candidates.

Suppose that MCSYNTH has exhausted all one-instruction can-
didates, and considers C3 ≡ “push ebp; mov ebp, <Imm32>”
as the next candidate. C3 is a template to save the frame-pointer
register ebp on the stack, and move a 32-bit constant value into
ebp. The QFBV formula ψ3 for C3 is

ψ3 ≡ 〈〈C3〉〉 ≡ESP′ = ESP− 4 ∧ EBP′ = i∧
Mem′ = Mem[ESP− 4 7→ EBP].

By simplifying ψ3 with respect to 〈σ1, σ
′
1〉, MCSYNTH produces

the simplified formula ψ〈σ1, σ
′
1〉

3 shown below.

ψ
〈σ1, σ′

1〉
3 ≡ 96 = 96 ∧ 96 = i ∧Mem′ = Mem[96 7→ 200]

∧ Mem(96) = 0 ∧Mem′(96) = 200

(To see how MCSYNTH generates the constraints Mem(96) = 0
and Mem′(96) = 200, see §4.1.2.) MCSYNTH checks the satis-
fiability of ψ〈σ1, σ

′
1〉

3 using an SMT solver. The solver says that
ψ
〈σ1, σ′

1〉
3 is satisfiable, and produces the satisfying assignment

[i 7→ 96]. Substituting the assignment in C3, MCSYNTH ob-
tains the concrete instruction-sequence Cconc

3 ≡ “push ebp; mov
ebp, 96”, and its corresponding QFBV formula, ψconc

3 . A concrete
instruction-sequence is a sequence of instructions that do not have



any template operands (or holes).

ψconc
3 ≡ESP′ = ESP− 4 ∧ EBP′ = 96∧

Mem′ = Mem[ESP− 4 7→ EBP]

ϕ and ψconc
3 produce identical post-states for the test case 〈σ1, σ

′
1〉.

Now that MCSYNTH has found a candidate that is equivalent to ϕ
with respect to one test case, MCSYNTH checks if the candidate is
equivalent to ϕ for all possible test cases. MCSYNTH checks the
equivalence of ϕ and ψconc

3 using an SMT solver. The solver says
that the two formulas are not equivalent, and produces a counter-
example 〈σ2, σ

′
2〉. MCSYNTH adds 〈σ2, σ

′
2〉 to T .

σ2 ≡ 〈[ESP 7→ 104][EBP 7→ 200], [ ], [ ]〉
σ′2 ≡ 〈[ESP 7→ 100][EBP 7→ 100], [ ], [100 7→ 200]〉

Eventually, MCSYNTH enumerates the candidate C4 ≡ “push
ebp; mov ebp, esp”, and obtains the corresponding QFBV
formula ψ4. MCSYNTH simplifies ψ4 with respect to 〈σ1, σ

′
1〉

and 〈σ2, σ
′
2〉 to produce the simplified formulas ψ〈σ1, σ

′
1〉

4 and
ψ
〈σ2, σ′

2〉
4 , respectively. MCSYNTH checks the satisfiability of

ψ
〈σ1, σ′

1〉
4 ∧ ψ〈σ2, σ

′
2〉

4 using an SMT solver. The solver says that
the formula is satisfiable. MCSYNTH then checks whether ϕ and
ψ4 are equivalent, and subsequently returns C4.

3.2 Divide-and-Conquer
For the running example, the synthesis terminates in a few min-
utes. However, for bigger QFBV formulas, the exponential cost
of enumeration causes the synthesis algorithm to run for hours
or days. To overcome this problem, MCSYNTH uses a divide-and-
conquer strategy. Before synthesizing instructions for the full ϕ,
MCSYNTH attempts to break ϕ into a sequence of independent
sub-formulas. If ϕ can be split into sub-formulas, MCSYNTH syn-
thesizes instructions for the sub-formulas, appends the synthesized
instructions, and returns the result. One possible way to split ϕ is
as 〈ϕ1, ϕ2, ϕ3〉, where

ϕ1 ≡ ESP′ = ESP− 4 ϕ2 ≡ EBP′ = ESP− 4

ϕ3 ≡ Mem′ = Mem[ESP− 4 7→ EBP].

However,ϕ2 andϕ3 both use ESP, which is killed byϕ1. (Note that
to compare the used and killed locations, the primes are dropped
from primed symbols.) If MCSYNTH were to synthesize instruc-
tions for ϕ1, ϕ2, and ϕ3, and append them in that order, the result
will not be equivalent to ϕ. We call such a split illegal. Another
possible way to split ϕ is as 〈ϕ1, ϕ2, ϕ3〉, where

ϕ1 ≡ Mem′ = Mem[ESP− 4 7→ EBP]

ϕ2 ≡ EBP′ = ESP− 4 ϕ3 ≡ ESP′ = ESP− 4.

In this split, no sub-formula kills a primed location whose unprimed
namesake is used by a successor sub-formula. This condition char-
acterizes a legal split. MCSYNTH synthesizes the following instruc-
tions for the sub-formulas:
C1 ≡ mov [esp - 4], ebp C2 ≡ lea ebp, [esp - 4]

C3 ≡ lea esp, [esp - 4]

The divide-and-conquer strategy reduces the synthesis time for ϕ
from a few minutes to a few seconds. For the running example, the
reduction in synthesis time is small, but for larger QFBV formulas,
this strategy brings down the synthesis time by several orders of
magnitude.

3.3 The Role of Templatized Instruction-Sequences
In other work on synthesis, “templates” are sometimes used to
restrict the set of possible outcomes, and thereby cause syn-
thesis algorithms to be incomplete. In our work, a templatized
instruction-sequence is merely a sequence of templatized instruc-

Algorithm 1 Strawman algorithm to synthesize instructions from a
QFBV formula
Input: ϕ
Output: Cconc

1: T ← ∅
2: for each concrete instruction-sequence Cconc in the ISA do
3: ψ← 〈〈Cconc〉〉
4: if not TestsPass(ψ, T ) then
5: continue
6: end if
7: model← SAT(¬(ϕ⇔ ψ))
8: if model = ⊥ then
9: return Cconc

10: else
11: T ← T ∪ model
12: end if
13: end for

tions, where the set of templatized instructions spans the full IA-
32 instruction set. For example, the templatized instruction “mov
eax, <Imm32>” represents four billion instructions “mov eax,
0”, “mov eax, 1”, ... “mov eax, 4294967296”. Each templa-
tized instruction is created by lifting a single instruction from an
immediate operand to a template operand.

Because the templatized instructions still span the full IA-32
instruction set, the templatized instruction-sequences span the full
set of IA-32 instruction-sequences, hence the use of templates in
our work does not cause our algorithms to be incomplete.

4. Algorithm
In this section, we describe the algorithms used by MCSYNTH.
First, we present the algorithm for MCSYNTH’s synthesis loop. Sec-
ond, we present the heuristics used by MCSYNTH to prune the syn-
thesis search-space. Third, we describe MCSYNTH’s divide-and-
conquer strategy, and present the full algorithm used by MCSYNTH.

4.1 Synthesis Loop
We start by presenting a naı̈ve algorithm for synthesizing machine
code from a QFBV formula; we then present a few refinements to
obtain the algorithm actually used in MCSYNTH.

4.1.1 Base Algorithm
Given an input QFBV formula ϕ, a naı̈ve first cut is to enumer-
ate every concrete instruction-sequence in the ISA, convert the
instruction-sequence into a QFBV formula ψ, and use an SMT
solver to check the validity of the formula ϕ ⇔ ψ. The unhigh-
lighted lines of Alg. 1 show this strawman algorithm.

MCSYNTH uses an SMT solver to check the satisfiability of a
QFBV formula. (Validity queries are expressed as negated satisfi-
ability queries.) SMT queries are represented in the algorithms by
calls to the function SAT. If a formula is satisfiable, the SMT solver
returns a model. If the query posed to the SMT solver is a satisfia-
bility query, the model is treated as a satisfying assignment. If the
query is a validity query, the model is a counter-example to validity.

One optimization is to use the counter-examples produced by
the SMT solver as test cases to reduce future calls to the solver.
Evaluating a QFBV formula using a test case can be performed
much faster than obtaining an answer from an SMT solver. MC-
SYNTH maintains a finite set of test cases T . (Note that 〈σ , σ′〉
|= ϕ, for all 〈σ , σ′〉 ∈ T .) MCSYNTH evaluates ψ with respect to
each test 〈σ , σ′〉 in T to check if 〈σ , σ′〉 |= ψ (i.e., ϕ and ψ pro-
duce identical post-states for each test in T ). If all the tests pass,
ψ is checked for equivalence with ϕ (Line 7); otherwise, it is dis-
carded. The strawman algorithm, along with this optimization, is
shown in Alg. 1. In Alg. 1, TestsPass evaluates ψ with respect
to each test in T .



4.1.2 CEGIS
The search space of Alg. 1 is clearly enormous. Almost all ISAs
support immediate operands in instructions, and this results in
thousands of distinct instructions with the same opcode. To re-
duce the search space, instead of enumerating concrete instruction-
sequences, the synthesizer can enumerate templatized instruction-
sequences. A templatized instruction-sequence can be treated as a
partial program, or a sketch [20]. CEGIS is a popular synthesis
framework that has been widely used in the completion of partial
programs. The basic idea of CEGIS is the following: Given (i) a
specification ϕ, (ii) a finite set of tests T for the specification, and
(iii) a partial program C that needs to be completed, CEGIS tries
to find a completion (values for holes in the partial program) Cconc

that passes the tests. Then, it checks if Cconc meets the specification
using an SMT solver. If it does, Cconc is returned. Otherwise, it adds
the counter-example returned by the solver to T , and tries to find
another completion. This loop proceeds until no more completions
are possible. The rest of this sub-section describes how we have
instantiated the CEGIS framework to synthesize machine code in
MCSYNTH.

Given ϕ, MCSYNTH bootstraps its test suite T with the test
〈σ0 , σ

′
0〉. σ0 is a machine-code state in which all locations are

mapped to 0. MCSYNTH computes σ′0 by substituting σ0 in ϕ.
The inputs to MCSYNTH’s CEGIS loop are ϕ, the test suite T ,
a templatized sequence C, and its QFBV formula ψ ≡ 〈〈C〉〉.

Checking a candidate against T . Given ψ and T , MCSYNTH
simplifies ψ with respect to T to create ψT as follows: Starting
with ψT ≡ true, MCSYNTH iterates through each test 〈σ, σ′〉 ∈
T : MCSYNTH simplifies ψ with respect to 〈σ, σ′〉, and conjoins
the simplified ψ to ψT . MCSYNTH then checks the satisfiability of
ψT using an SMT solver. If ψT is unsatisfiable, there exists no
instantiation of C that passes all tests in T . If ψT is satisfiable,
MCSYNTH substitutes the satisfying assignment returned by the
SMT solver in C and ψ to obtain Cconc and ψconc, respectively. For
each test in T , Cconc and ψconc produce the same post-state as ϕ.

Because states have memory arrays, simplifying ψ with respect
to T is not straightforward. In the rest of this sub-section, we
describe how MCSYNTH simplifies a formula with respect to a
set of tests. We present three approaches for simplification: (i) An
ideal approach that cannot be implemented for states that have
many memory locations, (ii) a naı̈ve approach that produces false-
positives (it says that there exists an instantiation of C that is
equivalent to ϕ with respect to T , even when one does not exist),
and (iii) the approach used by MCSYNTH, which does not produce
false-positives, and can be implemented.

To illustrate these approaches, suppose that ϕ is

ϕ ≡ EAX′ = Mem(ESP) ∧Mem′ = Mem[EBP 7→ EBX].

Let us also assume that T has only one test case.2

σ : [[ESP 7→ 100][EBP 7→ 200][EBX 7→ 1], [ ], [100 7→ 2]]

σ′ : [[EAX 7→ 2][ESP 7→ 100][EBP 7→ 200][EBX 7→ 1], [ ],

[100 7→ 2][200 7→ 1]]

Consider our first candidate C1 ≡ “mov eax, [esp]; mov
[esp], ebx”. C1 copies a 32-bit value from the location pointed
to by the stack-pointer register esp to the register eax, and a 32-
bit value from the ebx register to the location pointed to by the
frame-pointer register ebp. The QFBV formula ψ1 for C1 is

ψ1 ≡ 〈〈C1〉〉 ≡EAX′ = Mem(ESP)∧
Mem′ = Mem[ESP 7→ EBX].

2 Recall that any location not shown in a state is mapped to the value 0.

Our goal is to simplify ψ1 with respect to 〈σ, σ′〉 to obtain the
simplified formula ψ〈σ,σ

′〉
1 .

Approach 1. Suppose that we have a function χ that converts a
state into a QFBV formula. One way to obtain ψ〈σ,σ

′〉
1 is to convert

σ and σ′ into QFBV formulas (using the function χ), and conjoin
the resulting formulas with ψ1.

ψ
〈σ,σ′〉
1 ≡ ψ1 ∧ χ(σ, 0) ∧ χ(σ′, 1) (5)

Note that χ also takes a vocabulary index as an input (the pre-state
is vocabulary 0; the post-state is vocabulary 1). The symbols in the
QFBV formula produced by χ are in the specified vocabulary. We
can define χ as follows:

χ(σ, voc) = χRegFlag(σ, voc) ∧ χMem(σ, voc)

χRegFlag converts the register and flag maps into a QFBV formula;
χMem converts the memory map into a QFBV formula.

The implementation of χRegFlag is straightforward: for each reg-
ister (flag), generate a constraint using the value of the register
(flag) from the argument state. For example,

χRegFlag(σ, 0) ≡ ESP = 100 ∧ EBP = 200 ∧ EBX = 1.

One possible way of implementing χMem is the following: for every
location l in the memory array, generate a constraint on index l of
an uninterpreted array symbol Mem.

χMem(σ, 0) ≡Mem(0) = 0 ∧Mem(4) = 0 ∧ . . .
Mem(100) = 2 ∧Mem(104) = 0 ∧ . . .

In most ISAs, addressable memory is usually 232 or 264 bytes
long. One way to prevent χMem from returning enormous formulas
is to use a universal quantifier in the formula. However, off-the-
shelf SMT solvers cannot be used to check the satisfiability of
the resulting formula. Consequently, we need to devise a different
approach.

Approach 2. We could use χRegFlag in place of χ.

ψ
〈σ,σ′〉
1 ≡ ψ1 ∧ χRegFlag(σ, 0) ∧ χRegFlag(σ

′, 1) (6)

However, Eqns. (5) and (6 ) are not equisatisfiable. This approach
results in false positives. Because Eqn. (6) is satisfiable, this ap-
proach would conclude that ψ1 is equivalent to ϕ with respect to
〈σ, σ′〉, even though it is not.

Approach 3. To obtain a simplified formula that is equisatisfi-
able with the one in Eqn. (5), MCSYNTH uses a procedure Simplify-
WithTest. SimplifyWithTest generates constraints only for memory
locations that are accessed or updated by a QFBV formula for a test
case. We illustrate SimplifyWithTest by simplifyingψ1 with respect
to 〈σ, σ′〉. First, SimplifyWithTest conjoins ψ1 with χRegFlag(σ, 0)
and χRegFlag(σ

′, 1) to obtain the following formula:

2 = Mem(100) ∧Mem′ = Mem[100 7→ 1] (7)

The only memory location that is accessed or updated in Eqn. (7)
is 100. For this location, SimplifyWithTest generates the following
constraints from 〈σ, σ′〉.

Mem(100) = 2 ∧Mem′(100) = 2 (8)

SimplifyWithTest conjoins Eqn. (7) and Eqn. (8) to obtain

ψ
〈σ,σ′〉
1 ≡Mem′ = Mem[100 7→ 1]∧ (9)

Mem(100) = 2 ∧ Mem′(100) = 2.

The formulas in Eqn. (5) and Eqn. (9) are equisatisfiable because
any memory location other than 100 is irrelevant to the test case.
MCSYNTH checks the satisfiability of ψ〈σ,σ

′〉
1 using an SMT solver.

The solver says that ψ〈σ,σ
′〉

1 is unsatisfiable, which is the desired
result.



Algorithm 2 Algorithm SimplifyWithTest

Input: ψ, 〈σ, σ′〉
Output: ψ〈σ,σ

′〉

1: ψ〈σ,σ
′〉← Simplify(ψ ∧ χRegFlag(σ, 0) ∧ χRegFlag(σ′, 1))

2: concLocs← ConcLocs(ψ〈σ,σ
′〉)

3: concMemConstr← true
4: for each a in concLocs do
5: val← Lookup(σ, a)
6: val′← Lookup(σ′, a)
7: concMemConstr← concMemConstr ∧ Mem(a) = val ∧ Mem′(a)

= val′
8: end for
9: symLocs← SymLocs(ψ〈σ,σ

′〉)
10: if symLocs = ∅ then
11: return Simplify(ψ〈σ,σ

′〉 ∧ concMemConstr)
12: end if
13: return Simplify(ψ〈σ,σ

′〉 ∧ concMemConstr ∧ SymMem Constr
(symLocs, σ, Mem) ∧ SymMemConstr(symLocs, σ′, Mem′))

Consider another candidate C2 ≡ “mov eax, [esp]; mov
[<Imm32>], ebx”. C2 is a template to copy a 32-bit value from
the location pointed to by the stack-pointer register esp to the reg-
ister eax, and a 32-bit value from the ebx register to a memory
location with a constant address. The QFBV formula ψ2 for C2 is

ψ2 ≡ 〈〈C2〉〉 ≡EAX′ = Mem(ESP)∧
Mem′ = Mem[i 7→ EBX].

After conjoining ψ2 with χRegFlag(σ, 0) and χRegFlag(σ
′, 1), Simpli-

fyWithTest produces the following formula:

2 = Mem(100) ∧Mem′ = Mem[i 7→ 1] (10)

Two locations are accessed or updated in the formula. One is the
concrete location 100, and another is the symbolic location i. The
symbolic location can be any concrete location. To constrain the
pre-state value at location i, MCSYNTH generates the following
constraint from the memory map [100 7→ 2] in σ:

Mem(100) = 2 ∧ i 6= 100⇒ Mem(i) = 0 (11)

To constrain the post-state value at location i, MCSYNTH uses the
memory map [100 7→ 2][200 7→ 1] in σ′ to generate

Mem′(100) = 2 ∧ Mem′(200) = 1∧ (12)

(i 6= 100 ∧ i 6= 200)⇒ Mem′(i) = 0.

SimplifyWithTest conjoins Eqns. (10)–(12), and returns the result-
ing formula ψ〈σ,σ

′〉
2 . MCSYNTH checks the satisfiability of ψ〈σ,σ

′〉
2 .

The SMT solver says that ψ〈σ,σ
′〉

2 is satisfiable, and produces the
satisfying assignment [i 7→ 200]. Indeed, ϕ and ψ2 are equivalent
with respect to 〈σ, σ′〉 when i = 200.

The algorithm for SimplifyWithTest is shown in Alg. 2. In the
algorithm, the function Simplify simplifies a formula by remov-
ing unnecessary conjuncts; ConcLocs identifies the set of con-
crete memory locations that are accessed or updated by a QFBV
formula; SymLocs identifies the set of symbolic memory loca-
tions that are accessed or updated by a QFBV formula; Lookup
obtains the value present in a concrete memory location in a state;
SymMemConstr produces the memory constraint for a set of sym-
bolic locations. Note that ConcLocs and SymLocs collect con-
crete and symbolic memory locations, respectively, from all nested
terms and sub-formulas (e.g., Mem′ = Mem[Mem(i) 7→ Mem(0)])
and not just from those at the top level.

At this point, MCSYNTH has either determined that no instance
of templatized candidate C passes all tests in T , or has a concrete
instruction-sequence Cconc that passes all tests in T .

Algorithm 3 Algorithm CEGIS

Input: ϕ, C, ψ = 〈〈C〉〉, T
Output: Instantiation Cconc of C such that 〈〈Cconc〉〉 ⇔ ϕ, or FAIL

1: while true do
2: ψT ← true
3: for each test-case 〈σ, σ′〉 ∈ T do
4: ψT ← ψT ∧ SimplifyWithTest(ψ, 〈σ, σ′〉)
5: end for
6: model1 = SAT(ψT )
7: if model1 = ⊥ then
8: return FAIL
9: end if

10: ψconc← Substitute(ψ, model1)
11: model2← SAT(¬(ϕ⇔ ψconc))
12: if model2 = ⊥ then
13: return Substitute(C, model1)
14: end if
15: T ← T ∪ model2
16: end while

Algorithm 4 Algorithm Synthesize

Input: ϕ
Output: Cconc or FAIL

1: T ← {〈σ0, σ′0〉}
2: prefixes← {ε}
3: while prefixes 6= ∅ do
4: for each prefix p ∈ prefixes do
5: prefixes← prefixes − {p}
6: for each templatized instruction i in the ISA do
7: C← Append(p, i)
8: ψ← 〈〈C〉〉
9: if SFP#

USE(ψ) 6⊆ SFP#
USE(ϕ) ∨ SFP#

KILL(ψ) 6⊆
SFP#

KILL(ϕ) then
10: continue
11: end if
12: prefixes← prefixes ∪ {C}
13: ret = CEGIS(ϕ, C, ψ, T )
14: if ret 6= FAIL then
15: return ret
16: end if
17: end for
18: end for
19: end while
20: return FAIL

The CEGIS loop. Once MCSYNTH obtains Cconc (and its corre-
sponding QFBV formula ψconc) that is equivalent to ϕ with respect
to T , MCSYNTH checks if ψconc is equivalent to ϕ using an SMT
solver. If they are equivalent, MCSYNTH returns Cconc. Otherwise,
MCSYNTH adds the counter-example returned by the solver to T ,
and searches for another concrete instruction-sequence that passes
the tests. Alg. 3 show MCSYNTH’s CEGIS loop. In Alg. 3, the over-
loaded function Substitute substitutes a model in a templatized
instruction-sequence or QFBV formula.

The full CEGIS-based algorithm to synthesize instructions from
a QFBV formula is shown in the unhighlighted lines of Alg. 4.
In the algorithm, ε denotes an instruction-sequence with no in-
structions, and Append appends an instruction to an instruction-
sequence.

4.2 Pruning the Synthesis Search-Space
ISAs such as Intel’s IA-32 have around 43,000 unique templatized
instructions. For IA-32, Alg. 4 will make millions of calls to the
SMT solver to synthesize instruction-sequences that have length
2 or more. A call to an SMT solver is expensive, and this cost
makes Alg. 4 very slow. We have devised heuristics to prune the
synthesis search space, and speed up synthesis. Our heuristics have



the guarantee that only useless candidates are pruned away. In this
sub-section, we describe our pruning heuristics.

4.2.1 Abstract Semantic-Footprints
First, we define semantic-footprints and abstract semantic-
footprints of QFBV formulas. The semantic-USE-footprint
(SFPUSE) is the set of concrete locations (represented as constant
symbols) that are used by the QFBV formula for some input. The
semantic-KILL-footprint (SFPKILL) is the set of concrete locations
that are modified by the QFBV formula for some input. For the
formula in Eqn. (4), SFPUSE and SFPKILL are shown below (with a
minor abuse of notation).

SFPUSE(ϕ) = {ESP,EBP}
SFPKILL(ϕ) = {ESP′,EBP′, 0′, 1′, 2′, . . . }

0′, 1′, 2′, . . . are in SFPKILL because ϕ might modify any mem-
ory location for some input. If a QFBV formula uses or modifies a
memory location, the SFP sets could be large. Abstract semantic-
footprints are over-approximations of semantic-footprints. The ab-
stract semantic-USE-footprint (SFP#

USE) is an over-approximation
of SFPUSE, and the abstract semantic-KILL-footprint (SFP#

KILL)
is an over-approximation of SFPKILL. We identify SFP#

USE and
SFP#

KILL via a syntax-directed translation over a QFBV formula. In
the following definitions, RF (RF′) is the set of unprimed (primed)
constant symbols used for registers and flags, and T is the set of
QFBV terms.

Definition 1.

SFP#
USE(c) =

{
{c} if c ∈ RF
∅ otherwise

SFP#
USE(Mem(t)) = {Mem} ∪ SFP#

USE(t),where t ∈ T

SFP#
USE(c′ = c) = ∅, where c′ ∈ RF′, c ∈ RF (13)

SFP#
USE(Mem′ = Mem) = ∅ (14)

SFP#
KILL(c′) =

{
{c′} if c′ ∈ RF′

∅ otherwise

SFP#
KILL(Mem′) = {Mem′}

SFP#
KILL(c′ = c) = ∅, where c′ ∈ RF′, c ∈ RF (15)

SFP#
KILL(Mem′ = Mem) = ∅ (16)

For all other cases, SFP#
USE (SFP#

KILL) is the union of SFP#
USE

(SFP#
KILL) of the constituents.

Eqns. (13)–(16) represent the computation of SFP#
USE and

SFP#
KILL for the identify conjuncts in a QFBV formula (represent-

ing the unmodified portions of the state). For an input QFBV for-
mula ϕ, consider the set of instruction-sequences I# that has the
following property:

∀C ∈ I#, SFP#
USE(〈〈C〉〉) ⊆ SFP#

USE(ϕ)∧
SFP#

KILL(〈〈C〉〉) ⊆ SFP#
KILL(ϕ)

The set I# is depicted in Fig. 2 as a hexagon. If MCSYNTH
restricts the synthesis search-space to I#, MCSYNTH will miss two
types of candidates.
1. A candidate that is not equivalent to ϕ. An example of such

a candidate for the QFBV formula in Eqn. (4) is “mov eax,
ebx”.

2. A candidate C that satisfies the following properties:
(a) 〈〈C〉〉 ⇔ ϕ
(b) SFP#

USE(〈〈C〉〉) 6⊆ SFP#
USE(ϕ) ∨ SFP#

KILL(〈〈C〉〉) 6⊆
SFP#

KILL(ϕ)

Figure 2: Depiction of the set I#.

Algorithm 5 Algorithm DivideAndConquer

Input: ϕ, max
Output: Cconc or FAIL

1: splits← EnumerateSplits(ϕ)
2: for each split 〈ϕ1, ϕ2〉 ∈ splits do
3: ret1← DivideAndConquer(ϕ1, max)
4: if ret1 = FAIL then
5: continue
6: end if
7: ret2← DivideAndConquer(ϕ2, max)
8: if ret2 6= FAIL then
9: ret← Concat(ret1, ret2)

10: return ret
11: end if
12: end for
13: return Synthesize<max>(ϕ)

We call such a candidate superfluous. Although 〈〈C〉〉 seman-
tically uses and modifies the same locations as ϕ (because
〈〈C〉〉 ⇔ ϕ), the syntax of 〈〈C〉〉 suggests that it uses (kills) a lo-
cation that is not used (killed) by ϕ, and might not implement ϕ
efficiently. Therefore, MCSYNTH prunes away superfluous can-
didates. For the QFBV formula in Eqn. (4), “push ebp; lea
ebp,[esp+eax]; lea ebp,[ebp-eax]” is an example of a
superfluous candidate; the final value of ebp depends on the
value of esp, but does not depend on the value of eax.

4.2.2 Useless-Prefix
Because a location modified (used) by a QFBV formula cannot be
“un-modified” (“un-used”), if a candidate C 6∈ I#, no matter what
instruction-sequence is appended to C, the resulting instruction-
sequence must lie outside I#. Thus, if MCSYNTH finds that a
candidate C 6∈ I# during enumeration, it will never enumerate any
instruction-sequence with C as a prefix. (C is a useless-prefix.)

Theorem 1. For any pair of instruction-sequences C1, C2, C1 6∈
I# implies C1;C2 6∈ I#.

The CEGIS-based synthesis algorithm, along with footprint-
based search-space pruning is given in Alg. 4. Search-space prun-
ing is carried out in Line 9 of Alg. 4.

4.3 Divide-and-Conquer
The candidate enumeration in Alg. 4 has exponential cost. Syn-
thesizing an instruction-sequence that consists of a single instruc-
tion takes less than a second; synthesizing a two-instruction se-
quence takes a few minutes; synthesizing a three-instruction se-
quence takes several hours.

Benchmarks previously used to study synthesis of loop-free pro-
grams usually consist of a single input (or a few inputs), and a sin-
gle output. However, machine-code instructions in basic blocks of
real programs typically have many inputs and many outputs. An im-
portant observation is that the QFBV formulas of such basic blocks
often contain many independent updates. If a QFBV formula has
independent updates, it can be broken into sub-formulas, and the
synthesizer can be invoked on the smaller sub-formulas.



Algorithm 6 Algorithm EnumerateSplits

Input: ϕ
Output: splits

1: splits← ∅
2: killedRegsFlags← KilledRegs(ϕ) ∪ KilledFlags(ϕ)
3: killedMem← KilledMem(ϕ)
4: regFlagSplits← SplitSet(killedRegsFlags)
5: memSplits← SplitSequence(killedMem)
6: for each 〈s1, s2〉 ∈ regFlagSplits do
7: for each 〈prefix, suffix〉 ∈ memSplits do
8: if (s1 = ∅ ∧ prefix = 〈 〉) ∨ (s2 = ∅ ∧ suffix = 〈 〉) then
9: continue

10: end if
11: ϕ1← TruncateFormula(ϕ, s1, prefix)
12: ϕ2← TruncateFormula(ϕ, s2, suffix)
13: if DropPrimes(SFP#

KILL(ϕ1)) ∩ SFP#
USE(ϕ2) 6= ∅ then

14: continue
15: end if
16: splits← splits ∪ 〈ϕ1, ϕ2〉
17: end for
18: end for
19: return splits

MCSYNTH uses a recursive procedure (DivideAndConquer)
that splits ϕ into two sub-formulas ϕ1 and ϕ2, and synthesizes in-
structions forϕ1 andϕ2. For pragmatic reasons, an implementation
of the splitting step would typically construct ϕ1 and ϕ2 from sub-
formulas of ϕ. The pseudo-code for DivideAndConquer is shown
in Alg. 5. DivideAndConquer has an unusual structure because the
base case (Line 13) appears after the recursive calls (Lines 3 and 7).
The base case is reached if either (i) EnumerateSplits returns an
empty set of splits in Line 1, or (ii) for each split, at least one recur-
sive call returns FAIL. Let Synthesize<max> be a version of Alg. 4
that is parameterized by the maximum length of candidates to con-
sider during enumeration (max). Synthesize<max> returns FAIL if
Alg. 4 cannot find an instruction-sequence with length ≤ max that
implements ϕ. DivideAndConquer uses EnumerateSplits to enu-
merate all legal splits of ϕ.

Definition 2. Legal split. Suppose that DropPrimes removes the
primes from constant and function symbols. A split 〈ϕ1, ϕ2〉 of ϕ is
legal iff

DropPrimes(SFP#
KILL(ϕ1)) ∩ SFP#

USE(ϕ2) = ∅.

Observation 1. Suppose that change voc(ϕ, i, j) changes the vo-
cabulary of constant and function symbols from i to j in ϕ, and that
the pre-state and post-state vocabularies of ϕ are 0 and 1, respec-
tively. If 〈ϕ1, ϕ2〉 is a legal split of ϕ, then

The formulas ϕ and (change voc(ϕ1, 1, 2)∧
change voc(ϕ2, 0, 2)) are equisatisfiable.

Note that we use equisatisfiable instead of equivalent in Obs. 1
because the second formula has an extra vocabulary. Alternatively,
one can state Obs. 1 as follows, where voc2 is the set of vocabulary-
2 constant and function symbols:

The formulas ϕ and ∃voc2 . (change voc(ϕ1, 1, 2)∧
change voc(ϕ2, 0, 2)) are equivalent

For each legal split 〈ϕ1, ϕ2〉 of ϕ, DivideAndConquer makes
recursive calls to synthesize instructions for ϕ1 and ϕ2. If the
synthesis step succeeds in synthesizing instructions for both ϕ1 and
ϕ2, DivideAndConquer concatenates the results (using Concat),
and returns the resulting instruction-sequence. If 〈ϕ1, ϕ2〉 were an
illegal split, ϕ1 might kill a location whose pre-state value might
be used by ϕ2 (and thus, the split might not preserve correctness).

Algorithm 7 Algorithm MCSYNTH

Input: ϕ
Output: Cconc or FAIL

1: ret = DivideAndConquer(ϕ, 1)
2: if ret 6= FAIL then
3: return ret
4: end if
5: ret = DivideAndConquer(ϕ, 2)
6: if ret 6= FAIL then
7: return ret
8: end if
9: return Synthesize(ϕ)

Pseudo-code for EnumerateSplits is shown in Alg. 6. We illus-
trate the algorithm with the following QFBV formula:

ϕ ≡ ESP′ = ESP− 12 ∧ EBP′ = ESP− 4∧
EAX′ = EBX ∧ Mem′ = Mem[ESP− 12 7→ EDI]

[ESP− 8 7→ ESI][ESP− 4 7→ EBP]

For ϕ, KilledRegs (Line 2) returns {ESP′, EBP′, EAX′}, and
KilledMem (Line 3) returns the sequence 〈ESP − 4, ESP −
8, ESP − 12〉. Note that the sequence preserves the temporal
order of memory updates. SplitSet returns the set of disjoint
subset pairs for the argument set. For example, 〈{EBP′}, {ESP′,
EAX′}〉 and 〈{}, {EBP′, ESP′, EAX′}〉 are in regFlagSplits (Line
4). SplitSequence returns the set of non-overlapping 〈prefix,
suffix〉 pairs that partition the argument sequence. For example,
〈〈ESP − 4, ESP − 8〉, 〈ESP − 12〉〉 is in memSplits (Line 5), but
〈〈ESP − 4, ESP − 12〉, 〈ESP − 8〉〉 is not. TruncateFormula
takes a QFBV formula, a set of killed registers and flags, a sequence
of memory locations, and returns a QFBV formula that has updates
only to the provided locations. For example, for 〈s1, s2〉= 〈{ESP′,
EBP′}, {EAX′}〉 in Line 6 and 〈prefix, suffix〉 = 〈〈ESP − 4, ESP
− 8〉, 〈ESP− 12〉〉 in Line 7, ϕ1 and ϕ2 in Lines 11 and 12,
respectively, are

ϕ1 ≡ESP′ = ESP− 12 ∧ EBP′ = ESP− 4∧
Mem′ = Mem[ESP− 8 7→ ESI][ESP− 4 7→ EBP]

ϕ2 ≡EAX′ = EBX ∧ Mem′ = Mem[ESP− 12 7→ EDI]

The legality of a split is checked in Line 13. The split 〈ϕ1, ϕ2〉
shown above constitutes an illegal split, and is discarded.

In addition to divide-and-conquer, our implementation of Alg. 5
uses memoization to avoid processing a sub-formula more than
once; the result for a sub-formula is either its synthesized code-
sequence or FAIL. Consequently, Alg. 5 really uses a form of dy-
namic programming. Practical values for Synthesize’s parameter
max are 1 or 2. For these values, DivideAndConquer will either
return FAIL or the synthesized instruction-sequence in a few min-
utes or hours (cf. Fig. 4). If DivideAndConquer returns FAIL, MC-
SYNTH uses Alg. 4 to synthesize instructions for ϕ. The full syn-
thesis algorithm used by MCSYNTH is given in Alg. 7.

Lemma 1. Alg. 4 is sound. (The instruction-sequence returned by
Alg. 4 is logically equivalent to the input QFBV formula ϕ.)

Proof. By lines 11-14 of Alg. 3, the returned instruction-sequence
is logically equivalent to ϕ.

Suppose that sym exec(I, i, j) symbolically executes
instruction-sequence I with respect to the identity state, pro-
ducing a symbolic state with pre-state vocabulary i and post-state
vocabulary j. We overload χ from §4.1.2 to mean the operator
that converts a symbolic state into a QFBV formula. 〈〈I〉〉 can be
defined as follows: 〈〈I〉〉 ≡ χ(sym exec(I, i, j)). We assume that



sym exec has the following composition property:
sym exec(I1; I2, 0, 1) =

sym exec(I2, 2, 1) ◦ sym exec(I1, 0, 2)

Lemma 2. For any legal split 〈ϕ1, ϕ2〉 of ϕ, if ϕ1 ⇔ 〈〈I1〉〉, and
ϕ2⇔ 〈〈I2〉〉, then ϕ⇔ 〈〈I1; I2〉〉.
Proof.

〈〈I1; I2〉〉 iff χ(sym exec(I1; I2, 0, 1))

iff χ(sym exec(I2, 2, 1) ◦ sym exec(I1, 0, 2)),

iff ∃voc2 . χ(sym exec(I2, 2, 1))

∧ χ(sym exec(I1, 0, 2)) (because vocabulary 2 acts
as an intermediate vocabulary)

iff ∃voc2 . change voc(ϕ1, 1, 2)

∧ change voc(ϕ2, 0, 2) (because ϕ1 is equivalent to
〈〈I1〉〉, and ϕ2 is equivalent to 〈〈I2〉〉)

iff ϕ (because 〈ϕ1, ϕ2〉 is a legal split of ϕ)

Theorem 2. Soundness. Alg. 7 is sound.
Proof. Follows from Lemmas 1 and 2.

Theorem 3. Completeness. Modulo SMT timeouts, if there exists a
non-superfluous instruction-sequence I that is equivalent to ϕ, then
Alg. 7 will find I and terminate.
Proof. MCSYNTH enumerates templatized instruction-sequences
of increasing length. Because the templatized instruction-
sequences span the full set of IA-32 instruction-sequences (§3.3),
MCSYNTH searches through all non-superfluous instruction-
sequences in IA-32 to find an instruction-sequence I that is equiva-
lent to ϕ.

Note that if such an instruction-sequence does not exist (if all
instruction-sequences that implement ϕ are superfluous), Alg. 7
might not terminate.

4.4 Variations on the Basic Algorithm
Scratch registers for synthesis. Certain clients—such as a code-
generator client—might want the synthesizer to be able to use
“scratch” locations to hold intermediate values. MCSYNTH has the
ability to use scratch registers during synthesis. The client can spec-
ify a set of registers “Scratch” whose final value is unimportant.
(For example, in a code-generator client, Scratch would be the set
of dead registers at the point where code is to be generated.)

The set Scratch′ would be added to SFP#
KILL(ϕ) just before Line

9 of Alg. 4. Consequently, instruction-sequences that use registers
in Scratch to hold temporary computations would not be pruned
away. (Note that instruction-sequences that have upwards-exposed
uses of registers in Scratch would still be pruned away.) The only
other change required is that just before line 13 of Alg. 4, all
conjuncts that update registers in Scratch′ need to be dropped from
ϕ and ψ. (There is one additional minor technical point: to make
the Input/Output specification of Alg. 3 correct, all conjuncts of
the form S′ = T, for S′ ∈ Scratch′, should be dropped in the two
occurrences of 〈〈·〉〉.)

Quality of synthesized code. Certain clients might want the syn-
thesized code to possess a certain “quality” (small size, short run-
time, low energy consumption, etc.). For example, a superoptimizer
would like the synthesized code to have a short runtime. A client
can obtain the desired quality by supplying a quality-evaluation
function that the synthesizer can use to bias the search for suitable
instruction-sequences. For example, a superoptimizer could in-
struct the synthesizer to bias the choice of instruction-sequences to
ones with shorter runtimes by supplying an evaluation-function that

Algorithm 8 Algorithm Biased MCSYNTH

Input: ϕ, f, timeout
Output: Cconc or FAIL

1: seen← ∅
2: min← MaxFn(f )
3: minSeq← ε
4: while ! TimeoutExpired(timeout) do
5: ret = MCSYNTH(ϕ, seen)
6: if ret = FAIL then
7: return FAIL
8: end if
9: val← f (ret)

10: if val < min then
11: min← val
12: minSeq← ret
13: end if
14: seen← seen ∪ ret
15: end while
16: return minSeq

computes the runtime of an instruction-sequence. The algorithm for
a biased synthesizer is shown in Alg. 8. In Alg. 8, the parameter f
represents the quality-evaluation function, the parameter timeout
represents the timeout value for the biased synthesizer, the function
MaxFn returns the maximum value for a quality-evaluation func-
tion, and the call to the function TimeoutExpired returns true
if timeout has expired. Additionally, the following changes have to
be made to Algs. 4, 5, and 7 to implement a biased synthesizer:

• Algs. 4, 5, and 7 should take an additional parameter seen,
which is the set of instruction-sequences that have already been
synthesized by MCSYNTH.

• The following lines of code should be inserted after line 14 in
Alg. 4, and after line 9 in Alg. 5, respectively:

if ret ∈ seen then
continue

end if

Synthesizing code that satisfies properties. Certain clients might
want the synthesized code to satisfy a property expressed using a
QFBV formula ϕ. For example, consider the formula

ϕ ≡ EAX′ + EBX′ = EAX + EBX + 4.

Note that ϕ is not in the form shown in Eqn. (1). MCSYNTH can
synthesize an instruction-sequence that satisfies ϕ by replacing line
11 in Alg. 3 with the following line:

model← SAT(¬(ψconc ⇒ ϕ))
Additionally, the output specification of Alg. 3 needs to be 〈〈Cconc〉〉
⇒ ϕ instead of 〈〈Cconc〉〉 ⇔ ϕ. With this modification, MCSYNTH
synthesizes “lea eax,[eax+4]” for ϕ. The lea instruction adds
4 to the contents of the EAX register. (“lea ebx,[ebx+4]” is
another instruction-sequence that would satisfy ϕ.)

5. Implementation
MCSYNTH uses Transformer Specification Language (TSL) [13] to
convert instruction-sequences into QFBV formulas. The concrete
operational semantics of the integer subset of IA-32 is written in
TSL, and the semantics is reinterpreted to produce QFBV formulas
[14]. MCSYNTH uses ISAL [13, §2.1] to generate the templatized
instruction pool for synthesis. MCSYNTH uses Yices [7] as its
SMT solver. In the examples presented in this paper, we have
treated memory as if each memory location holds a 32-bit integer.
However, in our implementation, memory is addressed at the level
of individual bytes.

MCSYNTH deviates slightly from the idealized collection of
templatized instructions discussed in §3.3. It starts from a corpus of
around 43,000 IA-32 concrete instructions and creates templatized
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Figure 3: Comparison of synthesis time and search-space size with and
without footprint-based search-space pruning.

instructions by identifying each immediate operand in the abstract
syntax tree of an instruction in the corpus. For instance, from “mov
eax, 1”, it creates the template “mov eax, <Imm32>”.

The corpus was created using ISAL, a meta-tool similar to
SLED [16] for specifying the concrete syntax of ISAs. The corpus
was created by running ISAL in a mode in which the input speci-
fication of the concrete syntax of the IA-32 instruction set is used
to create a randomized instruction generator. (Random choices are
based on syntactic category, so only a few instructions in the corpus
lead to the template “mov eax,<imm32>”.) The random generator
produces a corpus with a wide variety of instructions ([13], Fig.19).

In principle, one could have modified ISAL to generate all
templates systematically; however, we did not have access to the
ISAL source.

6. Experiments
We tested MCSYNTH on QFBV formulas obtained from instruction-
sequences from the SPECINT 2006 benchmark suite [10]. Our
experiments were designed to answer the following questions:

• What is the time taken by MCSYNTH to synthesize instruction-
sequences of varying length?

• What is the reduction in (i) synthesis time, and (ii) search-
space size caused by MCSYNTH’s footprint-based search-space
pruning heuristic (§4.2)?

• What is the reduction in synthesis time caused by MCSYNTH’s
divide-and-conquer strategy (§4.3)?

All experiments were run on a system with a quad-core, 3GHz
Intel Xeon processor; however, MCSYNTH’s algorithm is single-
threaded. The system has 32 GB of memory.

For our experiments, we wanted to obtain a representative set of
“important” instruction-sequences that occur in real programs. We
harvested the five most frequently occurring instruction-sequences
of lengths 1 through 10 from the SPECINT 2006 benchmark suite
(50 instruction-sequences in total). We converted each instruction-
sequence into a QFBV formula and used the resulting formulas
as inputs for our experiments. Each instruction-sequence in this
corpus is identified by an ID of the form m n, where m is the length
of the instruction-sequence, and n identifies the specific instruction-
sequence.

Pruning. The first set of experiments compared (i) the synthe-
sis time, and (ii) the number of candidates processed via CEGIS,
with and without MCSYNTH’s footprint-based search-space prun-
ing. The results are shown in Fig. 3. We have presented such re-
sults only for QFBV formulas obtained from instruction-sequences
of length 1 because synthesis of longer instruction sequences with-
out footprint-based search-space pruning took longer than 30 hours.
For each QFBV formula, the reported time is the CPU time spent by
Alg. 4. The geometric means of the without-pruning/with-pruning
ratios for (i) synthesis time, and (ii) the number of candidates pro-
cessed via CEGIS, respectively, are 473 and 273.

Divide-and-Conquer. The second set of experiments measured
the synthesis times for formulas created from instruction-sequences
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Figure 4: Synthesis times using the divide-and-conquer strategy.

Figure 5: Synthesis times with and without divide-and-conquer.

of lengths 1 through 10 using MCSYNTH’s divide-and-conquer
strategy (as well as footprint-based pruning). The results are shown
in Fig. 4. “Synthesis Time” is the total CPU time spent by Alg. 7.
“Base Case Time” is the time spent in the base case (Line 13 of
Alg. 5). The QFBV formulas for which FAIL was returned in Lines
1 and 5 of Alg. 7 do not have synthesis times reported in Fig. 4. The
QFBV formulas for which Alg. 7 returned a result in Line 3 (i.e.,
max = 1 was sufficient for synthesis) are marked by *, and those for
which Alg. 7 returned a result in Line 7 (i.e., max = 2 was sufficient
for synthesis) are marked by **.

To measure the reduction in synthesis time caused by the divide-
and-conquer strategy, we measured the synthesis times for QFBV
formulas obtained from instruction sequences of lengths 1 and 2,
with divide-and-conquer turned off. (We were unable to measure
the synthesis times for the other QFBV formulas because synthe-
sis without divide-and-conquer took longer than 4 days for such
formulas.) In Fig. 5, the total CPU time spent by Alg. 4 is com-
pared with the total CPU time spent by Alg. 7. Points below and
to the right of the diagonal line indicate better performance for
divide-and-conquer. Synthesis without divide-and-conquer timed
out on all QFBV formulas obtained from instruction-sequences
of length 3. The right boundary of Fig. 5 represents 4 days.
For instruction-sequences of length 1, synthesis with divide-and-
conquer takes slightly longer than synthesis without divide-and-
conquer because all enumerated splits fail to synthesize instruc-
tions. For instruction-sequence 2 1, synthesis without divide-and-
conquer finds a shorter instruction-sequence, leading to a lower
synthesis time. For instruction-sequences of length 3, divide-and-
conquer is 3 to 5 orders of magnitude faster.



MCSYNTH’s divide-and-conquer strategy failed for most of the
instruction-sequences of lengths 8 through 10 primarily because of
the following reasons:

• The QFBV formula had a term or a sub-formula that can be
implemented only by three or more instructions.

• All terms and sub-formulas can be implemented by two in-
structions or less, but the terms and sub-formulas access or up-
date several independent memory locations. However, because
SFP#

USE and SFP#
KILL do not distinguish between memory lo-

cations, splits that are actually legal are conservatively disre-
garded by Line 13 of Alg. 6.

We believe that a more accurate test for legality of splits will reduce
the number of failures in Lines 1 and 5 of Alg. 7, and hope to
develop such a test in future work.

For the 36 QFBV formulas for which MCSYNTH synthesized
code, Table 1 compares the length of the synthesized instruction-
sequence to the length of the corresponding original instruction-
sequence. Table 1 shows that our vanilla divide-and-conquer syn-
thesis method often produces longer instruction-sequences, but can
sometimes produce a shorter instruction-sequence (if the original
instruction-sequence performed redundant computations).

Table 1: Comparison of the lengths of synthesized and original instruction-
sequences.

Same 9
Different, but same length 4
Shorter 1
Longer 22

7. Related Work
Counter-Example Guided Inductive Synthesis (CEGIS).
CEGIS is a synthesis framework that has been widely used in
synthesis tools. Sketching is a technique that uses CEGIS for
completing partial programs, or sketches [19–22]. The templatized
instruction-sequences enumerated by MCSYNTH can be considered
as sketches, with the template operands being the holes. MCSYNTH
uses an instantiation of CEGIS for machine code to obtain concrete
instruction-sequences.

CEGIS has been used in the component-based synthesis of bit-
vector programs in Brahma [9]. Brahma synthesizes bit-vector pro-
grams from a library of 14 components. Brahma takes a specifica-
tion of the desired program, and an upper bound on the number of
times each component can be used in the synthesized program, as
inputs. Brahma encodes the interconnection between components
as a synthesis constraint, and uses CEGIS to solve the constraint.
The goals of MCSYNTH and Brahma are the same—namely, to syn-
thesize a straight-line program that is equivalent to a logical spec-
ification using a library of components. However, in MCSYNTH,
the library is a full ISA, consisting of around 43,000 components.
Brahma’s approach of offloading the exponential cost of enumer-
ating programs to an SMT solver might not work for an ISA like
IA-32 due to the following reasons:

• The inputs and outputs of instructions include registers, flags,
and a large memory array. Expressing interconnections between
the inputs and outputs of instructions as a synthesis constraint
may be nontrivial.

• Because Brahma’s synthesis constraint is quadratic in the num-
ber of components, the synthesis constraint for a full ISA may
be too large for SMT solvers to handle.
CEGIS has also been used in the synthesis of protocols from

concolic-execution fragments [24].
Superoptimization. Superoptimization aims at finding an opti-
mal instruction-sequence for a target instruction-sequence [2, 3,
12, 15, 17]. Peephole superoptimization [2] uses “peepholes” to

harvest target instruction-sequences, and replace them with equiv-
alent instruction-sequences that have a lower cost. Superoptimiza-
tion can be viewed as a constrained machine-code synthesis prob-
lem, where cost and correctness are constraints to the synthesizer.
Recall that 〈〈·〉〉 converts an instruction-sequence into a QFBV for-
mula. Suppose that SynthOptimize is a client of the synthesizer
that is biased to synthesize short instruction-sequences, a superop-
timizer can be constructed as follows:

Superoptimize(InstrSeq) =

SynthOptimize(〈〈InstrSeq〉〉)
However, a synthesizer cannot be constructed from a superopti-
mizer.

Techniques used by superoptimizers to prune the search space
(e.g., testing a candidate and the target instruction-sequence by ex-
ecuting tests on bare metal, canonicalizing instruction-sequences
before synthesis, etc.) cannot be used by MCSYNTH because MC-
SYNTH does not have a specification of the goal as an instruction-
sequence. For this reason, we developed new approaches to prune
the synthesis search-space.
Applications of machine-code synthesis. Partial Evaluation [11]
is a program-specialization technique that optimizes a program
with respect to certain static inputs. A machine-code synthesizer
could play an important role in a machine-code partial evaluator.
When the partial evaluator specializes the QFBV formula of a basic
block with respect to a partial static state, the synthesizer can be
used to synthesize instructions for the specialized QFBV formula.

Semantics-based malware detectors use instruction semantics to
detect malicious behavior in binaries [5, 6]. A machine-code syn-
thesizer can be used to obfuscate instruction-sequences in malware
binaries to either (i) suppress the malware signature to allow it to
escape detection, or (ii) generate tests for a malware detector to
improve detection algorithms.

By introducing suitable biases into a machine-code synthe-
sizer, it may also be possible to use it to de-obfuscate instruction-
sequences in malware binaries.

8. Conclusions and Future Work
In this paper, we described an algorithm to synthesize straight-
line machine-code instruction-sequences from QFBV formulas. We
presented MCSYNTH, a tool that synthesizes IA-32 instructions
from a QFBV formula. Our experiments show that, in compari-
son to our baseline algorithm, MCSYNTH’s footprint-based search-
space pruning reduces the synthesis time by a factor of 473, and
MCSYNTH’s strategy of divide-and-conquer plus memoization re-
duces the synthesis time by a further 3 to 5 orders of magnitude.

We have built an IA-32 partial evaluator using MCSYNTH, and
have used the partial evaluator to partially evaluate application bi-
naries (interpreters, image filters, etc.) with respect to static inputs.
We have also used the partial evaluator to extract the compression
component of the bzip2 binary.

In addition, we have used MCSYNTH to improve the accuracy of
machine-code slicing. Instructions that perform multiple updates to
the state (e.g., push, leave, etc.) reduce the accuracy of machine-
code slicing. We used MCSYNTH to “untangle” such instructions
by synthesizing equivalent instruction-sequences.

One possible direction for future work is to use MCSYNTH to
obfuscate/de-obfuscate instruction-sequences in malware. A sec-
ond direction would be to adapt the algorithms in MCSYNTH to
synthesize non-straight-line, but non-looping programs. One ap-
proach to loop-free code is to use the ite terms in the QFBV formula
to create a loop-free CFG skeleton, and then synthesize an appro-
priate instruction-sequence for each basic block. A third direction
is to create a more accurate test of legality of splits by devising a
finer-grained handling of Mem in SFP#

USE and SFP#
KILL.
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