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Abstract

This paper introduces view-augmented abstractions, which specialize an underlying numeric domain
to focus on a particular expression or set of expressions. A view-augmented abstraction adds a set
of materialized views to the original domain. View augmentation can extend a domain so that it
captures information unavailable in the original domain. We show how to use finite differencing to
maintain a materialized view in response to a transformation of the program state. Our experiments
show that view augmentation can increase precision in useful ways.
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1 Introduction

Program analysis involves learning the potential values of a program’s vari-
ables, together with relationships among the variables’ values. A common
approach to program analysis is to design abstract domains that can infer
whether an arbitrary relation of a given class holds, e.g., polynomial equal-
ities [20] or inequalities [2] of bounded degree. However, adding precision
“uniformly” in this manner is usually expensive [20]: typically, the more com-
plex the class is, the more expensive the domain is.

One challenge to maintaining precision is that the analyzer often needs to
find information about particular conditions or expressions. For example:

◦ Reachability analysis benefits from information of the values of condi-
tions.
◦ Assertion checking requires information about asserted conditions.
◦ Buffer overrun and underrun analyses require information about array-

access expressions.

The relationships needed to obtain such information take specific, often
complex, forms, depending on the actions of the program of interest. Uni-
formly increasing the precision of the underlying numeric abstraction to cap-
ture the entire class of more complex expressions is likely to severely encumber
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the overall analysis. For instance, to compute an index into a packed upper-
triangular matrix involves the square of an index variable. To capture that
relationship, one needs to use a domain that can handle polynomials; however,
no scalable domains do so.

In contrast to a uniform approach to tracking complex relationships, it
should be less expensive to augment an abstract domain to track the values
of a few relevant complex expressions. Toward this end, the paper focuses on
the following problem:

How can a given abstract domain be augmented inexpensively to track in-

formation that characterizes the value of a given expression?

By “inexpensively,” we mean that the solution should be

◦ Parsimonious : Only a small amount of additional information should be
tracked, such as the values of a small number of auxiliary variables.
◦ Delegating : Nothing “fundamental” should change about the abstraction

in use. In particular, all operations performed on auxiliary variables
should be performed using existing operations of the underlying domain.

We address these issues in the context of numeric abstract domains by intro-
ducing a mechanism to create and maintain abstract views in numeric abstract
domains. Abstract views take advantage of the following principle:

Observation 1.1 (Instrumentation Principle) Suppose that S♯ is an ab-

stract value that represents the set of concrete states S. By explicitly storing in

S♯ an abstraction of the values that an expression e has in S, it is sometimes

possible to extract more precise information from S♯ than can be obtained just

by the abstract evaluation of e with respect to S♯.

Like a materialized view in a database [11], which provides a precomputed
answer to a specific relational query, an abstract view maintains—in a fresh
auxiliary variable—a value for a specific numeric expression. An abstract view
can track information otherwise unrepresentable in the original abstraction.
For instance, consider the abstract state {x 7→ [0, 5], y 7→ [0, 5]} in the interval
domain. Suppose we augment the domain with the view-variable vx+y, which
will track the value of x + y. By tracking vx+y along with x and y, we might
discover that x+y must lie in the interval [2, 7]. The augmented abstract state
is thus {x 7→ [0, 5], y 7→ [0, 5], vx+y 7→ [2, 7]} whose concretization (projected
onto the x and y axes) is a hexagon, rather than a square (see Fig. 1).

In contrast to the relationships built up during the course of program ex-
ecution, individual state transformations are typically simple (e.g., x = x+1).
When tracking views, the challenge is to incorporate the effect of state trans-
formations on the values of complex view expressions (e.g., x2y2). Recom-
putation based on the underlying domain is generally too imprecise [22]. In
this paper, we present a systematic framework that automatically updates
view-variables, based on finite differencing [9,21].
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Fig. 1. Shaded hexagon: concretization of {x 7→ [0, 5], y 7→ [0, 5], vx+y 7→ [2, 7]} (projected onto the
x and y axes). Dotted square: concretization of {x 7→ [0, 5], y 7→ [0, 5]}.

The idea of augmenting domains with instrumentation values has been
used before in predicate-abstraction domains [10], which maintain the values
of a given set of Boolean predicates. Numeric domains have also seen ex-
tensions by instrumentation variables. Weakly-relational domains [17] extend
non-relational domains to maintain information about expressions of the form
x−y. Octagons [16] extend difference-bounded matrices [8] to maintain infor-
mation about expressions of the form ±x± y. Template Constraint Matrices
[25] maintain information about finite sets of linear inequalities using linear
programming.

The most closely related work to ours is the work on automatically creating
abstract transformers for instrumentation predicates that augment canonical-
abstraction domains [22]. However, prior work on augmenting canonical-
abstraction domains applies to formulas over a relational vocabulary, and the
technique does not apply to expressions over numeric quantities.

The contributions of the paper can be summarized as follows:

◦ We show how to augment any numeric abstraction with abstract views.
◦ We give a systematic technique, based on finite differencing, to maintain

an over-approximation of a view-variable’s value in response to a transfor-
mation of the program state. All operations performed on view-variables
use existing operations of the underlying abstract domain.
◦ We report on experiments with a prototype implementation of view-

augmented abstract interpretation based on the Apron framework [1].

Organization. Sect. 2 introduces views, and presents the view-maintenance
technique that we developed at a semi-formal level. (Some formal development
appears in Apps. A and B.) Sect. 3 presents two techniques that are needed
to maintain precision during view maintenance. Sect. 4 presents experimental
results. Sect. 5 discusses related work. Sect. 6 concludes.
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if x*x >= 4 then (a)

x = x+1 (b)

assert(x*x > 0) (c)

Fig. 2. An example program

2 Views and View Maintenance

Example 2.1 To demonstrate the utility of view-augmentation, consider an
analysis of the program fragment in Fig. 2 using the interval abstract do-
main. Suppose that the analyzer has discovered that x 7→ [−2, 2] holds just
before line (a). Because of the test on line (a), x ∈ {−2, 2} just before line
(b). Consequently, just before line (c) we have x ∈ {−1, 3}, and hence the
assertion at line (c) is always true (because −1 ∗ −1 > 0 and 3 ∗ 3 > 0).

Unfortunately, the interval domain cannot express with sufficient precision
the information x ∈ {−2, 2}, which holds just before line (b): the most precise
interval-domain fact that over-approximates x ∈ {−2, 2} is x 7→ [−2, 2], which
represents the set {−2,−1, 0, 1, 2}. Thus, just before line (c) we have x 7→
[−1, 3], and consequently, because 0 ∈ γ([−1, 3]), the value of x*x can equal
0 according to the interval domain—even if x*x is evaluated using the most-
precise squaring operation for intervals. Consequently, the analyzer cannot
prove the assertion at line (c).

Now suppose that we augment the interval abstraction with the view-
variable vx∗x to track the value of the expression x*x. Augmenting the interval
abstraction means that we augment abstract states with an additional variable
(i.e., an auxiliary dimension) that tracks the value of vx∗x. Again, suppose that
the analyzer has discovered that x 7→ [−2, 2] holds just before line (a).

The view-variable must start with some sound initial value. We can obtain
such a value by directly evaluating x*x = [−2, 2] · [−2, 2] = [−4, 4]. Thus, the
initial abstract state is {x 7→ [−2, 2], vx∗x 7→ [−4, 4]}. (If x*x were interpreted
as a squaring operation, we would obtain {x 7→ [−2, 2], vx∗x 7→ [0, 4]}.)

Just before line (b), we would like the value of view-variable vx∗x to capture
the assumption x*x >= 4. Moreover, during the abstract interpretation of line
(a), the operations on view-variable vx∗x should all be standard operations
supported by the interval abstract domain. To obtain this effect, we interpret
the expression x*x as an access on the view-variable vx∗x, and express the
abstract transformer of assume x*x >= 4 (line (a)) as

λz.z ⊓ {x 7→ ⊤, vx∗x 7→ [4,∞]} = λz.z[vx∗x 7→ (z(vx∗x) ⊓ [4,∞])]}.

The abstract state just before line (b) becomes

{x 7→ [−2, 2], vx∗x 7→ [4, 4]}, (1)

which captures the fact that there is only one possible concrete value for x*x,
namely, 4.
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To obtain the abstract state just before line (c), we must abstractly in-
terpret the statement x = x+1. By evaluating the right-hand-side expres-
sion x + 1 (as an interval-domain expression) in abstract state (1), we obtain
x 7→ [−1, 3]. To obtain the abstract value of view-variable vx∗x, we use finite

differencing. We start with the expression that defines the view: vx∗x
def

= x*x.
From the defining view-expression, finite differencing creates an appropriate
view-maintenance expression for vx∗x:

v′x∗x = vx∗x + 2 · x + 1, (2)

where v′

x∗x refers to the post-state value of vx∗x. For the moment, we leave
aside the details of the algorithm used to derive Eqn. (2); they are explained
below and in App. B. By evaluating Eqn. (2) in abstract state (1)—again,
all abstract interpretation is performed solely over the interval domain—we
obtain v′

x∗x = [4, 4]+2 · [−2, 2]+1 = [1, 9]. Thus, the abstract state just before
line (c) is {x 7→ [−1, 3], vx∗x 7→ [1, 9]}.

Because 0 /∈ γ([1, 9]), the analyzer can use the value of view-variable vx∗x

to prove the assertion on line (c). Again, this requires interpreting the occur-
rence of x*x on line (c) as an access on the view-variable vx∗x. 2

In Ex. 2.1, view-augmentation yields results that the unaugmented ab-
straction could not achieve on its own. While Ex. 2.1 is admittedly small
and contrived, it demonstrates the benefit of a view-augmented abstraction: a
view-augmented abstraction can capture, maintain, and use information that
the unaugmented abstraction cannot represent.

Returning to the criteria given in Sect. 1 for an “inexpensive” method to
improve the precision of a given numeric domain, we see that it is:

◦ Parsimonious : It was only necessary to introduce and track a single
auxiliary variable, namely view-variable vx∗x.
◦ Delegating : All abstract operations, including those for updating vx∗x

were performed using operations of the original abstract domain (in this
case the interval domain); however, it was necessary to interpret occur-
rences of the expression x*x as accesses on view-variable vx∗x.

Maintaining views via finite differencing. Given state σ and statement
stmt, the future value of an expression η(x), denoted by Fstmt[η(x)], is the
value of η(x) in the state σ′ = [[stmt]]σ obtained by executing stmt on σ. Our
goal is to create view-maintenance expressions that specify how to compute
Fstmt[η(x)]. In particular, if we have a view-variable vη(x), view-maintenance
expressions have the form v′

η(x) = Fstmt[vη(x)], where v′

η(x) denotes the post-
state value of vη(x).

Example 2.2 Returning to Ex. 2.1, how can we obtain the post-state value
of vx∗x after the execution of the statement x = x+1? It is sound to compute
v′

x∗x = Fx=x+1[vx∗x] as follows:
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v′x∗x = Fx=x+1[vx∗x] = Fx=x+1[x] ∗ Fx=x+1[x] = (x + 1) ∗ (x + 1). (3)

However, Eqn. (3) has significant drawbacks. In the concrete collecting se-
mantics, just before line (b) we have x ∈ {−2, 2}. Consequently, just after
line (b) we have x ∈ {−1, 3}, and thus in the collecting semantics we have
vx∗x ∈ {1, 9}. The most precise interval-domain fact that over-approximates
vx∗x ∈ {1, 9} is vx∗x 7→ [1, 9].

In contrast, the abstract state just before line (b) is {x 7→ [−2, 2], vx∗x 7→
[4, 4]} (see Eqn. (1)). By evaluating the right-hand-side expression x + 1 (as
an interval-domain expression), we obtain Fx=x+1[x] = [−1, 3]. If we then use
Eqn. (3) to obtain the value of vx∗x, we obtain vx∗x 7→ [−1, 3]∗[−1, 3] = [−3, 9].

Why did we end up with vx∗x 7→ [−3, 9] instead of vx∗x 7→ [1, 9]? One
issue is that Eqn. (3) ignores the correlation in the expression x*x; i.e., in all
concrete executions the same value of x is used twice in evaluating the ex-
pression. Yet, even if we use the most-precise squaring operation for intervals
the result, vx∗x 7→ [0, 9], is still not precise enough.

A second issue is that Eqn. (3) forgets any information that was previously
kept in view-variable vx∗x; vx∗x represents the closest approximation that we
have in hand for the value of x*x, but Eqn. (3) uses only the value of x.

To create a view-maintenance expression that produces a more precise
result, we employ finite-differencing, which yields a view-maintenance expres-
sion that uses the view-variable’s pre-state value. Consequently, the finite-
differencing approach addresses the second issue mentioned above. In the
case of the statement x=x+1, it also addresses the first issue, albeit indirectly.

Let ∆x=x+1[vx∗x] denote the additive change in vx∗x. Using the fact that
across x = x+1 the additive change in x, denoted by ∆x=x+1[x], is 1, we can
compute Fx=x+1[vx∗x] as follows, to derive Eqn. (2):

v′x∗x = Fx=x+1[vx∗x]
= vx∗x + ∆x=x+1[vx∗x]
= vx∗x + ∆x=x+1[x ∗ x]
= vx∗x + ∆x=x+1[x] · x + x ·∆x=x+1[x] + ∆x=x+1[x] ·∆x=x+1[x]
= vx∗x + 1 · x + x · 1 + 1 · 1
= vx∗x + 2 · x + 1.

(4)

Eqn. (4) gives us a view-maintenance expression for computing the post-state
value of vx∗x across x = x+1 that uses the pre-state value of vx∗x. As shown
earlier, when Eqn. (4) (Eqn. (2)) is evaluated in the abstract state {x 7→
[−2, 2], vx∗x 7→ [4, 4]}, we obtain v′

x∗x = [4, 4] + 2 · [−2, 2] + 1 = [1, 9]. 2

In general, for an arbitrary view-variable vη(x) and statement stmt, the
same approach can be applied to create a view-maintenance expression:

v′η(x) = Fstmt[vη(x)] = vη(x) + ∆stmt[vη(x)] = vη(x) + ∆stmt[η(x)] (5)

Eqn. (5) is depicted in Fig. 3(a) (which is explained in more detail in App. B).
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Fig. 3. (a) Method to compute the concrete value of a view-variable in a non-standard way,
using finite differencing. (b) A method that can increase the precision of the abstract value of a
view-variable using only existing operations of the underlying abstract domain.

Coerce(worklist , A)

v := dequeue(worklist)
for u ∈ Neighbors[v]:

for r ∈ Relations[u]:
A′ := [[assume(r)]]A

if A′
⊏ A:
then enqueue(worklist , u)

return A′

Fig. 4. The Coerce function.

Find-Relations(views)

for (vµ, µ) ∈ views:
M := Reformulate(µ)
m-rels :=

V

{Isolate(vµ = m) | m ∈ M}
Rewrite m-rels in disjunctive normal form
m-disjuncts = the set of disjuncts in m-rels
for r ∈ m-disjuncts:

vars = the set of variables occurring in r
for w ∈ vars:

Relations[w] := Relations[w] ∪ {r}
Neighbors[w] := Neighbors[w] ∪ vars

Fig. 5. The Find-Relations function.

Rules for computing ∆stmt[η(x)] according to the form of η(x) are given in
App. B (Fig. B.1).

In Ex. 2.2, the result vx∗x 7→ [1, 9] computed via the finite-differencing ap-
proach equals the result that would be computed by the best transformer. This
is not always guaranteed. In fact, the finite-differencing approach is not even
guaranteed to produce a result that is better than näıvely re-evaluating the
view-variable’s defining expression in the post-state (à la Eqn. (3)). However,
one can always maintain the view-variable vη(x) by evaluating both mainte-
nance expressions and taking their meet, as depicted in Fig. 3(b).

3 Increasing Precision

View-expression reformulation. View-expression reformulation finds oc-
currences of the defining expression η(x) of some view-variable vη(x) and re-
places them with references to vη(x). Reformulation is applied to each assign-
ment expression and assume condition in the program. Reformulation can
increase the precision of view-augmented abstract interpretation because the
pre-computed value of vη(x) is always at least as precise as the value obtained
by recomputing η(x) (see Fig. 3(b)).

In our prototype, view-expression reformulation is implemented by
Reformulate, a simple pattern-matching algorithm that searches for occur-
rences of view-variables’ defining expressions. It accounts for commutativity
and associativity of addition and multiplication, but not distributivity.

Information propagation among variables. Another important tech-
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nique for obtaining good results from a view-augmented abstract interpreta-
tion is to perform semantic reductions [7] by propagating information from
variable to variable. Consider the following value in the interval domain:
σ = {x 7→ [0, 5], y 7→ [0, 5], vx+y 7→ [0, 2]}. Using x or y in a transition from σ
will lead to unnecessary imprecision unless vx+y somehow affects their values.

The Coerce operation (see Fig. 4) propagates information among the
core and view variables of a single abstract state. The starting point for
propagation is that every view variable vη(x) entails the equality constraint
vη(x) = η(x). The Isolate operation identifies additional constraints among
variables and view expressions using the commutativity and inverse properties
of operations; Coerce then asserts those constraints on the abstract state.

In particular, suppose that the expression µ(x) is equivalent to the variable
m, either because µ(x) is the variable expression m or m is vµ(x). If µ(x) is
a subexpression of a view expression η(x), then Isolate can symbolically
manipulate the known constraint vη(x) = η(x) into the form m = κ, where
vη(x) occurs in the expression κ. Information can then be propagated from
vη(x) to m (via κ) in the state σ as follows: σ := [[assume(m = κ)]]σ.

In the example above, Coerce imposes the conditions x = vx+y − y and
y = vx+y−x on σ. Using only abstract operations from the underlying domain,
Coerce computes an improved σ via

σ := [[assume(x = vx+y − y)]]σ ⊓ [[assume(y = vx+y − x)]]σ.

This method yields the abstract value {x 7→ [0, 2], y 7→ [0, 2], vx+y 7→ [0, 2]}.
The other key notion in the algorithm for Coerce is that constraining an

abstract value via one constraint may enable other information to be propa-
gated via another constraint. Thus, Coerce performs semi-naive evaluation
[27] with respect to the graph over the variables in which two variables are
connected if they are related by a constraint. Propagation continues until it
quiesces, or until some user-specified number of propagation steps has been
performed.

The Coerce function takes a worklist of variables and an abstract
value A as input. Coerce returns the result of assuming the relevant facts
from Isolate using semi-naive evaluation. The global dictionary Relations

maps each program variable and view variable to the set of relations that
contain them. The global dictionary Neighbors maps each variable to the
set of variables that it shares a relation with. That is, Neighbors[v] =
⋃

{variables in r | r ∈ Relations[v]}. Both Relations and Neighbors hold facts
about symbolic relationships among views.

Computing Relations and Neighbors during each step of abstract interpre-
tation is prohibitively expensive. However, because they represent symbolic
information that does not change across CFG nodes, they are precomputed
once by Find-Relations (Fig. 5) and thereafter referred to by Coerce. To
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Program Analysis Time Asserts

Berkeley
intervals 0.024s 2
octagons 0.117s 2
intervals + views 14.503s 3

Seesaw
octagons 0.087s 0
octagons + views 7.736s 2

Sqrt
intervals 0.014s 0
polyhedra 0.029s 0
intervals + views 0.621s 2

Fig. 6. Summary of experiments. The column labeled
“Asserts” indicates the number of assertions verified
by the analysis.

real x, y;
y = 4;
assume (0 < x);
assume (0 < y*x*x && y*x*x < 3);
while (y*x*x <= .999

|| y*x*x >= 1.001) {
x = x*(3 - y*x*x)/2.0;

}
assert (y*y*x*x - y <= 0.001);
assert (y*y*x*x - y >= -0.001);

Fig. 7. Code for Sqrt.

perform this precomputation, Find-Relations calls Reformulate to get
sets of expressions known to equal the view variables, and Isolate to derive
general relations from these expression sets.

Isolate takes an input condition of the form “lhs op rhs” and returns a
larger, logically implied condition. Isolate algebraically isolates the variables
on the right-hand side of its input condition. As it does so, it accumulates
further necessary conditions on the results. For instance, to isolate b in l < ab,
the resulting condition is different depending on whether a < 0, a = 0, or
a > 0. Isolate returns a predicate that handles each of these cases:

(a > 0 ∧ l/a < b) ∨ (a < 0 ∧ l/a > b) ∨ (a = 0 ∧ l < 0) .

4 Experiments

To test the capabilities of view-augmented abstraction, we implemented a
prototype analyzer based on the Apron framework [1] and Interproc analyzer
[15]. The experiments were run on a machine with a 3.40 GHz Pentium 4 dual
processor and 2 GB of memory, running 32-bit Red Hat Linux Enterprise 5.

The experiments were designed to answer the following questions:

◦ Can a view-augmented abstraction give more precise results for the pro-
gram variables of the original unaugmented abstraction?
◦ Can a view-augmented abstraction give more precise values of views than

the original unaugmented abstraction?
◦ How expensive is view-augmented abstraction?

Berkeley. We translated the program Berkeley from the StInG suite [26] into
the Interproc modeling language. Berkeley is equipped with three assertions
to verify: e ≥ 0, u ≥ 0, and i + u + e + n ≥ 1. In our tests, the interval and
octagon domains cannot verify the third assertion, but the interval domain
augmented with the views i + u + e and 2i + u + 2e does.

Seesaw. We translated the Seesaw program from the StInG suite into the
Interproc modeling language. Seesaw is equipped with two assertions to verify:

9
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2y − x ≥ 0 and 3x− y ≥ 0. In our tests, the octagon domain does not verify
either assertion, but the octagon domain augmented with the views 3x and
3x− y does.

Sqrt. The Sqrt algorithm we analyzed is shown in Fig. 6. It computes the
reciprocal of the square root of y, avoiding divisions, by forcing x to converge
to 1/

√
y, and then returns yx [13]. Thus, the two assertions at the end of Sqrt

check that (yx)2 is close to the value of y.

In our tests, neither the standard interval domain nor the polyhedral do-
main can verify either assertion, but the interval domain augmented with the
nonlinear views yyxx and yxx verifies both.

Discussion. These examples give positive answers to our first two questions.
Each assertion in each test uses only the original program variables. Thus,
the fact that view-augmentation can verify otherwise-unverifiable assertions
shows that a view-augmented abstraction can increase precision for the set of
original program variables, as well as for the view expressions themselves.

The research is not sufficiently mature to conclusively address the ques-
tion of analysis cost. On the examples in Fig. 6, view-augmentation is quite
expensive—about 40 to 600 times more expensive than interpretation over the
underlying domain. However, our implementation is an initial prototype, fo-
cusing on correctness rather than efficiency. Comparing this implementation
against the carefully tuned Apron library is bound to give a poor impression
of the performance of view-augmentation. Optimization and scalability are
research goals to be addressed in future work.

In summary, the additional cost of view-augmentation is currently sub-
stantial, but we believe that the technique shows promise.

5 Related Work

Materialized views and view maintenance. Materialized views [11] are
used in databases to cache commonly-requested queries, thereby increasing
efficiency by providing answers without having to recompute queries on large
data sets. Algorithms for incremental view maintenance are used to update
the values of materialized views when there are changes to the base relations.

In databases, view maintenance is solely an optimization; the informa-
tion can always be obtained by re-evaluating the view’s defining formula. In
the abstract-interpretation context, re-evaluating a view’s defining expression
does not usually yield a precise answer (cf. the running example in Sect. 2).
Here, the main motivation for using materialized views and a finite-differencing
method is to have an effective technique for retaining precision.

The instrumentation relations of canonical-abstraction domains [24] are
materialized views of formulas over a relational vocabulary. As in our method,
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the views are expressed in the same language in which the concrete semantics
is expressed—i.e., using first-order logic plus transitive closure in the case of
canonical-abstraction domains; using numeric expressions in the case of the
present paper. A finite-differencing method for logical formulas [22] is used to
create abstract transformers automatically that maintain the values of each
materialized view that augments a canonical-abstraction domain. The method
operates on logical formulas expressed in first-order logic plus transitive clo-
sure. The method in the present paper operates on numeric expressions.

Bagnara et al. [2] developed a technique to generate invariant polynomial
inequalities of bounded degree. Their technique introduces additional vari-
ables to represent nonlinear terms, and uses convex polyhedra to represent
polynomial cones in the extended set of variables. To reduce the loss of pre-
cision induced by this over-approximation step, the polyhedra are enriched
with additional linear constraints that enforce some (semantically redundant)
nonlinear constraints that would otherwise be lost. The rules for maintaining
the values of the auxiliary variables are based on repeated substitution [2,
Ex. 3 in §3.2].

Charles et al. [4] describe an algorithm for over-approximating the integer
solutions of a set of non-linear constraints using an abstract domain based on
linear constraints. The technique is not related to views per se, and assumes
that a symbolic projection algorithm is available for a system of non-linear
constraints, which is not always possible.

Abstraction refinement. In the past few years, many researchers have
studied ways to refine predicate-abstraction domains. Refinement is central to
counterexample-guided abstraction refinement [14,5,3], as used for example in
SLAM [3] and BLAST [12]. Our work provides machinery that enables refinement
of numeric domains, which can express properties that cannot be expressed
using predicate abstraction.

Automatic creation of abstract transformers. The problem of creating
view-maintenance formulas is related to the problem of automatically cre-
ating abstract transformers. For certain abstract-interpretation frameworks
[10,23,28], it is known how to create best abstract transformers [7]. That is,
the abstract transformers created are the most precise transformers possible,
given the abstraction in use. For instance, Graf and Säıdi show how to use
theorem provers to generate best transformers for predicate-abstraction do-
mains. In contrast, the abstract transformers created using the algorithm
described in Sect. 2 and App. B are not best transformers; however, the algo-
rithm uses only very simple, linear-time, recursive tree-traversal procedures,
whereas theorem provers are not guaranteed to terminate.

Miné [18] developed two methods to simplify numeric expressions before
passing them to abstract transformers. One technique abstracts arbitrary
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expressions into affine forms with interval coefficients; the other technique
performs constant propagation symbolically. The methods yield more precise
abstract transformers, but do not improve the expressiveness of the underly-
ing domain. In contrast, as shown in Sect. 2, view-augmentation can capture,
maintain, and use information that the underlying abstraction cannot repre-
sent.

Sankaranarayanan et al. [25] describe Template Constraint Matrices
(TCMs), a parametrized family of linear inequality domains. They give a
parametrized meet, join, and set of abstract transformers for all domains in
the family. Monniaux [19] gives algorithms that find best transformers among
TCM domains across any straight-line blocks, and good transformers across
more complicated control flow.

6 Conclusions

View-augmentation can enable any numeric abstract interpretation to cap-
ture more precise information. Our preliminary experiments demonstrate that
view-augmented abstraction is an effective way to improve the precision of a
numeric abstraction. Directions for future work include improving perfor-
mance and methods to automatically select fruitful views.
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A Concrete and Abstract Semantics

We assume that we have a control flow graph with assignments and assumes
on edges; the concrete, collecting, and abstract semantics of the CFG are
defined as usual.

Concrete semantics. A program is specified by a control flow graph (CFG)
G = (N,E), where N is the set of program locations and E ⊆ N × N is the
set of control-flow edges. Variables, in the set ProgVars, have values in V,
which could be any of Z, Zn, Q, or R. The set of possible program states is
Σ = ProgVars→ V. We typically use σ to denote an individual state in Σ.

The function ΠG : E → (Σ → Σ) defines the concrete semantics of each
edge in the CFG. These program statements may be assertions or assignments;
we allow unrestricted, nondeterministic expressions and conditions. When
stmt is a program statement, its concrete semantic action is denoted by [[stmt]].

In general, we lift semantic functions to operate on sets by the usual point-
wise extension. The collecting semantics is the least fixed point of a set of
equations (defined in the standard way [6]), which yields a mapping N →
P(Σ).

Abstract semantics. Static analysis sidesteps undecidability by using ab-
straction: sets of program states are approximated by elements of an abstract
domain D = (D,α, γ,⊑,⊤,⊥,∨,⊓). The function Π♯

G : E → (D → D) gives
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exp ∆stmt[exp]

c ∈ ConstSyms 0

x ∈ ProgVars and transformer component x := η

is of the form x := x + δ, δ ∈ ConstSyms
δ

x ∈ ProgVars and transformer component x := η

is not of the form x := x + δ, δ ∈ ConstSyms
η − x

vf(u) ∈ ViewVars ∆stmt[f(u)]

f(u) + g(u) ∆stmt[f(u)] + ∆stmt[g(u)]

f(u) ∗ g(u) f(u) ∗∆stmt[g(u)] + ∆stmt[f(u)] ∗ g(u)

+ ∆stmt[f(u)] ∗∆stmt[g(u)]

Fig. B.1. A finite-differencing scheme for numeric expressions.

the abstract semantics of individual program statements. The abstract se-
mantics is the least fixed point of a set of equations (again, defined in the
standard way [6]), which yields a mapping N → D.

B View Maintenance via Finite Differencing

ViewVars denotes the set of view-variables, where the concrete semantics of
each view-variable vf(u) is specified by vf(u)

def

= f(u). In general, f(u) denotes
an expression over ProgVars ∪ ViewVars. View-variables may appear in the
defining expressions of other view-variables, provided that there are no circular
dependences.

We use Σ = (ProgVars ∪ ViewVars) → V to denote the set of all possible
augmented program states. When σ ∈ Σ denotes an augmented program state,
σ ∈ Σ denotes the corresponding unaugmented state in which the values of
all view-variables are forgotten.

The future-value operator Fstmt[η] is defined as follows:

Fstmt[η]
def
= η + ∆stmt[η], (B.1)

where ∆stmt[η] is defined in Fig. B.1. In particular, by Eqn. (B.1) and the
fourth case of Fig. B.1,

Fstmt[vf(u)] = vf(u) + ∆stmt[f(u)]. (B.2)

The semantics of assignment transitions in augmented program states is
defined as follows:

[[x := η]](σ) = λv.







[[x := η]](σ) if v ∈ ProgVars
(

[[Fx := η[vf(u)]]](σ)
⊓ [[f(u)]]([[x := η]](σ))

)

if v ≡ vf(u) ∈ ViewVars
(B.3)

The view-augmented versions of ΠG and Π♯
G map each edge to an

augmented-state transformer, and ⊓ in Eqn. (B.3) is ∩ in the case of the con-
crete collecting semantics. The view-augmented concrete collecting semantics
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and abstract semantics are defined by least fixed points as before, but using
the view-augmented versions of ΠG and Π♯

G, respectively.

The second case of Eqn. (B.3) is illustrated in Fig. 3(b), for a view-
augmented abstract semantics. As we will see in Thm. B.1 below, in the
case of the concrete collecting semantics, the second case of Eqn. (B.3)
can be simplified to either “[[Fx := η[vf(u)]]](σ), if v ≡ vf(u) ∈ ViewVars” or
“[[f(u)]]([[x := η]](σ)), if v ≡ vf(u) ∈ ViewVars”. The former choice, where
Fx := η[vf(u)] has been expanded by Eqn. (B.2), is illustrated in Fig. 3(a).

Soundness of view-augmented abstract interpretation is established by first
showing that, in the concrete semantics, for all expressions η, Fstmt[η] pro-
duces an exact maintenance expression (Thm. B.1 below). If the underlying
abstract interpretation is sound, then soundness follows immediately for the
view-augmented abstract interpretation: the latter uses abstract augmented-
state transformers, but with Π♯

G mapping each edge to an augmented-state
transformer that incorporates expressions of the form Fstmt[η] via Eqn. (B.3).

Theorem B.1 Let stmt be a statement with transformer [[x := η]]. Let

σ ∈ Σ be an augmented state, and let σproto be the result of evaluating

[[x := η]] on unaugmented state σ. Let σ′ be the structure obtained using

σproto as the first approximation to σ′ and then assigning to each view-variable

vf(u) ∈ ViewVars, in a topological ordering of the dependences among the view

variables, by successively performing

σ′ := σ′[vf(u) ← [[f(u)]](σ′)].

Then for every expression η, [[Fstmt[η]]](σ) = [[η]](σ′).

Sketch of Proof: The proof is by induction using a size measure for expressions
based on a process of normalizing η so that it is defined solely in terms of
ProgVars (i.e., no ViewVars). Such normalization is always possible because
of the assumption that view-variables are not circularly defined. The size
measure is the size of the normalized η, except that each occurrence of a
view-variable vf(u) is counted as being 1 larger than the size measure of the
expression f(u). The proof is thus similar to a standard structural-induction
proof, except that in the case for a view-variable vf(u), we may assume that
the induction hypothesis holds for f(u).

In [[η]](σ′), each time a view-variable vf(u) is encountered, the value σ′(vf(u))
is used, which by the definition of σ′ equals [[f(u)]](σ′). Because the size mea-
sure of f(u) is strictly smaller than η, we have, by the induction hypothesis,

[[f(u)]](σ′) = [[Fstmt[f(u)]]](σ).

The remaining cases (for +, *, etc.) follow from the definition of Fstmt[η]
(Eqn. (B.1)) and the well-known rules for finite differencing (Fig. B.1).
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