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Abstract

This paper addresses the problem of establishing temporal properties of programs written in languages, such as

Java, that make extensive use of the heap to allocate—and deallocate—new objects and threads. Establishing
liveness properties is a particularly hard challenge. One of the crucial obstacles is that heap locations have no static

names and the number of heap locations is unbounded. The paper presents a framework for the verification of Java-

like programs. Unlike classical model checking, which uses propositional temporal logic, we use first-order temporal

logic to specify temporal properties of heap evolutions; this logic allows domain changes to be expressed, which
permits allocation and deallocation to be modelled naturally. The paper also presents an abstract-interpretation

algorithm that automatically verifies temporal properties expressed using the logic.

Keywords: Verification, first-order logic, temporal logic, abstract interpretation.

1 Introduction

Modern programming languages, such as Java, make extensive use of the heap. The contents
of the heap may evolve during program execution due to dynamic allocation and deallocation
of objects. Moreover, in Java, threads are first-class objects that can be dynamically
allocated. Statically reasoning about temporal properties of such programs is quite
challenging, because there are no a priori bounds on the number of allocated objects, or
restrictions on the way the heap may evolve. In particular, proving liveness properties of such
programs, e.g., that a thread is eventually created in response to each request made to a web
server, can be a quite difficult task.
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The contributions of this paper can be summarized as follows:

(1) We introduce a first-order modal (temporal) logic [8, 9] that allows specifications
of temporal properties of programs with dynamically evolving heaps to be stated
in a natural manner.

(2) We develop an abstract interpretation [4] for verifying that a program satisfies such
a specification.

(3) We implement a prototype of the analysis using the TVLA system [11] and apply it to
verify several temporal properties, including liveness properties of Java programs with
evolving heaps.

We have used the framework for:
Specifying general heap-evolution properties: The framework has been used to specify in

a general manner, various properties of heap evolution, such as properties of garbage-
collection algorithms.

Verifying termination of sequential heap-manipulating programs: Termination is shown by
providing a ranking function based on the set of items reachable from a variable iterating
over the linked data structure. In particular, we have verified termination of all example
programs from [6].

Verifying temporal properties of concurrent heap-manipulating programs: We have used the
framework to verify temporal properties of concurrent heap-manipulating programs — in
particular, liveness properties, such as the absence of starvation in programs using mutual
exclusion, and response properties [13]. We have applied this analysis to programs with an
unbounded number of threads.

The remainder of this paper is organized as follows: Section 2 gives an overview of the
verification method and contrasts it with previous work. Section 3 introduces trace semantics
based on first-order modal logic, and discusses how to state trace properties using the
language of evolution logic. Section 4 defines an implementation of trace semantics via first-
order logic. Section 5 shows how abstract traces are used to conservatively represent sets of
concrete traces. Section 6 summarizes related work.

2 Overview

2.1 A temporal logic supporting evolution

The specification language, Evolution Temporal Logic (VTL), is a first-order linear temporal
logic that allows specifying properties of the way program execution causes dynamically
allocated memory (‘‘the heap’’) to evolve.

It is natural to consider the concrete semantics of a program as the set of its execution
traces [5, 16], where each trace is an infinite sequence of worlds. First-order logical structures
provide a natural representation of worlds with an unbounded number of objects: an
individual of the structure’s domain (universe) corresponds to an anonymous, unique store
location, and predicates represent properties of store locations. Such a representation allows
properties of the heap contents to be maintained while abstracting away any information
about the actual physical locations in the store.

This gives rise to traces in which worlds along the trace may have different domains. Such
traces can be seen as models of a first-order modal logic with a varying-domain semantics [8].
This could be equivalently, but less naturally, modelled using constant-domain semantics.
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This framework generalizes other specification methods that address dynamic allocation
and deallocation of objects and threads. In particular, its descriptive power goes beyond
Propositional LTL and finite-state machines (e.g., [1]).

Program properties can be verified by showing that they hold for all traces. Technically,
this can be done by evaluating their first-order modal-logic formulae against all
traces. We use a variant of Lewis’s counterpart theory [12] to cast modal models
(and formula evaluation) in terms of classical predicate logic with transitive
closure (FOTC) [3].

Program verification using the above concrete semantics is clearly non-computable in
general. We therefore represent potentially infinite sets of infinite concrete traces by one
abstract trace. Infinite parts of the concrete traces are folded into cycles of the abstract
traces. Termination of the abstract interpretation on an arbitrary program is guaranteed by
bounding the size of the abstract trace. Two abstractions are employed: (i) representing
multiple concrete worlds by a single abstract world, and (ii) creating cycles when an abstract
world reoccurs in the trace.

Because of these abstractions, we may fail to show the correctness of certain programs,
even though they are correct. Fortunately, we can use reduction arguments and progress
monitors as employed in other program-verification techniques (e.g., [10]).

As in finite-state model checking (e.g., [16]), we let the specification formula
affect the abstraction by making sure that abstract traces that fulfill the formula
are distinguished from the ones that do not. However, our abstraction does not
fold the history of the trace into a single state. This idea of using the specification
to affect the precision of the analysis was not used in [15, 18], which only handle
safety properties.

2.2 Overview of the verification procedure

First, the property ’ is specified in VTL. The formula is then translated in a straightforward
manner into an FOTC logical formula, ð’Þy, using a translation procedure described in
Appendix A. An abstract-interpretation procedure is then applied to explore finite
representations of the set of traces, using Kleene’s 3-valued logic to conservatively interpret
formulae. The abstract-interpretation procedure essentially computes a greatest fixed point
over the set of traces, starting with an abstract trace that represents all possible infinite
traces from an initial state, and gradually increasing the set of abstract traces and reducing
the set of represented concrete traces. Finally, the formula ð’Þy is evaluated on all of the
abstract traces in the fixed point. If ð’Þy is satisfied in all of them, then the original VTL
formula ’ must be satisfied by all (infinite) traces of the program. However, it may be
the case that for some programs that satisfy the VTL specification, our analysis only
yields ‘‘maybe’’.

2.3 Running example

Consider a web server in which a new thread is dynamically allocated to handle each http
request received. Each thread handles a single request, then terminates and is subject to
garbage collection. Assume that worker threads compete for some exclusively shared
resource, such as exclusive access to a data file. Figure 1 shows fragments of a Java program
that implements such a naive web server.
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A number of properties for the naive web-server implementation are shown in Table 1 as
properties P1–P4. For now you may ignore the formulae in the third column; these will
become clear as VTL syntax is introduced in Section 3.

Due to the unbounded arrival of requests to the web server, and the fact that a thread is
dynamically created for each request, absence of starvation (P2) does not hold in the naive
implementation. To guarantee absence of starvation, we introduce a scheduler thread into
the web server. The web server now consists of a listener thread (as before) and a queue of
worker threads managed by the scheduler thread. The listener thread receives an http

public class Worker implements Runnable    {
Request request;
Resource resource;   ...
public void run ( )   {   ...

lw1 synchronized (resource)   {
lwc resource.processRequest (request);
lw2 }

}
}

FIG. 1. Java fragment for worker thread in a web server with no explicit scheduling

TABLE 1. Web server VTL specification using predicates of Table 2

Pr. Description Formula

P1 mutual exclusion
over the shared resource

&8t1, t2 : thread:ðt1 6¼ t2Þ
! :ðat½lwc�ðt1Þ ^ at½lwc�ðt2ÞÞ

P2 absence of starvation
for worker threads

&8t : thread:at½lw1�ðtÞ ! ^at½lwc�ðtÞ

P3 a thread only created when
a request is received

&ð8t : thread::� tÞ_
ð8t : thread:: � tÞ U ð9v : request:� vÞ

P4 each request is followed by
thread creation

&9v : request:� v ! ^9t : thread:� t

P5 mutual exclusion of
listener and scheduler
over scheduling queue

&8t1, t2 : thread:ðt1 6¼ t2Þ
! :ðat½ls3�ðt1Þ ^ at½la3�ðt2ÞÞ

P6 each created thread
is eventually inserted
into the scheduling queue

&8t : thread:� t
! ^9q : queue:rval½head:next��ðq, tÞ

P7 each scheduled worker
thread was removed from
the scheduling queue

&8t : thread:at½lw1�ðtÞ
! :9q : queue:rval½head:next��ðq, tÞ

P8 each worker thread
waiting in the queue
eventually leaves the queue

9q : queue:&8t : thread:
ðrval½head:next��ðq, tÞÞ
! ^:ðrval½head:next��ðq, tÞÞ
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request, creates a corresponding worker thread, and places the new thread on a scheduling
queue. The scheduler thread picks up a worker thread from the queue and starts its execution
(which is still a very naive implementation).

When using a web server with a scheduler, a number of additional properties of interest
exist, labeled P5–P8 (for additional properties of interest see [17]). Fig. 2 shows fragments
of a web-server program in which threads use an explicit FIFO scheduler.

The ability of our framework to model explicit scheduling queues provides a mechanism for
addressing issues of fairness in the presence of dynamic allocation of threads. (Further
discussion of fairness is beyond the scope of this paper.)

3 Trace-based evolution semantics

In this section, we define a trace-based semantic domain for programs that manipulate
unbounded amounts of dynamically allocated storage. This concrete semantics serves as
a basis for the abstract traces semantics presented in the next section.

3.1 Representing program traces

To allow specifying temporal properties of heap-manipulating programs, we employ first-
order modal logic [8]. Various such logics have been defined, and in general they can be given
a constant-domain semantics, in which the domain of all worlds is fixed, or a varying-domain
semantics, in which the domains of worlds can vary and domains of different worlds can
overlap. In the most general setting, in both types of semantics an object can exist in more
than a single world, and an equality relation is predefined to express global equality between
individuals.

public class Scheduler
implements Runnable {

protected Queue schedQ;
protected Resource resource; ...
public void run() {

ls1 while (true) { ...
ls2 synchronized(resource) {
ls3 while(resource.isAcquired())
ls4 resource.wait();

//  may block until
//  queue not empty

ls5 worker=schedQ.dequeue();
ls6 worker.start();

}
}

}
}

public class Listener
implements Runnable {

protected Queue schedQ;...
public void run() {

la1 while(true) { ...
la2 req=rqStream.readObject();
la3 worker=new Thread(new Worker(req));
la4 schedQ.enqueue(worker);

... }
}

}
public class Worker

implements Runnable {
Request req;
Resource resource; ...
public void run() {

lw1 synchronized(resource) { ...
lwc resource.processRequest(req);

resource.notifyAll();
lw2 }

}
}

FIG. 2. Java code fragment for a web server with an explicit scheduler
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To model the semantics of languages such as Java, and to hide the implementation
details of dynamic memory allocation, we use a semantics with varying domains.
However, the semantics is deliberately restricted because of our intended application to
program analysis. By design, our evolution semantics has a notion of equality in the presence
of dynamic allocation and deallocation, without the need to update a predefined global-
equality relation. Evolution semantics is adapted from Lewis’s counterpart semantics [12].
In both evolution and counterpoint semantics, an individual cannot exist in more than
a single world; each world has its own domain, and domains of different worlds are
non-intersecting. Under this model, equality need only be defined within a single world’s
boundary; individuals of different worlds are unequal by definition.

To relate individuals of different worlds, an evolution mapping is defined; however, unlike
Lewis, we are interested in an evolution mapping that is reflexive, transitive, and symmetric,
which models the fact that, during a computation, an allocated memory cell does not change
its identity until deallocated. In Section 5.3.1, we show how to track statically, in the
presence of abstraction, the equivalence relation induced by the evolution mapping.

As is often done, we add a skip action from the exit of the program to itself, so that all
terminating traces are embedded in infinite traces. The semantics of the program is its set of
infinite traces.

In the rest of this paper, we work with a fixed set of predicates (or vocabulary)
P ¼ feq; p1, . . . ; pkg. We denote by Pk the set of predicates from P with arity k.

DEFINITION 3.1 (World)
A world (program configuration) is represented via a first-order logical structure
W ¼ hUw; �wi, where Uw is the domain (universe) of the structure, and �w is the interpretation
function mapping predicates to their truth values; that is, for each p 2 Pk , �wðpÞ:U

k
w ! f0; 1g,

such that for all u 2 Uw, �wðeqÞðu; uÞ ¼ 1, and for all u1; u2 2 Uw such that u1 and u2 are
distinct individuals �wðeqÞðu1; u2Þ ¼ 0.

DEFINITION 3.2 (Trace)
A trace is an infinite sequence of worlds �1 ������!

D�1
, e�1 ,A�2

�2 ������!
D�2

, e�2 ,A�3
. . ., where: (i) each

world represents a global state of the program, �1 is an initial state, and for each �i, its
successor world �iþ1 is derived by applying a single program action to �i; (ii) D�i � U�i is the
set of individuals deallocated at �i, and A�iþ1

� U�iþ1
is the set of individuals newly allocated

at �iþ1; (iii) each pair of consecutive worlds �i; �iþ1 is related by a stepwise evolution
function, a bijective renaming function e�i :U�i n D�i ! U�iþ1

n A�iþ1
.

3.2 Extracting trace properties

To extract trace properties, we need a language that can relate information from different
worlds in a trace. We define the language of evolution logic (VTL), which is a first-order
linear temporal logic with transitive closure, as follows:

DEFINITION 3.3 (VTL Syntax)
A VTL formula is defined by

’ ::¼ 0j1jpðv1, . . . ; vnÞj � v1j � v1j’1 _ ’2j:’1j9v1 � ’1jðTC v1; v2: ’1Þðv3; v4Þj’1U’2j � ’1

where vi are logical variables.
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The set of free variables in a formula ’ denoted by FVð’Þ is defined as usual. In a transitive
closure formula, FV((TC v1; v2 : ’1Þðv3; v4ÞÞ ¼ ðFV ð’1Þ n fv1; v2gÞ [ fv3; v4g.

The operators � and � allow the specification to refer to the exact moments
of birth and death (respectively) of an individual.1 The transitive closure operator
(TC v1; v2 : ’1Þðv3; v4Þ, allows the specification to naturally express transitive reachability
along heap-paths.

Shorthand Formulae: For convenience, we also allow formulae to contain the
shorthand notations ðv1 ¼ v2Þ ¼

4
eqðv1; v2Þ, ðv1 6¼ v2Þ ¼

4
:eqðv1; v2Þ, ’1 ^ ’2 ¼

4
:ð:’1 _ :’2Þ,

’1 ! ’2 ¼
4
:’1 _ ’2, 8v:’1 ¼

4
:ð9v::’1Þ, ^’1 ¼

4
1U’1, and &’1 ¼

4
:ð1U:’1Þ. We also use

the shorthand p�ðv3; v4Þ for ðTC v1; v2 : pðv1; v2ÞÞðv3; v4Þ _ ðv3 ¼ v4Þ, when p is a binary
predicate.

In our examples, the predicates that record information about a single world
include the predicates of Table 2, plus additional predicates defined in later sections.
The set of predicates fat½lab�ðtÞ: lab 2 Labelsg is parameterized by the set of
program labels. Similarly, the set of predicates frval½fld�ðo1; o2Þ: fld 2 Fieldsg is
parameterized by the set of selector fields. We use the shorthand notation
rval½x:fld��ðv1; v2Þ¼

4
9v0:rval½x�ðv1; v

0Þ ^ rval½fld��ðv0; v2Þ. The transitive closure allows
specifying properties relating to unbounded length of heap-allocated data structures

(e.g., in rval½fld��ðv0; v2Þ).
We use unary predicates, such as thread(t), to represent type information. This could have

been expressed using a many-sorted logic, but we decided to avoid this for expository
purposes. Instead, for convenience we define the shorthands 9v : type:’¼

4
9v:typeðvÞ ^ ’

and 8v : type:’¼
4
8v:typeðvÞ ! ’.

EXAMPLE 3.4
Property P2 of Table 1 specifies the absence of starvation for worker threads (Fig. 1). The
formula 9t: thread:^at½lwc�ðtÞ states that some thread eventually enters the critical section.
The formula&9t : thread:^at½lwc�ðtÞ expresses the fact that globally some thread eventually
enters the critical section.

The property &ð8v:�v ! ^� vÞ states that globally, each individual that is allocated
during program execution is eventually deallocated. Note that the universal quantifier
quantifies over individuals of the world in which it is evaluated. This property is an instance

TABLE 2. Predicates used to record information about a single world

Predicates Intended Meaning

thread(t) t is a thread
fat½lab�ðtÞ : lab 2 Labelsg thread t is at label lab
frval½fld�ðo1, o2Þ : fld 2 Fieldsg field fld of the object o1 points to the object o2
heldByðl, tÞ the lock l is held by the thread t
blockedðt, lÞ the thread t is blocked on the lock l
waitingðt, lÞ the thread t is waiting on the lock l

1These operators could be extended to handle allocation and deallocation of a (possibly undounded) set of

individuals.
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of the commonly used ‘‘Response structure’’ [7, 13], in which an allocation in a world has
a deallocation response in some future world.

The properties

8t : thread:&ðat½llh �ðtÞ ! 9v:rval½i:next��ðt; vÞ ^^ðat½llh �ðtÞ ^ :rval½i:next��ðt; vÞÞÞ

8t : thread:&ð8v:at½llh �ðtÞ ^ :rval½i:next��ðt; vÞ ! &:at½llh�ðtÞ _ :rval½i:next��ðt; vÞÞ

establish a ranking function for linked data structures based on transitive reachability.
These properties state that at the loop head llh, the set of individuals transitively reachable
from program variable i decreases on each iteration of the loop. (Typically i is a pointer
that traverses a linked data structure during the loop.) Note that these properties relate
an unbounded number of individuals of one world to another.

The property &ð8v:^&8t : thread:
V

x2Var
fld 2Fields

:rval½x:fld��ðt; vÞ ! ^� vÞ is a desired
property of a garbage collector — that all non-reachable items are eventually collected.

3.3 Evolution semantics

In the following definitions, headð�Þ denotes the first world in a trace �, tailð�Þ denotes the
suffix of � without the first world, and �i denotes the suffix of � starting at the i-th world.
We also use lastð�Þ to denote the last world of a finite trace prefix �.

DEFINITION 3.5 (Evolution mapping)
Let � be the finite prefix of length k of the trace �. We say that an individual u 2 Uheadð�Þ

evolves into an individual u0 2 Ulastð�Þ in the trace � in k steps, and write � 	k u? u0 when
there is a sequence of individuals u1, . . . ; uk such that u1 ¼ u and uk ¼ u0 and for each two
successive worlds in �, uiþ1 ¼ e�i ðuiÞ.

DEFINITION 3.6 (Asssignment evolution)
Let � be the finite prefix of length k of the trace �. Given a formula ’ and an assignment Z
mapping free variables of ’ to individuals of a domain Uheadð�Þ, we say that � 	k Z ?Z 0

(Z evolves into Z 0 in � in k steps) if for each free variable fvi of ’, � 	k ZðfviÞ?Z 0ðfviÞ,
ZðfviÞ 2 Uheadð�Þ, and Z 0ðfviÞ 2 Ulastð�Þ.

DEFINITION 3.7 (VTL evolution semantics)
We define inductively when an VTL formula ’ is satisfied over a trace � with an assignment
Z (denoted by �;Z 	t ’) as follows:


 �;Z 	t 1, and not �;Z 	t 0.

 �;Z 	t pðv1, . . . ; vkÞ when �headð�ÞðpÞðZðv1Þ, . . . ;ZðvkÞÞ ¼ 1

 �;Z 	t :’ when not �;Z 	t ’

 �;Z 	t ’ _  when �;Z 	t ’ or �;Z 	t  

 �;Z 	t 9v:’ðvÞ when there exists u 2 Uheadð�Þ s.t. �;Z ½v 7!u� 	t ’ðvÞ

 �;Z 	t ðTC v1; v2 : ’Þðv3; v4Þ when there exists u1, . . . ; unþ1 2 Uheadð�Þ, such that

Zðv3Þ ¼ u1;Zðv4Þ ¼ unþ1; and for all 1 � i � n; �;Z ½v1 7!ui; v2 7!uiþ1� 	t ’.

 �;Z 	t �v when ZðvÞ 2 Aheadðtailð�ÞÞ.

 �;Z 	t �v when ZðvÞ 2 Dheadð�Þ.

 �;Z 	t � ’ when there exists Z 0 such that tailð�Þ;Z 0 	t ’ and � 	1 Z ?Z 0.

 �;Z 	t ’ U when there exists k� 1, Z 0, and Z 00 s.t.,
�k;Z 0 	k  and � 	k Z ?Z 0

and for all 1 � j < k, �j ;Z 00 	t ’ and � 	j Z ?Z 00
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We write � 	 ’ when �;Z 	t ’ for every assignment Z.
It is worth noting that the first-order quantifiers in this definition only range over the

individuals of a single world, yet the overall effect achieved by using the evolution mapping is
the ability to reason about individuals of different worlds, and how they relate to each other.
In essence, the assignment Z ½v 7!u� binds v to (the evolution of) an individual from the
domain of the world over which the quantifier was evaluated (cf. the semantics of * and U ).

The combination of first-order quantifiers and modal operators creates complications
that do not occur in propositional temporal logics. In particular, the quantification domain
of a quantifier may vary as the domain of underlying worlds varies. Verification of VTL
properties therefore requires a mechanism for recording the domain related to each
quantifier, and for relating members of quantification domains to individuals of future
worlds. For VTL, this mechanism is provided by evolution-mappings, which relate
individuals of a world to the individuals of its successor world. Transitively composing
evolution-mappings captures the evolution of individuals along a trace.

EXAMPLE 3.8
The formula 9v:&xðvÞ states that the pointer variable x remains constant throughout
program execution, and points to an object that existed in the program’s initial world.
On the other hand, the formula &9v:xðvÞ merely states that x never has the value null;
however, x is allowed to point to different objects at different times in the program’s
execution, and in particular x can point to objects that did not exist in the initial world.
Examples illustrating the two situations are shown in Fig. 3, where in ðaÞ x points to the same
object in all worlds, and in ðbÞ it points to different objects in different worlds.

DEFINITION 3.9
We say that a program satisfies an VTL formula ’ when all (infinite) traces of the program
satisfy ’.

The evolution semantics allows each world to have a different domain, thus conceptually
representing a varying-domain semantics, which allows dynamic allocation and deallocation
of objects and threads. In Section 4, we give a possible implementation of this semantics
in terms of evolving first-order logical structures.

3.4 Separable specifications

It is interesting to consider subclasses of VTL for which the verification problem is somewhat
easier. Two such classes are: (i) spatially separable specifications— do not place requirements
on the relationships between individuals of one world; this allows each individual to be

currWorld

succ succx x x

currWorld

succ succx x
x

(a) (b)

FIG. 3. Interaction of first-order quantifiers and temporal operators
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considered separately, and the verification problem can be handled as a set of propositional
verification problems; (ii) temporally separable specifications — do not relate individuals
across worlds. Essentially, this corresponds to the extraction of propositional information
from each world, and having temporal specifications over the extracted propositions. This
class was addressed in [2, 19].

4 Expressing trace semantics using first-order logic

In this section, we use first-order logic to express a trace semantics; we encode temporal
operators using standard first-order quantifiers. This allows us to automatically derive an
abstract semantics in Section 5. This approach also extends to other kinds of temporal logic,
such as the �-calculus. Our initial experience is that we are able to demonstrate that some
temporal properties, including liveness properties, hold for programs with dynamically
allocated storage.

4.1 Representing infinite traces via first-order structures

We encode a trace via an infinite first-order logical structure using the set of designated
predicates specified in Table 3. Successive worlds are connected using the succ predicate.
Each world of the trace may contain an arbitrary number of individuals. The predicate
existsðo;wÞ relates an individual o to a world w in which it exists. Each individual only exists
in a single world. The evolutionðo1; o2Þ predicate relates an individual o1 to its counterpart
o2 in a successor world. The predicates is New and is Freed hold for newly created or
deallocated individuals and are used to model the allocation and deallocation operators.

DEFINITION 4.1
A concrete trace is a trace encoded as an infinite first-order logical structure T ¼ hUT ; �T i,
where UT is the domain of the trace, and �T is the interpretation function mapping predicates
to their truth value in the logical structure, i.e., for each p 2 Pk , �T ðpÞ : U

k
T ! f0; 1g. To

exclude structures that cannot represent valid traces, we impose certain integrity constraints
[15]. For example, we require that each world has at most one successor (predecessor), and
that equality (eq) is reflexive.

TABLE 3. Trace predicates

Predicate Intended Meaning

world(w) w is a world
currWorld(w) w is the current world
initialWorld(w) w is the initial world
succ(w1,w2) w2 is the successor of w1

exists(o,w) object o is in world w
evolution(o1, o2) object o1 evolves to o2
isNew(o) object o is new
isFreed(o) object o is freed
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EXAMPLE 4.2
Figure 4 shows four worlds of the trace T \

4 where each world is depicted as a large node
containing other nodes and worlds along the trace are related by successor edges.
Information in a single world is represented by a first-order logical structure, which
is shown as a directed graph. Each node of the graph corresponds to a heap-allocated object.
Hexagon nodes correspond to thread objects, and small round nodes to other types of heap-
allocated objects. Predicates holding for an object are shown inside the object node, and
binary predicates are shown as edges. For brevity, we use the label rval½r � to stand for
rval½resource�. Grey edges, crossing world boundaries, are evolution edges, which relate
objects of different worlds. Note that these are the only edges that cross world boundaries.

4.2 Exact extraction of trace properties

Once traces are represented via first-order logical structures, trace properties can be
extracted by evaluating formulae of first-order logic with transitive closure.

We translate a given VTL formula ’ to an FOTC formula ð’Þy by making the underlying
trace structure explicit, and translating temporal operators to FOTC claims over worlds of
the trace. The translation procedure is straightforward, and given in Appendix A.

EXAMPLE 4.3
The property 9t: thread:^at½lwc�ðtÞ of Example 3.4 is translated to

9w : world:9t : thread:initialWorldðwÞ^
existsðt;wÞ ^ 9w09t0 : thread:succ�ðw;w0Þ^

existsðt0;w0Þ ^ evolution�ðt; t0Þ ^ at½lwc�ðt
0Þ

which evaluates to 1 for the trace prefix of Fig. 4.

DEFINITION 4.4
The meaning of a formula ’ over a concrete trace T, with respect to an assignment Z,
denoted by [’]TZ ðZÞ, yields a truth value in f0; 1g. The meaning of ’ is defined inductively
as follows:


 [l]T2 ðZÞ ¼ l (where l 2 f0; 1g)

 [pðv1, . . . ; vkÞ]

T
2 ðZÞ ¼ �T ðpÞðZðv1Þ, . . . ;ZðvkÞÞ

rval[r]

rval[r]

rval[r]

succsucc

rval[r]

rval[r]

rval[r]

heldBy

rval[r]

rval[r]

rval[r]

heldBy

blocked

at[lw_1]

at[lw_1]

at[lw_1]

at[lw_c]

at[lw_1]

at[lw_1]

at[lw_c]

at[lw_1]

at[lw_1]

currWorld

rval[r]

rval[r]

rval[r]

heldBy

blocked

at[lw_c]

at[lw_1]

at[lw_1]
blocked

succ

…

initialWorld

succ

FIG. 4. A concrete trace T \
4
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 [’1 _ ’2]
T
2 ðZÞ ¼ maxð[’1]

T
2 ðZÞ; [’2]

T
2 ðZÞÞ


 [:’1]
T
2 ðZÞ ¼ 1� [’1]

T
2 ðZÞ


 [9v1:’1]
T
2 ðZÞ ¼ maxu2UT [’1]

T
2 ðZ ½v1 7!u�Þ


 [ðTC v1; v2 : ’1Þðv3; v4Þ]
T
2 ðZÞ ¼ max n�1;u1,...;unþ12U ;

Zðv3 Þ¼u1;Zðv4Þ¼unþ1

minn
i¼1[’1]

T
2 ðZ ½v1 7!ui; v2 7!uiþ1�Þ

We say that T and Z satisfy ’ (denoted by T;Z 	 ’) if [’]T2 ðZÞ ¼ 1. We write T 	 ’ if for
every Z we have T;Z 	 ’.

The correctness of the translation is established by the following theorem:

THEOREM 4.5
For every closed VTL formula ’ and a trace �, � 	 ’ if and only if repð�Þ 	 ð’Þy, where repð�Þ
is the first-order representation of �, i.e., the first-order structure that corresponds to �, in
which every world in � is mapped to a world in repð�Þ, with the succ predicate holding for
consecutive worlds.

4.3 Semantics of actions

Informally, a program action ac consists of a precondition acpre under which the action is
enabled, which is expressed as a logical formula, and a set of formulae for updating the values
of predicates according to the effect of the action. An enabled action specifies that a possible
next world in the trace is one in which the interpretations of every predicate p of arity k
is determined by evaluating a formula ’pðv1; v2, . . . ; vkÞ, which may use v1; v2, . . . ; vk and
all predicates in P (see [15]).

4.4 Exploring the trace space

Since liveness properties might be violated only by infinite traces, our verification procedure
must reason about infinite traces. In this section, we present a non-computable scheme
for exploring the (infinite) space of program traces. In the next section, we show how to
conservatively approximate this scheme using an abstract-interpretation algorithm that
explores a finitely representable over-approximation of this space.

Figure 5 shows a (non-computable) greatest fixed-point computation scheme for exploring
the (infinite) space of program traces. In this scheme, we start with the (infinite) set of all
possible infinite traces, and iteratively refine the set by eliminating traces that do not agree
with the known explored prefixes of program traces.

FIG. 5. A greatest fixed-point computation scheme for computing the set of (infinite)
concrete traces and evaluating the property (’)y. GFP is the greatest fixed-point operator

766 Verifying Temporal Heap Properties Specified via Evolution Logic



On each step, we iteratively apply every possible enabled action on traces in the Traces
set. When an action is applied on a trace, it extends its explored prefix, resulting in all
possible extended prefixes, which are then added to the set of traces.

Each step of the scheme of Fig. 5 therefore replaces traces with a given explored prefix by a
set of traces with longer explored prefixes. The process stabilizes when no more traces could
be extended. Once the process has stabilized, we evaluate the violation property on every
trace in the resulting set of traces. If a trace is found to satisfy the violation property, we
report an error.

As noted earlier, this scheme operates on an infinite set of infinite traces, and is non-
computable. To obtain a conservative solution to the verification problem, we therefore
apply a conservative approximation as described in Section 5.

5 Exploring finite abstract traces via abstract interpretation

In this section, we give an algorithm for conservatively determining the validity of a program
with respect to a VTL property. A key difficulty in proving liveness properties is the fact that
a liveness property might be violated only by an infinite trace. Therefore, our procedure for
verifying liveness properties is a greatest fixed-point computation, which works down from
an initial approximation that represents all infinite traces. In this section, we present the
abstract-interpretation algorithm; procedure explore of Fig. 9.

This approach uses finite representations of infinite traces. Finite representations are
obtained by abstraction to three-valued logical structures. The third logical value, 1/2,
represents ‘‘unknown’’ and may result from abstraction. The abstract semantics
conservatively models the effect of actions on abstract representations. It should be noted
that the abstract-interpretation algorithm is guaranteed to terminate and to produce sound
results. That is, it never misses an error. However, because the algorithm over-approximates
the set of possible program traces, it may report errors that do not occur in an execution
of the program (also known as false alarms).

5.1 A finite representation of infinite traces

The first step in making the algorithm of Fig. 9 feasible is to define a finite representation
of sets of infinite traces. Technically, we use 3-valued logical structures to finitely represent
sets of infinite traces.

DEFINITION 5.1
An abstract trace is a 3-valued first-order logical structure T ¼ hUT ; �T i, where UT is the
domain of the abstract trace, and �T is the interpretation, mapping predicates to their truth
values, i.e., for each p 2 P k , �T ðpÞ:U

k
T ! f0; 1; 1=2g. We refer to the values 0 and 1 as

definite values, and to 1=2 as a non definite value.
An individual u for which �T ðeqÞðu; uÞ ¼ 1=2 is called a summary individual;2 a

summary individual may represent more than one concrete individual.
The meaning of a formula ’ over a 3-valued abstract trace T, with respect to an

assignment Z, denoted by [’]T3 ðZÞ, is defined exactly as in Def. 4.4, but interpreted over
f0; 1; 1=2g.

2Note that for all u2UT, �T(eq)(u, u)¼ 1 or �T(eq)(u, u)¼ 1/2.
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We say that a trace T with an assignment Z potentially satisfies a formula ’ when
[’]T3 ðZÞ 2 f1; 1=2g and denote this by T;Z 	3 ’.

We now define how concrete traces are represented by abstract traces. The idea is that
each individual of a concrete trace is mapped by the abstraction into an individual of
an abstract trace. The new two definitions permit an (abstract or concrete) trace to be
related to a less-precise abstract trace. Abstraction is a special case of this in which the
first trace is a concrete trace. First, the following definition imposes an order on truth values
of the 3-valued logic:

DEFINITION 5.2 (Information order)
For l1; l2 2 f0; 1; 1=2g, we define the information order on truth values as follows: l1v l5
if l1 ¼ l2 or l2 ¼ 1=2.

The embedding ordering of abstract traces is then defined as follows:

DEFINITION 5.3 (Trace embedding)
Let T ¼ hU ; �i and T 0 ¼ hU 0; �0i be abstract traces encoded as first-order structures. A
function f :T ! T 0 such that f is surjective is said to embed T into T 0 if for each predicate
p 2 Pk , and for each u1, . . . ; uk 2 U :

�ðpðu1; u2, . . . ; ukÞÞ v �0ðpðf ðu1Þ; f ðu2Þ, . . . ; f ðukÞÞÞ

We say that T 0 represents T when there exists such an embedding f.

One way of creating an embedding function f is by using canonical abstraction. Canonical
abstraction maps individuals to an abstract individual based on the values of the individuals’
unary predicates. All individuals having the same values for unary predicate symbols are
mapped by f to the same abstract individual. We denote the canonical abstraction of a trace
T by t-embed(T). Canonical abstraction guarantees that each abstract trace is no larger than
some fixed size, known a priori.

EXAMPLE 5.4
Figure 6 shows an abstract trace, with four abstract worlds, that represents the concrete
trace of Fig. 4. An individual with double-line boundaries is a summary individual
representing possibly more than a single concrete individual. Similarly, the worlds with

rval[r]

succ

succ

rval[r]

heldBy

currWorld

rval[r]

rval[r]

heldBy

blocked
at[lw_1]

at[lw_1]

at[lw_c]
at[lw_c]

rval[r]

rval[r]

at[lw_1]

at[lw_1]

succ

initialWorld

at[lw_1]
rval[r]

succ

succ

FIG. 6. An abstract trace T4 that represents the concrete trace T \
4
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double-line boundaries are summary worlds that possibly represent more than a single world.
Dashed edges are 1=2 edges, that represent relations that may or may not hold. For example,
a 1=2 successor edge between two worlds represents the possible succession of worlds. The
summary world following the initial world represents the two concrete worlds between the
initial and the current world of T \

4, which have the same values for their unary predicates.
Similarly, the summary node labeled at½lw1� represents all thread individuals in these worlds
that reside at label lw1.

Note that this abstract trace also represents other concrete traces besides T \
4, for example,

concrete traces in which in the current world some threads are blocked on the lock and some
are not blocked.

5.2 Abstract interpretation

The abstract semantics represents abstract traces using 3-valued structures. Intuitively,
applying an action to an abstract trace unravels the set of possible successor worlds in the
trace. That is, an abstract action elaborates an abstract trace by materializing a world w
from the summary world at the tail of the trace; w becomes the definite successor of the
current world currWorld, and w’s (indefinite) successor is the summary world at the tail
of the trace. currWorld is then advanced to w, which often causes the former currWorld to
be merged with its predecessor. When a trace is extended, we evaluate the formula’s
precondition and its update formulae using 3-valued logic (as in Def. 5.1).

EXAMPLE 5.5
Figures 6, 7, and 8 illustrate the application of the action that releases a lock. Figure 7 shows
the materialization of the next successor world for the trace T4 of Fig. 6. In the successor
world, the thread that was at label lwc no longer holds the lock and has advanced to label lw2.
The currWorld predicate is then advanced, and the former currWorld is merged with
its predecessor, resulting in the abstract trace shown in Fig. 8.

The abstract-interpretation procedure explore is shown in Fig. 9. It computes a greatest
fixed point starting with the set fT>

1 ;T
>
2 g; these two abstract traces represent all possible

concrete (infinite) traces that start at a given initial state. T>
1 and T>

2 each have two worlds:
an initial world that represents the initial program configuration connected by a 1/2-valued
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FIG. 7. An intermediate abstract trace, which represents the first stage of applying an action
to T4
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successor edge to a summary world that represents the unknown possible suffixes. The
summary world ws1 of T>

1 has a summary individual us1 related to it. The summary
individual us1 has 1=2 values for all of its predicates, including existsðus1;ws1Þ ¼ 1=2, meaning
that future worlds of the trace do not necessarily contain any individuals. The summary
world of T>

2 has no summary individual related to it and represents suffixes in which all
future worlds are empty. Figure 10 shows an initial abstract trace (corresponding to T>

1 )
representing all traces starting with an arbitrary number of worker threads at label lw1

sharing a single lock.
The procedure explore accumulates abstract traces in the set Traces until a fixed point

is reached. Throughout this process, however, the set of concrete traces represented by the
abstract traces in Traces is actually decreasing. It is in this sense that explore is computing
a greatest fixed point.

Once a fixed point has been reached, the property of interest is evaluated over abstract
traces in the fixed point. Formula evaluation over an abstract trace exploits values of
instrumentation predicates when possible (this is explained in the following section). This
allows the use of recorded definite values, whereas re-evaluation might have yielded 1=2.
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succ

rval[r]

heldBy

currWorld

rval[r]

rval[r]

blockedat[lw_1]

at[lw_1]

at[lw_2]

at[lw_c]

rval[r]
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at[lw_1]

at[lw_1]
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initialWorld

at[lw_1]
rval[r]
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FIG. 8. The resulting abstract trace after applying an action over T4 (after advancing
currWorld)

FIG. 9. Computing the set of abstract traces and evaluating the property ð’yÞ
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We now show the soundness of the approach. We extend mappings on individuals to
operate on assignments: If f :UT ! UT 0

is a function and Z :Var ! UT is an assignment,
f 
 Z denotes the assignment f 
 Z :Var ! UT 0

such that ðf 
 ZÞðvÞ ¼ f ðZðvÞÞ. One of the
nice features of 3-valued logic is that the soundness of the analysis is established by the
following theorem (which generalizes [15] for the infinite case):

THEOREM 5.6 [Embedding Theorem]
Let T ¼ hUT ; �T i and T 0 ¼ hUT 0

; �T
0

i be two traces encoded as first-order structures, and
let f :UT ! UT 0

be a function such that T vf T 0. Then, for every formula ’ and complete
assignment Z for ’, [’]T3 ðZÞ v [’]T

0

3 ðf 
 ZÞ.

The algorithm in Fig. 9 must terminate. Furthermore, whenever it does not report an
error, the program satisfies the original VTL formula ’.

It often happens that this approach to verifying temporal properties yields 1=2, due to an
overly conservative approximation. In the next section, we present machinery for refining the
abstraction to allow successful verification in interesting cases.

EXAMPLE 5.7
For clarity and ease of presentation, we use an artificial example, which is also used in the
next section. Figure 11 shows an abstract trace in which the property 9v:PðvÞ UQðvÞ holds for
all the concrete traces represented by the abstract trace, but the formula 9v:PðvÞ UQðvÞ
evaluates to 1=2 because the successor and evolution edges have value 1=2.

5.3 Property-guided instrumentation

To refine the abstraction, we can maintain more precise information about the correctness
of temporal formulae as traces are being constructed. This principle is referred to in [15]
as the Instrumentation Principle. This work goes beyond what was mentioned there, by

rval[r]

succ

at[lw_1]

initialWorld
currWorld

succ

ws1

us1

FIG. 10. An initial abstract trace T>
1
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showing how one could actually obtain instrumentation predicates from the temporal
specification.

5.3.1 Trace instrumentation

The predicates in Table 4 are required for preserving properties of interest under abstraction.
The instrumentation predicate current(o) denotes that o is a member of the current world
and should be distinguished from individuals of predecessor worlds. This predicate is
required due to limitations of canonical embedding. The predicate tweðo1; o2Þ records
equality across worlds and is required due to the loss of information about concrete locations
caused by abstraction.

Transworld Equality: In the evolution semantics, two individuals are considered to be
different incarnations of the same individual when one may transitively evolve into the other.
We refer to this notion of equality as transworld equality and introduce an instrumentation
predicate tweðv1; v2Þ to capture this notion.

Because the abstraction operates on traces (and not only single worlds), individuals of
different worlds may be abstracted together. Transworld equality is crucial for distinguishing
a summary node that represents different incarnations of the same individual in different
worlds from a summary node that may represent a number of different individuals.

Transworld equality is illustrated in Fig. 12; the 1-valued twe self-loop to the summary
thread-node at label lwc records the fact that this summary node actually represents multiple
incarnations of a single thread, and not a number of different threads.

P P Q

initialWorld

succ succ

succ succ succ

FIG. 11. 9v:PðvÞ UQðvÞ holds in all concrete traces that the abstract trace T11 represents,
yet 9v:PðvÞ UQðvÞ evaluates to 1=2 on T11 itself

TABLE 4. Trace instrumentation predicates

Predicate Intended Meaning Formula

twe(o1,o2) object o1 is equal to object
o2 possibly across worlds

ðo1 ¼ o2Þ _ evolution�ðo1, o2Þ _ evolution�ðo2, o1Þ

current(o) object o is a member
of current world

9w:worldðo,wÞ ^ currWorldðwÞ
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5.3.2 Temporal instrumentation

Given a VTL specification formula, we construct a corresponding set of instrumentation
predicates for refining the abstraction of the trace according to the property of interest.
The set of instrumentation predicates corresponds to the sub-formulae of the original
specification.

EXAMPLE 5.8
In Example 5.7, the property 9v:PðvÞ UQðvÞ evaluated to 1=2 although it is satisfied by
all concrete traces that T11 represents. We now add the temporal instrumentation
predicates Ip(v) and Iq(v) to record the values of the temporal subformulae P(v) and Q(v).
The predicates are updated according to their value in the previous worlds. Note
the use of transworld equality instrumentation to more precisely record transitive
evolution of objects. In particular, this provides the information that the summary
node of the second world is an abstraction of different incarnations of the same single object.
This is shown in Fig. 13.
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FIG. 12. Abstract trace with transworld equality instrumentation (Only 1-valued transworld
equality edges are shown)
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FIG. 13. In the abstract trace T13, 9v:PðvÞ UQðvÞ evaluates to 1
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6 Related work

The Bandera Specification Language (BSL) [2] allows writing specifications via
common high-level patterns. In BSL, it is impossible to relate individuals of different
worlds, and impossible to refer to the exact moments of allocation and deallocation of
an object.

In [14], a special case of the abstraction from [18, 19], named ‘‘counter abstraction’’,
is used to abstract an infinite-state parametric system into a finite-state one. They
use static abstraction, i.e., they have a preceding model-extraction phase. In contrast,
in our work abstraction is applied dynamically on every step of state-space
exploration, which enables us to handle dynamic allocation and deallocation of objects
and threads.

In [19], we have used observing-propositions defined over a first-order configuration to
extract a propositional Kripke structure from a first-order one. The extracted structure was
then subject to PLTL model-checking techniques. This approach is rather limited, because
individuals of different worlds could not be specifically related.

7 Conclusion

We believe this work provides a foundation for specifying and verifying properties of
programs manipulating the heap with dynamic allocation and deallocation of objects and
threads. In the future, we plan to develop more scalable approaches, and in particular
abstract-interpretation algorithms that are tailored for VTL.
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A Translation of VTL to FOTC

We say that a VTL sub-formula is temporally-bound if it appears under a temporal
operator. Translations for temporally-bound and non-temporally-bound formulae
are different, since non-temporally-bound formulae should be bound to the initial world
of the trace.

DEFINITION A.1 (VTL translation to FOTC)
We denote by ð’Þyw the bounded translation of a formula ’ in a world w and by ð’Þy the
non-bounded translation.


 ð’Þy ¼ 9w : world:initialWorldðwÞ ^ ð’Þyw


 if ’ is an atomic formula other than �x and �x then ð’Þyw ¼ ’. If ’ ¼ �x then
ð’Þyw ¼ isNewðxÞ. If ’ ¼ �x then ð’Þyw ¼ isFreedðxÞ.


 ð’ ^  Þyw ¼ ð’Þyw ^ ð Þyw, ð’ _  Þyw ¼ ð’Þyw _ ð Þyw, ð:’Þyw ¼ :ð’Þyw


 ð9x ’Þyw ¼ 9x:existsðw; xÞ ^ ð’Þyw


 ððTC x1; x2 : ’Þðx3; x4ÞÞ
yw

¼ ðTC x1; x2 : ð’Þ
yw

^ existsðw; x1Þ ^ existsðw; x2ÞÞðx3; x4Þ
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 ð’ðx1, . . . ; xnÞ U ðy1, . . . ; ykÞÞ
yw

¼

9w0 : world:9y01, . . . ; y
0
k :succ

�ðw;w0Þ ^ ð ðy01, . . . ; y
0
kÞÞ

yw0

^
V

1�i�k evolution
�ðyi; y

0
iÞ ^ 8 ~w : world:9x 01, . . . ; x

0
n:ðsucc

�ðw; ~wÞ

^succ�ð ~w;w0Þ ! ð’ðx 01, . . . ; x
0
nÞÞ

y ~w
^
V

1�j�n evolution
�ðxj ; x

0
j ÞÞ


 ð�’ðx1, . . . ; xnÞÞ
yw

¼

9w0 : world:9x 01, . . . ; x
0
n:succðw;w

0Þ

^ð’ðx 01, . . . ; x
0
nÞ

yw0

^
V

1�j�n evolutionðxj ; x
0
j Þ ^ existsðx 0j ;w

0Þ

Note that xi and yi are not necessarily distinct. Simplified translations may be used for the
^ and & temporal operators.

B 2 and 3-valued FOTC

In this appendix, we give a brief summary of 2 and 3 valued FOTC. The material presented
here is fairly standard and included only for completeness of presentation.

B.1 Syntax

Formally, the syntax of first-order formulae with transitive closure is defined as follows:

DEFINITION B.1
A formula over the vocabulary P ¼ feq; p1, . . . ; png is defined inductively, as follows:

Atomic Formulae The logical literals 0 and 1 are atomic formulae with no free
variables.

For every predicate symbol p 2 P of arity k, pðv1, . . . ; vkÞ is an atomic formula with free
variables fv1, . . . ; vkg.

Logical Connectives If ’1 and ’2 are formulae whose sets of free variables are V1 and V2,
respectively, then ð’1 ^ ’2Þ, ð’1 _ ’2Þ, and ð:’1Þ are formulae with free variables V1[V2,
V1[V2, and V1, respectively.

Quantifiers If ’1 is a formula with free variables fv1; v2, . . . ; vkg, then ð9v1 : ’1Þ and
ð8v1 : ’1Þ are both formulae with free variables fv2; v3, . . . ; vkg.

Transitive Closure If ’1 is a formula with free variables V such that v3; v4 62 V ,
then ðTC v1 : v2Þð’1Þv3v4 is a formula with free variables ðV � fv1; v2gÞ [ fv3; v4g.
A formula is closed when it has no free variables.

B.2 2-valued interpretation

In this section, we define the (2-valued) semantics for first-order logic with transitive closure
in the standard way.

DEFINITION B.2
A 2-valued interpretation of the language of formulae over P is a 2-valued logical
structure S ¼ hUS ; �Si, where US is a set of individuals and �S maps each predicate symbol
p of arity k to a truth-valued function:

�S ðpÞ: ðUS Þ
k
! f0; 1g:
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An assignment Z is a function that maps free variables to individuals (i.e., an assignment
has the functionality Z : fv1; v2; . . .g ! US). An assignment that is defined on all free
variables of a formula ’ is called complete for ’. In the sequel, we assume that every
assignment Z that arises in connection with the discussion of some formula ’ is complete
for ’.

The (2-valued) meaning of a formula ’, denoted by [’]S2 ðZÞ, yields a truth value in
f0; 1g. The meaning of ’ is defined inductively as follows:

Atomic Formulae For an atomic formula consisting of a logical literal l 2 f0;1g,
[l]S2 ðZÞ ¼ l (where l 2 f0; 1g).

For an atomic formula of the form pðv1, . . . ; vkÞ,

[pðv1, . . . ; vkÞ]
S
2 ðZÞ ¼ �S ðpÞðZðv1Þ, . . . ;ZðvkÞÞ

Logical Connectives When ’ is a formula built from subformulae ’1 and ’2,

[’1 ^ ’2]
S
2 ðZÞ ¼ minð[’1]

S
2 ðZÞ; [’2]

S
2 ðZÞÞ

[’1 _ ’2]
S
2 ðZÞ ¼ maxð[’1]

S
2 ðZÞ; [’2]

S
2 ðZÞÞ

[:’1]
S
2 ðZÞ ¼ 1� [’1]

S
2 ðZÞ

Quantifiers When ’ is a formula that has a quantifier as the outermost operator,

[8v1 : ’1]
S
2 ðZÞ ¼ min

u2US
[’1]

S
2 ðZ ½v1 7!u�Þ

[9v1 : ’1]
S
2 ðZÞ ¼ max

u2US
[’1]

S
2 ðZ ½v1 7!u�Þ

Transitive Closure When ’ is a formula of the form ðTC v1 : v2Þð’1Þv3v4,

[ðTC v1 : v2Þð’1Þv3v4]
S
2 ðZÞ ¼ max

n � 1; u1, . . . ; unþ1 2 U ;

Zðv3Þ ¼ u1;Zðv4Þ ¼ unþ1

min
n

i¼1
[’1]

S
2 ðZ ½v1 7!ui; v2 7!uiþ1�Þ

We say that S and Z satisfy ’ (denoted by S;Z 	 ’) if [’]S3 ðZÞ ¼ 1. We write S 	 ’ if for
every Z we have S;Z 	 ’.

B.3 3-valued interpretation

We now generalize Defn. B.2 to define the meaning of a formula with respect to a 3-valued
structure.

DEFINITION B.3
A 3-valued interpretation of the language of formulae over P is a 3-valued logical
structure S ¼ hUS ; �Si, where US is a set of individuals and �S maps each predicate symbol p
of arity k to a truth-valued function:

�S ðpÞ: ðUS Þ
k
! f0; 1; 1=2g:

For an assignment Z, the (3-valued) meaning of a formula ’, denoted by [’]S3 ðZÞ, now
yields a truth value in f0; 1; 1=2g. The meaning of ’ is defined inductively as in Defn. B.2.
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We say that S and Z potentially satisfy ’, denoted by S;Z 	3 ’, if [’]S3 ðZÞ ¼ 1=2
or [’]S3 ðZÞ ¼ 1. We write S 	3 ’ if for every Z we have S;Z 	3 ’.

C Proofs

For proving Theorem 4.5 we need a few additional definitions.
We first have to formally define repð�Þ, and also introduce an intermediate assignment

Z which will be used to record values of intermediate assignments through evaluation.

DEFINITION C.1 (Trace representation)
Given a trace �, we define repð�Þ ¼ hUrepð�Þ; �repð�Þi to be the representation of � as a first-
order logical structure, where:


 for every world �i in �, there exists a world individual wi 2 Urepð�Þ s.t.
�repð�ÞðworldÞðwiÞ ¼ 1.


 for every individual u in the universe U�i of a world �i in the trace, there exists a
corresponding non-world individual ~u 2 Urepð�Þ, s.t. �repð�ÞðworldÞð ~uÞ ¼ 0.


 for every two successive worlds �i and �iþ1 in �, having corresponding world individuals
wi;wiþ1 2 Urepð�Þ, �repð�ÞðsuccÞðwi;wiþ1Þ ¼ 1.


 for the first world of the trace �0 in �, having a corresponding world individual
w0 2 Urepð�Þ, �repð�ÞðinitialWorldÞðw0Þ ¼ 1.


 for every world �i with a corresponding world individual wi, and for every individual
u 2 U�i with a corresponding individual ~u 2 Urepð�Þ, �repð�ÞðexistsÞð ~u;wiÞ ¼ 1, and for
every other world �j ; j 6¼ i with a corresponding world individual wj,
�repð�ÞðexistsÞð ~u;wj Þ ¼ 0.


 for every two consecutive worlds �i; �iþ1 in �, and for every two individuals ui 2 U�i and
uiþ1 2 U�iþ1

with corresponding individuals ~ui; ~uiþ1 2 Urepð�Þ ,
�repð�ÞðevolutionÞð ~ui; ~uiþ1Þ ¼ 1 iff e�i ðuiÞ ¼ uiþ1.


 for every world �i and an individual u 2 �i with a corresponding individual ~u 2 Urepð�Þ,
�repð�ÞðisNewÞð ~uÞ ¼ 1 iff u 2 A�i .


 for every world �i and an individual u 2 �i with a corresponding individual ~u 2 Urepð�Þ,
�repð�ÞðisFreedÞð ~uÞ ¼ 1 iff u 2 D�i .

We augment the notion of assignment as follows: an assignment Z assigns individuals from
the universe to logical variables, and assigns a world of the trace to the designated logical
variable w.

DEFINITION C.2
Given a trace �, a VTL formula ’, an assignment Z, and a world of the trace �i for some i,
we say that �;Z 	t ½’�w when:


 ZðwÞ ¼ �i

 �i;Z 	t ’

That is, when the suffix of � starting from the world assigned to w satisfies the property.

LEMMA C.3 (Prefix Redundancy)
Given a trace � and an assignment Z assigning a world �i to w,

�;Z 	t ½’�w () �i;Z 	t ½’�w
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PROOF.

�;Z 	t ½’�w () (by Definition C.2)

�i;Z 	t ’w () (by Definition C.2)

�i;Z 	t ½’�w g

DEFINITION C.4
We define an additional operation on traces, lwð�Þ that takes a trace and a logical variable
assigned by Z to a world in the trace. The operation returns the suffix of the trace starting
at the given world.

The initial assignment Z assigns w to the first world of the trace.

PROOF [Theorem 4.5]
We need to prove that for every closed VTL formula ’ and a trace �, � 	 ’ if and only
if repð�Þ 	 ð’Þy, where repð�Þ is the first-order representation of �. We will now show that:

�;Z 	t ½’�w if and only if repðlwð�ÞÞ;Z 	 ð’Þyw

0,1 trivially holds.
pðv1, . . . ; vkÞ

repðlwð�ÞÞ;Z 	 ðpðv1; . . . ; vkÞÞ
yw

() (Definition A.1)
repðlwð�ÞÞ;Z 	 pðv1, . . . ; vkÞ () (Definition B.2)
�headðlw ð�ÞÞðpÞðZðv1Þ, . . . ;ZðvkÞÞ ¼ 1 () (Definition 3.7)
�i;Z 	t pðv1, . . . ; vkÞ where ZðwÞ ¼ �i () (Definition C.2)
�;Z 	t ½pðv1, . . . ; vkÞ�w

’ ^  

repðlwð�ÞÞ;Z 	 ð’ ^  Þyw () (Definition A.1)
repðlwð�ÞÞ;Z 	 ð’Þyw and repðlwð�ÞÞ;Z 	 ð Þyw () inductive assumption
�;Z 	t ½’�w and �;Z 	t ½ �w () (Definition 3.7)
�;Z 	t ½’ ^  �w

’ _  

repðlwð�ÞÞ;Z 	 ð’ _  Þyw () (Definition A.1)
repðlwð�ÞÞ;Z 	 ð’Þyw or repðlwð�ÞÞ;Z 	 ð Þyw () inductive assumption
�;Z 	t ½’�w or �;Z 	t ½ �w () (Definition 3.7)
�;Z 	t ½’ _  �w

9v:’ðvÞ

repðlwð�ÞÞ;Z 	 ð9v:’ðvÞÞyw () (Definition A.1)
repðlwð�ÞÞ;Z 	 9v:existsðw; vÞ ^ ð’ðvÞÞyw ()

(assume only v is free without loss of generality)
exists u 2 Uheadðlw ð�ÞÞ s.t. repðlwð�ÞÞ;Z ½v 7!u� 	 ð’ðvÞÞyw

exists u 2 Uheadðlw ð�ÞÞ s.t. �;Z ½v 7!u� 	t ½’ðvÞ�w () (Definition 3.7)
�;Z 	t ½9v:’ðvÞ�w
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ðTC v1; v2 : ’Þðv3; v4Þ

repðlwð�ÞÞ;Z 	 ððTC v1; v2 : ’Þðv3; v4ÞÞ
yw

() (Definition A.1)
repðlwð�ÞÞ;Z 	 ðTC v1; v2 : ð’Þ

yw
^ existsðw; v1Þ ^ existsðw; v2ÞÞðv3; v4Þ ()

exists u1, . . . ; uk 2 UT : s.t. Zðv3Þ ¼ u1 ^ Zðv4Þ ¼ uk
and for all 1 � i � k:repðlwð�ÞÞ;Z ½v1 7!ui; v2 7!uiþ1� 	 ð’Þyw

^ existsðw; v1Þ ^ existsðw; v2Þ ()

exists u1, . . . ; uk 2 Uheadðlw ð�ÞÞ: s.t. Zðv3Þ ¼ u1 ^ Zðv4Þ ¼ uk
and for all 1 � i � k:repðlwð�ÞÞ;Z ½v1 7!ui; v2 7!uiþ1� 	 ð’Þyw ()

�;Z 	t ½ðTC v1; v2 : ’Þðv3; v4Þ�w

� ’ðx1, . . . ; xnÞ

repðlwð�ÞÞ;Z 	 ð�’ðx1, . . . ; xnÞÞ
yw

() (Lemma C.5)
repðlw0 ð�ÞÞ;Z 0 	 ð’ðx1, . . . ; xnÞÞ

yw0

where succðw;w0Þ;Z 0 is an evolution of Z ()

�;Z 0 	t ½’�w0 () chop worlds before w0; Lemma C.3
tailð�Þ;Z 0 	t ½’�w0 () (Definition 3.7)
�;Z 	t ½�’�w

’ðx1, . . . ; xnÞ U  ðy1, . . . ; ynÞ

repðlwð�ÞÞ;Z 	 ð’ðx1, . . . ; xnÞ U  ðy1, . . . ; ynÞÞ
yw

() (Definition A.1)
repðlwð�ÞÞ;Z 	 9w0 : world:9y01, . . . ; y

0
k :succ

�ðw;w0Þ ^ ð ðy01, . . . ; y
0
kÞÞ

yw0

^
V

1�i�k evolution
�ðyi; y

0
iÞ ^ 8 ~w : world:9x 01, . . . ; x

0
n:ðsucc

�ðw; ~wÞ

^succ�ð ~w;w0Þ ! ð’ðx 01, . . . ; x
0
nÞÞ

y ~w
^
V

1�j�n evolution
�ðxj ; x

0
j ÞÞ ()

exists w0; repðlwð�ÞÞ;Z 	 succ�ðw;w0Þ and
exists Z 0; repðlwð�ÞÞ;Z

0 	 ð ðy1, . . . ; ykÞÞ
yw0

and
for all ~w; repðlwð�ÞÞ;Z 	 ðsucc�ðw; ~wÞ ^ succ�ð ~w;w0Þ implies
exists ~Z; repðlwð�ÞÞ;Z 	 ð’ðx1, . . . ; xnÞÞ

y ~w
() (Lemma C.6)

exists w0; k � 0; s:t:Zðw0Þ ¼ �k and
exists Z 0; repðlwð�ÞÞ;Z

0 	 ð ðy1, . . . ; ykÞÞ
yw0

and
for all ~w; repðlwð�ÞÞ;Z 	 ðsucc�ðw; ~wÞ ^ succ�ð ~w;w0Þ implies
exists ~Z; repðlwð�ÞÞ;Z 	 ð’ðx1, . . . ; xnÞÞ

y ~w
()

exists w0; k � 0; s:t:Zðw0Þ ¼ �k and exists Z 0; repðlwð�ÞÞ;Z
0 	 ð ðy1, . . . ; ykÞÞ

yw0

and
for all ~w;Zð ~wÞ ¼ �i; 1 � i � k; there exists ~Z ; repðlwð�ÞÞ;Z 	 ð’ðx1, . . . ; xnÞÞ

y ~w
()

exists w0; k � 0; s:t:Zðw0Þ ¼ �k and exists Z 0; repðlw0 ð�ÞÞ;Z 0 	 ð ðy1, . . . ; ykÞÞ
yw0

and
for all ~w;Zð ~wÞ ¼ �i; 1 � i � k; there exists ~Z ; repðl ~wð�ÞÞ;
Z 	 ð’ðx1, . . . ; xnÞÞ

y ~w
() (ind.)

exists w0; k � 0; s:t:Zðw0Þ ¼ �k and exists Z 0; �;Z 	t ½ ðy1, . . . ; ykÞ�w0 and
for all ~w;Zð ~wÞ ¼ �i; 1 � i � k; there exists ~Z ; �;Z 	t ½’ðx1, . . . ; xnÞ� ~w

() (Lemma C.3)
exists w0; k � 0; s:t:Zðw0Þ ¼ �k and exists Z 0; �k;Z 0 	t ½ ðy1, . . . ; ykÞ�w0 and

for all ~w;Zð ~wÞ ¼ �i; 1 � i � k; there exists ~Z ; �i; ~Z 	t ½’ðx1, . . . ; xnÞ� ~w ()

(Def. C.2 + Definition 3.7)
�;Z 	t ½’ðx1, . . . ; xnÞ U ðy1, . . . ; ynÞ�w

g
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LEMMA C.5

repðlwð�ÞÞ;Z 	 ð� ’ðx1, . . . ; xnÞÞ
yw

() repðlw0 ð�ÞÞ;Z 0 	 ð’ðx1, . . . ; xnÞÞ
yw0

where succðw;w0Þ and Z 0 is the evolution of Z.

PROOF.

repðlwð�ÞÞ;Z 	 ð� ’ðx1, . . . ; xnÞÞ
yw

()

repðlwð�ÞÞ;Z 	 9w0 : world:9x 01, . . . ; x
0
n:succðw;w

0Þ ^ ð’ðx 01, . . . ; x
0
nÞÞ

yw0

^V
1�j�n evolutionðxj ; x

0
j Þ ^ existsðx 0j ;w

0Þ ()

(when succðw;w0ÞÞ

repðlw0 ð�ÞÞ;Z 	 9x 01, . . . ; x
0
n:ð’ðx

0
1, . . . ; x

0
nÞÞ

yw0

^
V

1�j�n evolutionðxj ; x
0
j Þ ^ existsðx 0j;w

0Þ ()

(when Z’ is the evolution of Z)
repðlw0 ð�ÞÞ;Z 0 	 ð’ðx1, . . . ; xnÞÞ

yw0

g

LEMMA C.6
Given a trace �, an assignment Z assigning a world individual to the logical variable w,
for any w0,

repðlwð�ÞÞ;Z 	 succ�ðw;w0Þ () there exists k � 0;Zðw0Þ ¼ �k

PROOF. Trivial from definition of TC operator. This lemma is provided to emphasize that
succ�ðw;w0Þ corresponds to the existence of a successor within a finite future. g

PROOF [Theorem 5.6]. This theorem generalizes the embedding theorem of [15] for the
infinite case. The proof is by structural induction on ’:
Basis: For atomic formula pðv1; v2, . . . ; vkÞ, u1; u2, . . . ; uk 2 US ;
and Z ¼ ½v1 7!u1; v2 7!u2, . . . ; vk 7!uk � we have

[pðv1; v2, . . . ; vkÞ]
S
3 ðZÞ

¼ �S ðpÞðu1; u2, . . . ; ukÞ ðDefinition B.3Þ

v �S
0

ðpÞðf ðu1Þ; f ðu2Þ, . . . ; f ðukÞÞ ðDefinition 5.3Þ

¼ [pðv1; v2, . . . ; vkÞ]
S 0

3 ðf 
 ZÞ ðDefinition B.3Þ

Also, for l 2 f0; 1; 1=2g, we have:

[l]S3 ðZÞ

¼ l ðDefinition B.3Þ

v l ðDefinition 5.2Þ

¼ [l]S
0

3 ðf 
 ZÞ ðDefinition B.3Þ

Induction step: Suppose ’ is a formula with free variables v1; v2; . . . ; vk .
Let Z be a complete assignment for ’. If [’]S

0

3 ðZÞ ¼ 1=2, then the theorem
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holds trivially. Therefore assume that [’]S
0

3 ðf 
 ZÞ 2 f0; 1g. We distinguish between the
following cases:

Logical-and ’ � ’1 ^ ’2. The proof splits into the following subcases:

Case 1: [’1 ^ ’2]
S 0

3 ðf 
 ZÞ ¼ 0.
In this case, either [’1]

S 0

3 ðf 
 ZÞ ¼ 0 or [’2]
S 0

3 ðf 
 ZÞ ¼ 0. Without loss of generality assume
that [’1]

S 0

3 ðf 
 ZÞ ¼ 0. Then, by the induction hypothesis for ’1, we conclude that
[’1]

S
3 ðZÞ ¼ 0. Therefore, by Definition B.3, [’1 ^ ’2]

S
3 ðZÞ ¼ 0.

Case 2: [’1 ^ ’2]
S 0

3 ðf 
 ZÞ ¼ 1.
In this case, both [’1]

S 0

3 ðf 
 ZÞ ¼ 1 and [’2]
S 0

3 ðf 
 ZÞ ¼ 1. Then, by the induction
hypothesis for ’1 and ’2, we conclude that [’1]

S
3 ðZÞ ¼ 1 and

[’2]
S
3 ðZÞ ¼ 1. Therefore, by Definition B.3, [’1 ^ ’2]

S
3 ðZÞ ¼ 1.

Logical-negation ’ � :’1. The proof splits into the following subcases:

Case 1: [:’1]
S 0

3 ðf 
 ZÞ ¼ 0.
In this case, [’1]

S 0

3 ðf 
 ZÞ ¼ 1.
Then, by the induction hypothesis for ’1, we conclude that [’1]

S
3 ðZÞ ¼ 1.

Therefore, by Definition B.3, [:’1]
S
3 ðZÞ ¼ 0.

Case 2: [:’1]
S 0

3 ðf 
 ZÞ ¼ 1.
In this case, [’1]

S 0

3 ðf 
 ZÞ ¼ 0.
Then, by the induction hypothesis for ’1, we conclude that [’1]

S
3 ðZÞ ¼ 0.

Therefore, by Definition B.3, [:’1]
S
3 ðZÞ ¼ 1.

Existential-Quantification ’ � 9v0 : ’1. The proof splits into the following subcases:

Case 1: [9v1 : ’1]
S 0

3 ðf 
 ZÞ ¼ 0.
In this case, for all u 2 US , [’1]

S 0

2 ððf 
 ZÞ½v1 7!f ðuÞ�Þ ¼ 0. Then, by the induction
hypothesis for ’1, we conclude that for all u 2 US [’1]

S
3 ðZ ½v1 7!u� ¼ 0. Therefore, by

Definition B.3, [9v1 : ’1]
S
3 ðZÞ ¼ 0.

Case 2:[9v1 : ’1]
S 0

3 ðf 
 ZÞ ¼ 1.
In this case, there exists a u0 2 US 0

such that [’1]
S 0

3 ððf 
 ZÞ½v1 7!u0�Þ ¼ 1. Because f is
surjective, there exists a u 2 US such that f ðuÞ ¼ u0 and [’1]

S 0

3 ððf 
 ZÞ½v1 7!f ðuÞ�Þ ¼ 1. Then,
by the induction hypothesis for ’1, we conclude that [’1]

S
3 ðZ ½v1 7!u� ¼ 1. Therefore, by

Definition B.3, [9v1 : ’1]
S
3 ðZÞ ¼ 1.

Transitive Closure ’ � ðTC v1; v2 : ’1Þðv3; v4Þ. The proof splits into the following
subcases:

Case 1: [ðTC v1; v2 : ’1Þðv3; v4Þ]
S 0

3 ðf 
 ZÞ ¼ 1.
By Definition B.3, there exist u0

1; u
0
2, . . . ; u

0
nþ1 2 US 0

such that for all
1 � i � n,[’1]

S 0

3 ððf 
 ZÞ½v1 7!u0
i; v2 7!u0

iþ1�Þ ¼ 1, ðf 
 ZÞðv3Þ ¼ u0
1, and ðf 
 ZÞðv4Þ ¼ u0

nþ1.
Because f is surjective, there exist u1; u2, . . . ; unþ1 2 US such that for all 1 � i � n þ 1,
f ðuiÞ ¼ u0

i. Therefore, Zðv3Þ ¼ u1, Zðv4Þ ¼ unþ1, and by the induction hypothesis,
for all 1 � i � n, [’1]

S
3 ðZ ½v1 7!ui; v2 7!uiþ1�Þ ¼ 1. Hence, by Definition B.3,

[ðTC v1; v2 : ’1Þðv3; v4Þ]
S
3 ðZÞ ¼ 1.

Case 2: [ðTC v1; v2 : ’1Þðv3; v4Þ]
S 0

3 ðf 
 ZÞ ¼ 0.
We need to show that [ðTC v1; v2 : ’1Þðv3; v4Þ]

S
3 ðZÞ ¼ 0. Assume on the contrary that

[ðTC v1; v2 : ’1Þðv3; v4Þ]
S 0

3 ðf 
 ZÞ ¼ 0, but [ðTC v1; v2 : ’1Þðv3; v4]
S
3 ðZÞ 6¼ 0. Because

[ðTCv1; v2 : ’1Þðv3; v4Þ]
S
3 ðZÞ 6¼ 0, by Definition B.3 there exist u1; u2, . . . ; unþ1 2 US such
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that Zðv3Þ ¼ u1, Zðv4Þ ¼ unþ1, and for all 1 � i � n, [’1]
S
3 ðZ ½v1 7!ui; v2 7!uiþ1�Þ 6¼ 0. Hence,

by the induction hypothesis there exist u0
1; u

0
2, . . . ; u

0
nþ1 2 US 0

such that ðf 
 ZÞðv3Þ ¼ u0
1, and

ðf 
 ZÞðv4Þ ¼ u0
nþ1 and for all 1 � i � n, [’1]

S 0

3 ððf 
 ZÞ½v1 7!u0
i; v2 7!u0

iþ1�Þ 6¼ 0. Therefore, by
Definition B.3, [ðTC v1; v2 : ’1Þðv3; v4Þ]

S 0

3 ðf 
 ZÞ 6¼ 0, which is a contradiction. g
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