
An Incremental Algorithm for a Generalization of the Shortest-Path Problem∗

G. Ramalingam† and Thomas Reps‡

University of Wisconsin − Madison

���������������������������������������������������������

∗This work was supported in part by a David and Lucile Packard Fellowship for Science and Engineering, by the National Science

Foundation under grants DCR-8552602 and CCR-9100424, by the Defense Advanced Research Projects Agency, monitored by the

Office of Naval Research under contract N00014-88-K-0590, as well as by a grant from the Digital Equipment Corporation.

† IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598. E-mail: rama@watson.ibm.com. This work was

done when this author was at the University of Wisconsin.

‡ Computer Sciences Department, University of Wisconsin−Madison, 1210 W. Dayton St., Madison, WI 53706. E-mail:

reps@cs.wisc.edu



− 2 −

Incremental Shortest-Path Problem

G. Ramalingam

IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598



− 3 −

ABSTRACT

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

The grammar problem, a generalization of the single-source shortest-path problem introduced by Knuth, is to compute

the minimum-cost derivation of a terminal string from each non-terminal of a given context-free grammar, with the cost

of a derivation being suitably defined. This problem also subsumes the problem of finding optimal hyperpaths in

directed hypergraphs (under varying optimization criteria) that has received attention recently. In this paper we present

an incremental algorithm for a version of the grammar problem. As a special case of this algorithm we obtain an

efficient incremental algorithm for the single-source shortest-path problem with positive edge lengths. The aspect of

our work that distinguishes it from other work on the dynamic shortest-path problem is its ability to handle “multiple

heterogeneous modifications”: between updates, the input graph is allowed to be restructured by an arbitrary mixture of

edge insertions, edge deletions, and edge-length changes.
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1. Introduction

Knuth defined the following generalization of the single-source shortest-path problem, called the grammar

problem [24]: Consider a context-free grammar in which every production is associated with a real-valued

function whose arity equals the number of non-terminal occurrences on the right-hand side of the produc-

tion. Every derivation of a terminal string from a non-terminal has an associated derivation tree; replacing

every production in the derivation tree by the function associated with that production yields an expression

tree. Define the cost of a derivation to be the value of the expression tree obtained from the derivation.

The goal of the grammar problem is to compute the minimum-cost derivation of a terminal string from

each non-terminal of the given grammar.

Knuth showed that it is possible to adapt Dijkstra’s shortest-path algorithm [11] to solve the gram-

mar problem if the functions defining the costs of derivations satisfy a simple property (see Section 2). In

addition to the single-source shortest-path problem, Knuth lists a variety of other applications and special

cases of the grammar problem, including the generation of optimal code for expression trees and the con-

struction of optimal binary-search trees.

The grammar problem also subsumes a number of hypergraph problems [3, 6, 7, 18, 23], in particu-

lar, the problem of finding optimal hyperpaths in directed hypergraphs [5]. A directed hypergraph consists

of a set of nodes and a set of hyperarcs, where each hyperarc connects a set of source nodes to a single tar-

get node. A hypergraph corresponds to a context-free grammar, nodes correspond to non-terminals, and

hyperarcs correspond to productions. A hyperpath in a hypergraph corresponds to a derivation in the

grammar. The concept of a value-based measure for a hyperpath that Ausiello et al. introduce in [5] is

similar to the cost assigned to a derivation in Knuth’s grammar problem, and an optimal hyperpath

corresponds to a minimum-cost derivation. The correspondence between hypergraph problems and gram-

mar problems is discussed in detail in Section 6, but it is worth mentioning here that the grammar problem

is a more general problem because it allows more general kinds of cost functions to be used than the ones

permitted with value-based measures.

The main contributions of this paper are:
� Knuth identified a class of grammar problems that can be solved by an algorithm that is essentially

Dijkstra’s algorithm. We identify a larger class of problems that can be solved in this way.
� We present an algorithm for a class of dynamic grammar problems. A variant of Knuth’s algorithm

for the batch grammar problem is obtained as a special case of our algorithm for the dynamic gram-

mar problems (when a collection of productions is “inserted” into an empty grammar). However,

our incremental algorithm encounters “configurations” that can never occur in any run of the batch

algorithm.
� As an important special case of the algorithm, we obtain a new, simple, and efficient algorithm for

the dynamic single-source shortest-path problem with positive edge lengths (the dynamic SSSP>0

problem). Again, Dijkstra’s algorithm turns out to be a special case of our algorithm (when a collec-
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tion of edges is inserted into an empty graph).
� Utilizing our incremental algorithm for the dynamic SSSP>0 problem, we present an improved algo-

rithm for the batch single-pair (and single-source) shortest path problem in graphs with a small

number of negative edges.

The aspect of our work that distinguishes it from other work on dynamic shortest-path problems is

that the algorithm we present handles multiple heterogeneous changes: Between updates, the input graph is

allowed to be restructured by an arbitrary mixture of edge insertions, edge deletions, and edge-length

changes.1 Most previous work on dynamic shortest-path problems has addressed the problem of updating

the solution after the input graph undergoes unit changes—i.e, exactly one edge is inserted, deleted, or

changed in length.

In general, a single application of an algorithm for heterogeneous changes has the potential to per-

form significantly better than the repeated application of an algorithm for unit changes. There are two

sources of potential savings: combining and cancellation.

Combining
If updating is carried out by using multiple applications of an algorithm for unit changes, a vertex might
be examined several times, with the vertex being assigned a new (but temporary and non-final) value
on each visit until the last one. An algorithm for heterogeneous changes has the potential to combine
the effects of all of the different modifications to the input graph, thereby eliminating the extra vertex
examinations.

Cancellation
The effects of insertions and deletions can cancel each other out. Thus, if updating is carried out by
using multiple applications of an algorithm for unit changes, superfluous work can be performed. In
one updating pass, vertices can be given new values only to have a subsequent updating pass revisit the
vertices, restoring their original values. With an algorithm for heterogeneous changes, there is the
potential to avoid such needless work.

The updating algorithm presented in this paper exploits these sources of potential savings to an essentially

optimal degree: if the initial value of a vertex is already its correct, final value, then the value of that vertex

is never changed during the updating; if the initial value of a vertex is incorrect, then either the value of the

vertex is changed only once, when it is assigned its correct final value, or the value of the vertex is changed

exactly twice, once when the value is temporarily changed to ∞, and once when it is assigned its correct,

final value. (Bear in mind that, when updating begins, it is not known which vertices have correct values

and which do not.)

���������������������������������������������������������

1The operations of inserting an edge and decreasing an edge length are equivalent in the following sense: The insertion of an edge can

be considered as the special case of an edge length being decreased from ∞ to a finite value, while the case of a decrease in an edge

length can be considered as the insertion of a new edge parallel to the relevant edge. The operations of deleting an edge and increasing

an edge length are similarly related.
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The behavior of the algorithm is best characterized using the notion of a bounded incremental algo-

rithm: An algorithm for a dynamic problem is said to be a bounded incremental algorithm if the time it

takes to update the solution is bounded by some function of || δ || , where || δ || is a measure related to “the

size of the change in the input and output”. Specifically, for the dynamic SSSP>0 problem, || δ || is the sum

of the number of vertices whose values change and the number of edges incident on these vertices. Our

dynamic SSSP>0 algorithm updates a graph, after an arbitrary mixture of edge insertions, edge deletions,

and edge-length changes, in time O ( || δ || log || δ || ). Our dynamic algorithm for the grammar problem runs

in time O ( || δ || (log || δ || + M)), where M is a bound on the time required to compute any production func-

tion and || δ || , as before, is a measure of the size of the change in the input and output (except that, now, it

is the sum of the number of non-terminals whose values change and the number of productions associated

with these non-terminals). (For a formal definition of || δ || and the notion of boundedness, see Section 2.)

This paper is organized as follows. In Section 2, we define the problem to be solved and introduce

the terminology we use. In Section 3, we first develop the idea behind the algorithm via a sequence of lem-

mas about the problem. We then present the first version of our algorithm, a proof of its correctness, and

an analysis of its time complexity. In Section 4, we discuss an improved version of the algorithm, and

analyze its time complexity. In Section 5, we look at some extensions of the algorithm. In Section 6, we

discuss related work. The paper ends with an appendix that covers some relevant results and their proofs.

2. Terminology, Notation, and the Definition of the Problem

A directed graph G = (V (G), E (G)) consists of a set of vertices V (G) and a set of edges E (G). We denote

an edge directed from u to v by u → v. If u → v is an edge in the graph, we say that u is the source of the

edge, that v is the target, that u is a predecessor of v, and that v is a successor of u. The set of all predeces-

sors of a vertex u will be denoted by Pred (u). If U is a set of vertices, then Pred (U) is defined to be

u ∈ U
∪ Pred (u). The sets Succ (u) and Succ (U) are defined similarly.

The Shortest-Path Problem and the Grammar Problem

The input for the various versions of the shortest-path problem typically consists of a directed graph in

which every edge u → v has an associated real-valued length, which we denote by length (u → v). The

length of a path in the graph is defined to be the sum of the lengths of the edges in the path, each edge con-

tributing to the length as many times as it occurs in the path.

The single-source shortest-path problem, abbreviated SSSP, is the problem of determining for

every vertex u in a given graph G (the length of) a shortest path from a distinguished source vertex of the

given graph, denoted by source (G), to u. (In this paper, we concentrate on the problem of computing the

length of shortest paths, rather than that of finding the shortest paths themselves. We show later, in Section

5.3, that our algorithm can be easily extended to the problem of finding the shortest paths, too.) Two

simpler versions of this problem are obtained by restricting the input instances to be graphs in which every

edge has a non-negative or positive length. We refer to these two problems as the SSSP≥0 problem and
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SSSP>0 problem, respectively.

The grammar problem is a generalization of the shortest path problem due to Knuth [24]. In the

rest of the paper let (D, ≤,∞) be a totally ordered set with maximum element ∞.2 We define an abstract

grammar (with value domain D) to be a context-free grammar in which all productions are of the general

form

Y → g (X 1, . . . , Xk),

where Y, X 1, . . . , Xk are non-terminal symbols, and g, the parentheses, and the commas are all terminal

symbols. In addition, each production Y → g (X 1, . . . , Xk) has an associated function from D k to D,

which will be denoted by g itself in order to avoid the introduction of more notation. We will refer to the

function g as a production function of the given grammar.

For every non-terminal symbol Y of an abstract grammar G over the terminal alphabet T we let

LG(Y) = { α | α ∈ T* and Y → * α } be the set of terminal strings derivable from Y. Every string α in L (Y)

denotes a composition of production functions, so it corresponds to a uniquely defined value in D, which

we shall call val(α). The grammar problem is to compute the value mG(Y) for each non-terminal Y of a

given abstract grammar G, where

mG(Y) =def min { val (α) | α ∈ LG(Y) }.

Note that in general the set { val (α) | α ∈ LG(Y) } need not have a minimum element, and, hence, mG(Y)

need not be well defined. However, some simple restrictions on the type of production functions allowed,

which we discuss shortly, guarantee that mG(Y) is well defined.

Examples. (Knuth [24].) Given a context-free grammar, consider the abstract grammar obtained

by replacing each production Y → θ in the given grammar by the production Y → g θ(X 1, . . . , Xk), where

X 1, . . . , Xk are the non-terminal symbols occurring in θ from left to right (including repetitions). If we

define the production function g θ by

g θ(x 1, . . . , xk) =def x 1 + . . . + xk + (the number of terminal symbols in θ)

then mG(Y), the solution to the resulting grammar problem, is the length of the shortest terminal string

derivable from non-terminal Y. If we instead define g θ by

g θ(x 1, . . . , xk) =def max (x 1, . . . , xk) + 1

then mG(Y) is the minimum height of a parse tree for a string derivable from the non-terminal Y.

Let us now see how the grammar problem generalizes the single-source shortest-path problem.

Every input instance of the single-source shortest-path problem can be easily transformed into an input

���������������������������������������������������������

2 Knuth uses the specific totally ordered set (R +,≤,∞), where R + denotes the set of non-negative reals extended with the value ∞, and ≤

is the usual ordering on reals.
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instance of the grammar problem whose solution yields the solution to the original problem as follows.

The new grammar consists of one non-terminal Nu for every vertex u in the given graph. For every edge

u → v in the graph, we add a new terminal gu → v , and the production Nv → gu → v(Nu), where the produc-

tion function corresponding to gu → v is given by gu → v(x) = x + length (u → v). In addition, we add the pro-

duction Ns → 0, where s is the source vertex, and 0 is a terminal representing the constant-valued func-

tion zero.

Thus, the single-source shortest-path problem (with non-negative edge lengths) corresponds to the

special case of the grammar problem where the input grammar is regular, and all the production functions g

are of the form g (x) = x + h (for some h ≥ 0) or g () = 0. (Strictly speaking, the grammar encoding a

shortest-path problem is not a regular grammar because of the use of the parentheses. However, this is

immaterial since the parentheses were used in the definition of the grammar problem just as a notational

convenience.) Note that a grammar problem of this form corresponds to an SSSP problem only if it con-

tains exactly one production of the form N → 0; if more than one production is of this form, then we have

a “simultaneous multi-source shortest-path problem”.
�

We now consider certain classes of grammar problems obtained by placing some restrictions on the

production functions. A function g (x 1, . . . , xk) from D k to D is said to be a superior function (abbrevi-

ated s.f .) if it is monotone non-decreasing in each variable and if g (x 1, . . . , xk) ≥ max (x 1, . . . , xk). A

function g (x 1, . . . , xk) from D k to D is said to be a strict superior function (abbreviated s.s.f .) if it is

monotone non-decreasing in each variable and if g (x 1, . . . , xk) > max (x 1, . . . , xk). An abstract grammar

in which every production function is a superior function is said to be an SF grammar. An abstract gram-

mar in which every production function is a strict superior function is said to be an SSF grammar. Exam-

ples of superior functions over (R + ,≤,∞) include max (x 1, . . . , xk), x + y, and √
�����������

x 2 + y 2 . None of these

functions are strict superior functions over the set of non-negative reals, although the later two are strict

superior functions over the set of positive reals.

Note that the abstract grammar generated by an instance of the SSSP≥0 problem is an SF grammar,

while the abstract grammar generated by an instance of the SSSP>0 problem is an SSF grammar. Knuth

shows how Dijsktra’s algorithm for computing shortest paths can be generalized to solve the grammar

problem for the class of SF grammars.

It turns out that the Dijkstra/Knuth algorithm can be adapted to solve a larger class of grammar

problems than the class of SF grammar problems. We first define two classes of functions that generalize

the class of superior and strict superior functions, respectively. Let [i,k ] denote the set of integers { j |

i ≤ j ≤ k }. We say a function g : D k → D is a weakly superior function (abbreviated w.s.f .) if it is mono-

tone non-decreasing in each variable and if for every i ∈ [1,k ],

g (x 1, . . . , xi , . . . , xk) < xi ⇒ g (x 1, . . . , xi , . . . , xk) = g (x 1, . . . , ∞, . . . , xk).

We say a function g : D k → D is a strict weakly superior function (abbreviated s.w.s.f .) if it is monotone

non-decreasing in each variable and if for every i ∈ [1,k ],
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g (x 1, . . . , xi , . . . , xk) ≤ xi ⇒ g (x 1, . . . , xi , . . . , xk) = g (x 1, . . . , ∞, . . . , xk).

It can be easily verified that every s.f . is also a w.s.f ., while every s.s.f . is also an s.w.s.f . The function

min (x 1, . . . , xk) is an example of a w.s.f . that is not an s.f ., while min (x 1, . . . , xk) + 1 is an example of an

s.w.s.f . that is not an s.s.f . A non-nullary constant-valued function is another example of an s.w.s.f . that is

not an s.s.f .

The Dijsktra/Knuth algorithm can be adapted to solve all (batch) w.s.f . grammar problems, as fol-

lows: First, all useless nonterminals—and productions containing useless nonterminals—are removed. (A

useless non-terminal is one that cannot derive any terminal string. The set of useless non-terminals in a

grammar can be found in time linear in the size of the grammar. The problem of identifying useless non-

terminals can also be expressed as a grammar problem.) Second, the Dijsktra/Knuth algorithm is applied to

the grammar problem that remains.

The Fixed Point Problem

The various grammar problems defined above can also be related to certain fixed-point problems. For

example, every input instance G of SSSP induces a collection of equations, called the Bellman-Ford equa-

tions, in the set of unknowns { d (u) | u ∈ V (G) }:

d (u) = 0 if u = source (G)

=
v ∈ Pred (u)

min [d (v) + length (v → u)] otherwise

It can be shown that the maximal fixed point of this collection of equations is the solution to the SSSP

problem if the input graph contains no negative length cycles. (See [19] for instance.) It is necessary to

view the unknowns as belonging to the set of reals extended by +∞ so that for every vertex u unreachable

from the source vertex, d (u) will be ∞ in the maximal fixed point. Furthermore, if all edge lengths are

positive, then the above collection of equations has a unique fixed point. Hence, the SSSP>0 problem may

be viewed as the problem of solving the above collection of equations.

Similarly, every instance of the grammar problem corresponds to a collection of mutually recursive

equations. Each non-terminal Y in the grammar gives rise to the following equation:

d (Y) = min { g (d (X 1), . . . , d (Xk)) | Y → g (X 1, . . . , Xk) is a production }. (*)

The motivation behind the definition of w.s.f . and s.w.s.f . functions is the following observation:

The right-hand side of the above equation, in general, is a function of the form

min(g 1(x 1 , . . . , xk), . . . , gm(x 1 , . . . , xk)). This function is not, in general, a s.f . function even when g 1 through gm

are s.f . functions. However, as shown in the Appendix (Proposition A.1(b)), this function is a w.s.f . function, as long as

g 1 through gm are w.s.f . (or s.f .) functions. Furthermore, if g 1 through gm are s.w.s.f ., then the above function is also

s.w.s.f .

Consider a collection Q of k equations in the k unknowns x 1 through xk , the i-th equation being

xi = gi(x 1, . . . , xk). (†)
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We say that an equation of the above form is a WSF equation if gi is a w.s.f ., and an SWSF equation if gi

is an s.w.s.f . One consequence of the above observation is:

The set of equations (*) arising from Knuth’s SF and SSF grammar problems are not, in general, SF and SSF equations;

however, they are WSF and SWSF equations.

We define the WSF maximal fixed point problem to be that of computing the maximal fixed point

of a collection of WSF equations. We show in the Appendix that the solution of a WSF (or SF) grammar

problem may be obtained by solving the corresponding WSF maximal fixed point problem (i.e., equations

(*)), provided that the grammar has no useless non-terminals (see Theorems A.3 and A.6).

A collection of SWSF equations can be shown to have a unique fixed point (see Theorem A.7). We

define the SWSF fixed point problem to be that of computing the unique fixed point of a collection of

SWSF equations. The SWSF fixed point problem generalizes the SWSF (and SSF) grammar problem,

since, as we show in the Appendix, each equation in the collection of equations determined by an SWSF

grammar is an SWSF equation (see Theorems A.3 and A.6). The SSSP>0 problem is obtained as yet a

further special case of the SWSF grammar problem; that is, when all edge lengths are positive, the

Bellman-Ford equations are all SWSF.

Note that the expression on the right-hand side of the i-th equation (see (†)) need not contain all the

variables and that the i-th equation may be more precisely written as

xi = gi(xji, 1
,xji, 2

, . . . , xji,n (i)
).

We will continue to use the earlier form of the equation as a notational convenience although an algorithm

to compute the fixed point of the collection of equations can use the sparsity of the equations to its advan-

tage. We define the dependence graph of the collection Q of equations to be the graph (V,E) where V = {

xi | 1 ≤ i ≤ k }, and E = { xj → xi | xj occurs in the right-hand-side expression of the equation for xi }. For

the sake of brevity we will often not distinguish between the collection of equations and the corresponding

dependence graph. For instance, we will refer to the variable xi as “vertex xi”.

For convenience, we will refer to the function associated with a vertex xi by both gi and gxi
. Since

the function gi is part of the input, gi is also referred to as the input value associated with vertex xi . The

value that the unknown xi has in the (maximal) fixed point of the given collection of equations is referred

to as the output value associated with vertex xi .

Boundedness

Consider an instance G of a fixed point problem. An input modification δ to G may change the equation

associated with one or more of the vertices in G (simultaneously inserting or deleting edges from G). We

denote the resulting graph by G+δ. A vertex u of G+δ is said to be a modified vertex if the equation asso-

ciated with u was changed. The set of all modified vertices in G+δ will be denoted by ModifiedG,δ . This

set captures the change in the input.
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A vertex in G+δ is said to be an affected vertex if its output value in G+δ is different from its out-

put value in G. Let AffectedG,δ denote the set of all affected vertices in G+δ. This set captures the change

in the output. We define ChangedG,δ to be ModifiedG,δ ∪ AffectedG,δ . Thus, ChangedG,δ captures the

change in the input and output.

A key aspect of the analysis of our algorithm is that we will be expressing the complexity of the

algorithm in terms of a parameter related to the “size of the change in input and output”.

The cardinality of a set of vertices K in a graph G will be denoted by | K | . For our purposes, a

more useful measure of the “size” of K is the extended size || K || G of K, which is defined to be the sum of

the number of vertices in K and the number of edges which have at least one endpoint in K [1, 32, 33].

Thus, the two parameters we will find useful are | ChangedG,δ | , which we abbreviate to | δ | G, and

|| ChangedG,δ || G+δ , which we abbreviate to || δ || G. The subscripts G and δ in the above terms will be

omitted if no confusion is likely.

An incremental algorithm for a fixed point problem is said to be bounded if we can bound the time

taken for the update step by a function of the parameter || δ || G (as opposed to other parameters, such as

| V (G) | or | G | ). It is said to be unbounded if its running time can be arbitrarily large for fixed || δ || G.

Thus, a bounded incremental algorithm is an incremental algorithm that processes only the “region” where

the input or the output changes.

While the above definition of boundedness is applicable for the shortest-path problem, it needs to be

generalized for the SWSF problem since the cost of updating the solution to the SWSF problem after a

change in the input will depend on the cost of computing the various functions associated with the vertices.

The following definition is motivated by the observation that an incremental algorithm that processes only

the “region” where the input or the output changes will evaluate only the functions associated with vertices

in Changed ∪ Succ (Changed). Define MG, δ (abbreviated M δ) to be the maximum over all vertices in

Changed ∪ Succ (Changed) of the cost of evaluating the function associated with that vertex. An incre-

mental algorithm for the SWSF problem is said to be a bounded scheduling cost algorithm if we can

bound the time taken for the update step by a function of the parameters || δ || G and MG, δ . The algorithms

presented in Sections 3 and 4 are both bounded scheduling cost algorithms. The algorithm presented in

Section 4 is a bounded incremental algorithm for the special case of the dynamic SSSP>0 problem.

Remark. The use of || δ || , as opposed to | δ | , in describing the complexity of an algorithm indi-

cates that the behavior of that algorithm depends on the degree to which the set of vertices whose values

change are connected to vertices with unchanged values. Some readers have objected that || δ || hides a

dependency of the running time of our algorithms on the input size. We believe this to be an unjust criti-

cism, for the following reason:
� The parameter || δ || is an adaptive parameter, one that varies from 1 to | E(G) | + | V (G) | . This is

similar to the use of adaptive parameter | E(G) | + | V (G) | —which ranges from | V (G) | to

| V (G) | 2—to describe the running time of depth-first search. Note that if allowed to use only the
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parameter | V (G) | , one would have to express the complexity of depth-first search as

O ( | V (G) | 2)—which provides less information than the usual description of depth-first search as an

O ( | E(G) | + | V (G) | ) algorithm. For instance, when the behavior of depth-first search is character-

ized as O ( | E(G) | + | V (G) | ), one can infer that the complexity of depth-first search on bounded-

degree graphs is O ( | V (G) | ) (and not O ( | V (G) | 2)). Similarly, when the behavior of our incremen-

tal shortest path algorithm is characterized as O ( || δ || log || δ || ), one can infer that the algorithm’s

complexity on bounded-degree graphs is O ( | δ | log | δ | ) (and not O ( | V (G) | × | δ | × log | V (G) | )).

The quantity || δ || is merely a name for a natural parameter that arises in the kind of dynamic path

problems we are considering: the total indegree of the vertices whose values change.
�

3. An Algorithm for the Dynamic SWSF Fixed Point Problem

The dynamic SWSF fixed point problem is to maintain the unique fixed point of a collection of SWSF

equations as they undergo changes. In this section, we present an algorithm for the problem. An outline of

the algorithm is presented as procedure IncrementalFP in Figure 2 and discussed in Section 3.1. The full

algorithm is presented as procedure DynamicSWSF −FP in Figure 3 and discussed in Section 3.2.

3.1. The Idea Behind the Algorithm

Assume that the given collection of equations consists of k equations in the k unknowns x 1 through xk , the

i-th equation being xi = gi(x 1, . . . , xk). For convenience, we will refer to the function associated with a

vertex (variable) xi by both gi and gxi
. Every vertex xi has an associated tentative output value d [xi], which

denotes the value of xi in the unique fixed point of the collection of equations before modification. Thus, it

is the previous output value of vertex xi . (We use square brackets, as in d [xi], to indicate variables whose

values are maintained by the program.) Let d*(xi) denote the actual output value that vertex xi should have

in the unique fixed point of the modified collection of equations. Most of the following terminology is rela-

tive to a given assignment d. The rhs value of a vertex xi , denoted by rhs (xi), is defined to be

gi(d [x 1], . . . , d [xk])—it denotes the value of the right-hand side of the equation associated with the vari-

able xi under the given assignment of values to variables. We say that vertex xi is consistent if

d [xi] = rhs (xi).

and that xi is inconsistent otherwise. Two possible types of inconsistency can be identified. We say xi is

an over-consistent vertex if

d [xi] > rhs (xi).

We say xi is an under-consistent vertex if

d [xi] < rhs (xi).
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A vertex u is said to be a correct vertex if d [u ] = d*(u), an over-estimated vertex if d [u ] > d*(u),

and an under-estimated vertex if d [u ] < d*(u). Note, however, that because d*(u) is not known for every

vertex u during the updating, an algorithm can only make use of information about the “consistency status”

of a given vertex, rather than its “correctness status”.

We have already seen that the SSSP>0 problem is a special case of the SWSF fixed point problem.

Our incremental algorithm for the dynamic SWSF fixed point problem can best be explained as a generali-

zation of Dijkstra’s algorithm for the batch shortest-path problem. To draw out the analogy, let us sum-

marize Dijkstra’s algorithm using the above terminology.

The collection of equations to be solved in the case of the SSSP>0 problem is the collection of

Bellman-Ford equations. In Dijkstra’s algorithm all vertices initially have a value of ∞. At any stage of

the algorithm, some of the vertices will be consistent while all the remaining vertices will be over-

consistent. The algorithm “processes” the inconsistencies in the graph in a particular order: at every stage,

it chooses an over-consistent vertex xi for which the rhs value is minimum, and “fixes” this inconsistency

by changing d [xi] to rhs (xi). The algorithm derives its efficiency by processing the inconsistencies in the

“right order”, which guarantees that it has to process every vertex at most once.

The idea behind our algorithm is the same, namely to process the inconsistencies in the graph in the

right order. The essential difference between our algorithm (for the fully dynamic problem) and Dijkstra’s

algorithm (for the static problem) is that we need to handle under-consistent vertices as well. In other

words, in the dynamic SSSP>0 algorithm, a vertex u can, at some stage, have a distance d [u ] that is strictly

less than
v ∈ Pred (u)

min [d [v ] + length (v → u)]. This situation never occurs in Dijkstra’s algorithm.

Under-consistent vertices can arise in the dynamic shortest-path problem, for instance, when some

edge on some shortest path is deleted. This introduces some complications. An inconsistent vertex need

not in general be incorrect; an under-consistent vertex need not in general be an under-estimated vertex;

and an over-consistent vertex need not in general be an over-estimated vertex. (This is not true in the case

of Dijkstra’s algorithm, where under-consistent vertices cannot exist, and every over-consistent vertex is

guaranteed to be an over-estimated vertex.) See Figure 1 for an example illustrating this.

If we change the value of an inconsistent but correct vertex to make it consistent, we may end up

with an unbounded algorithm, which leaves us with two questions:

What is the right order for processing inconsistent vertices?

We will show that the inconsistencies in the graph should be processed in increasing order of key,

where the key of an inconsistent vertex xi , denoted by key (xi), is defined as follows:

key (xi) =def min ( d [xi], rhs (xi) ).

In other words, the key of an over-consistent vertex xi is rhs (xi), while the key of an under-

consistent vertex xi is d [xi]. As we will soon show, if u is the inconsistent vertex with the least key,

then u is guaranteed to be an over-estimated vertex if it is over-consistent, and it is guaranteed to be

an under-estimated vertex if it is under-consistent.
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Figure 1. Example of over-consistent and under-consistent vertices in the dynamic SSSP>0 problem. The figure on
the left indicates a graph for which the single-source shortest-path information has been computed. All vertices are
consistent in this graph. The simultaneous deletion of the edge source → b and the insertion of the edge e → c make
vertex b under-consistent and vertex c over-consistent. Observe that though c is inconsistent its value is correct.

How is an inconsistent vertex to be processed?

We will show that if the inconsistent vertex with the least key is over-consistent, then its rhs value is

its correct value. No such result holds true for under-consistent vertices; however, it turns out that an

under-consistent vertex can be “processed” by simply setting its value to ∞, thereby converting it

into either a consistent vertex or an over-consistent vertex.

We now present an outline of the algorithm in Figure 2. The algorithm works by repeatedly select-
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procedure IncrementalFP (Q)
declare

Q : a set of SWSF equations
rhs (u) =def gu(d [x 1], . . . , d [xk])
key (u) =def min (d [u],rhs (u))

begin
[1] while there exist inconsistent variables in Q do
[2] let u be an inconsistent vertex with minimum key value
[3] if rhs [u ] < d (u) then // u is over-consistent
[4] d [u ] := rhs (u)
[5] else if d [u ] < rhs (u) then // u is under-consistent
[6] d [u ] := ∞
[7] fi
[8] od
end
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Figure 2. An algorithm to update the unique fixed point of a collection of SWSF equations after a change in the collec-
tion of equations. Note that rhs and key are functions.
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ing an inconsistent variable whose key is less than or equal to the key of every other inconsistent variable

and processing it. If the selected variable u is under-consistent, then it is assigned a new value of ∞, and if

it is over-consistent, then it is assigned the new value of rhs (u).

We now wish to establish three properties: (a) that the algorithm is correct, (b) that the algorithm

does not change the value of any unaffected vertex, and (c) that the algorithm changes the value of a ver-

tex at most twice. These results follow once we establish the following two claims:

Claim (1):

If the vertex u chosen in line [2] is assigned a value in line [4] (in some particular iteration), then ver-

tex u becomes consistent and remains consistent subsequently.

Claim (2):

If the vertex u chosen in line [2] is assigned a value in line [6] (in some particular iteration), then u

will never subsequently be assigned the same value it had before the execution of line [6].

The correctness of the algorithm will follow from Claim (1): it follows from the claim that line [4]

can be executed at most once for each vertex u; line [6], too, can be executed at most once for each vertex

u, since once d [u ] is set to ∞, u cannot subsequently become an under-consistent vertex—as long as d [u ]

is ∞, it satisfies the condition in line [3]; hence d [u ] can only be changed subsequently in line [4], in which

case the vertex becomes consistent and remains so, from Claim (1). Hence, the algorithm performs at most

two iterations for each vertex, and consequently the algorithm must halt. The correctness follows immedi-

ately from the termination condition for the loop.

How can we establish that the algorithm is bounded? Claims (1) and (2) imply that the values of

only affected variables are changed by the algorithm, and it follows from Claim (1) that the algorithm per-

forms at most two iterations for each affected variable. It follows that the algorithm performs a bounded

number of iterations. We will show later that line [2] can be implemented to run in bounded time, which

suffices to establish that the algorithm is bounded.

Before proving Claims (1) and (2), we need to first establish some properties of s.w.s.f . functions.

Thinking about an s.w.s.f . of the form min (x 1+h 1, . . . , xk+hk), where each hi > 0 may make it easier to

understand the proposition.

Proposition 3.1.

(a) Let g : D k → D be a s.w.s.f . and let I ⊆ {1, . . . , k} be such that g (x 1, . . . , xk) ≤ xi for every i ∈ I.

Then, g (y 1, . . . , yk) = g (x 1, . . . , xk) where yi =def if (i ∈ I) then ∞ else xi .

(b) Let g : D k → D be a s.w.s.f . and let x 1, . . . , xk be such that g (x 1, . . . , xi , . . . , xk) ≤ xi . Then,

(1) g (x 1, . . . , y , . . . , xk) = g (x 1, . . . , xi , . . . , xk) for all y ≥ g (x 1, . . . , xi , . . . , xk).

(2) g (x 1, . . . , y , . . . , xk) > y for all y < g (x 1, . . . , xi , . . . , xk).

(c) If g is a s.w.s.f . and g (x 1, . . . , xk) < g (y 1, . . . , yk) then there exists i ∈ [1,k ] such that

xi < g (x 1, . . . , xk) and xi < yi .
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(d) If g is a s.w.s.f . and g (x 1, . . . , xi , . . . , xk) ≠ g (x 1, . . . , xi ′, . . . , xk), then g (x 1, . . . , xi , . . . , xk) >

min (xi ,xi ′) and, similarly, g (x 1, . . . , xi ′, . . . , xk) > min (xi ,xi ′).

Proof.

(a) This follows by repeated applications of the definition of an s.w.s.f .

(b) Let x 1, . . . , xk be such that g (x 1, . . . , xi , . . . , xk) ≤ xi . We now prove (1). Let y ≥

g (x 1, . . . , xi , . . . , xk). We show that g (x 1, . . . , y , . . . , xk) = g (x 1, . . . , xi , . . . , xk) by assuming otherwise

and deriving a contradiction.

g (x 1, . . . , y , . . . , xk) ≠ g (x 1, . . . , xi , . . . , xk)

⇒ g (x 1, . . . , y , . . . , xk) ≠ g (x 1, . . . , ∞, . . . , xk) (since g is an s.w.s.f .

⇒ g (x 1, . . . , y , . . . , xk) < g (x 1, . . . , ∞, . . . , xk) (since g is monotonic)

⇒ g (x 1, . . . , y , . . . , xk) < g (x 1, . . . , xi , . . . , xk) (since g is an s.w.s.f .)

⇒ g (x 1, . . . , y , . . . , xk) < y (from assumption about y)

⇒ g (x 1, . . . , y , . . . , xk) = g (x 1, . . . , ∞, . . . , xk) (since g is an s.w.s.f .)

⇒ g (x 1, . . . , y , . . . , xk) = g (x 1, . . . , xi , . . . , xk) (since g is an s.w.s.f .)

This proves (1); (2) follows as a simple consequence of (1). Suppose there exists some y <

g (x 1, . . . , xi , . . . , xk) ≤ xi such that g (x 1, . . . , y , . . . , xk) ≤ y. Thus, we have g(x 1, . . . , y , . . . , xk) ≤ y and

xi ≥ g (x 1, . . . , y , . . . , xk). Using (1), but with the roles of xi and y reversed, we have

g (x 1, . . . , xi , . . . , xk) = g (x 1, . . . , y , . . . , xk) ≤ y, which is a contradiction.

(c) We prove the contrapositive. Assume that the conclusion is false. Hence, for every

xi < g (x 1, . . . , xk) we have xi ≥ yi . Then,

g (x 1, . . . , xk) = g (z 1, . . . , zk)

where zi =def if (xi ≥ g (x 1, . . . , xk)) then ∞ else xi

(from (a))

≥ g (y 1, . . . , yk) since every zi ≥ yi .

(since g is monotonic)

The result follows.

(d) This follows directly from (b), since if g (x 1, . . . , xi , . . . , xk) ≤ xi , then g (x 1, . . . , xi , . . . , xk) =

g (x 1, . . . , y , . . . , xk) for all y ≥ g (x 1, . . . , xi , . . . , xk).
�

We will now prove Claims (1) and (2). These claims follow from the fact that the keys of vertices

chosen in line [2] over the iterations form a non-decreasing sequence. We first consider the change in the

consistency status and the key value of vertices when a vertex u is processed (lines [3]-[7]) in some partic-

ular iteration. Let us denote the “initial” values of variables and expressions, that is, the value of these

variables and expressions before the execution of lines [3]-[7] in the iteration under consideration, with the

subscript “old”, and to the “final” values of these variables and expressions with the subscript “new”. In

the following propositions u denotes the vertex chosen in line [2] of the particular iteration under con-

sideration.
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Proposition 3.2. If rhsnew(w) ≠ rhsold(w) then rhsnew(w) > keyold(u) and rhsold(w) > keyold(u).

Proof. Note that rhsnew(w) = gw(d [x 1], . . . , dnew[u ], . . . , d[xk]), while rhsold(w) =

gw(d [x 1], . . . , dold[u ], . . . , d[xk]). It follows from Proposition 3.1(d) that both rhsold(w) and rhsnew(w) are

greater than min (dold[u ],dnew[u ]) = min (dold[u ],rhsold(u)) = keyold(u).
�

Proposition 3.3. If u is over-consistent at the beginning of the iteration, then it is consistent at the end of

the iteration.

Proof. Since u is over-consistent initially, d [u ] will be assigned the value rhsold(u). As long as this

assignment does not change the rhs value of u, u must be consistent. But rhsold(u) must be equal to

rhsnew(u)—since, otherwise, we would have rhsold(u) > keyold(u) = rhsold(u), which is a contradiction.
�

Proposition 3.4. For any vertex w that is inconsistent at the end of the iteration, keynew(w) ≥ keyold(u).

Proof. Since keynew(w) = min (rhsnew(w),dnew[w ]), by definition, we need to show that (a) rhsnew(w) ≥

keyold(u), and that (b) dnew[w ] ≥ keyold(u). Consider (a). If the rhs value of w did not change, then w must

have been inconsistent originally. Hence, rhsnew(w) = rhsold(w) ≥ keyold(w) ≥ keyold(u). If the rhs value of

w did change, then it follows from Proposition 3.2 that rhsnew(w) ≥ keyold(u). Now consider (b). If w was

originally inconsistent, then dnew[w ] ≥ dold[w ] ≥ keyold(w) ≥ keyold(u). If w was originally consistent, then

rhs (w) must have changed in value. It follows from Proposition 3.2 that dnew[w ] = dold[w ] = rhsold(w) >

keyold(u).
�

We now turn our attention to how the values and consistency statuses of variables change over the

different iterations of the algorithm. The subscript i attached to any variable or expression denotes the

value of the variable or expression at the beginning of iteration i.

Proposition 3.5. If i < j then keyi(ui) ≤ key j(uj). In other words, the keys of variables chosen in line [2]

form a monotonically non-decreasing sequence.

Proof. This follows trivially from repeated applications of Proposition 3.4.
�

Proposition 3.6. Assume that the vertex ui chosen in line [2] of the i-th iteration is an over-consistent ver-

tex. Then, ui remains consistent in all subsequent iterations. In particular, its value is never again changed.

Proof. We showed above in Proposition 3.3 that variable ui is consistent at the end of the i-th iteration. It

can never again become inconsistent because its rhs value can never again change—this follows because, if

rhs (ui) were to change in a subsequent iteration, say the j-th iteration, then we would have keyi(ui) =

rhsi(ui) = rhsj(ui) > key j(uj), from Proposition 3.2. But this contradicts Proposition 3.5. Since only the

values of inconsistent variables are ever changed it follows that d [ui] is never again changed.
�

Proposition 3.7. Assume that the vertex ui chosen in line [2] of the i-th iteration is an under-consistent

vertex. Then, ui is never assigned its original value, di[ui], again.

Proof. We need to show that the rhs value of variable ui never becomes di[ui]. This follows from Proposi-

tion 3.2 since if rhs (ui) changes in the j-th iteration, then we have rhsj +1(ui) > key j(uj) ≥ keyi(ui) = di[ui].
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�

Proposition 3.8. Procedure IncrementalFP correctly computes the unique fixed point of the given collec-

tion of equations. Furthermore, during the course of the computation it changes only the values of the vari-

ables that had an incorrect value at the beginning of the update. It also changes the value of a variable at

most twice.

Proof. This proposition follows directly from Proposition 3.6 and Proposition 3.7, as explained earlier.
�

3.2. The Algorithm

We now present a detailed version of the algorithm. The algorithm is described as procedure

DynamicSWSF −FP in Figure 3. We assume that the set U of vertices whose associated equations have

been modified is also part of the input to the algorithm. In other words, vertices not in U are guaranteed to

be consistent. This is the precondition for the algorithm to compute the correct solution to the modified set

of equations.

In order to implement line [2] of procedure IncrementalFP efficiently, we maintain a heap of all the

inconsistent vertices in the graph. In order to identify the key of inconsistent vertices, the algorithm also

maintains rhs [u ], the value of the right-hand side of the equation associated with vertex u, for every incon-

sistent vertex u. We briefly explain what each heap operation does. The operation InsertIntoHeap (H,i,k)

inserts an item i into heap H with a key k. The operation FindAndDeleteMin (H) returns the item in heap H

that has the minimum key and deletes it from the heap. The operation AdjustHeap (H,i,k) inserts an item i

into Heap with key k if i is not in Heap, and changes the key of item i in Heap to k if i is in Heap.

The precondition guarantees that all the initially inconsistent vertices must be in U. In lines [1]-[7],

the algorithm creates a heap out of all the initially inconsistent vertices in the graph, and simultaneously the

value rhs [u ] is properly defined for every inconsistent vertex u.

The loop in lines [8]-[31] processes the inconsistent vertices as explained earlier. In addition, the

algorithm also has to identify the change in consistency status of vertices and changes in the keys of incon-

sistent vertices as a result of the assignment of a new value to d [u ] in line [11] or line [21]. This is done in

lines [12]-[19] and lines [22]-[29].

Let us now determine the time complexity of the algorithm. Let M δ be a bound on the time

required to compute the function associated with any vertex in Changed ∪ Succ (Changed). The initializa-

tion in lines [1]-[7] involves | U | function evaluations and | U | heap operations (insertions) and conse-

quently takes O( | U | . (M δ + log | U | )) time, which is O ( | δ | . (M δ + log | δ | )) time since U is Modified δ .

Every vertex that is in the heap at some point during the execution must be an affected vertex or the

successor of an affected vertex. Hence, the maximum number of elements in the heap at any point is

O( || δ || ), and every heap operation takes O (log || δ || ) time. It follows from the explanation given earlier

that lines [11]-[19] are executed at most once for each affected vertex u. In these lines, the function associ-

ated with every vertex in Succ (u) is evaluated once, and at most | Succ (u) | heap operations are performed.
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procedure DynamicSWSF-FP (G, U)
declare

G : a dependence graph of a set of SWSF equations
U : the set of modified vertices in G
u, v, w: vertices
Heap: a heap of vertices

preconditions
Every vertex in V (G)−U is consistent

begin
[1] Heap := ∅
[2] for u ∈ U do
[3] rhs [u ] := gu(d [x 1], . . . , d [xk])
[4] if rhs [u ] ≠ d [u ] then
[5] InsertIntoHeap( Heap, u, min(rhs [u ],d [u ]))
[6] fi
[7] od
[8] while Heap ≠ ∅ do
[9] u := ExtractAndDeleteMin( Heap )
[10] if rhs [u ] < d [u ] then /* u is over-consistent */
[11] d [u ] := rhs [u ]
[12] for v ∈ Succ (u) do
[13] rhs [v ] := gv(d [x 1], . . . , d [xk])
[14] if rhs [v ] ≠ d [v ] then
[15] AdjustHeap(Heap, v, min(rhs [v ],d [v ]))
[16] else
[17] if v ∈ Heap then Remove v from Heap fi
[18] fi
[19] od
[20] else /* u is under-consistent */
[21] d [u ] := ∞
[22] for v ∈ (Succ (u) ∪ {u}) do
[23] rhs [v ] := gv(d [x 1], . . . , d [xk])
[24] if rhs [v ] ≠ d [v ] then
[25] AdjustHeap(Heap, v, min(rhs [v ],d [v ]))
[26] else
[27] if v ∈ Heap then Remove v from Heap fi
[28] fi
[29] od
[30] fi
[31] od
end
postconditions

Every vertex in V (G) is consistent
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Figure 3. An algorithm for the dynamic SWSF fixed point problem.

Hence, the lines [11]-[19] take O( || {u} || . (M δ+log || δ || )) time (in one iteration). Lines [20]-[30] are

similarly executed at most once for each affected vertex u. Consequently, lines [20]-[30] also take time

O( || {u} || . (M δ+log || δ || )) time (in one iteration).

Consequently, the whole algorithm runs in time O( || δ || . (log || δ || + M δ)), and the algorithm is a

bounded scheduling cost algorithm.
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4. An Improved Algorithm for the Dynamic SSF Grammar Problem

The algorithm presented in the previous section can be improved further in the case of the dynamic gram-

mar problem. The sources of optimization are lines [13] and [23] in Figure 3. In the general SWSF fixed

point problem, the function on the right-hand side of an equation can be an arbitrary s.w.s.f ., and, conse-

quently, the right-hand side has to computed from “scratch” (in lines [13] and [23]) when one of the argu-

ments changes in value. The functions that arise in the grammar problem, however, have a special form.

For example, in the shortest-path problem the function corresponding to a vertex u other than the source is

v ∈ Pred (u)
min [ d [v ] + length (u → v)]. Such expressions permit the possibility of incremental computation of

the expression itself. For instance, evaluating this value from scratch takes time Θ( | Pred (u) | ), while if

the value of this expression is known, and the value of d [v ] decreases for some v ∈ Pred (u), the new

value of the expression can be recomputed incrementally in constant time. Note that this kind of incremen-

tal recomputation of an expression’s value is performed repeatedly in Dijkstra’s algorithm for the batch

SSSP≥0 problem. Unfortunately, an incremental algorithm for the SSSP problem has to also contend with

the possibility that the value of d [v ] increases for some v ∈ Pred (u). The need to maintain the value of

the expression
v ∈ Pred (u)

min [ d [v ] + length (u → v)] as the values of d [v ] change immediately suggests the

possibility of maintaining the set of all values { d [v ] + length (u → v) | v ∈ Pred (u) } as a heap. How-

ever, maintaining the whole set as a heap results in some unnecesary computation, and our approach is to

maintain a particular subset of the set { d [v ] + length (u → v) | v ∈ Pred (u) } as a heap,

In this section, we present a more efficient version of algorithm DynamicSWSF −FP that utilizes the

special form of the equations induced by the SSF grammar problem. The algorithm is described as pro-

cedure DynamicSSF −G in Figure 4. We first explain the idea behind the algorithm, then prove the correct-

ness of the algorithm, and finally analyze its time complexity.

We assume that an SSF grammar is given, and that every non-terminal X in the grammar has a ten-

tative output value d [X ]. We assume that the change in the input takes the form of a change in some of the

productions and production functions of the grammar. This type of modification is general enough to

include insertions and deletions of productions as well, since a non-existent production can be treated as a

production whose production function is the constant-valued function ∞. The insertion or deletion of non-

terminals can be handled just as easily. So we assume that the input to the algorithm includes a set P of

productions whose production functions have been modified.

The steps given in lines [16]-[34] implement essentially the same idea as procedure

DynamicSWSF −FP. A heap, called GlobalHeap, of all the inconsistent non-terminals is maintained as

before, and in each iteration the inconsistent non-terminal X with the least key is processed, just as before.

In DynamicSWSF −FP a change in the value of a vertex is followed by the complete re-evaluation of the

function associated with the successors of that vertex, in order to identify the change in the consistency

status of those vertices. This is the step that the new algorithm, procedure DynamicSSF −G, performs dif-

ferently. The new algorithm identifies changes in the consistency status of other non-terminals in an incre-
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procedure DynamicSSF-G (G, P)
declare

G : a SSF grammar;
P : the set of modified productions in G
GlobalHeap: a heap of non-terminals
Heap: array[Nonterminals] of heap of productions;
SP: array[Nonterminals] of set of productions

preconditions: Every production in G−P is consistent. (See Definition 4.1)

procedure recomputeProductionValue(p : a production)
begin

[1] let p be the production Y → g(X 1 , . . . , Xk)
[2] value = g(d [X 1], . . . , d[Xk])
[3] if (value < d [Y]) then
[4] AdjustHeap( Heap [Y], p, value)
[5] else
[6] if p ∈ Heap [Y] then Remove p from Heap [Y] fi
[7] fi
[8] if (value ≤ d [Y]) then SP [Y] := SP [Y] ∪ {p} else SP [Y] := SP [Y]−{p} fi
[9] if (SP [Y] = ∅) then /* Y is under-consistent */
[10] AdjustHeap( GlobalHeap, Y, d [Y])
[11] elseif Heap [Y] ≠ ∅ then /* Y is over-consistent */
[12] AdjustHeap( GlobalHeap, Y, min −key (Heap [Y]))
[13] else /* Y is consistent */
[14] if Y ∈ GlobalHeap then Remove Y from GlobalHeap fi
[15] fi

end

begin
[16] GlobalHeap := ∅
[17] for every production p ∈ P do
[18] recomputeProductionValue(p)
[19] od
[20] while GlobalHeap ≠ ∅ do
[21] Select and remove from GlobalHeap a non-terminal X with minimum key value
[22] if key (X) < d [X ] then /* X is over-consistent */
[23] d [X ] := key (X)
[24] SP [X ] := { p | p is a production for X such that value (p) = d [X ] }
[25] Heap [X ] := ∅
[26] for every production p with X on the right-hand side do recomputeProductionValue(p) od
[27] else /* X is under-consistent */
[28] d [X ] := ∞
[29] SP [X ] := { p | p is a production for X }
[30] Heap [X ] := makeHeap({ p | p is a production for X with value (p) < d [X ] })
[31] if Heap [X ] ≠ ∅ then AdjustHeap( GlobalHeap, X, min −key (Heap [X])) fi
[32] for every production p with X on the right-hand side do recomputeProductionValue(p) od
[33] fi
[34] od
end
postconditions: Every non-terminal and production in G is consistent
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Figure 4. An algorithm for the dynamic SSF grammar problem.

mental fashion. We now describe the auxiliary data structures that the algorithm uses to do this. These

auxiliary data structures are retained across invocations of the procedure.

Note that the value associated with a non-terminal X is d [X ]. We define the value of a production

Y → g(X 1, . . . , Xk) to be g(d [X 1], . . . , d [Xk]). For every non-terminal X, the algorithm maintains a set
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SP [X ] of all productions with X as the left-hand side whose value is less than or equal to d [X ]. The algo-

rithm also maintains for every non-terminal X a heap Heap [X ] of all the productions with X as the left-

hand side whose value is strictly less than d [X ], with the value of the production being its key in the heap.

Consider a production p = Y → g(X 1, . . . , Xk). We say that the production p satisfies the invariant

if (a) p ∈ SP [Y ] iff value (p) ≤ d [Y ] and (b) p ∈ Heap [Y ] iff value (p) < d [Y ]. Thus, we want to main-

tain SP [Y ] and Heap [Y ] such that all productions satisfy the invariant. However, both at the beginning of

the update and temporarily during the update, several productions may fail to satisfy the invariant.

We use these auxiliary data structures to determine the consistency status of non-terminals. Note

that a non-terminal X is under-consistent iff SP [X ] is empty and d [X ] < ∞,3 in which case its key is d [X ];

X is over-consistent iff Heap [X ] is non-empty, in which case its key is given by min −key (Heap [X ]), the

key of the item with the minimum key value in Heap [X ]. The invariant that GlobalHeap satisfies is that

every non-terminal X for which SP [X ] is empty and d [X ] is less than ∞ occurs in GlobalHeap with a key

of d [X ], while every non-terminal X for which Heap [X ] is non-empty occurs in GlobalHeap with a key of

min −key (Heap [X ]). It follows from the preceeding explanation that GlobalHeap consists of exactly the

inconsistent non-terminals with their appropriate keys.

We now show that the algorithm maintains these data structures correctly and that it updates the

solution correctly. However, we first need to understand the precondition these data structures will have to

satisfy at the beginning of the algorithm.

Definition 4.1. A production p = Y → g(X 1, . . . , Xk) is said to be consistent if (a) p ∉ Heap [Y ] and (b)

either value (p) = d [Y ] and p ∈ SP [Y ] or value (p) > d [Y ] and p ∉ SP [Y ]. In other words, p is con-

sistent iff it satisfies the invariant and, in addition, value (p) ≥ d [Y ].

The precondition we assume to hold at the beginning of the update is that every unmodified produc-

tion is consistent. The invariant the algorithm maintains is that whenever execution reaches line [20] every

production satisfies the invariant, and that the GlobalHeap contains exactly the inconsistent non-terminals.

The postcondition established by the algorithm is that every production and non-terminal in the grammar

will be consistent.

The procedure recomputeProductionValue(p) makes production p consistent by computing its value

(in line [2]) and updating the data structures SP [Y ] (line [8]) and Heap [Y ] (lines [3]-[7]) appropriately,

where Y is the left-hand side of p. These changes are followed by appropriate updates to GlobalHeap in

lines [9]-[15].

���������������������������������������������������������

3In general, the condition that SP [X ] be empty subsumes the condition that d [X ] be less than ∞. The latter condition is relevant only

if no production has X on the left-hand side.
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We now show that whenever execution reaches line [20] every production satisfies the invariant,

and GlobalHeap contains exactly the inconsistent non-terminals. The lines [16]-[19] initially establish the

invariant. Subsequently, in each iteration of the loop in lines [20]-[38], whenever the value of a non-

terminal changes (either in line [23] or line [30]) procedure recomputeProductionValue(p) is called for

every production p that might have become inconsistent. Thus, the invariant is re-established.

It follows from the explanation in the previous paragraph that every non-terminal and production in

the grammar is consistent when the algorithm halts.

Let us now consider the time complexity of the improved algorithm. In Algorithm

DynamicSWSF −FP the individual equations were treated as indivisible units, the smallest units of the input

that could be modified. The algorithm outlined in this section, however, specifically deals with the equa-

tions generated by an SSF grammar. A finer granularity of input modifications is made possible by allow-

ing individual productions to be modified. Consequently, it is necessary to consider a refined version of the

dependence graph in analyzing the time complexity of the algorithm.

The bipartite graph B = (N,P,E) consists of two disjoint sets of vertices N and P, and a set of edges

E between N and P. The set N consists of a vertex nX for every non-terminal X in the grammar, while the

set P consists of a vertex np for every production p in the grammar. For every production p in the gram-

mar, the graph contains an edge nX → np for every non-terminal X that occurs on the right-hand side of p,

and an edge np → nY where Y is the left-hand side non-terminal of p. The set Affected consists of the set of

all vertices nX where X is a non-terminal whose output value changes, while the set Modified consists of the

set of all vertices np, where p is a modified production. The set Changed is Affected ∪ Modified.

Let us first consider the time spent in the main procedure, namely lines [16]-[38]. As explained in

the previous section, the loop in lines [20]-[38] iterates at most 2 . | Affected | times. Lines [23]-[28] are

executed at most once for every affected non-terminal X, while lines [30]-[36] are similarly executed at

most once for every affected non-terminal X. Consequently, the steps executed by the main procedure can

be divided into (a) O ( || Changed || B) invocations of the procedure recomputeProductionValue (lines [18],

[27] and [35]), (b) O ( | Affected | ) operations on GlobalHeap (line [21]), and (c) the remaining steps, which

take time O ( || Changed || B).

Let us now consider the time taken by a single execution of procedure recomputeProductionValue.

The procedure essentially performs (a) one function computation (line [2]), (b) O (1) set operations (lines

[8] and [9]), (c) O (1) Heap [Y ] operations (lines [4] or [6]), and (d) O (1) GlobalHeap operations (lines

[10], [12] or [14]). The set operations on SP [Y ] can be done in constant time by associating every produc-

tion Y → g (X 1, . . . , Xk) with a bit that indicates if it is in the set SP [Y ] or not. It can be easily verified

that each Heap [Y ] and GlobalHeap have at most || Affected || B elements. Consequently, each heap opera-

tion takes at most log || Affected || B time.

As before, let MB, δ be a bound on the time required to compute the production function associated

with any production in Changed ∪ Succ (Changed). Then, procedure recomputeProductionValue itself
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takes time O (log || δ || B + MB, δ). Hence, the whole algorithm runs in time O ( || δ || B
. (log || δ || B + MB, δ)).

Let us now consider the SSSP>0 problem. Each production function can be evaluated in constant

time in this case, and, hence, the algorithm runs in time O ( || δ || log || δ || ). (Note that in the case of the

SSSP>0 problem the input graph G and the bipartite graph B are closely related, since each “production”

vertex in B corresponds to an edge in G. Hence, || δ || B = O ( || δ || G).)

We now consider a special type of input modification for the SSSP>0 problem for which it is possi-

ble to give a better bound on the time taken by the update algorithm. Assume that the change in the input is

a homogeneous decrease in the length of one or more edges. In other words, no edges are deleted and no

edge-length is increased. In this case it can be seen that no under-consistent vertex exists, and that the

value of no vertex increases during the update. In particular, the AdjustHeap operations (in lines [4], [10],

and [12]) either perform an insertion or decrease the key of an item. Lines [6] and [14] are never executed.

Consequently, procedure recomputeProductionValue takes time O (1) if relaxed heaps [13] or Fibonacci

heaps [16] are used. (In the latter case, the time complexity is the amortized complexity.) It can also be

verified that the number of elements in any of the heaps is O ( | δ | ). Hence, the algorithm runs in time

O ( || δ || + | δ | log | δ | ). In particular, if m edges are inserted into an empty graph with n vertices, the algo-

rithm works exactly like the O (m + n log n) implementation of Dijkstra’s algorithm due to Fredman and

Tarjan [16]. The asymptotic complexity of the algorithm can be further improved by using the recently

developed AF-heap data structure [17].

5. Extensions to the Algorithms

In this section, we briefly outline various possible extensions and applications of the incremental algo-

rithms described in the previous sections.

5.1. Answering Queries on Demand

The incremental algorithms presented in this paper update the solution to the whole problem instance when

they are invoked. This can potentially result in unnecessary computation being performed, since (poten-

tially large) parts of the computed solution may never be used before they are “affected” by subsequent

modifications to the input. In such situations it may be appropriate to use a demand-driven algorithm,

where the solution to the problem instance is computed as and when necessary.

Procedures DynamicSSF −G and DynamicSWSF −FP can be easily adapted to work in such a

demand-drived fashion. Consider the update-query model of dynamic algorithms commonly used: assume

that the algorithm has to process a sequence of requests, where each request is either an update to the input

grammer (set of equations, in the case of a fixed point problem) or a query asking for the cost of the

optimal derivation from a specific non-terminal (value of a variable). For each update operation, the algo-

rithm does nothing more than “note” down the actual modification performed. When a query is performed,

the algorithm starts processing the sequence of updates performed since the last time a query was pro-

cessed by invoking DynamicSSF −G (DynamicSWSF −FP). However, instead of running the algorithm to
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completion, we may stop the processing when we know the correct answer to the specific query being pro-

cessed. It follows from the discussion in Section 3 (see, in particular, Proposition 3.2 and the proof of Pro-

position 3.6) that any consistent vertex whose value is less than key(u), where u is the inconsistent vertex

with the minimum key value, is, in fact, correct. Consequently, in this version of the dynamic SSF gram-

mar problem, for example, if the query asks for the value d [Y ] of some non-terminal Y, then the updating

algorithm in Figure 4 may stop when the key of the non-terminal X selected in line [21] is greater than

d [Y ].

Some other minor modifications to the algorithms are necessary. For example, in Figure 4, Glo-

balHeap, the heap of inconsistent vertices, need no longer be empty in between updates or queries. Conse-

quently, the algorithm should no longer initialize GlobalHeap to be empty at the beginning of the update,

but just carry the value over from the previous invocation of the algorithm.

5.2. The Batch WSF Grammar and Fixed Point Problems

As mentioned earlier, we obtain the Knuth-Dijkstra algorithm for the batch grammar problem as a special

case of procedure DynamicSSF −G, the dynamic algorithm presented in Figure 4. In particular, we can

solve the batch problem for an input instance G as follows: assume that we initially have an empty gram-

mar (with no productions and the same set of non-terminals as G); the solution to this empty grammar is

trivial, as the output value for every non-terminal has to be ∞; we now insert all the productions of G into

this empty grammar, and invoke the incremental algorithm. This yields the solution to the batch problem.

Procedure DynamicSSF −G was specifically for SSF grammars. However, the same algorithm

works correctly even for SF grammars, as long as the input modifications consist only of the insertion of

new productions, and not the deletion of productions. In particular, for the kind of batch problem

addressed in the previous paragraph, the algorithm works correctly for SF grammars, too. Procedure

DynamicSSF −G works correctly even for SWSF grammars (and WSF grammars, if input modifications are

restricted to insertions) as long as the grammar has no useless non-terminals.

Similarly, procedure DynamicSWSF −FP can be used to solve batch SWSF fixed point problems.

5.3. Maintaining Minimum-Cost Derivations

Procedure DynamicSSF −G addresses the problem of maintaining the cost of the minimum-cost derivations,

and not the problem of maintaining minimum-cost derivations themselves. However, the algorithm can be

easily extended to maintain the minimum-cost derivations, too. The set SP (X) computed by the algorithm

is the set of all productions for X that can be utilized as the first production in minimum-cost derivations of

terminal strings from X. Hence, all possible minimum-cost derivations from a non-terminal can be

recovered from this information. In particular, consider the SSSP>0 problem. Every production p for a

non-terminal Nv corresponds to an incoming edge u → v of vertex v, where v is a vertex other than the

source. The production p will be in SP (Nv) iff a shortest path from the source to u followed by the edge

u → v yields a shortest path from the source to v. Hence, a single shortest-path from the source vertex to
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any given vertex can be identified in time proportional to the number of edges in that path, provided the set

SP (X) is implemented so that an arbitrary element from the set can be chosen in constant time. As

explained earlier, the various sets SP (X) can be implemented by associating a bit with every edge. If the

set of all edges in a set SP (X) are also combined into a doubly linked list, then an arbitrary element from

the set can be chosen in constant time.

5.4. The All-Pairs Shortest-Path Problem

We have seen that the algorithm outlined in the previous section can be utilized in updating the solution to

the single-source (or the single-sink) shortest-path problem when the underlying graph undergoes

modifications. We briefly sketch how this algorithm can be adapted to update the solution to the all-pairs

shortest-path problem too. The essential approach is to make repeated use of our incremental algorithm for

the SSSP>0 problem. However, it is not necessary to update the single-source solution for every vertex in

the graph; it is possible to identify a subset of the vertices for which it is sufficient to update the single-

source solution. Let ui → vi , for 1 ≤ i ≤ k, be the set of modified (inserted or deleted) edges. Let d (x,y)

denote the length of a shortest path from x to y. Then, for any two vertices s and t, d (s,t) can change only

if for some i ∈ [1,k ] both d (s,vi) and d (ui ,t) change. Hence, by updating the single-source solution for

every ui , we can identify the set of vertices t for which the single-sink solution will change. Similarly, by

updating the single-sink solution for every vi , we can identify the set of vertices s for which the single-

source solution will change. Then, we can update the single-sink solution and the single-source solution

only for those vertices for which the solution can change.

By this method, we obtain a bounded incremental algorithm for the dynamic APSP>0 problem; its

running time is O ( || δ || log || δ || ).

5.5. Handling Edges with Non-Positive Lengths

The proof of correctness of our algorithm and the analysis of its time complexity both rely on the fact that

all edges have a positive length. We now discuss some types of input changes for which this restriction on

the edge lengths can be somewhat relaxed. Some of the types of changes considered are very special kinds

of input changes and might not appear particularly interesting or worth studying, but such changes do

appear in the application considered in the next subsection (Section 5.6).

We first consider zero-length edges. It can be shown that if the change in the input graph is a

homogeneous decrease in the length of one or more edges then the algorithm works correctly as long as all

edges have a non-negative length (i.e., zero-length edges do not pose a problem). Similarly, if the input

change is a homogeneous increase in the length of one or more edges then the algorithm works correctly as

long as all edges have a non-negative length and there are no cycles in the graph of zero length (i.e., zero-

length edges do not pose a problem as long as no zero-length cycles exist in the graph).

We now consider negative length edges. For certain types of input modifications it is possible to

use a variant of our incremental algorithm to update the solution to the SSSP problem (with arbitrary edge
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lengths), as long as all cycles in the graph have a positive length. The idea is to adapt the technique of

Edmonds and Karp for transforming the length of every edge to a non-negative real without changing the

graph’s shortest paths [14, 37]. Their technique is based on the observation that if f is any function that

maps vertices of the graph to reals, and the length of each edge a → b is replaced by

f (a) + length (a → b) − f (b), then the shortest paths in the graph are unchanged from the original edge-

length mapping. If f satisfies the property that f (a) + length (a → b) − f (b) ≥ 0 for every edge a → b in

the graph, then the transformed length of every edge will be positive.

Now consider the incremental SSSP problem. Let dold(u) denote the length of the shortest path in

the input graph G from source (G) to u before G was modified. For certain problem instances, we can sim-

ply define f (u) to be dold(u). First note that the transformation is well-defined only for edges a → b such

that dold(b) is not ∞. For every edge a → b in the original graph we have dold(b) ≤ dold(a) +

lengthold(a → b). Consequently, dold(a) + lengthold(a → b) − dold(b) ≥ 0. Hence, when dold(b) is not ∞, the

transformed length of an unmodified edge a → b will be non-negative. Similarly, if a → b is a modified

edge, the transformed length will be non-negative as long as lengthnew(a → b) ≥ lengthold(a → b)—i.e., as

long as the length of the edge a → b was not decreased during the input modification—and dold(b) is not ∞.

Thus, by using dold as transformation-function f, our incremental algorithm can be used to update

the solution to the SSSP problem when the lengths of a collection of edges are increased (possibly to ∞),

and no edge is inserted and no edge-length is decreased. This will work since the length of an edge a → b

is relevant only if a can be reached from the source vertex and, hence, only if both dold(a) and dold(b) are

finite. The transformed length of all such edges are non-negative, and our incremental algorithm is appli-

cable as long as there are no cycles of zero length in the graph. Note that it is not necessary to compute the

transformed length for all edges at the beginning; instead, the transformed length of an edge can be com-

puted as and when the length of that edge is needed. This is essential to keep the algorithm a bounded one.

The technique of edge-length transformation can also be used in one particular case of edge inser-

tion or edge-length decrease. Assume that the length of a set of edges F, all directed to a specific vertex u

that was already reachable from the source, are decreased (possibly from ∞). The above edge-length

transformation makes the lengths of all relevant edges non-negative. The transformed length of the edges

in F are not guaranteed to be non-negative; however, this causes no difficulties because these inserted

edges are examined only at the beginning of the update, to determine the new value for vertex u; these

edges play no role in the subsequent updating of values of other affected vertices. We leave the details to

the reader.

5.6. The Batch Shortest-Path Problem in the Presence of Few Negative Edges

Yap [38] describes an algorithm for finding the shortest path between two vertices in a graph that may

include edges with negative length. This algorithm works better than the standard Bellman-Ford algorithm

when the number of negative-length edges is small. An algorithm with a slightly better time complexity

can be obtained by making use of the incremental algorithms for the SSSP problem. The algorithm so
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obtained is also more general than Yap’s algorithm in that it solves the single-source or single-sink prob-

lem as well as the single-pair problem.

We first consider the time complexity of Yap’s algorithm. Let G be the given graph. Let n denote

the number of vertices in G and let m denote the number of edges in G. Let h denote the number of edges

whose length is negative, and let k denote min (h,n). Yap’s approach reduces a single-pair shortest path

problem on the given graph G to min(h +1,n) SSSP≥0 problems on the subgraph of G consisting of only

non-negative edges, and a single-pair shortest-path problem on a graph consisting of O (k) vertices and

O (k 2) edges of arbitrary (that is, both positive and negative) lengths. This yields an O (k [m + nlogn ] + k 3)

algorithm for the problem, which is better than the standard O (mn) algorithm for sufficiently small k.

(Actually, Yap describes the time complexity of the algorithm as O (kn 2), since he makes use of Dijkstra’s

O (n 2) algorithm. The above complexity follows from Fredman and Tarjan’s [16] improvement to

Dijkstra’s algorithm. The complexity of the above algorithm can be improved slightly by utilising the

recent O (m + nlogn /loglogn) shortest-path algorithm due to Fredman and Willard [17]).

We now consider how our incremental algorithm for the shortest-path problem can be used to solve

this problem more efficiently. Let u 1, . . . , uk′ be the set of all vertices in the graph that have an incoming

edge of negative length. Thus k ′ ≤ k. First replace all the negative edges in the given graph G with zero

weight edges. Compute the solution to this graph by using, say, the Fredman-Tarjan improvement to

Dijkstra’s algorithm. Now process the vertices u 1, . . . , uk′ one by one. The vertex ui is processed by res-

toring the length of all the edges directed to ui to their actual value and updating the solution using the

adaptation of our incremental algorithm explained in Section 5.5.

The updating after each insertion step takes O (m + n log n) time in the worst case. Hence, the algo-

rithm runs in time O (k ′[m + n log n ]). (In general, the algorithm can be expected to take less time than this

time bound indicates, since all the update steps have bounded complexity.)

6. Related Work

In this paper we have presented an incremental algorithm for the dynamic SWSF fixed point problem. The

dynamic SWSF fixed point problem includes the dynamic SSF grammar problem as a special case, which,

in turn, includes the dynamic SSSP>0 problem as a special case. Thus, we obtain an incremental algorithm

for the dynamic SSSP>0 problem as a special case of algorithm DynamicSSF −G, which was described in

Section 4. We have also described how the algorithm can be generalized to handle negative edge lengths

under certain conditions, and how the algorithm for the dynamic single-source shortest-path problem can

be utilized for the dynamic all-pairs shortest-path problem as well.

Knuth [24] introduced the grammar problem as a generalization of the shortest-path problem, and

generalized Dijkstra’s algorithm to solve the batch SF grammar problem. We know of no previous work

on incremental algorithms for the dynamic grammar problem.
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Recently, Ausiello et al [5]. presented a semi-dynamic algorithm for maintaining optimal hyper-

paths in directed hypergraphs. This algorithm is quite similar to our algorithm, except that it handles only

the insertion of hyperarcs (productions) into the hypergraph (grammar). The relationship between the

hypergraph problem and grammar problem is discussed below.

A directed hypergraph consists of a set of nodes and a set of hyperarcs. Each hyperarc connects a

set of sources nodes to a single target node. The concept of hyperpaths is defined recursively. There exists

an empty hyperpath from a set S of nodes to a node t if t ∈ S. A non-empty hyperpath from a set S of

nodes to a node t consists of an hyperarc from a set S ′ to t and a hyperpath from S to s for every node s in

S ′. Ausiello et al. [5] introduced the concept of a value-based measure for hyperpaths. Assume that every

hyperarc e has an associated “weight” wt (e). A value-based measure µ is described by a triple (f, ψ, µ0),

where µ0 is a real value, f is a monotonic, binary, real-valued function, and ψ is a monotonic, commutative,

and associative function from sets of reals to reals. The measure µ(∅) of an empty hyperpath ∅ is defined

to be µ0; the measure µ(P) of a non-empty path P that can be recursively decomposed into a hyperedge e

and hyperpaths P 1 , . . . , Pk is defined to be f (wt (e),ψ(µ(P 1), . . . , µ(Pk))).

The analogy between context-free grammars and directed hypergraphs should be obvious. Nodes

correspond to non-terminals, while hyperarcs correspond to productions. A hyperpath in a hypergraph

corresponds to a derivation in the grammar. The value-based measure of a hyperpath is similar to the cost

assigned to a derivation in Knuth’s grammar problem, and an optimal hyperpath corresponds to a

minimum-cost derivation.

The grammar problem is actually a strict generalization of the (unordered) directed hypergraph

problem. In particular, in the grammar problem a richer class of functions are permitted on the hyperedges

(and hence as “value-based measure functions”). This comes about because of two ways in which the

frameworks differ:

(i) In the grammar problem, different productions θ and τ can have different production functions g θ

and g τ . In the (unordered) directed hypergraph problem, all hyperedges have functions built from a

single function f and a single function ψ.

(ii) In the grammar problem the nonterminals of each production —i.e., the predecessors in each

hyperedge—are ordered. Because the predecessors in each hyperedge are unordered, the function ψ,

is required to be commutative and associative. This is not necessary in the grammar problem

because the order of nonterminals in productions permits making some distinctions among the values

that “flow” along the hyperedges. Thus, for example, with the grammar-problem formulation one

can use a function such as:

g θ =∆ λ x, y . w θ + 2x + y.

This is not possible in the class of unordered problems that Ausiello et al. deal with.

There is another minor difference between the grammar problem and the hypergraph problem

worth mentioning. Derivations of terminal strings from non-terminals really correspond to hyperpaths
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from an empty set of nodes to a node. Hyperpaths from an arbitrary, non-empty, set of nodes to a node can

model “partial derivations”, or derivations of sentences containing non-terminals as well. This is, however,

not a significant difference. Such hyperpaths can be represented in the grammar by derivations by simply

adding epsilon productions for all the relevant non-terminals.

Previous work on algorithms for the dynamic shortest-path problem include papers by Murchland

[27, 28], Loubal [26], Rodionov [34], Halder [21], Pape [29], Hsieh et al. [22], Cheston [9], Dionne [12],

Goto et al. [20], Cheston and Corneil [10], Rohnert [35], Even and Gazit [15], Lin and Chang [25],

Ausiello et al. [2, 4], and Ramalingam and Reps [30]. The work described in this paper differs from these

algorithms in several ways. First, the incremental algorithm we have presented is the first algorithm for

any version of the dynamic shortest-path problem that is capable of handling arbitrary modifications to the

graph (i.e., multiple heterogeneous changes to the graph). Second, the version of the dynamic shortest-path

problem we address, namely the single-source version, has been previously considered only in [20]. The

algorithm described in this paper is more efficient and capable of handling more general modifications than

the algorithm described in [20]. Finally, we have generalized our algorithm to handle a version of the

dynamic fixed point problem. A more comprehensive discussion and comparison of the above-mentioned

algorithms appears in [31].

Appendix

In this appendix, we prove the claims made in Section 2 concerning the relationship between the

various versions of the grammar problem and the various versions of the fixed point problem. We show

how the WSF grammar problem can be reduced to the problem of computing the maximal fixed point of a

collection of WSF equations, and how the SWSF grammar problem can be reduced to the problem of com-

puting the unique fixed point of a collection of SWSF equations. We first show that the class of w.s.f . and

s.w.s.f . functions are closed with respect to function composition.

Proposition A.1.

(a) If g (x 1, . . . , xk) is a s.w.s.f . then so is the function h (x 1, . . . , xm) defined by

h (x 1, . . . , xm) =def g (xj 1
, . . . , xjk

)

where every ji ∈ [1,m ]. Similarly, if g is a w.s.f . then so is h.

(b) Let f (x 1, . . . , xk) be a w.s.f ., and let gj(x 1, . . . , xm) be a s.w.s.f . for every j ∈ [1,k ]. The

function h (x 1, . . . , xm) defined as follows is a s.w.s.f ., too.

h (x 1, . . . , xm) =def f (g 1(x 1, . . . , xm), . . . , gk(x 1, . . . , xm))

Furthermore, if each gj is a w.s.f ., then so is h.

Proof.

(a) Let g be a s.w.s.f . The monotonicity of g directly implies that h is monotonic. Now,

h (x 1, . . . , xm) ≤ xi
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⇒ g (xj 1
, . . . , xjk

) ≤ xi

⇒ g (xj 1
, . . . , xjk

) ≤ xjp
for every p such that jp = i

⇒ g (y 1, . . . , yk) = g (xj 1
, . . . , xjk

) where yp =def if (jp = i) then ∞ else xjp

using Proposition 3.1(a)

⇒ h (x 1, . . . , ∞, . . . , xm) = h (x 1, . . . , xi , . . . , xm)

It similarly follows that if g is a w.s.f . then h is a w.s.f ., too.

(b) The monotonicity of h follows immediately from the monotonicity of f and g 1, . . . , gk . Now,

h (x 1, . . . , xi , . . . , xk) ≤ xi

⇒ f (y 1, . . . , yk) ≤ xi where yj =def gj(x 1, . . . , xi , . . . , xk)

⇒ f (y 1, . . . , yk) < yj for every yj > xi

⇒ f (w 1, . . . , wk) = f (y 1, . . . , yk) where wj =def if (yj > xi) then ∞ else yj

(using Proposition 3.1(a))

⇒ f (w 1, . . . , wk) = f (y 1, . . . , yk)

where wj =def if (gj(x 1, . . . , xi , . . . , xk) > xi) then ∞ else gj(x 1, . . . , xi , . . . , xk)

= if (gj(x 1, . . . , xi , . . . , xk) > xi) then ∞ else gj(x 1, . . . , ∞, . . . , xk)

since gj is strictly weakly superior

≥ gj(x 1, . . . , ∞, . . . , xk)

⇒ f (z 1, . . . , zk) ≤ f (y 1, . . . , yk) where zj =def gj(x 1, . . . , ∞, . . . , xk)

⇒ h (x 1, . . . , ∞, . . . , xk) ≤ h (x 1, . . . , xi , . . . , xk)

⇒ h (x 1, . . . , ∞, . . . , xk) = h (x 1, . . . , xi , . . . , xk)

since h (x 1, . . . , ∞, . . . , xk) ≥ h (x 1, . . . , xi , . . . , xk) by monotonicity

The result follows.
�

We now look at how the grammar problem can be reduced to the maximal fixed point problem.

Definition A.2. The collection of equations QG determined by an abstract grammar G consists of the fol-

lowing equation for each non-terminal Y in the grammar:

d (Y) = min { g (d (X 1), . . . , d (Xk) | Y → g (X 1, . . . , Xk) is a production }

We now characterize the set of equations determined by SF and SSF grammars.

Theorem A.3. If G is a WSF grammar, then QG is a collection of WSF equations, while if G is an SWSF

grammar, then QG is a collection of SWSF equations.

Proof. Every equation in QG is of the form

d (Y) = min ( g 1(d (Xi1,1
), . . . , d (Xi1,n (1)

)) , . . . , gm(d (Xim, 1
), . . . , d (Xim,n (m)

))).

Now, min is an w.s.f . It follows from Proposition A.1 that if each gi is a w.s.f . then the above equation is

an WSF equation. Similarly, if each gi is a s.w.s.f ., then the above equation is a s.w.s.f . equation. The

result follows.
�

We now relate the solution mG(Y) of an instance G of the grammar problem to the maximal fixed

point of the collection of equations QG.
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Lemma A.4. If G is a WSF grammar with no useless non-terminals then (mG(Y) | Y is a non-terminal) is a

fixed point of QG.

Proof.

mG(Y) =
Y →* α
min val (α) (from the definition of mG(Y), see Section 2)

=
Y → g (X1, . . . , Xk)

min
g (X1, . . . , Xk) →* α

min val (α)

=
Y → g (X1, . . . , Xk)

min min{val ( g (α1, . . . , αk) ) | Xi →* αi}

=
Y → g (X1, . . . , Xk)

min min{g (val (α1), . . . , val (αk)) | Xi →* αi}

(from the definition of val ( g (α1, . . . , αk) ))

=
Y → g (X1, . . . , Xk)

min g (
X1 →* α1

min val (α1), . . . ,
Xk →* αk

min val (αk))

(since g is monotonic, and none of the Xi is useless)

=
Y → g (X1, . . . , Xk)

min g (mG(X 1), . . . , mG(Xk)) (from the definition of mG)

�

Lemma A.5. Let G be a WSF grammar, and let (f (Y) | Y is a non-terminal) be a fixed point of QG. Then,

f (Y) ≤ mG(Y) for each non-terminal Y.

Proof. It is sufficient to show for every terminal string α that if Y is a non-terminal such that Y →* α, then

f (Y) ≤ val (α). The proof is by induction on the length of the string α. Assume Y →* α. Then we must

have Y → g (X 1, . . . , Xk) →* g (α1, . . . , αk) = α. Since each αi is a smaller string than α and Xi →*

αi , it follows from the inductive hypothesis that f (Xi) ≤ val (αi). It follows from the monotonicity of g that

g (f (X 1),..., f (Xk)) ≤ g (val (α1),...,val (αk)) = val (α). Since (f (Y) | Y is a non-terminal) is a fixed point of

Q we have f (Y) ≤ g (f (X 1),..., f (Xk)). The result follows.
�

Theorem A.6. Let G be an WSF grammar with no useless non-terminals. Then (mG(Y) | Y is a non-

terminal) is the maximal fixed point of QG.

Proof. Immediate from lemmas A.4 and A.5.
�

Theorem A.7. Let Q be a collection of k equations, the i-th equation being

xi = gi(x 1, . . . , xk).

If every gi is an s.w.s.f . then Q has a unique fixed point.

Proof. The existence of a fixed point, in fact, follows from the algorithm outlined in the Section 3, which

computes this fixed point. The uniqueness of the fixed point may be established as follows.

Assume, to the contrary, that (ai | 1 ≤ i ≤ k) and (bi | 1 ≤ i ≤ k) are two different fixed points of Q.

Choose the least element of the set { ai | ai ≠ bi } ∪ { bi | ai ≠ bi }. Without loss of generality, assume that

the least element is ai . Thus, we have ai < bi , and also aj = bj for all aj < ai . Now, we derive a contradic-

tion as follows.

ai = gi(a 1, . . . , ak) since(ai | 1 ≤ i ≤ k) is a fixed point of Q
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= gi(c 1, . . . , ck) where cj =def if (aj<ai) then aj else ∞
(since gi is a strict w.s.f .)

= gi(c 1, . . . , ck) where cj =def if (aj<ai) then bj else ∞
(since aj = bj whenever aj < ai)

≥ gi(b 1, . . . , bk) since cj ≥ bj for every j ∈ [1,k ]

≥ bi since (bi | 1 ≤ i ≤ k) is a fixed point of Q.

The contradiction implies that Q has a unique fixed point.
�

We now summarize the above results. Theorems A.3 and A.6 establish that the WSF grammar

problem can be reduced to the WSF maximal fixed point problem. Theorems A.3, A.6, and A.7 establish

that the SSF grammar problem can be reduced to the SWSF fixed point problem.
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