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Abstract. Pushdown systems (PDSs) are an automata-theoretic for-
malism for specifying a class of infinite-state transition systems. Infinite-
ness comes from the fact that each configuration 〈p, S〉 in the state space
consists of a (formal) “control location” p coupled with a stack S of
unbounded size. PDSs can model program paths that have matching
calls and returns, and automaton-based representations allow analysis
algorithms to account for the infinite control state space of recursive
programs.
Weighted pushdown systems (WPDSs) are a generalization of PDSs

that add a general “black-box” abstraction for program data (through
weights). WPDSs also generalize other frameworks for interprocedural
analysis, such as the Sharir-Pnueli functional approach.
This paper surveys recent work in this area, and establishes a few new

connections with existing work.

1 Introduction

Static analysis provides a way to obtain information about the possible states
that a program reaches during execution, but without actually running the pro-
gram on specific inputs. Static-analysis techniques explore the program’s behav-
ior for all possible inputs and account for all possible states that the program
can reach. In this sense, static analysis is more comprehensive than traditional
testing, which tests the program’s behavior for a fixed (possibly randomly gen-
erated) finite set of runs of the program. For any non-trivial program, it is im-
possible to test explicitly all the possible behaviors within a reasonable amount
of time; in contrast, static-analysis techniques use approximations to account for
all of the actions that the program could perform [13]. To make this feasible,
two techniques are used:
– The program is run in the aggregate. Rather than executing the program

on ordinary states, the program is executed on finite-sized descriptors that
represent collections of states.

– The program is run in a non-standard fashion. Rather than executing the
program in a linear sequence, various fragments are executed (in the aggre-
gate) so that, when stitched together, the results are guaranteed to cover all
possible execution paths.
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Analysis algorithms typically use the program’s interprocedural control-flow
graph (also known as its ICFG). An ICFG consists of a collection of control-flow
graphs (CFGs)—one for each procedure—one of which represents the program’s
main procedure. The CFG for a procedure p has a unique enter node and a
unique exit node. The other nodes represent the program’s statements and con-
ditions (or, alternatively, its basic blocks), except that each procedure call in the
program is represented in the ICFG by two nodes, a call node and a return-site
node. Call-edges connect call nodes to enter nodes; return-edges connect exit
nodes to return-site nodes. A typical analysis goal is to compute, for each ICFG
node n, an overapproximation (i.e., superset) of the set of states that can hold
when n is reached.

The choice of which family of data descriptors that an algorithm uses impacts
which behavioral properties of the program can be observed. This, in turn, affects
(i) what sets of states can be represented, and (ii) which program fragments need
to be explored. For example, one might use descriptors that represent only the
sign of a variable’s value: neg, zero, pos, and unknown. In a context in which
it is known that both a and b are positive (i.e., when the memory descriptor is
〈a 7→ pos, b 7→ pos〉), a multiplication expression such “a*b” would be performed
as “pos*pos”.

Such memory descriptors generally represent a superset of the actual
set of memory states that are reachable, because a descriptor such as
〈a 7→ pos, b 7→ pos〉 represents all states in which a and b hold positive inte-
gers (whereas, for example, only combinations with odd positive a’s and even
positive b’s might be reachable). At a branch-point in the program, the analyzer
needs to observe the possible outcomes of the branch-point’s condition—as best
it can, given the memory descriptors in use. This is used to determine an over-
approximation of the paths along which control might flow. Thus, a more refined
class of data descriptors can sometimes allow certain paths to be excluded from
consideration.

On the other hand, certain paths can be excluded merely from consideration
of the control-flow properties of the programming language. An important class
of paths that can be excluded are those that violate the language’s call/return
protocol; in particular, an analysis should only consider paths in which the return
from a called procedure is matched with the most recent call. Fig. 1 shows
a fragment of an ICFG, and an example of a path fragment that should be
excluded from consideration.

Dataflow-analysis algorithms that exclude such paths have a long history
[14, 47, 26]. A natural class of dataflow-analysis problems in which this issue is
reduced to a pure graph-reachability problem is also known [40]. The algorithms
developed for that class of problems are useful for analyzing a family of program
abstractions called Boolean programs (§2.3). (Boolean programs have become
well-known due to their use in SLAM [4, 5] to represent program abstractions
obtained via predicate abstraction [20].)

More recently, analysis techniques based on pushdown systems (PDSs) [6, 18,
44] have been developed. PDSs are an automata-theoretic formalism for speci-
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Fig. 1. An invalid-path fragment: in the path [call1, enter2, exit2, return-site2], the
return-edge exit2 → return-site2 does not match with call-edge call1 → enter2.

fying a class of infinite-state transition systems. Infiniteness comes from the fact
that each configuration 〈p, S〉 in the state space consists of a (formal) “control lo-
cation” p coupled with a stack S of unbounded size. Boolean programs have nat-
ural encodings as PDSs (see §2.3). Moreover, techniques developed for answering
reachability queries on PDSs allow dataflow queries to be posed with respect to a
regular language of configurations, which allows one to recover dataflow informa-
tion for specific calling contexts (and for regular languages of calling contexts).

Subsequently, these techniques were generalized to Weighted Pushdown Sys-
tems (WPDSs) [7, 46, 41, 42]. WPDSs extend PDSs by adding a general “black-
box” abstraction for expressing transformations of a program’s data state
(through weights). By extending methods from PDSs that answer questions
about only certain sets of paths (namely, ones that end in a specified regular
language of configurations), WPDSs generalize other frameworks for interproce-
dural analysis, such as the Sharir-Pnueli functional approach [47], as well as the
Knoop-Steffen [26] and Sagiv-Reps-Horwitz summary-based approaches [43]. In
particular, conventional dataflow-analysis algorithms merge together the values
for all states associated with the same program point, regardless of the states’
calling context.

Because WPDSs permit dataflow queries to be posed with respect to a regular
language of stack configurations,1 one obtains several benefits from recasting
an existing dataflow-analysis algorithm into the WPDS framework. First, one
immediately obtains algorithms to find dataflow information for specific calling
contexts and families of calling contexts, which provides information that was
not previously obtainable. For instance, §3.2 and §4 discuss, respectively, how to
recast Müller-Olm and Seidl’s work on affine-relation analysis [34, 35] and Landi
and Ryder’s work on may-aliasing for single-level pointer programs [32] in the
WPDS framework, which makes it possible to pose stack-qualified queries about

1 Conventional merged dataflow information can also be obtained by issuing appro-
priate queries; thus, the new approach provides a strictly richer framework for in-
terprocedural dataflow analysis than prior approaches.
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affine relations and may-alias relations. Second, the algorithms for solving path
problems in WPDSs can provide a witness set of paths [42], which is useful for
providing an explanation of why the answer to a dataflow query has the value
reported.

Two implementations of WPDSs are publicly available [45, 24], and both
provide a convenient base for implementing different analyses. As a programming
abstraction, these systems offer several benefits:
– An analyzer is created by means of a declarative specification: one specifies

a weight domain, along with an encoding of the program’s ICFG and a
mapping of each ICFG edge to a weight.

– It permits the creation of libraries of reusable weight domains, which can
also be used to create new weight domains by means of weight-domain-
construction operations (pairing, reduced product [15], tensor product [37],
etc.)

– Advances in solver technology apply to all instantiations of the framework;
for instance, Lal and Reps achieved substantial speedups over previous algo-
rithms by using more sophisticated algorithms in the WPDS solver engine
[29].

WPDS++ [24] has been used to implement several of the analyses in
CodeSurfer/x86 [3, 30, 1], a system for analyzing Intel x86 executables. It has
also been used as a core analysis component in a system for analyzing concur-
rent programs [12].

Compared with other tools that support the creation of program analyz-
ers from high-level specifications, (i) the WPDS implementations allow more
sophisticated abstract domains to be used (such as the Müller-Olm/Seidl do-
mains for affine-relation analysis [34, 35]), and also permit a broader range of
dataflow-analysis queries to be posed than is possible with Banshee [27] and
BDDBDDB [48]; (ii) the WPDS implementations support a broader range of
dataflow-analysis queries than PAG [33].
Organization of the Paper. This paper surveys our recent work on WPDSs,
and establishes a few new connections with other work. The remainder of the pa-
per is organized into four sections: §2 provides background material on interpro-
cedural dataflow analysis, PDSs, and Boolean programs. §3 introduces WPDSs.
§4 describes how the work of Landi and Ryder [32] on single-level pointer analy-
sis can be expressed in the WPDS framework. §5 summarizes recent work both
on improving and on applying WPDS technology.

2 Background

2.1 Background on Interprocedural Dataflow Analysis

Dataflow analysis is concerned with determining an appropriate dataflow value
to associate with each node n in a program, to summarize (safely) some aspect
of the possible memory configurations that hold whenever control reaches n. To
define an instance of a dataflow problem, one needs
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– The CFG of the program.
– A meet semilattice (V,u) with greatest element >:

• An element of V represents a set of possible memory configurations. Each
point in the program is to be associated with some member of V .

• The meet operator u is used for combining information obtained along
different paths.

– A value v0 ∈ V that represents the set of possible memory configurations at
the beginning of the program.

– An assignment M of dataflow transfer functions (of type V → V ) to the
edges of the CFG: M(e) ∈ V → V .
A dataflow-analysis problem can be formulated as a path-function problem.

Definition 1. A path of length j from node m to node n is a (possibly empty)
sequence of j edges, denoted by [e1, e2, . . . , ej], such that the source of e1 is m,
the target of ej is n, and for all i, 1 ≤ i ≤ j − 1, the target of edge ei is the
source of edge ei+1.

The path function pfq for path q = [e1, e2, . . . , ej ] is the composition, in order,
of q’s transfer functions: pfq = M(ej) ◦ . . . ◦ M(e2) ◦ M(e1). In intraprocedural
dataflow analysis, the goal is to determine, for each node n, the “meet-over-all-
paths” solution:

MOPn =
q∈Paths(enter,n)

pfq(v0),

where Paths(enter, n) denotes the set of paths in the CFG from the enter node
to n [25]. MOPn represents a summary of the possible memory configurations
that can arise at n: because v0 ∈ V represents the set of possible memory con-
figurations at the beginning of the program, pfq(v0) represents the contribution
of path q to the memory configurations summarized at n.

The soundness of the MOPn solution with respect to the programming lan-
guage’s concrete semantics is established by the methodology of abstract inter-
pretation [13]:
– A Galois connection (or Galois insertion) is established to define the rela-

tionship between sets of concrete states and elements of V .
– Each dataflow transfer function M(e) is shown to overapproximate the trans-

fer function for the concrete semantics of e.
In this paper, we assume that such correctness requirements have already been
taken care of; the paper concentrates on algorithms for determining dataflow
values once an instance of a dataflow-analysis problem has been given.

An example ICFG is shown in Fig. 2. Let Var be the set of all variables in
a program, and let (Z⊥,v,u), where Z⊥ = Z ∪ {⊥}, be the standard constant-
propagation semilattice: for all c ∈ Z, ⊥ @ c; for all c1, c2 ∈ Z⊥ such that c1 6= c2,
c1 and c2 are incomparable; and u is the greatest-lower-bound operation in this
partial order. ⊥ stands for “not-a-constant”. Let D = (Env → Env) be the set
of all environment transformers where an environment is a mapping for all vari-
ables: Env = (Var → Z⊥)∪{>}. We use > to denote an infeasible environment.
Furthermore, we restrict the set D to contain only >-strict transformers, i.e.,
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int y;

void main() {
n1: int a = 5;

n2: y = 1;

n3,n4: f(a);

n5: if(...) {
n6: a = 2;

n7,n8: f(a);

}
n9: ...;

}

void f(int b) {
n10: if(...)

n11: y = 2;

else

n12: y = b;

}

emain

n9: ...

n1: a=5

n3: call f

n4: ret from f

n7: call f

n8: ret from f

n5: if(...)

n6: a=2

λe.e[a a5]

λe.e[y a2]

xmain

λe.e[a aS,b ae(a)]

n2: y=1
ef

xf

n10: if(...)

n11: y=2 n12: y=b

λe.e[y a1]

λe.e[y ae(b)]

λe.e[a a2]
λe.e[a aS,

b ae(a)]

Fig. 2. A program fragment and its ICFG. For all unlabeled edges, the environment
transformer is λe.e.

for all d ∈ D, d(>) = >. We can extend the meet operation to environments by
taking meet componentwise.

env1 u env2 =







env1 if env2 = >
env2 if env1 = >
λv.(env1(v) u env2(v)) otherwise

The dataflow transformers are shown as edge labels in Fig. 2. A transformer of
the form λe.e[a 7→ 5] returns an environment that agrees with the argument,
except that a is bound to 5. The environment > cannot be updated, and thus
(λe.e[a 7→ 5])> equals >.

The notion of an (interprocedurally) valid path captures the idea that not all
paths in an ICFG represent potential execution paths. A valid path is one that
respects the fact that a procedure always returns to the site of the most recent
call. Let each call node in the ICFG be given a unique index from 1 to CallSites,
where CallSites is the total number of call sites in the program. For each call site
ci, label the call-to-enter edge and the exit-to-return-site edge with the symbols
“(i” and “)i”, respectively. Label all other edges of the ICFG with the symbol e.
Each path in the ICFG defines a word, obtained by concatenating—in order—
the labels of the edges on the path. A path is a valid path iff the path’s word
is in the language L(valid) generated by the context-free grammar shown below
on the left; a path is a matched path iff the path’s word is in the language
L(matched) of balanced-parenthesis strings (interspersed with strings of zero or
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more e’s) generated by the context-free grammar shown below on the right. (In
both grammars, i ranges from 1 to CallSites.)

valid → matched valid matched → matched matched
| (i valid | (i matched )i

| ε | e

| ε

The language L(valid) is a language of partially balanced parentheses: every
right parenthesis “)i” is balanced by a preceding left parenthesis “(i”, but the
converse need not hold.

Example 1. In the ICFG shown in Fig. 2, the path
[emain, n1, n2, n3, ef, n10, n11, xf, n4, n5] is a matched path, and hence a
valid path; the path [emain, n1, n2, n3, ef, n10] is a valid path, but not a matched
path, because the call-to-enter edge n3 → ef has no matching exit-to-return-site
edge; the path [emain, n1, n2, n3, ef, n10, n11, xf, n8] is neither a matched path nor
a valid path because the exit-to-return-site edge xf → n8 does not correspond
to the preceding call-to-enter edge n3 → ef.

In interprocedural dataflow analysis, the goal shifts from finding the meet-
over-all-paths solution to the more precise “meet-over-all-valid-paths”, or “context-
sensitive” solution. A context-sensitive interprocedural dataflow analysis is one
in which the analysis of a called procedure is “sensitive” to the context in which
it is called. A context-sensitive analysis captures the fact that the results prop-
agated back to each return site r should depend only on the memory configu-
rations that arise at the call site that corresponds to r. More precisely, the goal
of a context-sensitive analysis is to find the meet-over-all-valid-paths value for
nodes of the ICFG [47, 26, 43]:

MOVPn =
q∈VPaths(emain,n)

pfq(v0),

where VPaths(emain, n) denotes the set of valid paths from the main procedure’s
enter node to n.

Although some valid paths may also be infeasible execution paths, none of
the non-valid paths are feasible execution paths. By restricting attention to just
the valid paths from emain, we thereby exclude some of the infeasible execution
paths. In general, therefore, MOVPn characterizes the memory configurations
at n more precisely than MOPn.

2.2 Pushdown Systems

In this section, we define pushdown systems and show how they can be used to
encode ICFGs.

Definition 2. A pushdown system is a triple P = (P, Γ, ∆), where P is a
finite set of states (also known as “control locations”), Γ is a finite set of stack
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Rule Control flow modeled

〈p, u〉 ↪→ 〈p, v〉 Intraprocedural edge u → v

〈p, c〉 ↪→ 〈p, ef r〉 Call to f from c that returns to r

〈p, xf 〉 ↪→ 〈p, ε〉 Return from f at exit node xf

Fig. 3. The encoding of an ICFG’s edges as PDS rules.

symbols, and ∆ ⊆ P×Γ×P×Γ ∗ is a finite set of rules. A configuration of P is
a pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗. A rule r ∈ ∆ is written as 〈p, γ〉 ↪→ 〈p′, u〉,
where p, p′ ∈ P , γ ∈ Γ and u ∈ Γ ∗. These rules define a transition relation ⇒ on
configurations of P as follows: If r = 〈p, γ〉 ↪→ 〈p′, u′〉, then 〈p, γu〉 ⇒ 〈p′, u′u〉
for all u ∈ Γ ∗. The reflexive transitive closure of ⇒ is denoted by ⇒∗. For
a set of configurations C, we define pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and
post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′}, which are just backward and forward
reachability under the transition relation ⇒.

Without loss of generality, we restrict the pushdown rules to have at most two
stack symbols on the right-hand side [44]. A rule r = 〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ ∗, is
called a pop rule if |u| = 0, and a push rule if |u| = 2.

The PDS configurations model (node, stack) pairs of the program’s state.
Given a program P , we can use a PDS to model a limited portion of a P ’s be-
havior in the following sense: the configurations of the PDS represent a superset
of P ’s (node, stack) pairs.

The standard approach for modeling a program’s control flow with a push-
down system is as follows: P contains a single state p, Γ corresponds to the nodes
of the program’s ICFG, and ∆ corresponds to edges of the program’s ICFG (see
Fig. 3). For instance, the rules that encode the ICFG shown in Fig. 2 are

〈p, emain〉 ↪→ 〈p, n1〉
〈p, n1〉 ↪→ 〈p, n2〉
〈p, n2〉 ↪→ 〈p, n3〉
〈p, n3〉 ↪→ 〈p, ef n4〉
〈p, n4〉 ↪→ 〈p, n5〉
〈p, n5〉 ↪→ 〈p, n6〉

〈p, n5〉 ↪→ 〈p, n9〉
〈p, n6〉 ↪→ 〈p, n7〉
〈p, n7〉 ↪→ 〈p, ef n8〉
〈p, n8〉 ↪→ 〈p, n9〉
〈p, n9〉 ↪→ 〈p, xmain〉
〈p, xmain〉 ↪→ 〈p, ε〉

〈p, ef〉 ↪→ 〈p, n10〉
〈p, n10〉 ↪→ 〈p, n11〉
〈p, n11〉 ↪→ 〈p, xf〉
〈p, n10〉 ↪→ 〈p, n12〉
〈p, n12〉 ↪→ 〈p, xf〉
〈p, xf〉 ↪→ 〈p, ε〉

PDSs that have only a single control location, as discussed above, are also
called “context-free processes” [10]. In §2.3, we will discuss how, in addition to
control flow, PDSs can also be used to encode program models that involve finite
abstractions of the program’s data. PDSs that have multiple control locations
are used in such encodings.

The problem of interest is to find the set of all reachable configurations,
starting from a given set of configurations. This can then be used, for example,
for assertion checking (i.e., determining if a given assertion can ever fail) or to
find the set of all data values that may arise at a program point (for dataflow
analysis).
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Because the number of configurations of a pushdown system is unbounded,
it is useful to use finite automata to describe regular sets of configurations.

Definition 3. If P = (P, Γ, ∆) is a PDS then a P-automaton is a finite au-
tomaton (Q, Γ,→, P, F ), where Q ⊇ P is a finite set of states, →⊆ Q × Γ × Q

is the transition relation, P is the set of initial states, and F is the set of final
states. We say that a configuration 〈p, u〉 is accepted by a P-automaton if the
automaton can accept u when it is started in the state p (written as p

u−→∗ q,
where q ∈ F ). A set of configurations is called regular if some P-automaton
accepts it. Without loss of generality, P-automata are restricted to not have any
transitions leading to an initial state.

An important result is that for a regular set of configurations C, both post∗(C)
and pre∗(C) (the forward and the backward reachable sets of configurations,
respectively) are also regular sets of configurations [6, 9]. The algorithms for
computing post∗ and pre∗, called poststar and prestar, respectively, take a P-
automaton A as input, and if C is the set of configurations accepted by A, they
produce P-automata Apost∗ and Apre∗ that accept the sets of configurations
post∗(C) and pre∗(C), respectively [6, 17, 18]. Both poststar and prestar can be
implemented as saturation procedures ; i.e., transitions are added to A according
to some saturation rule until no more can be added.
Algorithm prestar: Apre∗ can be constructed from A using the following sat-

uration rule: If 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w
→ q in the current automaton, add a

transition (p, γ, q).
Algorithm poststar: Apost∗ can be constructed from A by performing Phase I
and then saturating via the rules given in Phase II:
– Phase I. For each pair (p′, γ′) such that P contains at least one rule of the

form 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, add a new state p′γ′.

– Phase II (saturation phase). (The symbol
γ
; denotes the relation (

ε
→)? γ

→

(
ε
→)?.)

• If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ and p
γ
; q in the current automaton, add a

transition (p′, ε, q).

• If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p
γ
; q in the current automaton, add a

transition (p′, γ′, q).

• If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ and p
γ
; q in the current automaton, add the

transitions (p′, γ′, p′γ′) and (p′γ′ , γ′′, q).

Example 2. Given the PDS that encodes the ICFG from Fig. 2 and the query au-
tomaton A shown in Fig. 4(a), which accepts the language {〈p, emain〉}, poststar
produces the automaton Apost∗ shown in Fig. 4(b),

2.3 Boolean Programs

A Boolean program can be thought of as a C program with only the Boolean
datatype. It does not have any pointers or heap-allocated storage. A Boolean
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emainp

emain,n1,n2,n3,
n4,n5,n6,n7,
n8,n9,xmain,εp

n4

n8
ef,n10,
n11,n12,
xf,ε pe

f

(a) (b)

Fig. 4. (a) Automaton for the input language of configurations {〈p, emain〉}; (b) au-
tomaton for post∗({〈p, emain〉}) (computed for the PDS that encodes the ICFG from
Fig. 2).

program consists of a finite set of procedures. It has a finite set of global variables,
and a finite set of local variables for each procedure. Each variable can only
hold a value from a finite domain.2 To simplify the discussion, we assume that
procedures do not have parameters (they can be passed through global variables).
The variables in scope inside a procedure are the global variables and its set of
local variables. Fig. 5(a) shows a Boolean program with two procedures and two
global variables x and y over a finite domain V = {0, 1, . . . , 7}.

n1

n4 n5

n6

x=3 x=7

y=x

n7

n8

n2 n3
bar( ) bar( )

proc foo

proc bar

[[x = 3]] = {((v1, v2), (3, v2)) | v1, v2 ∈ V }
[[x = 7]] = {((v1, v2), (7, v2)) | v1, v2 ∈ V }
[[y = x]] = {((v1, v2), (v1, v1)) | v1, v2 ∈ V }

(a) (b)

Fig. 5. (a) A Boolean program with two procedures and two global variables x and y

over a finite domain V = {0, 1, . . . , 7}. (b) The (non-identity) transformers used in the
Boolean program.

Notation. A binary relation on a set S is a subset of S ×S. If R1 and R2 are
binary relations on S, then their relational composition, denoted by “R1; R2”,
is defined by {(s1, s3) | ∃s2 ∈ S, (s1, s2) ∈ R1, (s2, s3) ∈ R2}. If R is a binary
relation, Ri is the relational composition of R with itself i times, and R0 is the
identity relation on S. R∗ = ∪∞

i=0R
i is the reflexive-transitive closure of R.

2 An assignment to a variable v that holds a value from a finite domain can be thought
of a collection of assignments to a vector of Boolean-valued variables, namely, the
collection of Boolean-valued variables that holds the encoding of v’s value.
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Let G be the set of valuations of the global variables, and let Vali be the set
of valuations of the local variables of procedure i. Let L be the set of local states
of the program; each local state consists of the value of the program counter, a
valuation of local variables from some Vali, and the program stack (which, for
each unfinished call to a procedure P , contains a return address and a valuation
of the local variables of P ).

The effect of executing an assignment or assume statement st, denoted by
[[st]], is a binary relation on G × Vali that describes how values of variables
in scope can change. Fig. 5(b) shows the (non-identity) transformers used in
Fig. 5(a).

To encode a Boolean program using a PDS, the state alphabet P is expanded
to encode the values of global variables, and the stack alphabet is expanded to
encode the values of local variables [44].

Let Ni be the set of control locations of the ith procedure. We set P to be
G, and Γ to be the union of Ni ×Vali over all procedures. (Note that the set of
local states L equals Γ ∗.) The PDS rules for the ith procedure are constructed
as follows: (i) an intraprocedural ICFG edge u → v with action st is encoded
via a set of rules 〈g, (u, l)〉 ↪→ 〈g′, (v, l′)〉, for each ((g, l), (g′, l′)) ∈ [[st]]; (ii) a
call edge c → r that calls procedure f , with enter node ef , is encoded via a set
of rules 〈g, (c, l)〉 ↪→ 〈g, (ef , l0) (r, l)〉, for each (g, l) ∈ G × Vali and l0 ∈ Valf ;
(iii) a procedure return at node u is encoded via a set of rules 〈g, (u, l)〉 ↪→ 〈g, ε〉,
for each (g, l) ∈ G × Vali;

Under such an encoding of a Boolean program as a PDS, a configuration
〈p, γ1γ2 · · · γn〉 is an element of G × L that describes the instantaneous state of
a program. The state p encodes the values of global variables; γ1 encodes the
current program location and the values of local variables in scope; and the rest
of the stack encodes the list of unfinished calls with the values of local variables at
the time the call was made. The PDS transition relation (⇒), which is essentially
a transition relation on G×L, represents the semantics of the Boolean program.

3 Weighted Pushdown Systems

A weighted pushdown system is obtained by augmenting a PDS with a weight
domain that is a bounded idempotent semiring [42, 7]. Such semirings are pow-
erful enough to encode finite-state data abstractions, such as the ones required
for bitvector dataflow analysis, Boolean programs, and the IFDS framework of
Reps et al. [40], as well as infinite-state data abstractions, such as linear-constant
propagation [43] and affine-relation analysis [34, 35]. We present some of this
here; additional material about using WPDSs for interprocedural analysis can
be found in [42].

Weights encode the effect that each statement (or PDS rule) has on the data
state of the program. They can be thought of as abstract transformers that
specify how the abstract state changes when a statement is executed.

Definition 4. A bounded idempotent semiring (or weight domain) is
a tuple (D,⊕,⊗, 0, 1), where D is a set whose elements are called weights,
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0, 1 ∈ D, and ⊕ (the combine operation) and ⊗ (the extend operation) are binary
operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
4. In the partial order v defined by ∀a, b ∈ D, a v b iff a⊕ b = a, there are no

infinite descending chains.

Definition 5. A weighted pushdown system is a triple W = (P ,S, f),
where P = (P, Γ, ∆) is a PDS, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring, and f : ∆ → D is a map that assigns a weight to each rule of P.

WPDSs compute over the weights via the extend operation (⊗). Let σ ∈ ∆∗

be a sequence of rules. Using f , we can associate a value to σ; i.e., if σ =

[r1, . . . , rk], we define v(σ)
def

= f(r1)⊗ . . .⊗ f(rk). In program-analysis problems,
weights typically represent abstract transformers that specify how the abstract
state changes when a statement is executed. Thus, the extend operation is typ-
ically the reversal of function composition: w1 ⊗ w2 = w2 ◦ w1. (Computing
over transformers by composing them—instead of computing on the underly-
ing abstract states by applying transformers to abstract states—is customary in
interprocedural analysis, where procedure summaries need to be calculated as
compositions of abstract-state transformers [14, 26, 40].)

Reachability problems on PDSs are generalized to WPDSs as follows:

Definition 6. Let W = (P ,S, f) be a weighted pushdown system, where P =
(P, Γ, ∆). For any two configurations c and c′ of P, let path(c, c′) denote the set
of all rule sequences that transform c into c′. Let S, T ⊆ P × Γ ∗ be regular sets
of configurations. If σ ∈ path(c, c′), then we say c ⇒σ c′. The meet-over-all-

valid-paths value MOVP(S, T ) is defined as
⊕

{v(σ) | s ⇒σ t, s ∈ S, t ∈ T }.

A PDS, as defined in §2.2, is simply a WPDS with the Boolean weight domain
({F, T },∨,∧, F, T ) and weight assignment f(r) = T for all rules r ∈ ∆. In this
case, MOVP(S, U) = T iff there exists a path from a configuration in S to a
configuration in U , i.e., post∗(S) ∩ U and S ∩ pre∗(U) are non-empty sets.

One way of modeling a program as a WPDS is as follows: the PDS mod-
els the control flow of the program, as in Fig. 3. The weight domain models
abstract transformers for an abstraction of the program’s data. §3.1 and §3.2 de-
scribe several data abstractions that can be encoded using weight domains. To
simplify the presentation, we only show the treatment for global variables, and
do not consider local variables. Finite-state abstractions of local variables can
always be encoded in the stack alphabet, as for PDSs [30, 44]. For infinite-state
abstractions, local variables pose an extra complication for WPDSs [30]; their
treatment is discussed in §3.4.
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〈p, n1〉 ↪→ 〈p, n2〉 w1

〈p, n1〉 ↪→ 〈p, n3〉 w2

〈p, n2〉 ↪→ 〈p, n7 n4〉 1
〈p, n3〉 ↪→ 〈p, n7 n5〉 1
〈p, n4〉 ↪→ 〈p, n6〉 1
〈p, n5〉 ↪→ 〈p, n6〉 1
〈p, n7〉 ↪→ 〈p, n8〉 w3

〈p, n8〉 ↪→ 〈p, ε〉 1

p

pn

acc

n1,1 n2,w1
n3,w2 n4,w4
n5,w5 n6,w6

n7,1
n8,w3
ε,w3

n4,w4

n5,w5
7

p acc

n7,w3
n8,1

n1,w6 n2,w3
n3,w3 n4,1
n5,1 n6,1

w1 = {((v1, v2), (3, v2)) | v1, v2 ∈ V }
w2 = {((v1, v2), (7, v2)) | v1, v2 ∈ V }
w3 = {((v1, v2), (v1, v1)) | v1, v2 ∈ V }
w4 = {((v1, v2), (3, 3)) | v1, v2 ∈ V }
w5 = {((v1, v2), (7, 7)) | v1, v2 ∈ V }

w6 =
{((v1, v2), (3, 3)) | v1, v2 ∈ V }

∪ {((v1, v2), (7, 7)) | v1, v2 ∈ V }

(a) (b) (c)

Fig. 6. (a) A WPDS that encodes the Boolean program from Fig. 5(a). (b) The result
of poststar(〈p, n1〉) and prestar(〈p, n6〉). The final state in each of the automata is acc.
(c) Definitions of the weights used in the figure.

3.1 Finite-State Data Abstractions

An important weight domain for WPDSs is the set of all binary relations on a
finite set.

Definition 7. If G is a finite set, then the relational weight domain on G

is defined as (2G×G,∪, ; , ∅, id): weights are binary relations on G, combine is
union, extend is relational composition (“;”), 0 is the empty relation, and 1 is
the identity relation on G.

By instantiating G to be the set of global states of a Boolean program P , we
obtain a weight domain for encoding P . This approach yields a more straightfor-
ward encoding of P : the weight associated with the rule that encodes an assign-
ment or assume statement st of P is exactly [[st]]—i.e., its effect on the global
state of P—which, as described in §2.3, is a binary relation on G. For example,
the WPDS shown in Fig. 6 encodes the Boolean program from Fig. 5(a). The
Boolean program has two variables that range over the set V = {0, 1, . . . , 7},
so G = V × V , where the two components represent the values of x and y,
respectively.

The set of all data values that reach a node n can be calculated as follows:
let S be the singleton configuration consisting of the program’s enter node, and
let T be the set {〈p, n u〉 | u ∈ Γ ∗}. Let w = MOVP(S, T ). If w = 0, then
the node cannot be reached. Otherwise, w captures the net transformation on
the global state from when the program started. The range of w, i.e., the set
{g ∈ G | ∃g′ ∈ G : (g′, g) ∈ w}, is the set of valuations that reach node n. For
example, in Fig. 6, the MOVP weight to node n6 is the weight w6 shown in
Fig. 6(c). Its range shows that either x = 3 and y = 3, or x = 7 and y = 7.

Because T can be any regular set, one can also answer stack-qualified queries
[42]. For example, the set of values that arise at node n when its procedure is
called from call site m can be found by setting T = {〈p, n mr u〉 | u ∈ Γ ∗},
where mr is the return site for call site m.
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A WPDS with a weight domain that has a finite set of weights, such as the
one described above, can be encoded as a PDS. However, it is often useful to use
weights because they can be symbolically encoded. Tools such as Moped and
Slam use BDDs [8] to encode sets of data values, which allows them to scale
to a large number of variables. (Using PDSs for Boolean program verification,
without any symbolic encoding, is generally not a feasible approach.)

3.2 Infinite-State Data Abstractions

An infinite-state data abstraction is one in which the number of abstract states
(or weights) is infinite. We begin with two simple examples of infinite weight
domains, and then discuss the weight domain used for affine-relation analysis.

Finding Shortest Valid Paths.

Definition 8. The minpath semiring is the weight domain M = (N ∪
{∞},min, +,∞, 0): weights are non-negative integers including “infinity”, com-
bine is minimum, and extend is addition.

If all rules of a WPDS are given the weight 1 from this semiring (different from
the semiring weight 1, which is the integer 0), then the MOVP weight between
two configurations is the length of the shortest path (shortest rule sequence)
between them.

Another infinite weight domain, which is based on the minpath semiring, is
given in [28] and was shown to be useful for debugging programs.

Finding Shortest Traces. The minpath semiring can be combined with a
relational weight domain, for example, to find the shortest (valid) path in a
Boolean program (for finding the shortest trace that exhibits some property).

Definition 9. A weighted relation on a set S, weighted with semiring
(D,⊕,⊗, 0, 1), is a function from (S×S) to D. The composition of two weighted
relations R1 and R2 is defined as (R1; R2)(s1, s3) = ⊕{w1 ⊗w2 | ∃s2 ∈ S : w1 =
R1(s1, s2), w2 = R2(s2, s3)}. The union of the two weighted relations is defined
as (R1∪R2)(s1, s2) = R1(s1, s2)⊕R2(s1, s2). The identity relation is the function
that maps each pair (s, s) to 1 and others to 0. The reflexive transitive closure is
defined in terms of these operations, as before. If → is a weighted relation and
(s1, s2, w) ∈→, then we write s1

w−−→ s2.

Definition 10. If S is a weight domain with set of weights D and G is a finite
set, then the relational weight domain on (G,S) is defined as (2G×G→D,∪, ; , ∅, id):
weights are weighted relations on G and the operations are the corresponding ones
for weighted relations.

If G is the set of global states of a Boolean program, then the relational
weight domain on (G,M) can be used for finding the shortest trace: for each

14



n5

n7

n8

x1 = x1+x2
x1 = 0

n1

n2

n6

bar( )

proc barproc foo

n3

bar( )

n4

x2 = 1

x2 = x2+1

Fig. 7. An affine program that starts execution at node n1. There are two global
variables x1 and x2.

rule, if R ⊆ G × G is the effect of executing the rule on the global state of the
Boolean program, then associate the following weight with the rule:

{g1
1−→ g2 | (g1, g2) ∈ R} ∪ {g1

∞−−→ g2 | (g1, g2) 6∈ R}.

Then, if w = MOVP(C1, C2), the length of the shortest path that starts with
global state g from a configuration in C1 and ends at global state g′ in a con-
figuration in C2, is w(g, g′) (which would be ∞ if no path exists). (Moreover, if
a finite-length path does exist, a witness trace [42] can be obtained to identify
the elements of the path.)

Affine-Relation Analysis An affine relation is a linear-equality constraint
between integer-valued variables. Affine-relation analysis (ARA) tries to find all
affine relationships that hold in the program. An example is shown in Fig. 7. For
this program, ARA would, for example, infer that x2 = x1 + 1 at program node
n4.

ARA for single-procedure programs was first given by Karr [23]. ARA gener-
alizes other analyses, including copy-constant propagation, linear-constant prop-
agation [43], and induction-variable analysis [23]. We have used ARA on machine
code to find induction-variable relationships between machine registers [2]. These
help in increasing the precision of an abstract-interpretation-based pointer anal-
ysis for machine code [1].

Affine Programs. Interprocedural ARA can be performed precisely on affine
programs, and has been the focus of several papers [34, 35, 21]. Affine programs
are similar to Boolean programs, but with integer-valued variables. Again, we
restrict our attention to global variables, and defer treatment of local variables
to §3.4. If {x1, x2, · · · , xn} is the set of global variables of the program, then all
assignments have the form xj := a0 +

∑n

i=1 aixi, where a0, · · · , an are integer
constants. An assignment can also be non-deterministic, denoted by xj := ?,
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which may assign any integer to xj . (This is typically used for abstracting as-
signments that cannot be modeled as an affine transformation of the variables.)
All branch conditions in affine programs are non-deterministic.

ARA Weight Domain. We briefly describe the weight domain based on the
linear-algebra formulation of ARA from [34]. An affine relation a0 +

∑n

i=1 aixi =
0 is represented using a column vector of size n + 1: a = (a0, a1, · · · , an)t. A
valuation of program variables x is a map from the set of global variables to the
integers. The value of xi under this valuation is written as x(i).

A valuation x satisfies an affine relation a = (a0, a1, · · · , an)t if a0 +
∑n

i=1 aix(i) = 0. An affine relation a represents the set of all valuations that
satisfy it, written as Pts(a). An affine relation a holds at a program node if the
set of valuations reaching that node (in the concrete collecting semantics) is a
subset of Pts(a).

An important observation about affine programs is that if affine relations a1

and a2 hold at a program node, then so does any linear combination of a1 and
a2. For example, one can verify that Pts(a1 + a2) ⊇ Pts(a1) ∩ Pts(a2), i.e.,
the affine relation a1 + a2 (componentwise addition) holds at a program node
if both a1 and a2 hold at that node. The set of affine relations that hold at a
program node forms a (finite-dimensional) vector space [34]. This implies that a
(possibly infinite) set of affine relations can be represented by any of its bases;
each such basis is always a finite set.

For reasoning about affine programs, Müller-Olm and Seidl defined an ab-
straction that is able to find all affine relationships in an affine program: each
statement is abstracted by a set of matrices of size (n + 1) × (n + 1). This set
is the weakest-precondition transformer on affine relations for that statement: if
a statement is abstracted as the set {m1, m2, · · · , mr}, then the affine relation
a holds after the execution of the statement if and only if the affine relations
(m1a), (m2a), · · · , (mra) held before the execution of the statement.

Under such an abstraction of program statements, one can define the ex-
tend operation, which is transformer composition, as elementwise matrix mul-
tiplication, and the combine operation as set union. This is correct semanti-
cally, but it does not give an effective algorithm because the matrix sets can
grow unboundedly. However, the observation that affine relations form a vec-
tor space carries over to a set of matrices as well. One can show that the
transformer {m1, m2, · · · , mr} is semantically equivalent to the transformer
{m1, m2, · · · , mr, m}, where m is any linear combination of the mi matrices.
Thus, a set of matrices can be abstracted as the (infinite) set of matrices spanned
by them. Once we have a vector space, we can represent it using any of its bases
to get a finite and bounded representation: a vector space over matrices of size
(n + 1) × (n + 1) cannot have more that (n + 1)2 matrices in any basis.

If M is a set of matrices, let Span(M) be the vector space spanned by them.
Let β be the basis operation that takes a set of matrices and returns a basis of
their span. We can now define the weight domain. A weight w is a vector space
of matrices, which can be represented using its basis. Extend of vector spaces
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w1 and w2 is the vector space {(m1m2) | mi ∈ wi}. Combine of w1 and w2

is the vector space {(m1 + m2) | mi ∈ wi}, which is the smallest vector space
containing both w1 and w2. 0 is the empty set, and 1 is the span of the singleton
set consisting of the identity matrix. The extend and combine operations, as
defined above, are operations on infinite sets. They can be implemented by the
corresponding operations on any basis of the weights. The following properties
show that it is semantically correct to operate on the elements in the basis
instead of all the elements in the vector space spanned by them:

β(w1 ⊕ w2) = β(β(w1) ⊕ β(w2))
β(w1 ⊗ w2) = β(β(w1) ⊗ β(w2))

These properties are satisfied because of the linearity of extend (matrix multi-
plication distributes over addition) and combine operations.

Under such a weight domain, MOVP(S, T ) is a weight that is the net weakest-
precondition transformer between S and T . Suppose that this weight has the ba-
sis {m1, · · · , mr}. The affine relation that indicates that any variable valuation
might hold at S is 0 = (0, 0, · · · , 0). Thus, 0 holds at S, and the affine relation
a holds at T iff m1a = m2a = · · · = mra = 0. The set of all affine relations
that hold at T can be found as the intersection of the null spaces of the matrices
m1, m2, · · · , mr.

Extensions to ARA. ARA can also be performed for modular arithmetic [35]
to precisely model machine arithmetic (which is modulo 2 to the power of the
word size). The weight domain is similar to the one described above.

3.3 Solving for the MOVP Value

There are two algorithms for solving for MOVP values, called prestar and poststar
(by analogy with the algorithms for PDSs). They take as input an automaton
that accepts the set of initial configurations. As output, they produce a weighted
automaton:

Definition 11. Given a weighted pushdown system W = (P ,S, f), a W-

automaton A is a P-automaton, where each transition in the automaton is
labeled with a weight. The weight of a path in the automaton is obtained by tak-
ing an extend of the weights on the transitions in the path in either a forward or
backward direction. The automaton is said to accept a configuration c = 〈p, u〉
with weight w = A(c) if w is the combine of weights of all accepting paths for u

starting from state p in A. We call the automaton a backward W-automaton

if the weight of a path is read backwards, and a forward W-automaton other-
wise.

Let A be an unweighted automaton and L(A) be the set of configurations
accepted by it. Then, prestar(A) produces a forward weighted automaton Apre∗

as output, such that Apre∗(c) = MOVP({c},L(A)), whereas poststar(A) pro-
duces a backward weighted automaton Apost∗ as output, such that Apost∗(c) =
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MOVP(L(A), {c}) [42]. Examples are shown in Fig. 6(b). One thing to note
here is how the poststar automaton works. The procedure bar is analyzed in-
dependently of its calling context (i.e., without knowing the exact value of x),
which generates the transitions between p and pn7

. The calling context of bar,
which determines the input values to bar, is represented by the transitions that
leave state pn7

. This is how, for instance, the automaton records that x = 3 and
y = 3 at node n8 when bar is called from node n2.

Using standard automata-theoretic techniques, one can also compute Aw(C)
for (forward or backward) weighted automaton Aw and a regular set of config-
urations C, where Aw(C) =

⊕

{Aw(c) | c ∈ C}. This allows one to solve for
the meet-over-all-paths value MOVP(S, T ) for configuration sets S and T by
computing either poststar(S)(T ) or prestar(T )(S).

We briefly describe how the prestar algorithm works for WPDSs. The inter-
ested reader is referred to [42] for more details (e.g., the poststar algorithm), as
well as an efficient implementation of the algorithm. The algorithm takes an un-
weighted automaton A as input (i.e., a weighted automaton in which all weights
are 1), and adds weighted transitions to it until no more can be added. The ad-
dition of transitions is based on the following rule: for a WPDS rule r = 〈p, γ〉 ↪→
〈q, γ1 · · · γn〉 with weight f(r) and transitions (q, γ1, q1), · · · , (qn−1, γn, qn) with
weights w1, · · · , wn, add the transition (p, γ, qn) to A with weight w = f(r) ⊗
w1 ⊗ · · ·⊗wn. If this transition already exists with weight w′, change the weight
to w ⊕ w′.

This algorithm is based on the intuition that if the automaton accepts config-
urations c and c′ with weights w and w′, respectively, and rule r allows the tran-
sition c′ ⇒ c, then the automaton needs to accept c′ with weight w′⊕(f(r)⊗w).
Termination follows from the fact that the number of states of the automaton
does not increase (hence, the number of transitions is bounded), and the fact
that the weight domain satisfies the descending-chain condition (Defn. 4, item 4).

We now provide some intuition into why one needs both forwards and back-
wards automata. Consider the automata in Fig. 6(c). For the poststar automaton,
when one follows a path that accepts the configuration 〈p, n8 n4〉, the transition
(p, n8, q) comes before (q, n4, acc). However, the former transition describes the
transformation inside bar, which happens after the transformation performed in
reaching the call site at n4 (which is stored on (q, n4, acc)). Because the transfor-
mation for the calling context happens earlier in the program, but its transitions
appear later in the automaton, the weights are read backwards. For the prestar
automaton, the weight on (p, n4, acc) is the transformation for going from n4

to n6, which occurs after the transformation inside bar. Thus, it is a forwards
automaton.

The following lemma states the complexity for solving poststar by the algo-
rithm of Reps et al. [42]. We will assume that the time to perform an ⊗ and a ⊕
are the same, and use the notation Os(.) to denote the time bound in terms of
semiring operations. The height of a weight domain is defined to be the length
of the longest descending chain in the domain. For ease of stating a complexity
result, we will assume that there is a finite upper bound on the height. Some
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weight domains, such as M in Defn. 8, have no such finite upper bound on the
height; however, WPDSs can still be used when the height is unbounded. The
absence of infinite descending chains (Defn. 4, item 4) ensures that saturation-
based algorithms for computing post∗ and pre∗ will eventually terminate.

Lemma 1. [42] Given a WPDS with PDS P = (P, Γ, ∆), if A = (Q, Γ,→
, P, F ) is a P-automaton that accepts an input set of configurations, poststar
produces a backward weighted automaton with at most |Q| + |∆| states in time
Os(|P ||∆|(|Q0| + |∆|)H + |P ||λ0|H), where Q0 = Q\P , λ0 ⊆→ is the set of all
transitions leading from states in Q0, and H is the height of the weight domain.

Approximate Analysis. Among the properties imposed by a weight domain,
one important property is distributivity (Defn. 4, item 2). This is a common re-
quirement for a precise analysis, which also arises in various coincidence theorems
for dataflow analysis [22, 47, 26]. Sometimes this requirement is too strict and
may be relaxed to monotonicity, i.e., for all a, b, c ∈ D, a⊗(b⊕c) v (a⊗b)⊕(a⊗c)
and (a ⊕ b) ⊗ c v (a ⊗ c) ⊕ (b ⊗ c). In such cases, the MOVP computation may
not be precise, but it will be safe under the partial order v.

3.4 Local Variables and Extended Weighted Pushdown Systems

This section discusses an extension of WPDSs that permits abstractions to track
the values of local variables [30].

In WPDSs, reachability problems compute the value of a rule sequence by
taking an extend of the weights of each of the rules in the sequence; when WPDSs
are used for dataflow analysis of a program, rule sequences represent interpro-
cedural paths in the program. To summarize the weights of such paths, we have
to maintain information about local variables of all unfinished procedures that
appear on the path.

Extended WPDSs (EWPDSs) lift WPDSs to handle local variables in much
the same way that Knoop and Steffen lifted conventional dataflow-analysis al-
gorithms to handle local variables [26]: at a call site at which procedure P calls
procedure Q, the local variables of P are modeled as if the current incarnations
of P ’s locals are stored in locations that are inaccessible to Q and to procedures
transitively called by Q—consequently, the contents of P ’s locals cannot be af-
fected by the call to Q; we use special merging functions to combine them with
the value returned by Q to create the state after Q returns.3

For a semiring S on domain D, a merging function is defined as follows:

3 Note that this model agrees with programming languages like Java, where it is
not possible to have pointers to local variables (i.e., pointers into the stack). For
languages such as C and C++, where the address-of operator (&) allows the address
of a local variable to be obtained, if P passes such an address to Q, it is possible for
Q (or a procedure transitively called from Q) to affect a local of P by making an
indirect assignment through the address.

Conventional interprocedural dataflow-analysis algorithms must also worry about
this issue, which is usually dealt with by (i) performing a preliminary analysis to
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Definition 12. A function g : D×D → D is a merging function with respect
to a bounded idempotent semiring S = (D,⊕,⊗, 0, 1) if it satisfies the following
properties.
1. Strictness. For all a ∈ D, g(0, a) = g(a, 0) = 0.
2. Distributivity. The function distributes over ⊕. For all a, b, c ∈ D,

g(a ⊕ b, c) = g(a, c) ⊕ g(b, c) and g(a, b ⊕ c) = g(a, b) ⊕ g(a, c)

Definition 13. Let (P ,S, f) be a weighted pushdown system; let G be the set of
all merging functions on semiring S, and let ∆2 denote the set of push rules of P.
An extended weighted pushdown system is a quadruple We = (P ,S, f, g)
where g : ∆2 → G assigns a merging function to each rule in ∆2.

Note that a push rule has both a weight and a merging function associated
with it. Merging functions are used to fuse the local state of the calling procedure
as it existed just before the call with the effects on the global state produced by
the called procedure.

As an example, Fig. 2 shows an ICFG and the PDS that represents it. We
can perform constant propagation (with uninterpreted expressions) by assigning
a weight to each PDS rule. The weight semiring is S = (D,⊕,⊗, 0, 1), where
D = (Env → Env) is the set of all environment transformers, and the semiring
operations and constants are defined as follows:

0 = λe.>
1 = λe.e

w1 ⊕ w2 = λe.(w1(e) u w2(e))
w1 ⊗ w2 = w2 ◦ w1

The weights for the EWPDS that models the program in Fig. 2 are shown as
edge labels. The merging function for the rule 〈p, n3〉 ↪→ 〈p, ef n4〉, which encodes
the call at n3, receives two environment transformers: one that summarizes the
effect of the caller from its enter node to the call site (emain to n3) and one that
summarizes the effect of the called procedure (ef to xf). The merging function
has to produce the transformer that summarizes the effect of the caller from its
enter node to the return site (emain to n4). The merging function is defined as
follows:

g(w1, w2) = if (w1 = 0 or w2 = 0) then 0
else λe.e[a 7→ w1(e)(a), y 7→ (w1 ⊗ w2)(e)(y)]

This copies over the value of the local variable a from the call site, and gets
the value of y that is returned from the called procedure. Because the merging
function has access to the environment transformer just before the call, we do
not have to pass the value of local variable a into procedure p. Hence the call
stops tracking the value of a using the weight λe.e[a 7→ ⊥, b 7→ e(a)].

The merging function for the rule 〈p, n7〉 ↪→ 〈p, ef n8〉 is defined similarly.

determine which call sites might have such effects, and (ii) using the results of the
preliminary analysis to create sound transformers for the primary analysis. The pre-
liminary analysis is itself an interprocedural dataflow analysis, and (E)WPDSs can be
applied to this problem as well. §4 describes how one such preliminary analysis—alias
analysis for single-level pointers [32]—can be expressed as a reachability problem in
an EWPDS.
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Merging Functions for Boolean Programs. In this section, we assume
without loss of generality that each procedure has the same number of local
variables.

To encode Boolean programs that have local variables, let G be the set of
valuations of the global variables and L be the set of valuations of local variables.
The actions of program statements and conditions are now binary relations on
G ×L; thus, the weight domain is a relational weight domain on the set G ×L,
but with an extra merging function defined on weights. Because different weights
can refer to local variables from different procedures, one cannot take relational
composition of weights from different procedures. The project function is used
to change the scope of a weight. It existentially quantifies out the current trans-
formation on local variables and replaces it with an identity relation. Formally,
it can be defined as follows:

project(w) = {(g1, l1, g2, l1) | (g1, l1, g2, l2) ∈ w}.

Once the summary of a procedure is calculated as a weight w involving local
variables of the procedure, the project function is applied to it, and the result
project(w) is passed to the callers of that procedure. This makes sure that local
variables of one procedure do not interfere with those of another procedure.
Thus, merging functions for Boolean programs all have the form

g(a, b) = a ⊗ project(b).

For encoding Boolean programs with other abstractions, such as finding the
shortest trace, one can use the relational weight domain on (G×L,S), where S
is a weight domain such as the minpath semiring (transparent to the presence
or absence of local variables). The project function on weights from this domain
can be defined as follows:

project(w) = λ(g1, l1, g2, l2). if (l1 6= l2) then 0S
else

⊕

l∈L w(g1, l1, g2, l)

Again, the merging functions all have the form g(a, b) = a ⊗ project(b).

4 Case Study: May-Aliasing for Single-Level Pointer

Programs

In this section, we define an EWPDS to find variable aliasing in programs written
in a C-like imperative language that is restricted to single-level pointers (i.e.,
one cannot have pointers to pointers).4 This problem was defined and solved in
[32], and has been chosen to illustrate the power of having merging functions
in EWPDSs. We first discuss some of the results from [32], and then move on
to describe an EWPDS that finds aliasing in a program. For this, we need only

4 For languages in which more than one level of indirection is possible, the algorithm
for single-level pointers still provides a safe solution (i.e., an overapproximation) [32].
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to describe the weight domain and merging functions, because we already know
how to model the control flow of a program as a PDS (Fig. 3).

We say that two access expressions a and b are aliased (written as 〈a, b〉)
at a particular program point n if in some program execution they refer to the
same memory location when execution reaches n. We limit access expressions to
variables and pointer dereferences (written as ∗p for an address-valued variable
p). Given a program, we want to determine an overapproximation of all alias
pairs that hold at each program point. This problem is also referred to as may-
aliasing. In [32], this is computed in two stages. First, conditional may-aliasing
information is computed, which answers questions of the form: “if all alias pairs
in the set A hold at a program point n1, does the pair 〈a, b〉 hold at point n2?”
The second stage then uses this information to build up the final may-aliasing
table.

An important property that results from the fact that we only have single-
level pointers is that for all program points n1 and n2, where n1 is the enter
node of the procedure containing n2, if the alias pair 〈a, b〉 holds at n2 under
the assumption that the set A = {A1, · · · , Am} of alias pairs holds at n1, then
either (i) we can prove that 〈a, b〉 holds at n2, assuming that no alias pair holds
at n1; or (ii) there exists a k, 1 ≤ k ≤ m, such that assuming that just Ak holds
at n1 suffices to prove that 〈a, b〉 holds at n2. In other words, we only need to
compute conditional may-alias information for each alias pair Ak ∈ A, rather
than for each subset of A.

We say that the alias pair 〈a, .〉 holds at program point n if a is aliased to some
access expression that is not visible (out of scope) in the procedure containing n.
It is not necessary to know the particular invisible access expression to which a

is aliased because a procedure will always have the same effect on all alias pairs
that contain access expression a and any invisible access expression [32].

For a given program, let V denote the set of all its variables and pointer
dereferences. Assume that all variables have different names (local variables can
be prefixed by the name of the procedure that contains them) so that there are
no name conflicts. The set AP = (V ×V )∪ (V ×{.})∪ ({.}×V ) is the set of all
alias pairs. Let AP⊥ = AP ∪ {⊥}, where ⊥ represents the absence of an alias
pair.

We now construct a weight domain over the set D = (AP⊥ → 2AP) of all
functions w from AP⊥ to the power set of AP with the following monotonicity
restriction: for all x ∈ AP , w(⊥) ⊆ w(x). Operations on weights will maintain
the invariant that alias relations are symmetric (i.e., if 〈a, b〉 holds, so does 〈b, a〉).
Each weight w ∈ D can be efficiently represented as a one-to-many map from
AP⊥ to AP .

An interprocedural path P with weight w means that if we assume 〈a, b〉 to
hold at the beginning of P then all pairs in w(〈a, b〉) hold at the end of path P

when the program execution follows P . The special element ⊥ handles the case
when no pair is assumed to hold at the beginning of the path; w(⊥) is the set of all
alias pairs that hold at the end of the path without assuming that any pair holds
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at the beginning of the path. Thus, a weight represents conditional may-aliasing
information, which motivates the monotonicity condition introduced above.

For all w1 6= 0 6= w2, the semiring operations are defined as follows. For
x ∈ AP⊥,

(w1 ⊕ w2)(x) = w1(x) ∪ w2(x)
(w1 ⊗ w2)(x) = w2(⊥) ∪ (∪y∈w1(x)w2(y))

1(x) =

{

∅ if x = ⊥
{x} otherwise

If path P1 has weight w1 and path P2 has weight w2, then the weight w1 ⊗ w2

summarizes the conditional alias information of the path P1 followed by P2. In
particular, (w1 ⊗w2)(x) consists of the alias pairs that hold from w2, regardless
of the value of w1, together with the alias pairs that hold from w2 given w1(x).
When P1 and P2 have the same starting and ending points, the weight w1 ⊕w2

stores conditional aliasing information when the program execution follows P1

or P2.

(The semiring constant 0 cannot be naturally described in terms of con-
ditional aliasing, but we can add it to D as a special value that satisfies all
properties of Defn. 4.)

We now consider how to associate a weight to each pushdown rule in the
EWPDS that encodes the program. For a node n that contains a statement of
the form x = y, where x and y are pointers, the weight associated with each rule
of the form 〈p, n〉 ↪→ · · · is a map, where for each x ∈ AP⊥, the first applicable
mapping is followed:

〈∗y, b〉 7→ {〈∗x, b〉}
〈a, ∗y〉 7→ {〈a, ∗x〉}
〈∗x, b〉 7→ ∅
〈a, ∗x〉 7→ ∅
〈a, b〉 7→ {〈a, b〉}

⊥ 7→ {〈a, a〉 | a ∈ V } ∪ {〈∗x, ∗y〉, 〈∗y, ∗x〉}

Roughly speaking, this generates the alias pairs 〈∗x, ∗y〉 and 〈∗y, ∗x〉, makes the
aliases of ∗y into aliases of ∗x, and removes the previously existing alias pairs of
∗x (except 〈∗x, ∗x〉). To enforce monotonicity on weights, the following closure
operation is applied to the map: cl(w) = λx.(w(x)∪w(⊥)). The weights on other
rules that represent intraprocedural edges can be defined similarly (see [32]).

For a push rule, the weight is determined according to the binding that occurs
at the call site; the definition is presented in Fig. 8. All pop rules have the weight
1.

The merging functions associated with push rules reflect the way conditional
aliasing information is computed for return nodes in [32]. Consider the push rule
〈p, callfoo〉 ↪→ 〈p, enterbar returnfoo〉, which is a call to procedure bar from foo,
and suppose that bindcall is the weight associated with this rule. For local access
expressions l1, l2 of foo and global access expressions g1, g2, the following must
hold.
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– The alias pair 〈l1, l2〉 holds at returnfoo only if the pair 〈l1, l2〉 holds at the
call node callfoo.

– The alias pair 〈g1, g2〉 holds at returnfoo only if the pair holds at exitbar.
– The alias pair 〈g1, l1〉 holds at returnfoo only if 〈g1, .〉 holds at exitbar and

the invisible variable is l1. This happens when a pair 〈o1, l1〉 that held at
callfoo caused 〈o2, .〉 to hold at enterbar because of the call bindings (〈o2, .〉 ∈
bindcall(〈o1, l1〉)) and this pair, in turn, caused 〈g1, .〉 to hold at exitbar.

bindn(⊥) =













{〈∗fi, ∗fj〉 | [fi, ai], [fj , aj ], ai = aj}
∪ {〈∗fi, ∗ai〉 | [fi, ai], visiblep(ai)}
∪ {〈∗ai, ∗fi〉 | [fi, ai], visiblep(ai)}
∪ {〈∗fi, .〉 | [fi, ai],¬visiblep(ai)}
∪ {〈., ∗fi〉 | [fi, ai],¬visiblep(ai)}













bindn(〈a, b〉) =





























bindn(⊥)
∪ {〈a, b〉 | visiblep(a), visiblep(b)}
∪ {〈a, .〉 | visiblep(a),¬visiblep(b)}
∪ {〈., b〉 | ¬visiblep(a), visiblep(b)}
∪ {〈a, ∗fi〉 | visiblep(a), [fi, ai], ∗ai = b}
∪ {〈., ∗fi〉 | ¬visiblep(a), [fi, ai], ∗ai = b}
∪ {〈∗fi, b〉 | visiblep(b), [fi, ai], ∗ai = a}
∪ {〈∗fi, .〉 | ¬visiblep(b), [fi, ai], ∗ai = a}
∪ {〈∗fi, ∗fj〉 | [fi, ai], [fj , aj ], ∗ai = a, ∗aj = b}





























Fig. 8. A function that models parameter binding for a call at program point n to a
procedure named p. For brevity, we write [f, a] to denote the fact that f is a pointer-
valued formal parameter bound to actual a. Also, visiblep(a) is true if a is visible in
procedure p.

To encode these facts as weights for an algorithmic description of the merging
functions, we need to define certain weights and operations on them.

– Projection. For a set S ⊆ (V ∪{.}), let wS be a weight that only preserves
alias pairs in S × S: wS(⊥) = ∅ and

wS(〈a, b〉) =

{

{〈a, b〉} if a, b ∈ S

∅ otherwise

– Restoration. For an access expression v ∈ V , let wv
S be a weight that

changes alias pairs when v comes back in scope conditional on the set
S ⊆ (V ∪ {.}): wv

S(⊥) = ∅ and

wv
S(〈a, b〉) =







{〈a, v〉} if b = . and a ∈ S

{〈v, b〉} if a = . and b ∈ S

∅ otherwise
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– Conditional Extend. For an alias pair 〈a, b〉, define ⊗〈a,b〉 to be a binary
operation on weights that calculates the alias pairs that hold at the end of
a path as a result of the fact that 〈a, b〉 held at a point inside the path. For
x ∈ AP⊥,

(w1 ⊗〈a,b〉 w2)(x) =

{

w2(〈a, b〉) if 〈a, b〉 ∈ w1(x)
w2(⊥) otherwise

We can now define the merging functions. If G is the set of global access
expressions of the program, then for a call from a procedure with local access
expressions L and binding weight bindcall (i.e., the weight on the push rule), the
merging function is defined as follows (where Le denotes L ∪ {.}):

g(w1, w2) = if(w1 = 0 or w2 = 0) then 0

else















(w1 ⊗ wLe
)

⊕ (w1 ⊗ bindcall ⊗ w2 ⊗ wG)
⊕

⊕

〈a,l〉∈V ×Le

((w1 ⊗〈a,l〉 (bindcall ⊗ w2)) ⊗ wl
G)

⊕
⊕

〈l,a〉∈Le×V

((w1 ⊗〈l,a〉 (bindcall ⊗ w2)) ⊗ wl
G)















The first term in the combine copies over from the call site the pairs for local
access expressions. The second term copies over from the called procedure’s exit
site the pairs for global access expressions. The third and fourth terms, which
are combines over all pairs in V × Le and Le × V , respectively, account for
global-local access expressions, following the strategy discussed earlier in this
section.

After the EWPDS is constructed, we can run an MOVP query with respect
to the configuration set C = {〈p, entermain〉} (where p is the single control
location of the EWPDS), and obtain the may-alias pairs as follows,

may-alias(n) = MOVP(C, nΓ ∗)(⊥).

In addition to computing the Landi-Ryder may-alias pairs, we can also an-
swer stack-qualified queries about may-alias relationships. For instance, we can
find out the may-alias pairs that hold at n1 when execution ends in the stack
configuration 〈p, n1n2 · · ·nk〉. As discussed in §1, such queries allow us to ob-
tain more precise information than what is obtained by merely computing a
may-aliasing query for paths that end at n1 with any stack configuration.

5 Recent Developments

5.1 Improvements in Solver Technology

The algorithms given in [46, 41, 42] are based on saturation (and generalize the
saturation procedure used for ordinary unweighted PDSs). Lal and Reps achieved
substantial speedups over previous algorithms for WPDS reachability problems
by using more sophisticated algorithms in the WPDS solver engine [29].
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5.2 Analysis of Concurrent Programs

Two studies have used WPDSs to perform analyses of concurrent programs.
Chaki et al. [12] considers the model-checking problem for concurrent C

programs with components that communicate via synchronizing actions (where
components use data drawn from large-cardinality data domains and possibly-
recursive procedure calls). They model such programs using communicating
pushdown systems, and reduce the reachability problem for this model to decid-
ing the emptiness of the intersection of two context-free languages L1 and L2.
Because the latter problem is undecidable, their scheme uses counterexample-
guided abstraction refinement of communicating Boolean programs. The tech-
nique was implemented as an extension to MAGIC [11], using WPDS++ [24]
to perform reachability queries on the models for each component. The system
was able to uncover a previously unknown bug in a version of a Windows NT
Bluetooth driver.

Lal et al. [31] followed an approach pioneered by Qadeer and Rehof [38], who
showed that analysis of concurrent recursive programs is decidable, for a finite-
state abstraction of program data, when one limits the amount of concurrency
by bounding the number of context switches. (A context switch is defined as the
transfer of control from one thread to another.)

Such an approach has proven to be useful for program analysis because many
bugs can be found in a few context switches [39, 38, 36]. Note that a context-
bounded analysis (CBA) does not impose any bound on the execution length
between context switches. Thus, even with a context-switch bound, the analysis
still has to consider the possibility that the next switch takes place in any one of
the (possibly infinite) states that may be reached after a context switch. Because
of this, CBA still considers many concurrent behaviors [36].

Qadeer and Rehof [38] showed that CBA is decidable for recursive programs
under a finite-state abstraction of program data. Lal et al. use WPDSs to gener-
alize the Qadeer-Rehof result to a family of infinite-state abstractions (and also
provide a new symbolic algorithm for the finite case). The insight behind the
approach is to construct a weighted transducer to summarize the execution of a
WPDS: the WPDS can go from configuration c1 to configuration c2 if and only
if the pair (c1, c2) is in the language of the transducer. These transducers are
composed to solve CBA.

5.3 Polyhedral Analysis

Recently, Denis Gopan in his Ph.D. thesis [19] presented a way to perform nu-
meric program analysis with WPDSs using the polyhedral abstract domain [16].
One of the challenges that he faced was that the polyhedral domain has infinite
descending chains, and hence widening techniques are required [13].

Widening is implemented using a weight wrapper that supports the normal
weight interface extended with a few extra methods. Two types of weights are
used: “regular weights” and “widening weights”. Regular weights behave just like
ordinary weights; widening weights are placed on WPDS rules where widening
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must occur (e.g., rules that correspond to backedges in the ICFG). In particular,
if a widening weight b is used in a combine operation by the WPDS saturation
procedure, the normal operation a ⊕ b is replaced by a 5 (a ⊕ b), (where 5 is
the standard widening operator).
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9. J.R. Büchi. Finite Automata, their Algebras and Grammars. Springer-Verlag, 1988.
D. Siefkes (ed.).

10. O. Burkart and B. Steffen. Model checking for context-free processes. In Proc.
CONCUR, volume 630 of Lec. Notes in Comp. Sci., pages 123–137. Springer-
Verlag, 1992.

11. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In Int. Conf. on Softw. Eng., 2003.

12. S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Verifying concurrent message-
passing C programs with recursive calls. In Tools and Algs. for the Construct. and
Anal. of Syst., 2006.

13. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In Princ.
of Prog. Lang., pages 238–252, 1977.

14. P. Cousot and R. Cousot. Static determination of dynamic properties of recur-
sive procedures. In E.J. Neuhold, editor, Formal Descriptions of Programming
Concepts, (IFIP WG 2.2, St. Andrews, Canada, August 1977), pages 237–277.
North-Holland, 1978.

15. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Princ. of Prog. Lang., pages 269–282, 1979.

16. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In Princ. of Prog. Lang., pages 84–96, 1978.

27



17. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Computer Aided Verif., volume 1855 of Lec.
Notes in Comp. Sci., pages 232–247, July 2000.

18. A. Finkel, B.Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. Elec. Notes in Theor. Comp. Sci., 9, 1997.

19. D. Gopan. Numeric program analysis techniques with applications to array analysis
and library summarization. PhD thesis, Comp. Sci. Dept., Univ. of Wisconsin,
Madison, WI, August 2007. Tech. Rep. 1602.
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