Coping with Type Casts in C

Michael Siff', Satish ChandraZ?, Thomas Ball?, Krishna Kunchithapadam?, and
Thomas Reps®

! Mathematics Department, Sarah Lawrence College, Bronxville, NY 10708-5999.
msiff@mail.slc.edu
2 Bell Laboratories, Lucent Technologies, Naperville, IL 60566.
{chandra,tball}@research.bell-labs.com
3 Computer Sciences Department, University of Wisconsin, Madison, WI 53706.
{krisna,reps}@cs.wisc.edu

Abstract. The use of type casts is pervasive in C. Although casts pro-
vide great flexibility in writing programs, their use obscures the meaning
of programs, and can present obstacles during maintenance. Casts in-
volving pointers to structures (C structs) are particularly problematic,
because by using them, a programmer can interpret any memory region
to be of any desired type, thereby compromising C’s already weak type
system.

This paper presents an approach for making sense of such casts, in terms
of understanding their purpose and identifying fragile code. We base our
approach on the observation that casts are often used to simulate object-
oriented language features not supported directly in C. We first describe
a variety of ways — idioms — in which this is done in C programs. We
then develop a notion of physical subtyping, which provides a model that
explains these idioms.

We have created tools that automatically analyze casts appearing in C
programs. Experimental evidence collected by using these tools on a large
amount of C code (over a million lines) shows that, of the casts involving
struct types, most (over 90%) can be associated meaningfully — and
automatically — with physical subtyping. Our results indicate that the
idea of physical subtyping is useful in coping with casts and can lead to
valuable software productivity tools.

1 Introduction

In the C programming language, a programmer can use a cast to coerce the
type of a given expression into another type. Casts offer great flexibility to a
programmer. In particular, because C allows a pointer of a given type to be cast
into any other pointer type, a programmer can reinterpret the value at a memory
location to be of any desired type. As a consequence, C programmers can — and
often do — exploit the physical layout of structures (structs) in memory in
various ways. Moreover, casts come with little or no performance cost, as most
casts do not require extra machine code to be generated. The use of casts is
pervasive in C programs.

typedef struct { void translateX(Point *p, int dx) {

int x,y; p—>x += dx;
} Point; }
typedef enum { main() {
RED, BLUE Point pt;
} color; ColorPoint cpt;
typedef struct { translateX(&pt, 1);
int x,y; translateX((Point *) &cpt, 1);
color c; }

} ColorPoint;

Fig. 1. A simple example of subtypes in C: ColorPoint can be thought of as a subtype
of Point

A major problem with casts is that they make programs difficult to under-
stand. Casts diminish the usefulness of type declarations in providing clues about
the code. For example, a pointer variable can be made to point to memory of a
type unrelated to the variable’s declared type. Another major problem is that
casts make programs fragile to modify. Casts induce relationships between types
that, at first glance, may appear to be unrelated to one another. As a result, it
may not be safe for a programmer to add new fields to a struct S, because the
code may rely on the memory layout of other structs that share a relationship
with S through pointer casts.

The preceding problems are exacerbated by that fact that there are currently
no tools that assist a programmer in analyzing casts in C programs. C compilers
do not check that the reinterpretation of memory via casts is done in a meaningful
way. As stated before, C allows casts between any pair of pointer types. For the
same reason, tools such as lint do not provide any help on seemingly inexplicable,
yet legal casts.

This paper presents a semi-automatic approach to making sense of casts that
involve pointers to struct types. We base our approach on the observation that
casts involving pointers to struct types can often be considered as simulating
subtyping, a language feature not found in C. This observation is supported by
an analysis of over 1.3 million lines of C code containing over 7000 occurrences
of such casts. Our analysis examines each cast appearing in a program, and
computes the relationship between the pair of C types involved in the cast. This
relationship is usually an upcast or a downcast, but sometimes neither of the
two. In the less frequent last case (we found 1053 total occurrences involving
127 unique pairs), the user must inspect the participating types manually. We
have identified several patterns of usage occurring in C code, and have found
that the seemingly unrelated types in the last case usually fall into one of these
patterns.

Consider the C code shown in Fig. 1. The function translateX is defined to
take two arguments: p (a pointer to a Point) and dx (an integer). The function

translates the horizontal component of the object p points to by dx units. Since
pt is declared to be a Point, the expression translateX(&pt,1) is legal in C.
We may also wish to apply translateX to a variable cpt of type ColorPoint,
but the statement translateX(&cpt,1) is not (strictly speaking) legal in C.
However, we can cast a pointer to a ColorPoint to be a pointer to a Point as
shown in Fig. 1. This works because of the way values of the types Point and
ColorPoint are laid out in memory;! in effect, the cast of actual parameter &cpt
in this call on translateX causes one type (i.e., ColorPoint) to be treated as a
subtype of another type (i.e., Point).

The cast from ColorPoint to Point is an example of treating an instance
of one type as an instance of another type — an “is-a” relationship. In many
programming languages (for example, C++), this relationship can be captured
explicitly with subtyping. However, C has no such mechanism, so users who wish
to capture the “is-a” relationship rely on two things: type casts and the layout
of data in memory.

In this example, our analysis explains the cast by reporting that ColorPoint
and Point are involved in a subtype relationship. It also points out that the types
ColorPoint and Point may not be modified independently of each other. For
example, one cannot add a new field at the beginning of Point, and continue to
use the function translateX on ColorPoint, unless the same field is also added
to ColorPoint.

The contributions of this paper are as follows:

— We identify how type casts and the layout of data structures are used to
simulate various object-oriented features in C. In particular, we present sev-
eral commonly used idioms in C programs that represent C++-style object-
oriented constructs and discuss the role of type casts in these idioms.

— We define the notion of physical subtyping and present rules by which the
physical-subtype relationship may be inferred. Physical subtypes are impor-
tant because they provide a model that captures most of the object-oriented
casting idioms found in C.

— We describe a pair of software tools based on physical subtyping. The cast-
analyzer tool classifies all the type casts in a program using the physical-
subtype relationship. The struct-analyzer tool captures the physical subtyp-
ing relationships between all pairs of types in a C program. As we shall
discuss later, a programmer can use these tools in combination, both for
understanding the purpose of casts appearing in the program, and for dis-
covering related types in the program that must be modified consistently.

We have run these tools on a number of large C programs taken from a variety
of sources, including C programs from the SPEC95 benchmark suites, various
GNU programs, and telephone call processing code from Lucent Technologies.
Our tools and experimental results point the way to several software engineering
applications of these tools:

! The ANSI C standard makes certain guarantees about the layout of the fields of
structs in memory. In particular, the first field of all structs is always allocated at
offset zero, and compatible common prefixes of two structs are laid out identically.

— To help programmers quickly learn about the relationships between data types
in their programs. The physical-subtype relationship can be naturally shown
as a directed graph, which can be presented to a programmer to provide a
visualization of the relationship between data types in their programs. (See
Section 4.3).

— To identify fragile code. In our experience, code containing casts that violate
the physical-subtype relationship is very fragile, because a programmer may
introduce erroneous data references by using inconsistent type declarations.
We present a detailed study of one such fragile cast identified in the telephone
code (Section 4.2).

— To aid in the conversion of C to object-oriented languages such as Java and
C++. The identification of physical subtypes in C programs provides a seed
to the process of converting C programs to C++ or Java.

Section 2 explains several common casting idioms by which C programmers
emulate object-oriented programming. Section 3 presents a type system for C
and formalizes physical subtypes by presenting a collection of inference rules.
Section 4 describes our implementation of two complementary tools that identify
physical subtypes, and the results of applying these tools to our benchmarks.
Section 5 discusses related work.

2 Object-Oriented Idioms in C

In this section, we consider several object-oriented idioms that can be found
with perhaps surprising frequency in C programs. These idioms emulate C++
features, such as inheritance, class hierarchies, and virtual functions.

2.1 Inheritance

Redundant declarations C programmers can emulate public inheritance in
a variety of ways. Perhaps the most common, at least for data types with a
small number of members, is by declaring one struct type’s member list to
have another struct type’s member list as a prefix. This is illustrated by the
Point and ColorPoint structs appearing in Fig. 1. Instances of ColorPoint
can be used in any context that allows the use of an instance of Point. Any valid
context expecting a Point can, at most, refer to the Point’s x and y members.
Any instance of ColorPoint has such x and y members at the same relative
offsets as every instance of Point.

First members The use of redundant declarations is perhaps the simplest
method of implementing subtyping in C. However, making a textual copy of the
members of a base class in the body of each derived class is both cumbersome and
error-prone. The first-member idiom represents an improvement that alleviates
both of these problems.

Subtype relationships often characterize is-a relationships, as in “a color point
is-a point”. Members of struct types often characterize has-a relationships. For
example, a Person has-a name:

typedef struct { ... char *name; ...} Person;

However, because C guarantees that the first member of an object of a struct
type begins at the same address at which the object itself begins, the first mem-
ber can also reflect an is-a relationship. For example, consider this alternative
definition of ColorPoint:

typedef struct {
Point p;
color c;

} ColorPoint;

Now a ColorPoint can be used where a Point is expected in two equivalent
ways:

ColorPoint cp;
void translateX(Point *, int);

translateX((Point *)&cp, 1);
translateX(&(cp.p), 1);

In the second call to translateX, the reference to the Point component of cp is
made more explicit (at the cost of having the programmer remember the names
of the first member and modifying such code if and when the member names
change).

Array padding The first-member idiom can also be implemented in a slightly
different manner, in which the allocation of storage space for the members of
the base class is separated from the access to those members. Consider another
definition for ColorPoint:

typedef struct {
char base[sizeof (Point)]; /#* storage space for a Point */
Color c;

} ColorPoint;

In this definition of ColorPoint, sufficient space is allocated to hold an en-
tire Point rather than explicitly declaring a member of type Point (as in the
first-member idiom) or using all the members of Point (as in the redundant-
declaration idiom). The space is allocated by using a byte (char) array of the
same size as Point.

This idiom is prevalent in several large systems that we have analyzed with
our tools (described in Sect. 4), most notably telephone and gcc.

Due to space limitations, another interesting inheritance idiom — flattening
— is not discussed here. The reader is directed to [10] for more details.

typedef struct { typedef struct {
char name[10];

} Point; } AuxName;

typedef struct { typedef struct {
color c; Point p;

} AuxColor; AuxColor aux;

typedef struct { AuxName aux2;
Point p; } NamedColorPoint;

AuxColor aux;
} ColorPoint;

Fig. 2. A class hierarchy in C

2.2 Class hierarchies

It is not uncommon to find implicit class hierarchies in C programs using one
or more of the inheritance idioms discussed above. One interesting combination
is to use the first-member idiom for the top level of inheritance and then to use
the redundant-declaration idiom for deeper levels of inheritance. An example
appears in Fig. 2. Observe that NamedColorPoint can be thought of as a subclass
of Point by the first-member idiom and as a subclass of ColorPoint by the
redundant-declaration idiom. Using the tools described in Sect. 4, we found that
this idiom is prevalent in zemacs (a graphical-user-interface version of the text
editor emacs).

2.3 Downcasts

It is a common object-oriented practice to allow objects of a derived class to be
treated as if they are objects of a base class. This notion is referred to as an
upcast — as in casting up from a subclass (subtype) to a superclass (supertype).
The complementary notion of a downcast is not as common, but still very useful
in object-oriented programming. A downcast causes an object of a base class
to be treated as an object of a derived class, or in C, casts an expression of
supertype down to a subtype. The following is a simple example of a downcast:

void make_red(ColorPoint* cp) {

cp->c = RED;
}
ColorPoint cp0;
Point* pp;
PP = &cpO; /* upcast from ColorPoint to Point */

make_red((ColorPoint *) pp); /* downcast from Point to ColorPoint */

As this example illustrates, downcasts can be sensible in cases where type
information has been lost through a previous upcast. The problem of identifying
cases where downcasts are used without a preceding upcast is an aim of our
future research.

typedef enum { double circ_area(Circle *c);
CIRCLE, RECTANGLE double rect_area(Rectangle *r);
} shape_kind;
double area(Shape *s) {

typedef struct { switch(s->kind) {
shape_kind kind; case CIRCLE:

} Shape; return (circ_area((Circle *)s));

case RECTANGLE:

typedef struct { return (rect_area((Rectangle *)s));
Shape s; }
double radius; }

} Circle;

typedef struct {

Shape s;

double length, width;
} Rectangle;

Fig. 3. An example illustrating the use of explicit run-time type information to simulate
virtual functions

2.4 Virtual functions

Downcasts are necessary in order to implement virtual functions, which are one
of the most powerful aspects of object-oriented programming.

There are several ways in which virtual functions can be simulated in C. The
most common is probably via the addition of run-time type information (RT'TT)
to data types in conjunction with switch statements that choose how a function
should behave based on the RTTI.

As an example, consider the code fragment shown in Fig. 3. In this example,
Shape corresponds to an abstract base class, Circle and Rectangle are derived
classes (using the first-member idiom), and the area function behaves as a virtual
function in that it dynamically selects a specific area function to call depending
on run-time type information stored in the kind field.

The +1 idiom Another similar, but more complicated, mechanism for sim-
ulating virtual functions involves the use of pointer arithmetic. This idiom is
illustrated in Fig. 4. The example is based on a common idiom found in the
telephone code discussed in Sect. 4. The idea in the example is that there are
several kinds of messages that use a common message header (which includes
run-time type information indicating the kind of message the header is attached
to). In the process msg function, the argument hdr is a pointer to a message
header. hdr + 1 is a pointer-arithmetic expression referring to the address hdr
plus (one times) the size of the object pointed to by hdr. In other words, hdr +
1 says “point to the the next member in the struct containing what hdr points
to”.

typedef struct { void processMsg(msg_hdr *hdr) {

msg_hdr hdr; switch(hdr->kind) {
msgl_body body; case MSG1:
} msgi; processMsgl((msgl_body*) (hdr + 1));
break;
typedef struct { case MSG1:
msg_hdr hdr; processMsg2 ((msg2_body*) (hdr + 1));
msg2_body body; break;
} msg2; /% .. */
}
void processMsgl(msgl_body *); }

void processMsg2(msg2_body *);

Fig. 4. The +1 idiom: An example illustrating the use of pointer arithmetic and run-
time type information to simulate virtual functions

By C’s type rules, the expression hdr + 1 has the same type as hdr. So
the cast causes a pointer to type msg hdr to be treated as either a pointer to
msgl_body or a pointer to msg2_body. Because msg hdr need not have anything
in common with msgl_body or msg2_body, this idiom is rather confusing when
first encountered. However, because of the way C lays out data in memory, the
cast makes sense.?

It is one thing to identify an instance of the +1 idiom; it is another thing to
determine if such an instance makes sense in terms of subtypes. The problem of
making sense of casts such as these is outside the scope of this paper; however,
we plan to address it in future research.

2.5 Generic Pointers in C

C programmers have long made use of generic pointers to achieve a limited form
of polymorphism and subtyping. A generic pointer is much like the class Object
in Java, for which all classes are subclasses: all pointer types may be thought
of as subtypes of the generic pointer type. Prior to ANSI standardization, C
programmers used pointers to a scalar type (usually char*) to represent generic
pointers; now voidx is the accepted type for generic pointers. The use of generic
pointers is discussed further in Sect. 3.2 and Sect. 4.

3 Physical Subtypes

Casts allow expressions of one type to be substituted for expressions of another
type. In this respect, casts between types are reminiscent of subtype relationships
often used in other programming languages (like C++).® In this section, we

% This assumes that the sizes and alignments of the msg_hdr and msg_body types are
such that no padding is required between the hdr and body fields.

3 Substitution is a weaker notion than subtyping since it comes with no guarantee of
expected behavior. The fact that a compiler allows an expression of one type to be

define the notion of physical subtyping and present rules for determining if one
type is a physical subtype of another. The motivation for these rules is to be
able to automatically identify upcasts: type casts from t to ¢/, where ¢ can be
thought of as a subtype of ¢'.

The idea behind physical subtyping is that an expression of one type may
be substituted for an expression of another type if, when the two are laid out
in memory, the values stored in corresponding locations “make sense”. Consider
the following code:

Point pt;
ColorPoint cp;

pt.x = 3; pt.y = 41;
cp.x = 5; cp.y = 17; cp.c = RED;

A picture of how pt and cp are represented in memory might look like:

pt||3/41
cp||5|17|RED

cp can be thought of as being of the same type as pt simply by ignoring its last
field.

We write t<t' to denote that ¢ is a physical subtype of type t'. The intuition
behind physical subtypes can be summarized as follows:

— The size of a type is no larger than the size of any of its subtypes.

— Ground types are physical subtypes of themselves and not of other ground
types. For example:

int<int

intAdouble

doublef£char

an enumerated type is not a physical subtype of a different enumerated

type (or any other ground type)

— If a struct type is a physical subtype of another struct type then the
members of two types line up in some sensible fashion.

3.1 A Type System for C

Our work addresses a slightly simplified version of the C type system:

— We ignore type qualifiers (e.g., const int and volatile int are treated as
int).
— We consider typedefs to be synonyms for the types they redefine.

Types are described by the language of type expressions appearing in Fig. 5.

used in place of an expression of another type does not preclude the occurrence of
run-time errors.

ground
| t[n] // array of type t of size n
| tptr // pointer to ¢
| s{mi,...,mp} /] struct
| u{|mi,...,mi|} // union
|

(t1,...,tx) =t // function

m ::
(t,1,9) // member labeled ! of type ¢ at offset 4
| (I:m) // bit field labeled [of size n
ground ::
e{idy,...,idy} // enum
| void* | char | unsigned char | short | int| long | double |

Fig. 5. A type system for C

Non-bit-field members of struct and union types are annotated with an offset.
In a struct, the offset of a member indicates the difference in bytes between the
storage location of this member and the first member of the struct. The first
member is, by definition, at offset 0. All members of union types are considered
to have offset 0.

3.2 Physical Subtyping Rules

Figure 6 presents rules in the style of [6] for inferring that one type is a physical
subtype of another. We consider each of the physical-subtype rules individually:

Reflexivity: Any type is a physical subtype of itself.

Void pointers: A pointer to type t is a physical subtype of void*. Void pointers
are generic: they can, by definition, only be used in contexts where any other
pointer can be used. It is illegal to dereference an object of type void*. In fact,
the only legal operations on a void pointer that are cause for concern are type
casts. For example:

Bar *b

Foo *f;

void *vp;

vp = (void *)b; /* upcast: Bar* is a subtype of void* */

f = (Foo *)vp; /* downcast: Foo* is a subtype of voidx */

The cast from void* to Foox is an example of a downcast, discussed in Sect. 2.3.

[Reflexivity] =T

[Void pointers] T ptr<void*

t<t' mi = (1,t,0)

First members
[] {ml,...,mk}-«'

k’ < k m1<m'1 - My <m'k,

[Structures]

{m1,...,mp}<{mi,...,my}
_ . P g gl e ’
[Member subtype] m=(l,t,i) m —(l,t,z’) =10 i=1i t<t
m=<m

Fig. 6. Inference rules for physical subtypes

First members: If t is a physical subtype of ¢’ then a struct with a first member
(the member at offset 0) of type ¢ is a physical subtype of ¢'. This captures the
first-member idiom described in Sect. 2. For example, assuming ColorPoint is
a physical subtype of Point, then:

typedef struct {
ColorPoint cp;
char *name;

} NamedColorPoint;

is a physical subtype of ColorPoint as well as a physical subtype of Point.
(This example also illustrates the transitivity of the physical-subtype relation.)

Structures: struct s with k members is a physical subtype of struct s’ with &’
members if:

— s has no fewer members than s’ (i.e., ¥’ < k). (Note the contravariance be-
tween the direction of the subtype relation and the direction of the inequality
between k and £'.)

— Each member of s’ has the same label, and the same offset as each of the
corresponding members of s, and the types of members of s’ are physical
supertypes of the types of the corresponding members of s. For example,

struct {
. struct {
int a; int a
struct { double d1,d2,d3; } b; < struct { double di,d2; } b;
char c; }
}

This is in contrast with Cardelli-style structural subtyping between record types
([3,1]). A record type is like a struct type, but the order of members (and
therefore the layout in memory) is unimportant. A record type {l1 : t1,... 1l :
tr} is a subtype of record type {lj : t},...,l}, : t},} iff for each label [;, there is
a j such that [; = l;- and t; is a subtype of ¢;.

4 TImplementation and Results

In this section, we describe the basic implementation of the physical-subtype-
analysis algorithm, as well as the cast-analyzer tool that is based on this algo-
rithm. We then present our experimental results and discuss other applications
of the physical-subtype-analysis algorithm.

4.1 Implementation

The analysis tools are written in Standard ML. The tools act on data structures
representing C types and abstract syntax trees. The abstract syntax trees can
be generated from any preprocessed C program.

The core physical-subtype-analysis algorithm takes as input two types, ¢ and
t', and compares them to determine if ¢ is a physical subtype of ' according to
the rules presented in Sect. 3.2. The algorithm returns a result in one of two
forms:

1. t is a physical subtype of t', together with numbers indicating how many
times each of the subtyping rules have been invoked in order to identify the
subtype relationship.

2. t is not a physical subtype of t'.

Given an abstract syntax tree representation of a C program, the cast-
analyzer tool proceeds by traversing the abstract syntax tree and collecting the
pairs of types associated with every implicit and explicit cast. For each pair of
types, t and t', involved in a cast,* it returns one of three possible results:

1. Upcast: If the core physical-subtype-analysis algorithm returns that ¢ is a
subtype of ¢, then the tool returns “upcast”.

2. Downcast: If the core algorithm returns that ¢ is not a physical subtype of ¢/,
then the core algorithm is applied to see to whether ¢’ is a physical subtype
of t. If the algorithm returns that ¢’ is a subtype of ¢ then the tool returns
“downcast”.

3. Mismatch: If the core algorithm determines that ¢ is not a physical subtype
of t' and t' is not a physical subtype of ¢, then the tool returns “mismatch”.

The output of the cast-analyzer tool is a list consisting of the following, for each
occurrence of a cast:

— The location in the file where the cast occurred.

The type being cast from.

— The type being cast to.

— The result of the cast analysis: upcast, downcast, or mismatch.

If the cast analysis results in an upcast or downcast, then the tool outputs,
along with the above information, numbers indicating how many times each of
the subtyping rules have been invoked in order to identify the physical-subtype
relationship.

4 The cast appears in the program as t ptr to ¢ ptr, because in C, references to
structs are stored as pointers.

Table 1. Total counts of casts in benchmarks. kLOC is the number of source
lines (in thousands) in the program, including comments. Casts is the total number
of occurrences of casts, implicit and explicit, in the program. The remaining columns
break this total down as follows: Scalar is the number of casts not involving a struct,
union, or function pointer. FunPtr is the number of function-pointer casts. Void-
Struct represents casts in which exactly one of the types includes a struct or union
type (the other being a pointer type such as void* or char*. Struct-Struct represents
casts in which both types include a struct or union type. Each of these two categories
is further classified as an upcast (U), downcast (D), or mismatch (M), as specified by
the physical-subtype algorithm. There are a total of 7,796 Void-Struct and Struct-
Struct casts. Of these casts, 1,053 are classified as mismatches

Void-Struct |Struct-Struct
Benchmark kLOC Casts Scalar FunPtr U D M|U D M
binutils 516 3,426 2,088 41| 399 678 32| 32 156 0
xemacs 288 5,273 3,407 134| 598 985 79| 39 26 5
gee 208 5,448 4,882 19| 268 139 3| 0 O 137
telephone 110 598 42 0] 103 23 0] 32 66 332
bash 76 642 346 126 44 78 1| 17 22 8
vortex 67 3,827 3,143 42| 495 83 14| 40 9 1
ijpeg 31 1,260 571 14| 15 59 0[464 137 0
perl 27 325 204 5/ 60 41 0 0 3 12
xkernel 37 3,148 1,021 66| 771 702 409| 64 95 20
Total 1,360 23,947 15,704 447|2,753 2,788 538|688 514 515

4.2 Experimental Results

We applied the cast-analyzer tool to a number of C programs from the SPEC95
benchmarks (gec, ijpeg, perl, vortezx), as well as networking code zkernel, GNU’s
bash, binutils, and zemacs, and portions of a Lucent Technologies’ product (iden-
tified here as telephone).

Table 1 summarizes the various benchmarks analyzed, in terms of their size,
the total number occurrences of casts, and types of casts, as classified by the
cast-analyzer tool. Table 2 presents the cast numbers, but only counts casts
between unique pairs of types. The number of casts in these programs, which
represent a wide-variety of application domains, is non-trivial. Furthermore, we
see that a large number of the casts are between pointers to structs, evidence
that programmers must reason about the physical-type relationships between
structs. Of these casts, the majority are upcasts and downcasts, but a substan-
tial number are mismatches as well (i.e., there is no physical-subtype relationship
between the two types at a cast between pointer-to-struct types).

Notice that a very high percentage (91 %) of the 1487 unique casts involving a
struct type (see the last six columns of Table 2) can be classified automatically
as either upcasts or downcasts. Furthermore, on simple manual inspection of
mismatches (discussed next), most of them turned out to be idioms indirectly
involving physical subtyping. In only a very small number of cases (fewer than

Table 2. Cast counts, for unique pairs of types

Void-Struct|Struct-Struct
Benchmark kLOC Casts Scalar FunPtr | U D M (U D M
binutils 516 501 91 17|142 202 22112 15 0
xemacs 288 409 67 55(119135 20| 3 7 3
gee 208 129 44 10| 20 48 21 0 0 5
telephone 110 135 18 0| 49 11 011 4 42
bash 76 91 11 12| 21 30 1| 4 4 8
vortex 67 215 74 12| 92 16 513 2 1
ijpeg 31 166 51 5 11 41 0| 28 30 0
perl 27 40 4 2| 15 15 00 0 1 3
xkernel 37 334 28 32(141108 10| 7 3 5
Total 1,360 2,020 388 145|610 606 60| 78 66 67

20) did a cast involving a pointer to struct appear completely unrelated to
physical subtyping. These numbers provide evidence that the idea of physical
subtyping is very useful in coping with casts appearing in C programs, and that
the process of relating casts to subtyping can largely be automated.

Examination of Mismatch Casts After running the cast-analyzer tool, we
examined manually all of the cases for which it reported a mismatch. This ex-
posed a number of questionable usages and interesting idioms (including the
“+1” idiom described in Sect. 2.4), some of which we report on below.

The mismatches reported under the Void-Struct category were primarily
due to the use of the type qualifier const: the cast analyzer reports a mismatch
when an struct S * is cast into a const void* (or vice versa). There are a small
number of mismatches due to other reasons. In gcc and zemacs, sometimes there
is a cast to or from a partially defined structure,® which is reported under the
Void-Struct category. We believe that in these cases, partially defined struc-
tures are used as a substitute for void*. In zkernel, the return type of certain
functions ought to be valid pointers under normal conditions, but carry an enum
signifying a status code under special conditions. Pointer values are thus com-
pared to enum constants using a cast. Clearly, this usage is unrelated to physical
subtyping.

The mismatches under the Struct-Struct category are more interesting.
Most of them fall into one of the following patterns.

— A pointer to a union is cast to (or from) a pointer to one of the possible fields
within the union. The cast-analyzer tool does not compare a union type to

® In C, one can reserve a structure tag name by declaring struct t; The name t is
reserved as a tag name in the scope in which this declaration appears. The structure
need not actually be defined anywhere at all. Such names are called partially defined
structures, and are used, for example, to define a pair of structures that contain
pointers to each other.

any other type except a void*. The selection of the “current interpretation”
of the union is an orthogonal but important issue. We also found variations
on this theme, such as a struct with a union as its last field, being cast
into another struct with the same sequence of fields except the last one;
the last field of the latter struct was one of the possible fields in the union.

— Upcast and downcast in the presence of bit-fields. The cast-analyzer tool
does not identify physical-subtype relationships in the presence of bit-fields,
because their memory layout is implementation dependent.

— The two structs participating in the cast have a common prefix but then di-
verge. Consider an example from bash. There are several variants of a struct
command, such as for_command, while command, and simple_command. All
these structs have a common first field. A function that needs to examine
only the first field accepts all the variants of the command structs by the
following trick: it declares its formal argument to type simple_command,
and at call sites the actual argument is cast to type simple_command*. (An
alternative would have been to declare a new base struct type containing
only the first field. All the command variants would then appear as subtypes
of the base type, and it would then be possible to make the polymorphic
nature of the function more explicit. by declaring its formal parameter to be
a pointer to the base type.)

— The “41” idiom, as described previously in Sect. 2.4.

— The array padding idiom, as described previously in Sect. 2.1.

The last three patterns also relate to physical subtyping, albeit indirectly. In
each of them we can identify a pair of types in play, such that one type acts as
a base type and another a physical subtype. For example, in the “+1” idiom, if
the cast converts a type A into type B, we can think of the base type as A and
the subtype as struct { A a; B b; }. The subtyping relation in these patterns
cannot be inferred by the rules in Sect. 3.2.

For a small number of exceptions (4 mismatches in gec, 1 in telephone, 3 in
zkernel, and 3 in perl code), we could not find any explanation at all.

Telephone Code This section discusses a mismatch found by the cast-analyzer
tool when applied to telephone, a large software system for call processing. (The
code presented here is not the actual code analyzed, but a distilled version that
illustrates the essential features.) This mismatch highlights a potentially dan-
gerous coding style that exists in this code.

Message passing is the common communication mechanism for telephone
switching systems, which are massive distributed systems. Such a system may
contain over a thousand different kinds of messages. Message formats in these
systems generally follow the header-body paradigm: a header contains meta-
information about the message; the body contains the contents of the message.
The body itself may consist of another message, and so on. Messages are specified
using structs and unions.

Typically, a “dispatch” procedure receives a message from the operating sys-
tem. Depending on the contents of the header, the dispatcher will call other

procedures that deal with specialized sets of messages and expect a pointer to a
particular kind of message to be passed as an argument. Often, the dispatcher
will “look ahead” into the body of a message to find a commonly occurring
case that requires immediate handling. For example, we found such a dispatch
procedure that declared its view of messages as:

struct {
header hdr;
union {
Msgl mi;
Msg2 m2;
struct { int x; int y; } m3;
} body;

o

There are three kinds of messages that can be nested inside Message, repre-
sented by M.body .m1, M.body.m2, and M.body .m3. The first and second messages
reference typedef’d structs. Message m3 is declared inline. Now, the dispatcher
contains the following code:

if (M.hdr.tag == 3 && M.body.m3.x == 1)
process_m3(&M) ; /* implicit cast */

where the function process m3 expects a pointer to the following structure:

typedef struct {
header h; int x; char c; int y;
} Msg3;

The cast-analyzer tool flagged the implicit cast at the call as a “mismatch”
because the type of the field ¢ of Msg3 does not match type of the field y of the
anonymous struct represented by M.body.m3. Clearly, the code implies that
these two types represent the same message, yet they are incompatible. If the
dispatcher were to access field m3.y and the procedure process.m3 had accessed
(&M) ->c, a physical type error would occur. A programmer simply examining
the dispatcher, oblivious to this problem, could easily insert a reference to m3.y.

Identifying Virtual Functions in ijpeg ijpeg provides a set of generic image-
manipulation routines that convert an image from any one of a set of input for-
mats to any one of a set of output formats (although the JPEG file format is the
usual input or output type). The image-manipulation routines are written in a
fairly generic fashion, without reference to any specific image format. Compo-
nents of an image are accessed or changed via calls through function pointers that
are associated with each image object. The program initially sets up the input-
image and the output-image objects with functions that are format-specific, and
then passes pointers to the image objects to the generic image-manipulation
routines.

The main function and the various #jpeg functions that it calls have no no-
tion of the specific input-image type with which they are dealing. The selection

of the input image type and the initialization of the relevant function pointers
and data structures of instances of the jpeg_compress_struct type are done
during the call to the select_file_type function. This separation simulates
the object-oriented idiom of using abstract base classes and virtual functions to
build extensible software libraries. Each of the image-format-specific functions
performs a downcast when the function is entered. By examining these down-
casts, which were identified by the cast-analyzer tool, we were able to track down
the virtual-function idiom in ijpeg.

4.3 Other Applications of Physical Subtypes

Given an abstract syntax tree representation of a C program, the struct-analyzer
tool proceeds by traversing the abstract syntax tree and collecting a list of every
struct type defined in the program. For each pair of struct types, ¢t and ¢’, the
physical-subtype algorithm is used to determine to if ¢ is a subtype of ¢'. The
result of a struct analysis is a list consisting of the following, for each pair of
struct types for which some subtype relation has been identified:

— The subtype.

— The supertype.

— A list of numbers indicating how many times each of the subtyping rules
have been invoked in order to identify the subtype relationship.

For the C-to-C++ conversion problem, the struct-analyzer tool can help
identify potential class hierarchies. It is also a good complement to the cast-
analyzer tool. Sometimes, implied subtype relationships are obfuscated by casts
to and from generic types (usually void*). Struct analysis can assist the manual
tracking of such relationships. For example, given the definitions of Point and
ColorPoint shown in Fig. 1, struct-analyzer produces the following output:

Subtype Rules
Subtype Supertype Reflex Struct

ColorPoint Point 2 1

This indicates that ColorPoint is a subtype of Point by one use of the structure
rule and two uses of the reflexivity rule.

For analyzing larger systems, it is often useful to visualize the results of
physical-subtype analysis graphically. The output of the struct-analyzer tool can
be displayed as a graph where vertices represent structs and there is an edge
from ¢ to t' if ¢ is a physcial subtype of t'. Figure 7(a) shows a small example
of such a graph from the SPEC95 benchmark vortez. This graph shows a small
“class hierarchy”: The class hierarchy is a tree with base class typebasetype and
derived classes integerdesctype, typedesctype, enumdesctype, and chunk-
desctype, which has as a physical subtype fieldstructype.

The output of the cast-analyzer tool is also suitable for visualization as a
graph. In this case, the vertices might represent types and edges upcast and

typebasetype

/RN optr(DrawObj)

/ .
/ ptr(DblPtrRect)
// \ o ptr(IntChunkRect)
/ A o pir(ArrayRect)
/ \

/ \

// \ o ptr(NamedDrawObj)

/ typegesctype . \ chunkdesctype * pir(XyRect)

integerdesctype enumdesctype

o ptr(NamedXyRect)
o ptr(VchunkRect)

o ptr(Rectangle)
o ptr(VarrayRect)
o ptr(RefRect)

« fieldstructype

(a) (b)

Fig. 7. Graphical displays of physical subtype relations: (a) an example of the physical-
subtype relation for vortez; (b) an example of a set of upcasts found in vortez

downcast relationships. Figure 7(b) shows a set of upcasts found in the vortex
benchmark. In this graph, a number of pointer types are cast to Ptr(Draw0bj),
which is a pointer to struct Draw0bj.

5 Related Work

The idea of applying alternate type systems to C appears in several places,
among them [5,12,9,11,13]. Most of these references discuss the application of
parametric polymorphism to C, while in this paper we discuss the application of
subtype polymorphism to C. The related work section in [11] describes related
work pertaining to the application of parametric polymorphism to C.

The type system developed in this paper has similarities with several type
systems proposed by Cardelli [2,3,1]. The primary difference is that we take
into account the physical layout of data types when determining subtype rela-
tionships, while in Cardelli’s work the notion of physical layout does not apply.
In particular, there are differences between our notion of struct subtyping and
Cardelli’s notion of record subtyping. In Cardelli’s formulation, a record r is a
subtype of a record 7' if the set of labels occurring in r’ is a subset of those
occurring in r and if the type of the members of r' are supertypes of their cor-
responding members in 7. In our system, a struct s is a subtype of a struct
s' if the set of labels and their offsets of the members of s’ is a subset of those
occuring in s, the types of all but the last member of s’ match the corresponding
types in s (i.e., are supertypes and subtypes of the corresponding types in s), and
the type of the last member of s’ is a supertype of the corresponding member of
s. (See Sect. 3.2.)

The tools we have developed based on physical-subtyping are related to,
but complementary to, such tools as lint [8,7] and LCLint [4]. Our tools, as

well as lint and LCLint, can be used to assist in static detection of type errors
that escape the notice of many C compilers. LCLint can identify problems and
constructs that our system cannot — for example, problems with dereferencing
null pointers — but only by requiring the user to add explicit annotations to
the source code. On the other hand, neither lint nor LCLint has any notion of
subtyping. Lint and LCLint can improve cleanliness of programs. Our tools can
not only improve cleanliness, but can also help recognize fragile code.

Acknowledgements T. Reps is supported in part by the NSF under grants
CCR-9625667 and CCR-9619219.

References

~

10.

11.

12.

13.

Martin Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

Luca Cardelli. A semantics of multiple inheritance. In G.Kahn, D.B. MacQueen,
and G. Plotkin, editors, Semantics of Data Types, number 173 in Lecture Notes in
Computer Science, pages 51-68. Springer-Verlag, 1984.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. Computing Surveys, 17(4):471-522, December 1985.

. David Evans. Static detection of dynamic memory errors. In Proceedings of the

ACM SIGPLAN’96 Conference on Programming Language Design and Implemen-
tation, pages 44-53, May 1996.

F.-J. Grosch and G. Snelting. Polymorphic components for monomorphic lan-
guages. In R. Prieto-Diaz and W.B. Frakes, editors, Advances in Software Reuse:
Selected Papers from the Second International Workshop on Software Reusability,
pages 47-55, Lucca, Italy, March 1993. IEEE Computer Society Press.

Carl A. Gunter. Semantics of Programming Languages. The MIT Press, 1992.

S. C. Johnson. Lint, a C program checker, July 1978.

S. C. Johnson and D. M. Ritchie. UNIX time-sharing system: Portability of C
programs and the UNIX system. Bell Systems Technical Journal, 57(6):2021-2048,
1978.

Robert O’Callahan and Daniel Jackson. Lackwit: A program understanding tool
based on type inference. In 19th International Conference on Software Engineering
(ICSE), pages 338-48, May 1997.

M. Siff, S. Chandra, T. Ball K. Kunchithapadam, and T. Reps. Coping with
type casts in c. Technical Report BL0113590-990202-03, Lucent Technologies, Bell
Laboratories, February 1999.

Michael Siff and Thomas Reps. Program generalization for software reuse: From
C to C++. In Fourth ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 135-146, San Francisco, October 1996.

Geoffrey Smith and Dennis Volpano. Towards an ML-style polymorphic type sys-
tem for C. In 1996 European Symposium on Programming, April 1996.

Bjarne Steensgaard. Points-to analysis by type inference of programs with struc-
tures and unions. In Proceedings of the 1996 International Conference on Compiler
Construction, number 1060 in Lecture Notes in Computer Science, pages 136-150.
Springer-Verlag, April 1996.

