Program Generalization for Software Reuse:
From C to C++

Michael Siff and Thomas Reps
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706
{siff, reps}@cs.wisc.edu

Abstract

We consider the problem of software generalization: Given
a program component C, create a parameterized program
component C’ such that C’ is usable in a wider variety of
syntactic contexts than C. Furthermore, C’ should be a
semantically meaningful generalization of C; namely, there
must exist an instantiation of C’ that is equivalent in func-
tionality to C.

In this paper, we present an algorithm that generalizes C
functions via type inference. The original functions operate
on specific data types; the result of generalization is a col-
lection of C++ function templates that operate on parame-
terized types. This version of the generalization problem is
useful in the context of converting existing C programs to
C++.

1 Introduction

“Software reuse” has often been touted as the key to im-
proving both the quality of software and the productivity
of software engineers. Reuse can take many forms — reuse
of specifications, designs, architecture, and code. However,
reuse in any of these forms has, at best, only partially lived
up to its promise.

This paper focuses on a form of code-oriented software
reuse. A difficulty with achieving practical code-oriented
software reuse is that since each new application has slightly
different requirements, existing code is often too specific to
be efficiently adapted. Thus, the premise of our work is that
to support more effective code reuse what is needed are tools
to aid programmers with the task of adapting code to new
contexts.

We believe that one method for supporting software reuse
is program generalization. Generalization is a transforma-
tion of a program component C into a parameterized pro-
gram component C’ such that C’ is usable in a wider variety
of syntactic contexts than C. Furthermore, C’ should be a
semantically meaningful generalization of C; namely, there
must exist an instantiation of C’ that is equivalent in func-
tionality to C.

In this paper, we present an algorithm that discovers
possibilities for reuse in C functions: Given a collection

To appear in the Fourth ACM SIGSOFT Symposium
on the Foundations of Software Engineering, October
16-18, 1996, San Francisco, CA.

of C functions that operate on arguments of specific data
types, the result of generalization is a collection of C++
function templates that operate on arguments that have
parameterized types. The main idea behind the general-
ization algorithm is the use of type inference to discover
possibilities for reuse by identifying code that is “type in-
dependent”. To identify type-independent code, we discard
the standard C type system and replace it with a paramet-
ric polymorphic type system. Although the types inferred
by this system are “unsound” for the original C functions
— after all, C has no notion of polymorphic type — the
inferred types indicate what variables of the functions can
have their types “lifted” to depend on function-template ar-
guments. This exploits the fact that C++ performs type-
checking at template-instantiation time and does not permit
a template to be instantiated with a parameter of an inap-
propriate type.

The principles discussed in the paper can, for the most
part, be applied to any programming language. We focus
on a method by which C programs can be generalized to
“templatized” C++ programs. The choice to concentrate
on generalization from C to C++ is motivated by several
factors:

o C++ genericity features. While C’s lack of polymor-
phism makes it difficult to specify reusable code,
C++’s templates, class constructors, and operator
overloading make it suitable for creating reusable code.

o Practical needs. The conversion of existing C code to
C++ is a practical problem of current interest and
great economic importance. Although the C-to-C++
conversion problem is eased by the fact that C++ is
(essentially) an upwards-compatible extension of C,
there are still interesting issues that arise in such a con-
version process, in particular, how to discover places
in the code where the improved features of C++ can
be exploited. A particularly important instance of this
involves C++ templates: It would be desirable to have
a tool that converts existing C code to “templatized”
C++. The generalization technique described in this
paper offers a way to introduce templates, classes, and
constructors when C programs are ported to C++.

e FEase of transformation. The final step involved in cre-
ating the generalized C++ code is a straightforward
syntax-directed translation. The transformation need
only make changes to certain portions of the C code
being generalized: some base types are replaced by
template-argument types; constructors are inserted in

certain assignment expressions, etc. The remainder of
the code is unchanged.

The program-generalization problem can be character-
ized as follows:

A generalization of a program component C in
language L is a parameterized program compo-
nent C’ in language L' such that C' can be in-
stantiated to an L’'-program component that is
equivalent in meaning to C.

For instance, in Sections 2.2 and 5, we discuss the integer-
exponentiation function shown in Figure 1 and show how it
can be generalized to the exponentiation template shown in
Figure 2, in which a repeated “multiplication” step is used to
perform an “exponentiation” operation over domains other
than the integers. In this example, L is C, L' is C++,
component C is the function shown in Figure 1, and C’ is
the function template shown in Figure 2.*

int power(int base, int n)
int p;

p=1;

while(n > 0) {
P = p * base;
n--;

}

return p;

}

Figure 1: The power function.

template<class T> T power(T base, int n)

{

T p;

p = T(1);

while(n > 0) {
P = p * base;
n--;

}

return p;

}

Figure 2: A C++ power function template.

The main contribution of this paper is an algorithm that
transforms C functions to C++ function templates. The
algorithm has been implemented and tested on a variety of C
programs. The paper describes the generalization algorithm,
as well as the type-inference system for C on which it is
based.

Section 2 discusses the opportunities for generalization
that the algorithm is capable of identifying. Section 3 dis-
cusses the ways in which the generalization algorithm makes

1We actually depart slightly from the above definition of the gen-
eralization problem. For example, with Figures 1 and 2, template C’
can be instantiated to C' by mapping template argument T to type int.
However, in C++, instantiation of function templates is a “hidden op-
eration.” It is carried out automatically by the compiler without an
explicit directive furnished by the user. In contrast, because class
templates are instantiated explicitly, a generalization algorithm that
created class templates would match the above model exactly.

use of the declarations in the functions being generalized.
Section 4 addresses the problem of over-generalization and
describes some of the choices made in the generalization
algorithm to try to avoid creating overly general templates.
Section 5 presents the function-generalization algorithm and
illustrates it on the power example. Section 6 discusses the
implementation of the algorithm. Section 7 concerns related
work. Section 8 presents some suggestions for extending our
ideas.

2 Using Type Inference to Enable Gener-
alization: Sources of Polymorphism

The basic idea behind the program-generalization algorithm
is as follows:

We discard the standard C type system and re-
place it with a parametric polymorphic type sys-
tem. Type inference is carried out in a relatively
standard fashion [10], and then generalization is
performed by mapping free type variables in the
resulting type expressions to template parame-
ters.

As mentioned in the introduction, the types inferred during
this process are unsound with respect to C. However, our
goal is not to determine types for the original C code but to
generalize the code: We wish to determine which variables
in the C code are polymorphic and can therefore have their
types “lifted” to depend on function-template arguments.

The function-generalization algorithm takes advantage
of three main sources of polymorphism:

o Parametric polymorphism via operator overloading. C
does not support type-safe polymorphism. (Although,
a limited form of polymorphism can be achieved
through the use of void pointers, it is obtained at the
loss of type safety.) In order to have a “looser” type
system for C, the standard C operators are treated by
our system as operators with polymorphic types (i.e.,
universally quantified, or “generic”, types). This takes
advantage of the fact that the goal of function gener-
alization is to produce a function template in C++,
which is a language that supports operator overload-
ing. By “freeing” the standard C operators from their
monomorphic types, we are (sometimes) able to as-
sign user-defined functions polymorphic types. (The
type system can also deduce constraints that a certain
template argument must be of a type that is equipped
with a particular overloaded operator.)

o Constructor introduction. In keeping with the need for
a “looser” type system for C, assignments of the form
x = ¢, where c is a constant, are given special treat-
ment. Such statements are treated as an opportunity
to introduce a constructor, turning the statement into
z = T(c). The idea is that assignments of the form
z = c indicate that x should be given a value that is
based on ¢, rather than a strict requirement that the
value be c.

o Subtyping relationships between structures. Again, in
keeping with the need for a “looser” type system for
C, the standard notion of subtype between structures
is adopted (i.e., a subtype of a structure type s has

all the fields of s and possibly more). For the C-to-
C++ function-generalization problem, this is needed
in order to identify opportunities to create function
templates with structure arguments. (A C++ func-
tion template can be called with structure arguments
that contain more fields than just those accessed from
within the template’s body.)

These sources of polymorphism are discussed in greater
detail in the remainder of this section. Although all three are
related to issues that have been examined in previous studies
of type inference, there are various details that concern the
application of type inference to the problem of program gen-
eralization. (Some related issues, concerning differences be-
tween our approach to type inference and the ways in which
type inference has been traditionally formulated [6, 10, 11],
are discussed in Section 3.)

2.1 Parametric Polymorphism Via Opera-
tor Overloading

Parametric polymorphism captures certain kinds of com-
monalities among similar operations on different types. This
is a powerful mechanism for code-oriented software reuse. In
C, however, although a limited form of polymorphism can
be achieved through the use of void pointers, this is obtained
at the loss of type safety.

Our approach to the function-generalization problem ex-
ploits the fact that the goal of function generalization is
to produce a function template in C++, which is a lan-
guage that supports operator overloading. Although opera-
tor overloading is ordinarily synonymous with ad hoc poly-
morphism, in our work we make use of the C++ features
that support ad hoc polymorphism in a disciplined way: Op-
erator overloading is one of the mechanisms we use for ex-
pressing the commonalities deduced from the original C code
via a parametric polymorphic type system. In particular,
our system treats the standard C operators as operators with
polymorphic types (i.e., universally quantified, or “generic”,
types). By “freeing” the standard C operators from their
(mostly) monomorphic types, we are sometimes able to as-
sign user-defined functions polymorphic types (which in turn
allows us to generalize the functions to C++ function tem-
plates).

As an example, consider the code in Figure 3 to sort
an array of integers. An examination of the code reveals

void sort(int *list, int size)

{

int i, j, tmp;

for(i = 0; i < size; i++) {
for(j =i + 1; j < size; j++) {
if (list[j] < list[i]) {
tmp = list[j];
list[j] = 1list[il;
list[i] = tmp;
}
}
}
}

Figure 3: A function to sort an array of integers.

that there is only one feature, other than the declarations,

that makes it specialized for sorting integers; namely, the <
operator expects the values it receives when it compares two
elements of the array to be of type int. Ideally, we would
like the function-generalization algorithm to report that this
function can be generalized to the C++ function template
shown in Figure 4.

template <class T>
void sort(T *list, int size)

{
int i, j;
T tmp;

for(i = 0; i < size; i++) {
for(j = i+ 1; j < size; j++) {
if (list[jl < 1list[il) {
tmp = list[j];
list[j] = list[i];
list[i] = tmp;
}
}
}
}

Figure 4: A function template for sort.

The type system treats the standard C operators as op-
erators with polymorphic types. In this case, < has type
VYa.a x o — 1.2 At each occurrence of a standard opera-
tor, the generic type is instantiated in the usual way [10];
that is, the quantifiers are stripped off, and the body of the
type is instantiated with fresh type variables different from
all other type variables used elsewhere. Unification of type
expressions allows the system to deduce how certain types
are related to other types. For instance, the expression i
< size causes the generic type Va.a X a — ¢ to be instan-
tiated to, say, 8 X 8 — ¢, and unification deduces that i
and size must have the same type; however, i and size are
not required to have a specific monomorphic type, such as
int. (Because i is used in an array-index expression in the
sort function (i.e., list[i]), as analysis of the sort func-
tion progresses, i and size are ultimately discovered to be
of type ¢.)

The type system can also deduce constraints that a cer-
tain template argument must be of a class that is equipped
with a particular overloaded operator. In the case of Fig-
ure 4, class T must have a < operator. This captures the no-
tion that the sort algorithm requires only that a comparison
operator < be defined for the type of the array’s elements.
(It also exploits the fact that C++ performs type-checking
at template-instantiation time; the C++ compiler will not
permit the template to be instantiated unless the class is
equipped with an appropriate overloaded < operator.)

2.2 Constructor Introduction

The type system gives special treatment to assignments of
the form x = ¢, where ¢ is a constant. This is motivated
by the fact that using just operator overloading and struc-
ture subtyping as the basis for inferring types does not yield
a powerful enough generalization algorithm. In particular,

2The symbol : denotes “monomorphic type”. For the moment,
think of ¢ as int; ¢ is discussed further in Section 3.

a reason why many functions cannot be adequately gener-
alized using such a type-inference system is because they
contain expressions that assign numerical constants to vari-
ables.

To understand the issue, consider the power function
shown in Figure 1 (see page 2). The function takes two inte-
ger arguments, base and n. The result is base raised to the
nth power. The same repeated- “multiplication” algorithm
could be used to perform an “exponentiation” operation over
domains other than the integers. Not only are floating-point
numbers a possibility, but so are more complex data types,
such as matrices and complex numbers.

Unfortunately, if generalization methods are based solely
on traditional type-inference methods, we are unable to gen-
eralize power. Traditional type-inference systems would use
the expression p = 1 as grounds for deducing (via unifi-
cation) that p’s type is int (and the expression n > 0 as
grounds for deducing that n’s type is int). The upshot is
that power, and functions like it, would not be generalized
using a type-inference system based solely on operator over-
loading and structure subtyping.

For this example, a more desirable outcome would be for
generalization to produce a function template that works on
bases of any type that supports a “multiplication” operator
(where “multiplication” does not necessarily have to be a
numeric operation) and that have a suitable “unit” value
(i-e., an element corresponding to 1).

Our approach is to introduce some additional flexibility
into the way type inference is performed for assignment ex-
pressions: If the value being assigned (i.e., the right-hand
side) is a constant expression, then a constructor of a C++
class can be introduced. In essence, this says that the vari-
able being assigned to (i.e., the left-hand side) is of a type
that is either the originally declared type (in which case the
constructor may be thought of as the identity function) or
of a class that has a constructor that maps ¢ to some value
of the class. This approach captures the notion that assign-
ment statements of the form x = ¢ indicate that x should be
given an initial value that has some value based on c rather
than a strict requirement that the value be c.

Figure 2 (page 2) shows a C++ function template de-
rived from the power function via generalization.

In the case that assignment statements are of a more
complicated form, such as £ = e, where e is not a con-
stant expression, constructors are not introduced; instead
the types of the left-hand and right-hand sides are con-
strained to be the same. Constructors could be introduced
here, but this might cause over-generalization. That is, if
too few type constraints are imposed by assignments, then
almost every argument of a function would be generalized
into a template argument, and the resulting template func-
tion is likely to be incomprehensible. (Over-generalization
is discussed further in Section 4.)

2.3 Structure Subtyping

Structure subtyping allows us to generalize functions that
deal with container structures such as sets, stacks, and
queues. We adopt the standard notion of subtype between
C structures (based on the presentation of record subtyping
in [2]): The subtype relation is the trivial relation (i.e., t is
a subtype of ¢’ if and only if t and ' are the same type) for

all types except structures;® a structure type s is a subtype
of another structure type s’ if, for every field / of type ¢’ in
s', 1 is a field of type t in s and ¢ is a subtype of t'. Type
s may contain additional fields that do not occur in s’ and
still be a subtype of s'. Thus, an instance of s has at least
as much information, and perhaps more information, than
an instance of s’. An s value can always be thought of as
an s’ value by projecting on the common fields.
Consider the following linked-list structure:
struct IntList {
int i;
struct IntList *next;

Now consider a function that, given a struct IntList *,
returns the value of the i field of the next element in the
list (ignoring checking for null pointers):

int getNextVal(struct IntList *node)

{

return (node->next->i);

In C++, a function template that has a parameter with a
structure type can be called with structure arguments that
contain more fields than just those accessed from within
the template’s body. The C++ compiler uses a structure-
subtyping rule at template-instantiation time when it checks
whether a template is being instantiated with arguments
of the appropriate types. Thus, to be able to identify op-
portunities to create such function templates, the function
generalizer also needs to use structure subtyping.

By using structure subtyping, the generalizer deduces
for the example code given above that the argument type
can be a pointer to any structure that has a next field and
an i field. Function getNextVal is then generalized to the
function template shown below:

template <class T>
int getNextVal(T *node)

return (node->next->i);

Implicit in the template is that T is a structure that has a
next field that is a pointer to a structure that has an i field
of type int. Because struct IntList is a subtype of the
(implicit) structure type, a struct IntList * can be used
as an argument to getNextVal.

3 Polymorphism, Monomorphism, Decla-
rations, and the “Valid-Code Assump-
tion

Because in our context generalization involves two typed
languages, and a translation from one to the other, the goal
of type inference in our work is somewhat different from the
usual one. Ordinarily, type inference is treated as a problem
of showing that type annotations are completely superfluous.
Specifically, many type-inference problems can be cast in the
following framework, in which a typed language is related
to an untyped language [6, 10, 11]:

3As mentioned earlier, and discussed in detail in Section 3, the
type system uses a single symbol ¢ to represent monomorphic types,
and thus it need not consider any of the various arithmetic types
(i.e. char, int, long, double, etc.) to be related as subtypes of one
another.

Suppose L is a typed language, L' is a related un-
typed language, and “erasure” function Erase :
L — L' removes type annotations from terms of
L. Given L, L', Erase, and a term t' € L', the
type-inference problem is the problem of discov-
ering a term ¢t € L such that Erase(t) = t'.

In other words, type inference is traditionally a problem of
recovering types when all information in the declarations is
ignored.

However, for a language like C, in order to distinguish
among multiple uses of the same identifier in different scopes,
a type-inference system does need to consider the declara-
tions. In addition, it needs to examine the declarations to
obtain information that cannot be obtained in any other
way, such as storage-class, type-qualifier, and arithmetic-
precision information, which in general cannot be deter-
mined by context. Consequently, in contrast to the way
type inference is traditionally formulated, our type-inference
algorithm relies on what we will call the “Valid-Code” As-
sumption:

We assume that the input files containing the
program fragment to be generalized compile with-
out error according to the ANSI standard.

The Valid-Code Assumption changes the character of the
type-inference problem somewhat. In particular, the type-
inference algorithm need only be concerned with the question
of whether an ezpression has monomorphic type or poly-
morphic type. Because inconsistencies between monomor-
phic types have already been checked for by the C com-
piler, there is no need for them to be rechecked by the type-
inference algorithm (and there is also no need for the actual
monomorphic types to be tracked during type inference).
The Valid-Code Assumption also allows us to ignore issues
about implicit type conversions and promotions that can
occur among arithmetic types [8, pages 197—202]. For this
reason, the type system uses a single symbol, ¢, to repre-
sent monomorphic types. (Most other type-inference sys-
tems have collection of different monomorphic types, e.g.,
int, float, int — float, etc.)

Type ¢ is the one “base type” of the type system. In most
polymorphic type systems, all base types are non-functional
types (e.g., int, float, etc.). In contrast, in our type system
¢ also represents monomorphic functional types (e.g., int —
int, int — float, etc.).

The Valid-Code Assumption has two important conse-
quences:

e After type inference has been performed, any expres-
sion whose type is ¢ can be given the type that the C
compiler would have assigned to the expression. For
example, suppose that f is a function declared to be
of type int — float. The type-inference algorithm
might deduce that f has a polymorphic type, say
Yaf.a. — B; however, if it deduces instead that f has
type ¢, the generalizer treats f as having the functional
type int — float.

e It is always safe for the type system to fall back on
¢ because we know that the C compiler was able to
assign some type to each subexpression.

The Valid-Code Assumption also helps with some other
issues that arise in performing type inference on C programs:

o Without using type information from declarations, it
would be difficult to resolve the types of operators that
are overloaded in C. In particular, pointer arithmetic
poses a problem. For example, the expression x + y
could refer to pointer addition or numeric addition.
In the case of pointer addition, the result and exactly
one of the arguments should be pointers, and the other
argument should be int. In the case of numeric addi-
tion, the result and both arguments should be of nu-
meric types. In this situation, the part of the system
that generates initial type assignments for the type-
inference algorithm consults the original declarations
of x and y: If x is a pointer and y numeric, then + is
treated as Va.a x ¢ — a; if y is a pointer and x nu-
meric, then + is treated as Va.t x @ — «; if x and y
are both numeric, then + is treated as Va.a x a — a.

e The Valid-Code Assumption also helps us to deal with
a few quirks of the C++ function-template mecha-
nism. The issue is that inferred types are sometimes
more general than the C++ template mechanism can
handle. Because of the Valid-Code Assumption, in
these cases (which all involve local variables and func-
tion return types), we can assign these entities the
types they had in the original C code.

This issue is illustrated by the getNextVal example
from Section 2.3. Type inference deduces that the
type of the i field of T is polymorphic. Unfortunately,
due to the limitations of the C++ function-template
mechanism, we cannot generalize getNextVal to have
a template parameter that stands for the return type.
In particular, C++ function templates are subject to
the following restriction:

Each template argument must affect the type
of at least one of the function arguments [16,
page 280].

Nor does C++ offer any way of expressing “the type
of the i field in class T”. We must therefore design the
generalization system so that in cases when the return
type of a function is determined to be a polymorphic
type that is independent of the types inferred for the
function arguments, the return type in the function
template is restricted to be the return type given in
the original declaration.

Similarly, type inference may sometimes deduce that
local variables have polymorphic types that are in-
dependent of the function’s argument types. Again,
because of the restriction cited above, the generalizer
cannot give such variables polymorphic types. Instead,
the generalization algorithm restricts the types of these
local variables to the types they had in their original
declarations.

The inability to handle polymorphic return types is a
limitation that, in some cases, can hamper the ability of our
algorithm to create appropriate generalizations of functions.
The inability to handle polymorphic local variables is less of
a limitation: Local variables whose types are independent of
the argument types are often an indication that the variables
are being misused or perhaps not used at all.

Some of these problems will disappear when we extend
our techniques to handle a related generalization problem,

that of creating class templates rather than function tem-
plates. For example, it is not a problem to have a mem-
ber function whose return type is both (i) polymorphic and
(if) independent of the types inferred for the function’s ar-
guments: The return type can be an additional argument of
the class template.

The topic of generalizing programs to create class tem-
plates is beyond the scope of this paper; however, the fol-
lowing example, adapted from [16, pages 256-257], demon-
strates how the generalization paradigm could be used to
transform C++ classes into class templates: A class repre-
senting a bounded stack of integers is defined in Figure 5.
(For simplicity, the stack ignores such issues as underflow
and overflow.)

class stack {
private:
int *sp;
public:
stack(int size) { sp = new int[sizel; }
void push(int i) { *sp = i; sp++; }
int pop() { sp-—; return (*sp); }

Figure 5: class stack: A simple stack of integers.

The constructor stack creates an empty stack with space
allocated for size integer elements. The class template
stack, shown in Figure 6, is what would be created via class
generalization. Notice that the sole template argument, T,
is the type of the element stored in the stack. The fact that
the size argument of the stack constructor is used to allo-
cate an array in the new expression is what restricts size’s
type to be int.

template <class T>
class stack {
private:
T *sp;
public:
stack(int size) { sp = new T[sizel; }
void push(T i) { *sp = i; sp++; }
T pop() { sp——; return (*sp); }

Figure 6: class stack: A class template for stacks.

4 Restraints on Polymorphism and
the “Over-Generalization” Problem

This section concerns the problem of over-generalization,
and describes some of the choices made in the generaliza-
tion algorithm to try to avoid creating overly general tem-
plates. These choices are aimed at introducing restraints on
the amount of polymorphism that is identified. If too many
opportunities are provided for generalization, then almost
every argument of a function will be generalized into a tem-
plate argument, which has the danger that the results will
be difficult to understand. The chief restraints on polymor-
phism that we impose are as follows:

e Constructor introduction is limited to constants occur-
ring alone on the right-hand side of assignment expres-
sions.

e Unary operators are given either the type Va.a — «
or ¢ — i, rather than VafB.a — .

e Binary operators are given either the type ¢ X ¢ — ¢,
Ya.a xa — 1, or Va.axa—a, rather than
YaB.a x 8 — a, YaB.a x B — 3, or Yafy.a x 8 — .

The decision to limit constructor introduction to con-
stants occurring alone on the right-hand side of assignment
expressions is, admittedly, somewhat arbitrary. Our feeling
was that there are expressions in which we do not wish to in-
troduce constructors, such asn > 0in power. It is clear that
some kind of rule to limit constructor introduction is needed.
For example, it is not clear whether the generalization of
x + (1 + 2) shouldbex + (T(1) + T(2)),x + T(1 + 2),
or x + T(U(1) + U(2)). To prevent such ambiguities, we
conservatively limit constructor introduction to just the one
kind of context.

We assign the following types to the standard C opera-
tors:

1. Comparison operators: >, <, ==, !=, >= <= are given the
type: Ya.a x a — t. The decision that the result type
of comparison operators is ¢ was motivated by the fact
these expressions are often used as “booleans” in con-
trol expressions of if, while and for statements. The
decision to restrict these binary operators to operands
of a single type variable stemmed from the desire to
capture the constraint that like-quantities be compared.
It is also an effective way to prevent over-generalization.
For example, in power, n is constrained to be of type
int because it is compared with 0.

2. Binary logical operators: && and || are given the type
¢ X ¢t = ¢. The motivation behind the restraints on the
type of the logical operators is similar to that for the
restraint on the result type of comparison operators.
Logical operators are frequently used in control ex-
pressions and their operands are often the results of
comparisons.

3. Binary arithmetic operators: *, +, =, /. % |, & =, <<,
>> are given the type Ya.a X @ — a. The decision to
restrict these binary operators to a type quantified over
a single type variable was motivated by the desire for
their generalizations to have the same type homogene-
ity that the operators have in C (where they have the
type, numeric X numeric — numeric).

4. Unary operators: ++, —-, - = are given the type:
Va.a — a. The unary logical operator ! is given the
type ¢ — ¢. The address-of operator & and the derefer-
ence operator * are given the types, Va.a — a ptr and
VYa.a ptr — a, respectively.

These measures all help to prevent the creation of overly
general templates. However, it is still possible for over-
generalization to occur. For instance, consider the version
of the power function shown in Figure 7 [8, page 25]. This
version is equivalent to the function given in Figure 1, but
has a second local variable, i, which is used as the iteration
variable in the loop. Because the comparator <= is applied to
two variables in this version (namely, i and n), rather than
a variable and a constant, as in Figure 1, the generalization
of Figure 7 results in a template with two type parameters,
as shown in Figure 8.

When instantiated with integer arguments, this template
behaves as expected. However, the second template parame-
ter appears to be superfluous. The disadvantage of having i
and n be of type other than int is that it makes it harder to
understand what the function template accomplishes, and
it is not clear that there are any offsetting advantages to
having this general a template.

This kind of problem could be rather serious when at-
tempting to create libraries of templates using generaliza-
tion. If function templates have too many parameters, it
may become difficult to understand how they are intended
to be used.

‘We are currently investigating techniques to prevent over-
generalization. One possibility is to allow the user to supply
directives to “anchor” a variable’s type. For example, the
parameter n in power might be declared as $ANCHOR int n,
resulting in a one-parameter template that has the header
template <class T> power (T base, int n).

int power(int base, int n)

{

int i, p;

p=1;

for(i = 1; i <= n; i++)
P = p * base;

return p;

}

Figure 7: The power function with two local variables.

template <class TO, class T1>
power (TO base, T1 n)
{

T1 i;

TO p;

p = TO(1);

for(i = T1(1); i <= n; i++)
P = p * base;

return p;

}

Figure 8: A C++ template for power function with two local
variables.

5 An Algorithm to Generalize C Functions

This section concerns the algorithm for function generaliza-
tion. The steps of the algorithm are depicted in Figure 9.

5.1 Name Analysis and Initial Type As-
signment

After the program fragment’s abstract syntax tree is con-
structed, it is first subjected to name analysis: Each name
used in the program fragment is resolved to the appropriate
declaration. A type environment is then created in which
each name is assigned an initial type. Each declared vari-
able is assigned a unique type variable. Functions declared
without definition (function prototypes) are assigned their

declared types. User-defined functions are assigned poly-

morphic function types, quantified over the type variables

occurring in their argument and return types. The type en-

vironment produced for the power example is shown below:
[power: Voao,o1,a2.c1 X a2 = ao,

base: Qaq,
n: a2,
p: as]

5.2 Type Analysis

Type inference is employed to determine the relationships
among the type variables introduced during name analysis.
The type-inference system involves satisfying constraints
among types and type variables. As discussed in Section 3,
the Valid-Code Assumption simplifies the type-inference task
in the following ways:

e There is only one monomorphic type in the type sys-
tem, denoted by ¢, and, because we know that the C
compiler was able to assign some type to each subex-
pression, it is always safe for the type system to fall
back on ¢.

o After type inference has been performed, any expres-
sion whose type is ¢ can be given the type that the C
compiler would have assigned to the expression.

The goal of the type-inference phase of function gener-
alization is to infer appropriate types for every function in
the input, some of which may be polymorphic. The type-
inference algorithm is a “worklist” algorithm. A function
stays on the the worklist until a most-precise type (i.e., most
polymorphic type, consistent with the context given by the
rest of the program component) has been inferred. A sketch
of the algorithm is as follows:

1. Put every function on the worklist.

2. Until the worklist is empty or an entire round of pro-
cessing is completed that does not introduce any
changes, examine each function on the worklist in
round-robin fashion and perform the following steps:

(a) Solve the type constraints of the body of f to
sharpen the estimated types for the names used
in f.

(b) If f makes use of any function (including itself)
that is on the worklist, keep f on the worklist
(at the “tail”). Otherwise, remove f from the
worklist.

3. For each function f:

(a) If f’s return type has been inferred to be poly-
morphic over one or more type variables that do
not occur in the types inferred for f’s arguments,
then constrain the return type to be ¢.

(b) For each local variable z of f, if z’s type has been
inferred to be polymorphic over one or more type
variables that do not occur in the types inferred
for f’s arguments, then constrain z’s type to be
L

4. If any constraints were added in Step 3, reinitialize
the worklist with all of the functions, and perform an
additional phase of round-robin iteration (as in Step
2).

analysis

name c type
TE analysis

¢ C to C++ o
TE transformation

Figure 9: In this process, TE and TE' are type environments — mappings of program variables to type expressions. The input
C need not be a complete C program; it can be any number of C functions contained in files. All we assume is that C’s files

compile without error according to the ANSI standard.

Initially, every function is placed on the worklist. When
the algorithm enters the body of function f, f is removed
from the worklist. If, in processing the body of f, it is deter-
mined that f’s type is dependent upon the type of a function
g that has “incomplete” type (i.e., g is on the worklist) then
f is put back on the worklist. The algorithm proceeds until
either the worklist is empty or, after one complete iteration,
the worklist and the types of all functions on the worklist
remain the same. This allows type inference to be carried
out on program components that include forward references
and mutual recursion.

The algorithm terminates because type expressions are
regular terms, and there are only a finite number of such
terms that can be constructed. We believe the worst-case
complexity of the running time of the algorithm to be poly-
nomial, but do not have a proof as yet.

The Type System

Type expressions are of the form:

T u= |a|r ptr|(m,...,Tn) = 7|
[@]{l1 : 71,...,lk : 7o }|Typedef (v,T)

The monotype, ¢, is discussed in Section 3. « is a mem-
ber of an unbounded set of type variables. The unary type
constructor ptr represents pointer types. There is no tuple
type (since there is no tuple type in C). The arrow (—) rep-
resents a class of type constructors, one for each arity n. A
type expression of the form [a]{l; : 71,...,l : 1} represents
a structure type with & fields. The type is tagged with a type
variable .. The tag is necessary for inferring subtypes of the
structure type and for representing self-referential structure
types. A type expression of the form Typedef(v,7) is much
like a typedef in C. It assigns a new type name v to the
type 7. These “named” types allow nested structure types
to be represented in a compact form. Through the use of
named types, it can be shown that any type formed during
type inference can be represented by a type expression that
is polynomial in the length of the program. Type schemes
are of the form:

o == 71|Va.o

A type environment, TE, is a map from program variables
to type schemes.

As demonstrated in [17], polymorphic type inference in
the presence of imperative programming features can make
a Milner-style type system unsound. The type unsoundness
arises in the use of polymorphic references — it is unsafe to

treat the same memory cell as two different types. For exam-
ple, in order to maintain type safety in ML, type variables
must be divided into two classes, applicative and imperative.

It is unnecessary to complicate the type system used for
the generalization of C programs with a distinction between
imperative and applicative types. There are two cases to
consider:

1. C has no explicit polymorphism, and the only way
a program can cause a memory cell to hold values of
different types is via a type cast. If a program contains
casts, we make no guarantees about the type safety of
the resulting template (but the template will be no
more unsafe that the original function).

2. If a function contains no casts then the generated C++
template also contains no casts. Because function tem-
plates are instantiated separately for each use of dis-
tinct monomorphic types, memory cells can never hold
values of multiple types. Thus, if P is a type-safe
C program, then P’, its generalization, is a type-safe
C++ program.

Type-Inference Rules

‘We have developed a set of type-inference rules in the style
of [4]. For example, the rule for function application is:

TEF f:(T1,...,7n) > 7, TEF €1 :71,...,TEF € : T
TE F f(e1,...,en): T

The rules can be used to formalize the argument that
the type-inference system is sound: The generalization of a
type-safe C program is a type-safe C++ program. Rather
than bog down the reader with pages of type-inference rules
(and to maintain the spirit of the definitions of C and C++),
we present the type-inference rules in words rather than for-
mulas.

The type system incorporates the following constraints:

e Control statements impose the restriction that the type
of the control expression be ¢. Control expressions
are found in if, while, for, switch, and case state-
ments. For example, the statement if (flag) break;
restricts flag’s type to be ¢.

o Statements of the form return e require that the type
of e coincide with the formal return type of the en-
closing function. In the power example, the statement
return p restricts p’s type be the same as the return
type of power (i.e., ap = as).

o If an assignment expression is of the form = = ¢, where

¢ is a constant expression and x is a variable, then a
constraint is recorded in the environment that indi-
cates that the type of z either matches the type of ¢ or
has a constructor that takes a single argument whose
type is the original declared type of z. For example, in
power, the expression p = 1 constrains the type of p to
be either an integer or a class C that has a constructor
with signature C(int).

At first glance, this may seem wrong: Shouldn’t the
constructor take an argument that is the type of ¢?
This is not possible because the type of ¢ is ambiguous.
For example, in the expression z = 100, 100 could
be a char, int, short int, unsigned short int, etc.
However, because of the Valid-Code Assumption, it
must be that the type of 100 is compatible with the
type of x.

Assignment expressions of the form e = €', where €’ is
not a constant, impose the requirement that the type
of e be the same as the type of e’. Implicit type con-
versions and promotions that can occur among arith-
metic types are ignored. As mentioned above, such
type distinctions do not affect generalization. For in-
stance, even if i is declared to be of type int and f
is declared to be of type float, the expression f = i
causes the type of £ and the type of i to be the same

type.

Primitive operators have polymorphic function types,
as discussed in Section 4. In each expression involving
a primitive operator, the polymorphic type is instanti-
ated by stripping off the quantifiers and instantiating
the body of the type with fresh type variables that are
different from all other type variables used elsewhere.
For example, the * operator has type Va.a x a = a.
Thus, in power, the expression p * base requires that
p and base be of the same type, but does not restrict
that type to be monomorphic. Similarly, the expres-
sion n > 0 forces n and 0 to be of the same type, and
because 0 has type ¢ this forces n to have type ¢.

An indirection expression of the form *e constrains the
type of e to be 7 ptr, for some type 7. The result of
the expression is 7. Likewise, if e is of type 7 then the
result of an expression of the form &e is 7 ptr.

Function calls are treated much like primitive opera-
tors. The types of actual arguments are unified with
the types of the arguments of the function type. If the
function type is universally quantified, it is instanti-
ated with fresh type variables prior to unification with
the actuals. For example, if £ has type Va.a x ¢t — ¢
then the expression f(a, b) has type ¢, the type of a
is unified with a new type variable, and the type of b
is constrained to be ¢.

For an expression of the form (*e)(zi,...,z,), the
type of e is constrained to be a pointer to a function
of arity n.

The type of a function with variable length argument
list is taken to be «¢.

In C, array expressions of the form eg[e;1] are trans-
lated into the expression *(eg + e;). Suppose a is

declared an array and i is declared an int. Because
of the translation, a[i]l and il[a] are equivalent ex-
pressions. Because of the Valid-Code Assumption, it
is always possible to distinguish between which expres-
sion is being used as the index and which as the array.
For example, al[i] restricts the type of i to ¢ (since
it is being used as the index) and type of a to be a
pointer type.

The types of expressions involving void pointers are
constrained to be ¢. This includes variables and func-
tions declared to be of type void * as well as casts to
void *. The use of void *is an indication that despite
the Valid-Code Assumption, the program may have
run-time type errors. As a trivial example, suppose x
is declared to be a void pointer. Then the expression
x = &x is “valid”, but cannot be typed generically in
our system.

In C, there are two kinds of expressions that access
fields of structures: e.l and e->I. The latter form is
just syntactic sugar for *(e) .l and so we focus on the
former. For each occurrence of an expression e.l, there
are four possibilities:

1. If e’s type has been inferred to be a structure type
with an [-field of type 7, then e.l has type 7.

2. If e’s type has been inferred to be a structure
type o that does not have an [-field, then o is
constrained to be a structure type that has the
fields of o plus an [-field of type 3, where 3 is a
fresh type variable. The expression e.l has type

3. If e’s type is the type variable o, then a is con-
strained to be a structure type that has an [-field
of type B, where 3 is a fresh type variable. The
expression e.l has type (3.

4. If e’s type is ¢, then the Valid-Code Assumption
ensures that this is a legal use of e.l. The expres-
sion e.l has type ¢.

int matchAB(struct Record *recO,
struct Record *recl)

int i;

i = (recO0->a recl->a) &&
(recO0->b == recl->b);
return i;

}

Figure 10: The MatchAB function.

As an example, consider the matchAB function in Fig-
ure 10. The function takes two structures as arguments
and returns “true” if the structures agree on both their
a-fields and b-fields. Type inference on this function
proceeds as follows:

1. Initially, we have the type environment:
[matchAB: Vao,a1,q2.01 X a2 = ao,
recO: a1,
recl: s,
i: a3l

2. The expression recO->a constrains «a; to be a
structure with an a-field that has type a4, a fresh
type variable.

3. recl->a constrains a» to be a structure with an
a-field that has type as, a fresh type variable.

4. recO0->a recl->a constrains a4 and as to be
equal. (The result type of the equality operator
is ¢.)

5. The expression recO->b constrains «a; to be a
structure with not only an a-field, but also a b-
field that has type as, a fresh type variable.

6. recl->b constrains a2 to be a structure with not
only an an a-field, but also a b-field that has type
ar, a fresh type variable.

7. recO->b == recl->b constrains ag and a7 to be
equal.

8. The assignment to i constrains as to be ¢, because
&& is considered to have type ¢ X ¢ — ¢.

9. return i constrains ag to be ¢, since i’s type has
been constrained that way.

10. The final type environment is as follows:
[matchAB: Vau,as,00 < {a:as,b:as},
o1 =3 {a:asq,b:as}t.00 X o1 = ¢,
recO: oo X {a:a4b:as},
recl: o1 X {a:a4b:as},
i:]

Thus, despite the declaration of both a and b as struct
Record *, this function generalizes to allow two struc-
tures of different types to be called by matchAB, assum-
ing that they both have a and b fields with compatible
types.

o Unions are typed just as structures.

e Conditional expressions of the form ey ? e1 : e2
impose the restrictions that the type of eo be ¢, the
type of e1 be the same as the type of ez, and that the
result type be the same as the type of e; and es.

e In a cast expression of the form (7)e (where 7 is a
type other than void #), the cast expression itself is
given type ¢, but e is allowed to be any type. Type
safety is not lost by this because the C++ compiler
checks that the type cast makes sense at template-
instantiation time. The template imposes an implicit
constraint that e’s value be one that is able to be con-
verted “legally” to a value of type 7. For example, a
function template containing a cast (int)e can only
be called with arguments that have an int conversion,
either predefined, as one has for arithmetic and pointer
types, or explicitly defined (see [16, page 232]).

The result of type inference on power is summarized as
follows:

e a3 can be constructed from int
® (g = Q1 = Q3

® oy = int

10

5.3 C to C++4 Transformation

A C function is transformed into a C++ function template
as follows: For each type variable occurring in the types in-
ferred for the arguments, a fresh type identifier is generated.
If no type variables occur, then the function remains as is.
Otherwise, the function is made into a template with a tem-
plate argument for each of the new type identifiers. In the
power example, base has type ap and n has type int, so one
new type identifier is created, T. The function is given the
template header template <class T> power (T base, int
n).

For each variable declaration occurring within the func-
tion body, the variable’s inferred type is considered. If that
type contains any of the type variables occurring in the ar-
gument list, then it is converted to a C++ type with each
such type variable replaced by the corresponding type iden-
tifier. If no such type variables occur in the inferred type,
the declaration remains as is.

Statements and expressions are transformed recursively
via a straightforward syntax-directed translation. All state-
ments and expressions remain the same in the template as
in the original function body except for expressions of the
form x = ¢, where c is a constant expression and z’s type
is a type variable a. If T is the type identifier associated
with a as described above, then the assignment expression is
converted to z = T'(c), where T is a C++ class constructor.
For instance, in the power example, p = 1 is transformed
intop = T(1).

5.4 Signatures

The generalization process produces information about re-
strictions on the types of template arguments. For example,
in the power function template, the type of base cannot be
just any type. It must have a constructor on integers and
have a binary * operator of type T'x T — T. Although
the C++ compiler infers such restrictions on template ar-
guments when checking each instantiation of the function
template, C++ does not provide a mechanism to allow us
to state such restrictions explicitly.

In addition to performing generalization per se (and cre-
ating appropriate function templates), we can also arrange
for the system to produce documentation about constraints
on the conditions under which the template can be instan-
tiated (e.g., by creating descriptive signatures in the form
of C++ comments of the template arguments). Signatures
describing type restrictions on template arguments can be
generated during the transformation phase of generalization
by keeping track of constructors that have been inserted
and operators that have been overloaded. In a case in which
generalization is employed to create a template library from
existing code, the signatures can be placed in the library’s
header file along with the function-template prototypes for
easy reference.

The signature of the power function template appears
below:

// power : T * int -> T
//'T :
// operator * : T * T -> T

// constructor T() int > T

6 Implementation and Results

We have implemented the C-to-C++ function-generalization
algorithm in Standard ML of New Jersey (version 108.5)
on a Sun Sparc running SunOS 4.1.3. The current imple-
mentation is a tool that requests a file name from the user
and outputs templatized C++ code. The input is a C pro-
gram component that (i) has been pre-processed so that
all include files are incorporated and all macros expanded,
and (ii) compiles without error or warning according to the
ANSI standard. The tool features an option to only produce
prototypes for templates that would be created, essentially
summarizing the work that can be done, which allows the
user to decide if it is worthwhile generalizing the input file.
The tool also produces statistics describing how many tem-
plates are generated out of how many possible functions and
the average number of template arguments.

The generalization examples used throughout this paper
have been produced by the implementation. Preliminary
results on larger examples appear promising. One test in-
volved an input file that provides library routines to support
the use of binary-decision diagrams (bdds). It consisted of
roughly one thousand lines of code and thirty-eight function
definitions. Twelve templates were generated, with an av-
erage of 1.6 template arguments. The templates allow the
same functions to be used on modified bdd structures that
have been augmented with additional fields.

A major inhibitor of generalization appears to be the use
of the standard I/O functions. Such functions cannot be
generalized because the source is not visible. Often times
the use of printf calls for debugging purposes prevent vari-
ables from being generalized. For one example we tried —
a program to determine whether or not a point is inside a
polygon — the program did not generalize at all because of
type casts and the use of the standard I/O library.

An example that generalized quite well is a representa-
tion of queues used in a thread library. The functions are
written in a modular style and this allows generalization
to proceed successfully. Templates functions were produced
that allow for queues to be formed with elements of any
type.

On the smaller examples tested, the generated function
templates were tested by calling them with arguments of the
originally declared types. The results were consistent with
the results of calling the original C functions with the same
arguments.

Some observations:

e The code fragments that produced the least general-
ization tended to make heavy use of global variables,
standard I/O functions, and type casts.

e Functions that modify the elements of structures gen-
eralize nicely, as do functions written in a modular
style.

e Over-generalization does not seem to be a big problem.

e Future versions of the generalization tool will have
to drop the requirement that input programs be pre-
processed. The tool should be able to restore macros
so that resultant programs remain “clean.”

11

7 Related Work

Although much has been written about the problem of soft-
ware reuse (for example, see [19, 9, 14]), including work
on identifying reusable components [3, 1], we are unaware
of previous work on the problem of automatically creating
polymorphic functions from monomorphic functions.

Our work may be contrasted with what is provided by
the NORA system, which also makes use of type inference
to support polymorphic components [5]. The paradigm in
NORA is to extend a base language (e.g., C, Pascal, Modula-
2) with a more powerful type system that permits fragments
to be given types and units containing unbound names to be
given types. In contrast, generalization involves elevating a
fully fleshed-out fragment into a polymorphic, reusable com-
ponent. In other words, whereas NORA supports the use of
polymorphic components, our goal is to provide support for
extracting such components from existing code.

Our work may also be contrasted with the signature
matching tool described in [20]. While that work also em-
ploys type inference to facilitate software reuse, it does so
by assisting the user in finding suitable code from software
libraries rather than automatically producing generalized
code. A signature matching tool might work nicely in con-
junction with the work described in this paper. A generalizer
could be used to create code to be placed into libraries and
the signature matcher could be used to retrieve generalized
code.

The idea of mixing polymorphism with C appears in sev-
eral places, among them [5, 15, 12]. [15] concerns a new
dialect of C that is polymorphic and type safe. This dif-
fers from our approach in that it is not aimed at adding
polymorphism to existing code. [12] uses polymorphic type
inference on existing C programs, but for determining infor-
mation about the transfer of values, as opposed to producing
reusable code.

8 Conclusions and Future Work

This paper has discussed the problem of C function general-
ization and given an algorithm that provides a way to trans-
form one or more C functions into C++ function templates.
However, there are a number of other possible varieties of
generalization problems, including the following ones:

o C structure generalization. The goal would be to trans-
form one or more structures in a C program or program
component into C++ class templates. Some fields
would become private members while others would be-
come public. Some functions that operate on these
structures would be transformed into member func-
tions, while others would become function templates.

Because C structure generalization would involve the
introduction of encapsulation, this version of the gen-
eralization problem raises some additional issues (and
is potentially a much more difficult problem).

o C++ class generalization. The goal would be to trans-
form a C++ class to a class template. Template argu-
ments would be determined by type inference on the
member data fields, both public and private. Member
functions would remain essentially the same, except
for the types of arguments, local variables, and return
values, which would also be determined by type infer-
ence.

The potential for combining program-generalization op-
erations with other program-transformation operations, such
as program slicing [18, 13, 7], has not escaped our attention.
In the scenario we envision, program slicing and generaliza-
tion would be used in concert to “mine” existing C software
for useful components. Slicing would be used to extract an
instantiated “proto-component”, which in general would be
made up of parts of several modules of the original system.
Generalization would then be used to convert the slice into
template functions or a class template.

Acknowledgements

The comments of Susan Horwitz on this work are greatly
appreciated.

This work was supported in part by the National Sci-
ence Foundation under grant CCR-9100424 and by the De-
fense Advanced Research Projects Agency under ARPA Or-
der No. 8856 (monitored by the Office of Naval Research
under contract N00014-92-J-1937).

References

[1] G. Caldiera and V. R. Basili. Identifying and analyzing
reusable software components. IEEE Comp., 24:61-70,
1991.

[2] Luca Cardelli and Peter Wegner. On understanding

types, data abstraction, and polymorphism. Computing

Surveys, 17(4):471-522, December 1985.

[3] A. Cimitile and G. Visaggio. Software salvaging and the

call dominance tree. J. Systems Software, 28:117-127,

1995.

[4] Luis Damas and Robin Milner. Principal type-schemes

for functional programs. In Ninth Annual ACM Sym-

posium on Principles of Programming Languages, pages

207-212, January 1982.

[5] F.-J. Grosch and G. Snelting. Polymorphic compo-

nents for monomorphic languages. In R. Prieto-Diaz

and W.B. Frakes, editors, Advances in software reuse:

Selected papers from the Second International Work-

shop on Software Reusability, pages 47-55, Lucca, Italy,

March 1993. IEEE Computer Society Press.

R. Hindley. The principal type-scheme of an object in
combinatory logic. Trans. AMS, 146:29-60, 1969.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26-60,
January 1990.

Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Prentice Hall, second edition,
1988.

[9

—

Hafedh Mili, Fatma Mili, and Ali Mili. Reusing soft-
ware: Issues and research directions. IEEE Transac-
tions on Software Engineering, 21(6), June 1995.

Robin Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences,
17:348-375, 1978.

[10]

12

[11] John C. Mitchell. Type systems for programming lan-
guages. In Handbook of Theoretical Computer Science,
Volume B, pages 365-458. The M.I.T. Press/Elsevier,
1990.

[12] Robert O’Callahan and Daniel Jackson. Detecting

shared representations using type inference. Technical

Report CMU-CS-95-202, Carnegie Mellon University,

September 1995.

[13] K.J. Ottenstein and L.M. Ottenstein. The program

dependence graph in a software development environ-

ment. In Proceedings of the ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Software

Development Environments, pages 177-184, 1984.

Rubén Prieto-Diaz and William B. Frakes, editors.
Advances in Software Reuse. IEEE Computer Society
Press, March 1993.

[14]

[15] Geoffrey Smith and Dennis Volpano. Towards an ML-
style polymorphic type system for C. In 1996 European
Symposium on Programming, April 1996. to appear.
[16] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 1991.

[17] Mads Tofte. Type inference for polymorphic references.
Information and Computation, 89:1-34, 1990.

M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, SE-10(4):352-357, July 1984.

(18]

[19] Mansour Zand and Mansur Samadzadeh. Special issue
on software reuse. J. Systems Software, 30(3), Septem-
ber 1995.

[20] Amy Moorman Zaremski and Jeannette M. Wing.
Signature matching: a tool for using software li-
braries. ACM Transactions on Software Engineering

and Methodology, April 1995.

