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ABSTRACT

Program slicing is a fundamental operation for many soft-
ware engineering tools. Currently, the most efficient algo-
rithm for interprocedural slicing is one that uses a program
representation called the system dependence graph. This
paper defines a new algorithm for slicing with system
dependence graphs that is asymptotically faster than the pre-
vious one. A preliminary experimental study indicates that
the new algorithm is also significantly faster in practice, pro-
viding roughly a 6-fold speedup on examples of 348 to 757
lines.

CR Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Tools and Techniques − programmer work-
bench; D.2.6 [Software Engineering]: Programming Envi-
ronments; D.2.7 [Software Engineering]: Distribution and
Maintenance − enhancement, restructuring; E.1 [Data
Structures] graphs

General Terms: Algorithms, Performance

Additional Key Words and Phrases: dynamic programming,
dynamic transitive closure, flow-sensitive summary informa-
tion, program debugging, program dependence graph, pro-
gram slicing, realizable path

1. INTRODUCTION

Program slicing is a fundamental operation for many soft-
ware engineering tools, including tools for program under-
standing, debugging, maintenance, testing, and integration
[26,13,15,10,6,4]. Slicing was first defined by Mark Weiser,
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who gav e algorithms for computing both intra- and inter-
procedural slices [26]. However, two aspects of Weiser’s
interprocedural-slicing algorithm can cause it to include
“extra” program components in a slice:

1. A procedure call is treated like a multiple assignment
statement “v1, v2, . . . , vn : = x1, x2, . . . , xm”, where the
vi are the set of variables that might be modified by the
call, and the x j are the set of variables that might be
used by the call. Thus, the value of every vi after the
call is assumed to depend on the value of every x j
before the call. This may lead to an overly conservative
slice (i.e., one that includes extra components) as illus-
trated in Figure 1.

2. Whenever a procedure P is included in a slice, all calls
to P (as well as the computations of the actual parame-
ters) are included in the slice. An example in which this
produces an overly conservative slice is given in Figure
2.

Interprocedural-slicing algorithms that solve the two prob-
lems illustrated above were given by Horwitz, Reps, and
Binkley [14], and by Hwang, Du, and Chou [16]. Hwang,
Du, and Chou give no analysis of their algorithm’s complex-
ity; however, as we show in Appendix A, in the worst case
the time used by their algorithm is exponential in the size of
the program. By contrast, the Horwitz-Reps-Binkley algo-
rithm is a polynomial-time algorithm.

The Horwitz-Reps-Binkley algorithm (summarized in
Section 2) operates on a program representation called the
system dependence graph (SDG). The algorithm involves
two steps: first, the SDG is augmented with summary edges,
which represent transitive dependences due to procedure
calls; second, one or more slices are computed using the
augmented SDG. The two steps of the algorithm (as well as
the construction of the SDG) require time polynomial in the
size of the program. The cost of the first step—computing
summary edges—dominates the cost of the second step.

In this paper we define a new algorithm for interprocedu-
ral slicing using SDGs that is asymptotically faster than the
one given by Horwitz, Reps, and Binkley. In particular, we
present an improved algorithm for computing summary
edges. This not only leads to a faster interprocedural-slicing
algorithm, but is also important for all other applications
that use system dependence graphs augmented with sum-
mary edges [5,18,7].

The new algorithm is presented in Section 3, which also
discusses its asymptotic complexity. The complexity of the
new algorithm is compared to that of the Horwitz-Reps-
Binkley algorithm in Section 4. Section 5 describes some
experimental results that indicate how much better the new



Example program Precise slice from “output(i)” Slice using Weiser’s algorithm
procedure Main

sum : = 0
i : = 1
while i < 11 do

call A(sum, i)
od
output(sum)
output(i)

end

procedure A(x, y)
x : = x + y
y : = y + 1

return

procedure Main

i : = 1
while i < 11 do

call A(i)
od

output(i)
end

procedure A(y)

y : = y + 1
return

procedure Main
sum : = 0
i : = 1
while i < 11 do

call A(sum, i)
od

output(i)
end

procedure A(x, y)

y : = y + 1
return

Figure 1. An example program, its slice with respect to “output(i)”, and the slice computed using Weiser’s algorithm.

Example program Precise slice from “output(i)” Slice using Weiser’s algorithm
procedure Main

sum : = 0
i : = 1
while i < 11 do

call Add(sum, i)
call Add(i, 1)

od
output(sum)
output(i)

end

procedure Add(x, y)
x : = x + y

return

procedure Main

i : = 1
while i < 11 do

call Add(i, 1)
od

output(i)
end

procedure Add(x, y)
x : = x + y

return

procedure Main
sum : = 0
i : = 1
while i < 11 do

call Add(sum, i)
call Add(i, 1)

od

output(i)
end

procedure Add(x, y)
x : = x + y

return

Figure 2. An example program, its slice with respect to “output(i)”, and the slice computed using Weiser’s algorithm.

slicing algorithm is than the old one: when implementations
of the two algorithms were used to compute slices for three
example programs (which ranged in size from 348 to 757
lines) the new algorithm exhibited roughly a 6-fold speedup.

2. BACKGROUND: INTERPROCEDURAL SLICING
USING SYSTEM DEPENDENCE GRAPHS

2.1. System Dependence Graphs

System dependence graphs were defined in [14]. Due to
space limitations we will not give a detailed definition here;
the important ideas should be clear from the examples. A
program’s system dependence graph (SDG) is a collection
of procedure dependence graphs (PDGs): one for each pro-
cedure. The vertices of a PDG represent the individual
statements and predicates of the procedure. A call statement
is represented by a call vertex and a collection of actual-in
and actual-out vertices: there is an actual-in vertex for each
actual parameter, and there is an actual-out vertex for each
actual parameter that might be modified during the call.

Similarly, procedure entry is represented by an entry vertex
and a collection of formal-in and formal-out vertices.
(Global variables are treated as “extra” parameters, and thus
give rise to additional actual-in, actual-out, formal-in, and
formal-out vertices.) The edges of a PDG represent the con-
trol and flow dependences among the procedure’s statements
and predicates.1 The PDGs are connected together to form
the SDG by call edges (which represent procedure calls, and
run from a call vertex to an entry vertex) and by parameter-
in and parameter-out edges (which represent parameter
passing, and which run from an actual-in vertex to the corre-
sponding formal-in vertex, and from a formal-out vertex to

1 As defined in [14], procedure dependence graphs include four kinds of
dependence edges: control, loop-independent flow, loop-carried flow, and
def-order. Howev er, for slicing the distinction between loop-independent
and loop-carried flow edges is irrelevant, and def-order edges are not used.
Therefore, in this paper we assume that PDGs include only control edges
and a single kind of flow edge.



all corresponding actual-out vertices, respectively).

Example. Figure 3 shows the SDG for the program of
Figure 2.

We wish to point out that SDGs are really a class of pro-
gram representations. To represent programs in different
programming languages one would use different kinds of
PDGs, depending on the features and constructs of the given
language. Although our running example and the experi-
ments reported in Section 5 use a very simple programming
language, the reader should keep in mind that we use the
term “SDG” in this generic sense; in particular, our results
should not be thought of as being tied to the restricted lan-
guage used in our examples. The superiority of the algo-
rithm given in Section 3 over previous interprocedural slic-
ing algorithms will almost certainly hold no matter what the
features and constructs of the language to which it is
applied.2

2.2. Interprocedural Slicing

Ottenstein and Ottenstein showed that intraprocedural slices
can be obtained by solving a reachability problem on the

Edge Key

control edge

flow edge
call,
parameter−in, or
parameter−out
edge

ENTER Main

output (      )sumsum :=0 i := 1 while i <11 output (  )i

x       sum
in

:= y       i
in

:= sum     x
out

:=

Add  call

ENTER Add

x     x in:= x         x
out

:=y     yin:= x     x   y:= +

y    
in

:= 1

Add  call

x       i
in

:= i     xout:=

Figure 3. The SDG for the program of Figure 2.

2The issue of how to create appropriate PDGs/SDGs is orthogonal to the
issue of how to slice them. Previous work has investigated how to build
dependence graphs for the features and constructs found in real-world pro-
gramming languages. For example, previous work has addressed arrays
[3,27,21,11,23,24], reference parameters [14], pointers [20,12,8], and non-
structured control flow [2,9,1].

PDG: to compute the slice with respect to PDG vertex v,
find all PDG vertices from which there is a path to v along
control and/or flow edges [22]. Interprocedural slices can
also be obtained by solving a reachability problem on the
SDG; however, the slices obtained using this approach will
include the same “extra” components as illustrated in col-
umn 3 of Figure 2. This is because not all paths in the SDG
correspond to possible execution paths. For example, there
is a path in the SDG shown in Figure 3 from the vertex of
procedure Main labeled “sum : = 0” to the vertex of Main
labeled “output(i).” Howev er, this path corresponds to an
“execution” in which procedure Add is called from the first
call site in Main, but returns to the second call site in Main,
which is not a legal call/return sequence. The final value of
i in Main is independent of the value of sum, and so the ver-
tex labeled “sum : = 0” should not be included in the slice
with respect to the vertex labeled “output(i)”.

Instead of considering all paths in the SDG, the computa-
tion of a slice must consider only realizable paths: paths that
reflect the fact that when a procedure call finishes, execution



returns to the site of the most recently executed call.3

Definition (realizable paths). Let each call vertex in SDG
G be given a unique index from 1 to k. For each call site ci ,
label the outgoing parameter-in edges and the incoming
parameter-out edges with the symbols “(i” and “)i”, respec-
tively; label the outgoing call edge with “(i”.

A path in G is a same-level realizable path iff the
sequence of symbols labeling the parameter-in, parameter-
out, and call edges in the path is a string in the language of
balanced parentheses generated from nonterminal matched
by the following context-free grammar:

matched → matched (i matched )i for 1 ≤ i ≤ k
| ε

A path in G is a realizable path iff the sequence of sym-
bols labeling the parameter-in, parameter-out, and call edges
in the path is a string in the language generated from nonter-
minal realizable by the following context-free grammar
(where matched is as defined above):

realizable → realizable (i matched for 1 ≤ i ≤ k
| matched

Example. In Figure 3, the path

x     x   y:= +y     yin:=

ENTER Add

i := 1

ENTER Main

while i <11

y    
in

:= 1x       i
in

:= i     xout:=

output (      )sumsum :=0 output (  )i

x       sum
in

:= y       i
in

:= sum     x
out

:=

Add  call

x     x in:= x         xout:=

Add  call

Key

vertex visited
during pass 1

edge traversed
during pass 1

vertex visited
during pass 2

edge traversed
during pass 2

Figure 4. The SDG of Figure 3, augmented with summary edges and sliced with respect to “output(i)”.

3A similar goal of considering only paths that correspond to legal
call/return sequences arises in the context of interprocedural dataflow
analysis [25,19]. Several different terms have been used for these paths,
including valid paths, feasible paths, and realizable paths.

sum : = 0 → xin : = sum → x : = xin → x : = x + y
→ xout : = x → sum : = xout → output(sum)

is a (same-level) realizable path, while the path

sum : = 0 → xin : = sum → x : = xin → x : = x + y
→ xout : = x → i : = xout → output(i)

is not.

An interprocedural-slicing algorithm is precise up to real-
izable paths if, for a given vertex v, it determines the set of
vertices that lie on some realizable path from the entry ver-
tex of the main procedure to v. To achieve this precision,
the Horwitz-Reps-Binkley algorithm first augments the
SDG with summary edges. A summary edge is added from
actual-in vertex v (representing the value of actual parame-
ter x before the call) to actual-out vertex w (representing the
value of actual parameter y after the call) whenever there is
a same-level realizable path from v to w. The summary
edge represents the fact that the value of y after the call
might depend on the value of x before the call. Note that a
summary edge cannot be computed simply by determining
whether there is a path in the SDG from v to w (e.g., by tak-
ing the transitive closure of the SDG’s edges). That
approach would be imprecise for the same reason that tran-
sitive closure leads to imprecise interprocedural slicing,



namely that not all paths in the SDG are realizable paths.
After adding summary edges, the Horwitz-Reps-Binkley

slicing algorithm uses two passes over the augmented SDG;
each pass traverses only certain kinds of edges. To slice an
SDG with respect to vertex v, the traversal in Pass 1 starts
from v and goes backwards (from target to source) along
flow edges, control edges, call edges, summary edges, and
parameter-in edges, but not along parameter-out edges. The
traversal in Pass 2 starts from all actual-out vertices reached
in Pass 1 and goes backwards along flow edges, control
edges, summary edges, and parameter-out edges, but not
along call or parameter-in edges. The result of an interpro-
cedural slice consists of the set of vertices encountered dur-
ing Pass 1 and Pass 2, and the edges induced by those
vertices.4

Example. Figure 4 gives the SDG of Figure 3 augmented
with summary edges, and shows the vertices and edges tra-
versed during the two passes when slicing with respect to
the vertex labeled “output(i).”

3. AN IMPROVED ALGORITHM FOR COMPUTING
SUMMARY EDGES

This section contains the main result of the paper: a new
algorithm for computing summary edges that is asymptoti-
cally faster than the one defined by Horwitz, Reps, and
Binkley. (We will henceforth refer to the latter as the HRB-
summary algorithm.)

The new algorithm for computing summary edges is
given in Figure 5 as function ComputeSummaryEdges.
(ComputeSummaryEdges uses several auxiliary access
functions: function Proc returns the procedure that contains
the given SDG vertex; function Callers returns the set of
procedures that call the given one; function Correspondin-
gActualIn (and CorrespondingActualOut) returns the actual-
in (or actual-out) vertex associated with the given call site
that corresponds to the given formal-in (or formal-out) ver-
tex.) Figure 6 illustrates schematically the key steps of the
algorithm. The basic idea is to find, for every procedure P,
all same-level realizable paths that end at one of P’s formal-
out vertices. Those paths that start from one of P’s formal-
in vertices induce summary edges between the correspond-
ing actual-in and actual-out vertices at all call sites that rep-
resent calls to P. (For example, if the algorithm were
applied to the SDG shown in Figure 3, a path would be
found from the formal-in vertex of procedure Add labeled
“x : = xin” to the formal-out vertex labeled “xout : = x”.
This path would induce the summary edges from
“xin : = sum” to “sum : = xout”, and from “xin : = i” to
“i : = xout”, in Main, as shown in Figure 4.)

4The augmented SDG can also be used to compute a forward (interproce-
dural) slice using two edge-traversal passes, where each pass traverses on-
ly certain kinds of edges; however, in a forward slice edges are traversed
from source to target. The first pass of a forward slice ignores parameter-
in and call edges; the second pass ignores parameter-out edges.

In the algorithm, same-level realizable paths are repre-
sented by “path edges”, the edges that are inserted into the
set called PathEdge. The algorithm starts by “asserting”
that there is a same-level realizable path from every formal-
out vertex to itself; these path edges are inserted into
PathEdge, and also placed on the worklist. Then the algo-
rithm finds new path edges by repeatedly choosing an edge
from the worklist and extending (backwards) the path that it
represents as appropriate depending on the type of the
source vertex. This is illustrated in Figure 6. When a path
edge is processed whose source is a formal-in vertex, the
corresponding summary edges are inserted into the Summa-
ryEdge set (lines [16]−[19]). These new summary edges
may in turn induce new path edges: if there is a summary
edge x → y, then there is a same-level realizable path
x →+ a for every formal-out vertex a such that there is a
same-level realizable path y →+ a. Therefore, procedure
Propagate is called with all appropriate x → a edges (lines
[20]−[22]).

The cost of the algorithm can be expressed in terms of the
following parameters:

P The number of procedures in the pro-
gram.

Sites p The number of call sites in procedure p.
Sites The maximum number of call sites in

any procedure.
TotalSites The total number of call sites in the pro-

gram. (This is bounded by P × Sites.)
E The maximum number of control and

flow edges in any procedure’s PDG.
Params The maximum number of formal-in ver-

tices in any procedure’s PDG.

The algorithm finds all same-level realizable paths that end
at a formal-out vertex w. A new path x →+ w is found by
extending (backwards) a previously discovered path v →* w
(taken from the worklist) along the edge x → v. Because
vertex x can have out-degree greater than one, the same path
can be discovered more than once (but it will only be put on
the worklist once, due to the test in Propagate).

In the worst case, the algorithm will “extend a path”
along every PDG edge (lines [27]−[29]) and every summary
edge (lines [11]−[13] and [20]−[22]) once for each formal-
out vertex. Thus, the cost of computing summary edges for
a single procedure is equal to the number of formal-out ver-
tices (bounded by Params) times the number of PDG and
summary edges in that procedure. In the worst case, there is
a summary edge from every actual-in vertex to every actual-
out vertex associated with the same call site. Therefore, the
number of summary edges in procedure p is bounded by
O(Sites p × Params2), and the cost of computing summary
edges for one procedure is bounded by
O(Params × (E + (Sites p × Params2))), which is equal to
O((Params × E) + (Sites p × Params3)). Summing over
all procedures in the program, the total cost of the algorithm
is bounded by



function ComputeSummaryEdges(G: SDG) returns set of edges
declare PathEdge, SummaryEdge, WorkList: set of edges

procedure Propagate(e: edge)
begin

[1] if e /∈PathEdge then insert e into PathEdge; insert e into WorkList fi
end

begin
[2] PathEdge := ∅; SummaryEdge := ∅; WorkList := ∅
[3] for each w ∈ FormalOutVertices(G)
[4] insert (w → w) into PathEdge
[5] insert (w → w) into WorkList
[6] od

[7] while WorkList ≠ ∅ do
[8] select and remove an edge v → w from WorkList
[9] switch v

[10] case v ∈ ActualOutVertices(G) :
[11] for each x such that x → v ∈(SummaryEdge ∪ ControlEdges(G)) do
[12] Propagate(x → w)
[13] od
[14] end case

[15] case v ∈ FormalInVertices(G) :
[16] for each c ∈Callers(Proc(w)) do
[17] let x = CorrespondingActualIn(c, v)
[18] y = CorrespondingActualOut(c, w) in
[19] insert x → y into SummaryEdge
[20] for each a such that y → a ∈PathEdge do
[21] Propagate(x → a)
[22] od
[23] end let
[24] od
[25] end case

[26] default :
[27] for each x such that x → v ∈(FlowEdges(G) ∪ ControlEdges(G)) do
[28] Propagate(x → w)
[29] od
[30] end case

[31] end switch
[32] od
[33] return(SummaryEdge)

end

Figure 5. Function ComputeSummaryEdges computes and returns the set of summary edges for the given system dependence graph G.
(See also Figure 6.)

O((P × Params × E) + (TotalSites × Params3)).

4. COMPARISON WITH PREVIOUS WORK

The cost of interprocedural slicing using the algorithm of
Horwitz, Reps, and Binkley is dominated by the cost of
computing summary edges via the HRB-summary algorithm
(see [14]):

O((TotalSites × E × Params)
+ (TotalSites × Sites2 × Params4)).

The main result of this paper is a new algorithm for comput-
ing summary edges whose cost is bounded by

O((P × E × Params) + (TotalSites × Params3)).

Under the reasonable assumption that the total number of
call sites in a program is much greater than the number of
procedures, each term of the cost of the new algorithm is
asymptotically smaller than the corresponding term of the
cost of the HRB-summary algorithm. Furthermore, because
there is a family of examples on which the HRB-summary
algorithm actually performs

Ω((TotalSites × E × Params)
+ (TotalSites × Sites2 × Params4))

steps, the new algorithm is asymptotically faster.
There are two main differences in the approaches taken

by the two algorithms that lead to the differences in their



costs:

1. The HRB-summary algorithm first creates a “com-
pressed” form of the SDG that contains only formal-in,
formal-out, actual-in, and actual-out vertices. The edges
of the compressed graph represent (intraprocedural)
paths in the original graph. The cost of compressing the
SDG is O(TotalSites × E × Params), the first term in
the cost given above. The new algorithm uses the
uncompressed SDG, so there is no compression cost.

2. After compressing the SDG, the HRB-summary algo-
rithm repeatedly finds and installs summary edges, then
closes the edge set of the PDG. These “install-and-
close” steps are similar to the “extend-a-path” steps that
are performed by the new algorithm. The difference is
that the “close” step of the HRB-summary algorithm
essentially replaces a 3-part path of the form
“path:edge:path” with a single path edge, while the new
algorithm replaces a 2-part path of the form “edge:path”
with a single path edge. The latter approach is a second
reason for the superiority of the new algorithm. The
total cost of the series of “install-and-close” steps per-
formed by the HRB-summary algorithm is
O(TotalSites × Sites2 × Params4), the second term in
the cost given above. This term is likely to be the domi-
nant term in practice, and it is worse (by a factor of
Sites2 × Params) than the second term in the new algo-
rithm’s cost.

To summarize: Both the cost of the HRB-summary algo-
rithm and the cost of the new algorithm contain two terms.
In the case of the former, the first term represents the cost of
compression, and the second term represents the cost of
finding summary edges using the compressed graph. In the
case of the latter, both terms represent the cost of finding
summary edges using the uncompressed graph. The cost of
the new algorithm is asymptotically better than the cost of
the HRB-summary algorithm.

5. EXPERIMENTAL RESULTS

This section describes the results of a preliminary perfor-
mance study we carried out to measure how much faster
interprocedural slicing is when function ComputeSumma-
ryEdges is used in place of the HRB-summary algorithm.
The slicing algorithms were implemented in C and tested on
a Sun SPARCstation 10 Model 30 with 32 MB of RAM.
Tests were carried out for three example programs (written
in a small language that includes scalar variables, array vari-
ables, assignment statements, conditional statements, output
statements, while loops, for loops, and procedures with
value-result parameter passing): recdes is a recursive-
descent parser for lists of assignment statements; calc is a
simple arithmetic calculator; and format is a text-formatting
program taken from Kernighan and Plauger’s book on soft-
ware tools [17]. The following table gives some statistics
about the SDGs of the three test programs:

SDG statistics
P Sites TotalSites E ParamsProg.

Lines
of
source

Ver-
tices

Control
+ flow
edges

recdes 348 838 1465 15 13 60 255 8
calc 433 841 1443 24 26 70 409 12
format 757 1844 3276 53 20 108 597 23

The comparison in Section 4 of the asymptotic worst-case
running time of the HRB-summary algorithm with that of
the new algorithm suggests that the new algorithm should
lead to a significantly better slicing algorithm. However,
formulas for asymptotic worst-case running time may not be
good predictors of actual performance. For example, the
formula for the running time of ComputeSummaryEdges
was derived under the (worst-case) assumptions that there is
a summary edge from every actual-in vertex to every actual-
out vertex associated with the same call site, and that every
call site has the same number of actual-in and actual-out
vertices—both of which are bounded by Params. This
yields O(TotalSites × Params2) as the bound on the total
number of summary edges. As shown in the following
table, this overestimates the actual number of summary
edges by one to two orders of magnitude:

Example TotalSites × Params2 Actual number of
summary edges

recdes 3840 157
calc 10080 227
format 57132 413

Thus, although asymptotic worst-case analysis may be help-
ful in guiding algorithm design, tests are clearly needed to
determine how well a slicing algorithm performs in practice.

For our study, we implemented three different slicing
algorithms: (A) the Horwitz-Reps-Binkley slicing algo-
rithm, (B) the slicing algorithm with the improved method
for computing summary edges from Section 3, and (C) an
algorithm that is essentially the “dual” of Algorithm B.
Algorithm C is just like Algorithm B, except that the com-
putation of summary edges involves finding all same-level
realizable paths from formal-in vertices (rather than to for-
mal-out vertices), and paths are extended forwards rather
than backwards.

The table shown in Figure 7 gives statistics about the per-
formance of the three algorithms for a representative slice of
each of the three programs. In each case, the reported run-
ning time is the average of five executions. (The quantity
“Time to slice” is “user cpu-time + system cpu-time”.) The
time for the final step of computing slices—the two-pass
traversal of the augmented SDG—is not shown as a separate
entry in the table; this step is a relatively small portion of the
time to slice: .03-.04 seconds (of total cpu-time) for both
recdes and calc; .20-.23 seconds for format.

As shown in columns 6 and 8 of the above table, Algo-
rithms B and C are clearly superior to Algorithm A, exhibit-
ing 4.8-fold to 6.5-fold speedup. Algorithm B appears to be
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Figure 6. The above four diagrams show how the algorithm of Figure 5 extends same-level realizable paths, and installs summary edges.

Algorithm A Algorithm B Algorithm C

Vertices in slice HRB slicing
algorithm

Summary edges computed
by the algorithm of
Section 3

Summary edges computed
by the dual of the
algorithm of Section 3

Time to slice Time to slice Speedup Time to slice Speedup
(seconds) (seconds) (over HRB) (seconds) (over HRB)Number

Example

Percent
of total

recdes 413 49% 2.08 + 0.04 0.35 + 0.04 5.4 0.39 + 0.05 4.8
calc 484 58% 3.06 + 0.05 0.46 + 0.03 6.3 0.45 + 0.03 6.5
format 1327 72% 6.64 + 0.12 0.98 + 0.12 6.1 1.09 + 0.16 5.4

Figure 7. Performance of the three algorithms for a representative slice of each of the three example programs.

marginally better than Algorithm C. We believe that this is
because procedures have fewer formal-out vertices than for-
mal-in vertices.

Because the bound derived for the series of “install-and-
close” steps of Algorithms B and C is better than the bound
for the HRB-summary algorithm by a factor of
Sites2 × Params, the speedup factor may be greater on
larger programs. As a preliminary test of this hypothesis,
we gathered some statistics on versions of the above pro-
grams in which the number of parameters was artificially
inflated (by adding additional global variables). On these
examples, Algorithm C exhibited 10-fold speedup over the
Horwitz-Reps-Binkley slicing algorithm, and Algorithm B
exhibited 13-fold to 23-fold speedup.

In summary: the conclusion that the algorithm presented
in this paper is significantly better than the Horwitz-Reps-
Binkley interprocedural-slicing algorithm is supported both
by comparison of asymptotic worst-case running times (see

Section 4) and preliminary experimental results.

APPENDIX A: Demonstration that the Algorithm of
Hwang, Du, and Chou is Exponential

The Hwang-Du-Chou algorithm constructs a sequence of
slices of the program—where each slice in the sequence
essentially permits one additional level of recursion—until a
fixed point is reached (i.e., until no further elements are
included in a slice). In essence, to compute a slice with
respect to a point in procedure P, it is as if the algorithm
performs the following sequence of steps:

1. Replace each call in procedure P with the body of the
called procedure.

2. Compute the slice using the new version of P (and
assume that there are no flow dependences across unex-
panded calls).



3. Repeat steps 1 and 2 until no new vertices are included
in the slice. (For the purposes of determining whether a
new vertex is included in the slice, each vertex instance
in the expanded program is identified with its “originat-
ing vertex” in the original, multi-procedure program.)

In fact, no actual in-line expansions are performed; instead
they are simulated using a stack. On the k th slice of the
sequence, there is a bound of k on the depth of the stack.
Because the stack is used to keep track of the calling context
of a called procedure, only realizable paths are considered.

In this appendix, we present a family of examples on
which the Hwang-Du-Chou algorithm takes exponential
time. In order to simplify the presentation of this family of
programs, we will streamline the diagrams of the SDGs we
use by including only vertices related to procedure calls
(enter, formal-in, formal-out, call, actual-in, and actual-out
vertices) and the intraprocedural transitive dependences
among them. (This streamlining does not affect our argu-
ment, and showing complete SDGs would make our dia-
grams unreadable.)

Theorem. There is a family of programs on which the
Hwang-Du-Chou algorithm uses time exponential in the size
of the program.

Proof. We construct a family of programs Pk that grows
linearly in size with k but causes the Hwang-Du-Chou algo-
rithm to use time exponential in the size of k (i.e., the algo-
rithm’s running time is Ω(2k)).

A giv en program Pk in the family consists of just a single
recursive procedure (also named Pk), defined as follows:

procedure Pk(x1, x2, . . . , xk − 1, xk)
t : = 0
call Pk(x2, . . . , xk − 1, xk , t)
call Pk(x2, . . . , xk − 1, xk , t)
x1 : = x1 + 1

end

To present the idea behind the construction, we first discuss
the case of P3. The SDG for program P3 can be depicted as
shown below. (We use the labels xi and xi ′, for 1 ≤ i ≤ 3, to
denote corresponding formal-in, formal-out, actual-in, and
actual-out vertices. To enhance readability, formal-in and
actual-in vertices are shown ordered right-to-left (x3 x2 x1)
rather than left-to-right (x1 x2 x3).)

P

P P

1 2 3
x’ x’ x’

1 2
x’ x’

3
x’

1 2
x’ x’

3
x’

x x x
3 2 1

x x x
3 2 1

x x x
3 2 1

Now consider a slice of program P3 with respect to the
formal-out vertex for parameter x3 (i.e., P3. x3′). To com-
pute this slice, the Hwang-Du-Chou method performs

actions that are equivalent to carrying out a traversal of an
exponentially long path in a complete binary tree of height
3. The path traversed is shown in bold in Figure 8.

If we examine the tree of Figure 8 more closely, it
becomes apparent that the original slicing problem spawns
two additional slicing problems of very similar form. These
two subsidiary problems involve performing slices of the
program with respect to P1. x2′ and P2. x2′, where P1 and
P2 are the two children of the root of the tree. Each of these
subsidiary slicing problems is equivalent to taking a slice
with respect to the formal-out vertex P2. x2′ in program P2.

In general, the Hwang-Du-Chou algorithm takes expo-
nential time on the family of programs Pk . To perform a
slice with respect to formal-out vertex Pk . xk ′, the algorithm
performs actions that are equivalent to traversing an expo-
nentially long path (i.e., a path of length Ω(2k)) in a com-
plete binary tree of height k. To perform the slice with
respect to formal-out vertex Pk . xk ′, the algorithm spawns
two subsidiary slicing problems that are equivalent to per-
forming slices with respect to formal-out vertex Pk − 1. xk − 1′
in program Pk − 1. (In addition to the two subsidiary slices,
three additional edges are traversed.) Thus, the time com-
plexity of the Hwang-Du-Chou algorithm is described by
the following recurrence relation:

T (k) = 2T (k − 1) + 3
T (1) = 1

Therefore, T (k) = 2k + 1 − 3 = O(2k).
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