
Verifying Information Flow Control
Over Unbounded Processes

William R. Harris1, Nicholas A. Kidd1, Sagar Chaki2, Somesh Jha1, and
Thomas Reps1,3

1 University of Wisconsin; {wrharris, kidd, jha, reps}@cs.wisc.edu
2 Soft. Eng. Inst.; Carnegie Mellon University; chaki@sei.cmu.edu

3 GrammaTech Inc.

Abstract. Decentralized Information Flow Control (DIFC) systems en-
able programmers to express a desired DIFC policy, and to have the
policy enforced via a reference monitor that restricts interactions be-
tween system objects, such as processes and files. Past research on DIFC
systems focused on the reference-monitor implementation, and assumed
that the desired DIFC policy is correctly specified. The focus of this pa-
per is an automatic technique to verify that an application, plus its calls
to DIFC primitives, does indeed correctly implement a desired policy.
We present an abstraction that allows a model checker to reason soundly
about DIFC programs that manipulate potentially unbounded sets of
processes, principals, and communication channels. We implemented our
approach and evaluated it on a set of real-world programs.

1 Introduction

Decentralized Information Flow Control (DIFC) systems [1–4] allow application
programmers to define their own DIFC policies, and then to have the policy
enforced in the context of the entire operating system. To achieve this goal, DIFC
systems maintain a mapping from OS objects (processes, files, etc.) to labels—
sets of atomic elements called tags. Each process in the program creates tags,
and gives other processes the ability to control the distribution of the process’s
data by collecting and discarding tags. The DIFC runtime system monitors all
inter-process communication, deciding whether or not a requested data transfer
is allowed based on the labels of system objects.

Example 1. Consider the diagram in Fig. 1 of a web server that handles sensitive
information. A Handler process receives incoming HTTP requests, and spawns
a new Worker process to service each request. The Worker code that services
the request may not be available for static analysis, or may be untrusted. The
programmer may wish to enforce a non-interference policy requiring that infor-
mation pertaining to one request — and thus localized to one Worker process
— should never flow to a different Worker process.

DIFC mechanisms are able to block any communication between OS objects.
Thus, in addition to ensuring that the use of DIFC mechanisms implements a

2 Authors Suppressed Due to Excessive Length

Handler

Worker0

Worker1

WorkerN

buffer.txt

.

.

.

Request

{0}

{1}

{n}

Fig. 1. An inter-process diagram of a typical web server.

desired security policy, the programmer must also ensure that retrofitting an
existing system with DIFC primitives does not negatively impact the system’s
functionality. In Ex. 1, the desired functionality is that the Handler must be able
to communicate with each Worker at all times. An overly restrictive implemen-
tation could disallow such behaviors. Ex. 1 illustrates a tension between security
and functionality: a näıve system that focuses solely on functionality allows in-
formation to flow between all entities; conversely, the leakage of information can
be prevented in a way that cripples functionality.

Our goal is to develop an automatic method to ensure that security policies
and application functionality are simultaneously satisfied. Our approach to this
problem is to leverage progress in model checkers [5, 6] that check concurrent
programs against temporal logic properties (e.g., linear temporal logic). How-
ever, the translation from arbitrary, multiprocess systems to systems that can
be reasoned about by model checkers poses key challenges due to potential un-
boundedness along multiple dimensions. In particular, the number of processes
spawned, communication channels created, and label values used by the refer-
ence monitor are unbounded. However, current model checkers verify properties
of models that use bounded sets of these entities. To resolve this issue, we pro-
pose a method of abstraction that generates a model that is a sound, and in
practice precise, approximation of the original system in the sense that if a secu-
rity or functionality property holds for the model, then the property holds for the
original program. Our abstraction applies the technique of random isolation [6]
to reason precisely about unbounded sets of similar program objects.

The contributions of this work are as follows:

1. We present a formulation of DIFC program execution in terms of transfor-
mations of logical structures. This formulation allows a natural method for
abstracting DIFC programs to a bounded set of structures. It also permits
DIFC properties of programs to be specified as formulas in first-order logic.
To our knowledge, this is the first work on specifying a formal language for
such policies.

2. We present a formulation of the principle of random isolation [6] in terms
of logical structures. We then demonstrate that random isolation can be
applied to allow DIFC properties to be checked more precisely.

Verifying Information Flow Control Over Unbounded Processes 3

3. We implemented a tool that simulates the abstraction of logical structures in
C source code and then checks the abstraction using a predicate-abstraction-
based model checker.

4. We applied the tool to check properties of several real-world programs. We
automatically extracted models of modules of Apache [7], FlumeWiki [3],
ClamAV [8], and OpenVPN [9] instrumented with our own label-manipulation
code. Verification took a few minutes to less than 1.25 hours.

While there has been prior work [10, 11] on the application of formal methods
for checking properties of actual DIFC systems, our work is unique in providing
a method for checking that an application satisfies a DIFC correctness property
under the rules of a given DIFC system. Our techniques, together with the
recent verification of the Flume reference-monitor implementation [11], provides
the first system able to (i) verify that the program adheres to a specified DIFC
policy, and (ii) verify that the policy is enforced by the DIFC implementation.

The rest of the paper is organized as follows: §2 describes Flume, an example
DIFC system for which we check applications. §3 gives an informal overview of
our techniques. §4 gives the technical description. §5 describes our experimental
evaluation. §6 discusses related work.

2 A Flume Primer

Our formulation is based most closely on the Flume [3] DIFC system; however,
our abstraction techniques should work with little modification for most DIFC
systems. We briefly discuss the Flume datatypes and API functions provided by
Flume, and direct the reader to [3] for a complete description.

– Tags & Labels. A tag is an atomic element created by the monitor at the
request of a process. A label is a set of tags associated with an OS object.

– Capabilities. A positive capability t+ allows a process to add tag t to the
label of an OS object. A negative capability t− allows a process to remove t.

– Channels. Processes are not allowed to create their own file descriptors.
Instead, a process asks Flume for a new channel, and receives back a pair of
endpoints. Endpoints may be passed to other processes, but may be claimed
by at most one process, after which they are used like ordinary file descrip-
tors.

For each process, Flume maintains a secrecy label, an integrity label, and a ca-
pability set. In this work, we only consider secrecy labels, and leave the modeling
of integrity labels as a direction for future work. The monitor forbids a process p
with label lp to send data over endpoint e with label le unless lp ⊆ le. Likewise,
the monitor forbids a process p′ to receive data from endpoint e′ unless le′ ⊆ lp′ .
A Flume process may create another process by invoking the spawn command.
spawn takes as input (i) the path to a binary to execute, (ii) a set of endpoints
that the new process may access from the beginning of execution, (iii) an initial
label, (iv) and an initial capability set, which must be a subset of that of the
spawning process. An example usage of spawn is given in Fig. 2.

4 Authors Suppressed Due to Excessive Length

void Handler() {

1. Label lab;

2. int data;

3. while (*) {

4. Request r = get_next_http_request();

5. data = get_data(r);

7. lab = create_tag();

8. Endpoint e0, e1;

9. create_channel(&e0, &e1);

10. spawn("/usr/local/bin/Worker", {e1}, lab, {}, r);

11. data = recv(claim_endpoint(e0)); }}

Fig. 2. Flume pseudocode for a server that enforces the same-origin policy.

Example 2. The pseudocode in Fig. 2 enforces non-interference between the
Worker processes from Fig. 1. The Handler perpetually polls for a new HTTP
request, and upon receiving one, it spawns a new Worker process. To do so, it
(i) has Flume create a new tag, which it stores as a singleton label value in
label-variable lab (line 7), (ii) has Flume create a new channel (line 9), and (iii)
then launches the Worker process (line 10), setting its initial secrecy label to
lab—not giving it the capability to add or remove the tag in lab (indicated by
the {} argument)—and passing it one end of the channel to communicate with
the Handler. Because the Handler does not give permission for other processes
to add the tag in lab, no process other than the Handler or the new Worker
can read information that flows from the new Worker.

3 Overview

The architecture of our system is depicted in Fig. 3. The analyzer takes as input
a DIFC program and a DIFC policy. First, the program is (automatically) ex-
tended with instrumentation code that implements random-isolation semantics
(§3.3). Next, canonical abstraction (§3.2) is performed on the rewritten program
to generate a finite-data model. Finally, the model and the DIFC policy are
given as input to the concurrent-software model checker Copper, which either
verifies that the program adheres to the DIFC policy or produces a (potentially
spurious) execution trace as a counterexample. We now illustrate each of these
steps by means of examples.

3.1 Concrete Semantics

Program states are represented using first-order logical structures, which con-
sist of a collection of individuals, together with an interpretation for a finite

Verifying Information Flow Control Over Unbounded Processes 5

Program:
Concrete
Semantics

Program:
Rand. Iso.
Semantics

Program:
Abstract
Semantics

Copper

Property

SAFE

Error

Instrument Abstract

Fig. 3. System architecture.

vocabulary of finite-arity relation symbols. An interpretation is a truth-value as-
signment for each relation symbol and appropriate-arity tuple of individuals. For
DIFC systems, these relations encode information such as:

1. “Label variable x does (or does not) contain tag t in its label.”
2. “Process p has (or has not) sent information to process q.”

Tab. 1 depicts structures as they are transformed by program statements. The
convention used is that every boxed node represents a tag individual, and every
circled node represents a label individual. The name of an individual may appear
outside of the circle. An arrow from an identifier to a circle individual denotes
that a particular unary relation holds for the individual, and an arrow between
nodes denotes that a binary relation holds for the individuals. A dotted arrow
indicates that it is unknown whether a given tuple of a relation does or does not
hold, and the relationship is said to be indefinite. Otherwise, the relationship is
said to be definite (i.e., definitely holds or definitely does not hold). A doubled
box indicates a summary individual, which represents one or more concrete
individuals in abstracted structures. The value of the unary relation iso is written
inside the individuals in the diagrams for random-isolation semantics. A program
statement transforms one structure to another, possibly by adding individuals
to the structure or altering the values of relations. State properties are specified
as logical formulas.

Example 3. The top row, left column of Tab. 1 gives an example of how one
concrete state is transformed into the next state by execution of the statement
lab = create tag(). Suppose that the statement has been executed twice pre-
viously, introducing tag individuals t and u, where u is a member of the label
m. This containment is encoded by a relation RTag, denoted in the figure by an
arrow from m to t. The next execution of the statement creates a new tag v and
relates the label m to v while ending the relationship between m and u.

3.2 Canonical Abstraction

Unbounded sets of concrete structures can be abstracted into bounded sets of
abstract structures using canonical abstraction with respect to some set of unary
relations A [12]: each concrete structure S is mapped to an abstract structure
S# that has exactly one individual for each combination of unary relations in A.
If multiple concrete individuals that map to the same canonical individual yield

6 Authors Suppressed Due to Excessive Length

Concrete Semantics Abstract Semantics

Standard lab lab

t u

m

t u v

m

lab lab

m m

sum sum

Random Isolation lab lab

t u

m

t u v

m

not iso not iso not iso not iso iso

lab lab

m m

not iso not iso iso

Table 1. Illustration of the standard and random-isolation semantics of the statement
lab := create tag() and their corresponding abstract semantics.

different values in some relation R 6∈ A, then the abstract structure records that
the abstract individual may or may not be in the relation R.

Example 4. Consider the top row of Tab. 1. Assume that every tag created
belongs to the same relations in A. Thus all tag individuals will be mapped
under canonical abstraction into a single abstract summary tag individual, sum.
This can introduce imprecision. Suppose that in a concrete structure, RTag(m,u)
holds before the latest execution of create tag, at which point it no longer
holds and RTag(m, v) holds. In the abstraction of this structure, tags t, u, and
v are all represented by sum. Thus, after the second execution of the statement
create tag, sum represents all of label m’s tags, but also represents tags that
are not elements of m. This is reflected in Tab. 1 by a dotted arrow from the
label m to the summary tag individual.

3.3 Random Isolation

Ex. 4 demonstrates that abstraction over the unary relations of a program state is
insufficiently precise to prove interesting DIFC properties. We thus use random
isolation [6] to reason about an individual from a set, and to generalize the
properties proved about the individual object to a proof about all individuals
in the set. Random isolation can be formulated as introducing a special unary
relation iso in structures. When freshly allocated individuals are created and
relations over individuals are updated, the invariant is maintained that iso holds
for at most one individual. Furthermore, if iso ever holds for an individual u, then
it must continue to hold for u for the remainder of the program’s execution. The
relation iso can be used to increase the precision of reasoning about an individual
in an abstract structure.

Example 5. Consider the state transformation given in the bottom row, left col-
umn of Tab. 1. When the program is executed under random-isolation semantics,

Verifying Information Flow Control Over Unbounded Processes 7

the call to create tag non-deterministically chooses whether iso holds for the
newly created tag. Tab. 1 illustrates the case in which the present call returns
a tag for which iso does hold. Now consider the bottom row, right column of
Tab. 1, in which the relations used to abstract program states include iso. There
is now a definite relationship between the label and the most recently allocated
tag. This definite relationship may allow for stronger claims to be made about
a structure when properties of the structure are checked.

4 Formal Definition of Abstraction

4.1 Inputs

Subject programs. To simplify the discussion, we assume a simple imperative
language LLab in which programs are only able to manipulate DIFC labels, send
and receive data over channels, and spawn new processes. The full grammar for
such a language is given in [13]. The semantics of a program in LLab can be
expressed by encoding program states as logical structures with interpretations
in 2-valued logic. A 2-valued logical structure S is a pair 〈US , ι〉, accompanied
by a vocabulary of relations P and constants C. The set US is the universe of
individuals of S, and for p ∈ P of arity k and every tuple (u1, u2, . . . , uk) ∈
(US)k, the interpretation ι maps p(u1, u2, . . . , uk) to a truth value: 0 or 1. The
interpretation ι also maps each constant in C to an individual.

Let A ⊆ P be the set of unary abstraction relations. For a 2-valued structure
S, S′ is the canonical abstraction of S with respect to A if S′ is a 3-valued
structure in which each individual in the universe of S′ corresponds to a valuation
of the relations in A. Each element in S then maps under an embedding function
α to the element that represents its evaluation under the relations in A. By
construction, for α(u) ∈ US′

and R ∈ A, it is the case that R(α(u)) ∈ {0, 1}.
However, it may be the case that for some individual u ∈ US′

, there exist u1, u2 ∈
α−1(u) and a relation p ∈ P such that p(. . . , u1, . . .) = 0 and p(. . . , u2, . . .) = 1.
It is then the case that p(. . . , u, . . .) = 1/2 where 1/2 is a third truth value
that indicates the absence of information, or uncertainty about the truth of
a formula. The truth values are partially ordered by the precision ordering v
defined as 0 @ 1/2 and 1 @ 1/2. Values 0 and 1 are called definite values; 1/2
is called an indefinite value. If ϕ is a closed first-order logical formula, then let
JϕKS2 denote the 2-valued truth value of ϕ for a 2-valued structure S, and let
JϕKS

′

3 denote its 3-valued truth value for a 3-valued structure S′. For a more
complete discussion of the semantics of 3-valued logic, see [12].

By the Embedding Theorem of Sagiv et al. [12], if S is a 2-valued structure, S′

is the canonical abstraction of S with embedding function α, Z is an assignment
that has a binding for every free variable in ϕ, and JϕKS

′

3 (Z) 6= 1/2, then it must
be the case that JϕKS2 (Z) = JϕKS

′

3 (α ◦Z). In other words, any property that has
a definite value in S′ must have the same definite value in all S that abstract to
S′.

In the context of label programs, individuals correspond to process identifiers,
per-process variables, tags, channels, and endpoints. Relations encode the state

8 Authors Suppressed Due to Excessive Length

of the program at a particular program point. The constants represent informa-
tion about the currently executing program statement. Let US = P∪L∪T∪C∪E,
where P is the set of process identifiers, M is the set of labels, T is the set of
tags created during execution, C is the set of channels created during execution,
and E is the set of endpoints created during execution.

We now consider a fragment of the relations and constants used in modeling.
The complete sets of both the relations and constants are given in [13]:

– {isproc(u), islabel(u), istag(u), ischannel(u), isendp(u)} denote membership in
each of the respective sets. These are the “sort” relations, denoted by Sorts.
Each individual has exactly one sort.

– Rx(u) is a unary relation that is true iff the label or endpoint u corresponds
to program variable x.

– RP (u) is a unary relation that is true iff the process identified by u began
execution at program point P .

– RTag(u, t) is a binary relation that is true iff u is a label and t is a tag in
the label of u.

– RChan(e, c) is a binary relation that is true iff e is an endpoint of channel c.
– ROwns(p, u) is a binary relation that is true iff p is a process id and u is a

label or endpoint that belongs to a variable local to p.
– RLabel(u1, u2) is a binary relation that is true iff u1 is a process identifier or

an endpoint and u2 is the label of u1.
– For every set of entry points G, there is a binary relation RFlow:G(u1, u2) that

is true iff u1 and u2 are process ids and there has been a flow of information
from u1 to u2 only through processes whose entry points are in G.

– RBlocked(p1, p2), a binary relation that is true iff p1 and p2 are process ids
and there has been a flow of information from p1 to p2 that was blocked.

We consider the fragment of the vocabulary of constants C = {curp, curlab, cur+,
cur−, newt}. These denote the id, label, positive-capability, and negative-capability
of the process that is to execute the next statement, along with the newest tag
allocated. For a program with a process p designated as the first process to exe-
cute starting at program point P , the initial state of the program is the logical
structure: 〈{pid, plab, p+, p−}, ι〉 where ι is defined such that each individual is in
its sort relation, pid is related to its entry point P , pid is related to its label and
capabilities, and the constants that denote the current process, its label, and its
capabilities are mapped to pid, plab, and p+, p− respectively.

To execute, the program non-deterministically picks a process, say qid, and
updates ι to map curid, curlab, cur+, and cur− to the id, label, and capabili-
ties of qid. The program then executes the next statement of process qid. The
statement transforms the relations over program state as described by the action
schemas in [13]. We provide a few of the more interesting schemas in Fig. 4 as
examples. For clarity in presenting the action schemas, we use the meta-syntax
if ϕ0 then ϕ1 else ϕ2 to represent the formula (ϕ0 → ϕ1) ∧ (¬ϕ0 → ϕ2). Addi-
tionally, we define subset(x, y) to be true iff the label x is a subset of the label
y:

subset(x, y) ≡ ∀t : RTag(x, t)→ RTag(y, t) (1)

Verifying Information Flow Control Over Unbounded Processes 9

Along with transforming relations, some program statements have the additional
effect of expanding the universe of individuals of the structure. In particular:

– create channel adds new endpoint individuals ue0, ue1 and a new channel
individual uc to the universe. It redefines the interpretation to add each of
these individuals to the appropriate sort relations.

– create tag adds a new tag individual ut and similarly defines the interpre-
tation to add this tag to its sort relation.

– spawn adds a new process id pid and new labels plab, p+, p− that represent
the label, positive capability, and negative capability of the process, respec-
tively. It redefines the interpretation to add each of these individuals to their
respective sorts.

Fig. 4 defines formally the action schema for the following two actions:

– send(e); attempts to send data from the current process to the channel
that has e as an endpoint. The action potentially updates both the set of
all flow-history relations and the blocked-flow relation. To update a flow-
history relation RFlow:G(u1, u2), the action checks if u1 represents the id of
the current process. If so, it takes f , the endpoint in u1 to which the variable
e maps, and checks if f is an endpoint of the channel u2. If so, it checks if
the label of u1 is a subset of that of the endpoint of f and if so, adds (u1, u2)
to the flow-history relation. Otherwise, the relation is unchanged.
To update relation RBlocked(p1, p2), let f be the endpoint that belongs to
u1 and mapped by variable e. If f is an endpoint of a channel for which the
other endpoint is owned by p2, and the label of p1 is not a subset of the label
of f , then RBlocked(p1, p2) is updated. Otherwise, the relation is unchanged.

– l := create tag(); creates a new tag and stores it in the variable l. This
updates the relation RTag. To update the value of the entry RTag(u, t), the
action checks if u represents a label belonging to the current process and if
the variable l maps to u. If so, then RTag(u, t) holds in the post-state if and
only if t is the new tag. Otherwise, the relation RTag is unchanged.

Specifications. DIFC specifications can be stated as formulas in first-order
logic. The following specifications are suitable for describing desired DIFC prop-
erties for programs written for DIFC systems.

– NoFlowHistory(P,Q,D) = ∀p, q : (RP (p)∧RQ(q)∧p 6= q)→ ¬RFlow:(G−{D})(p, q).
For program points P,Q,D, this formula states that no process that begins
execution at P should ever leak information to a different process that be-
gins execution at Q unless it goes through a process in D. Intuitively, this
can be viewed as a security property.

– DefiniteSingleStepFlow(P,Q) = ∀p, q : (RP (p) ∧ RQ(q)) → ¬RBlocked(p, q).
For program points P and Q, this formula states that whenever a process
that begins execution in P sends data to a process that begins execution
in Q, then the information should not be blocked. Intuitively, this can be
viewed as a functionality property.

10 Authors Suppressed Due to Excessive Length

Statement Update Formula

send(e);

R′Flow:G(u1, u2) = isproc(u1) ∧ ischan(u2) ∧ (u1 = curid

∧(∃f, m : Re(f) ∧ROwns(u1, f)
∧RChan(f, u2) ∧RLabel(f, m)
∧ (∃s : RFlow:G(s, u1))
∧ subset(curlab, m))) ∨RFlow:G(u1, u2)

R′Blocked(p1, p2) = isproc(p1) ∧ isproc(p2) ∧ (u1 = curid

∧(∃c, f, g, m : ROwns(f) ∧Re(f)
∧RChan(f, c) ∧RChan(g, c)
∧ROwns(p2, g) ∧RLabel(f, m)
∧¬subset(curlab, m)))
∨RBlocked(p1, p2)

l := create tag();

R′Tag(u, t) = islabel(u) ∧ istag(t)
∧ if ROwns(curid, u) ∧Rl(u)
then t = newt else RTag(u, t)

Fig. 4. Example action schemas for statements in LLab. Post-state relations are denoted
with primed variables. Each post-state tuple of a relation R is expressed in terms of
values of pre-state tuples. Post-state relations that are the same as their pre-state
counterparts are not shown above.

Abstraction. The abstract semantics of a program in LLab can now be defined
using 3-valued structures. Let P be a program in LLab, with a set of program
variables V and a set of program points L. To abstract the set of all concrete
states of P , we let the set of abstraction relations A be A = Sorts ∪ {Rx|x ∈
V} ∪ {RP |P ∈ L}.

By the Embedding Theorem [12], a sound abstract semantics is obtained by
using exactly the same action schemas that define the concrete semantics, but
interpreting them in 3-valued logic to obtain transformers of 3-valued structures.

4.2 Checking Properties Using Random Isolation

A simple example suffices to show that the canonical abstraction of a structure
S based on the set of relations A is insufficiently precise to establish interesting
DIFC properties of programs.

Example 6. Consider again the server illustrated in Fig. 1. In particular, consider
a concrete state of the program with structure S in which n Worker processes
have been spawned, each with a unique tag tk for process k. In this setting, when
a Worker with label ui attempts to send data to a different Worker that can read
data over a channel with an endpoint uj where i 6= j, then subset(ui, uj) = 0.
Thus, no information can leak from one Worker to another. However, an analysis
of the abstract states determines soundly, but imprecisely, that such a program
might not uphold the specification NoFlowHistory(Worker,Worker, ∅). Let S′ be
the canonical abstraction of S based on A. Under this abstraction, all tags in S
are merged into a single abstract tag individual t in S′. Thus, for any process p,

Verifying Information Flow Control Over Unbounded Processes 11

RTag(p, t) = 1/2, and subset yields 1/2 when comparing the labels of any process
and any endpoint. Thus, if a Worker attempts to send data over a channel used
by another Worker, the analysis determines that the send might be successful
and thus that data may be leaked between separate Worker processes.

Intuitively, the shortcoming in Ex. 6 arises because the abstraction collapses
information about the tags of all processes into a single abstract individual.
However, random isolation can prove a property for one tag individual t non-
deterministically distinguished from the other tags, and then soundly infer that
the property is true of all tags individuals. We first formalize this notion by
stating and proving the principle of random isolation in terms of 3-valued logic.
We then examine how the principle can be applied to DIFC program properties.
The proof requires the following lemma:

Lemma 1. Let ϕ[x] be a formula that does not contain the relation iso, and in
which x occurs free. Let S be a 2-valued structure. For u ∈ US, let ρu map S
to a structure that is identical to S except that it contains a unary relation iso
that holds only for element u. Let α perform canonical abstraction over the set
of unary relations A ∪ {iso}. Then

J∀x : ϕ[x]KS2 v
⊔
u∈US

J∀x : iso(x)→ ϕ[x]Kα(ρu(S))
3

Proof. See [13]. ut

The benefits of random isolation stem from the following theorem, which
shows that when checking a universally quantified formula ∀x : ϕ[x], one needs
to check whether the weaker formula ∀x : iso(x)→ ϕ[x] holds.

Theorem 1. For a program P , let T be the set of all logical structures that are
reachable under the standard, concrete semantics of P , and let U be the set of all
abstract 3-valued structures that are reachable under the 3-valued interpretation
of the concrete semantics after the random-isolation transformation has been
applied to P . Let ϕ[x] be a formula that does not contain the relation iso. Then⊔

S∈T
J∀x : ϕ[x]KS2 v

⊔
S#∈U

J∀x : iso(x)→ ϕ[x]KS
#

3 (2)

Proof. Let S ∈ T be a state reachable in the execution of P . Let A be defined
on a two-valued structure S as A(S) =

⋃
u∈US{α(ρu(S))}. By the soundness of

the abstract semantics, it must be the case that for S′ ∈ A(S), there exists some
S# ∈ U such that S′ embeds into S#. Thus, by the Embedding Theorem [12],⊔

u∈US

J∀x : iso(x)⇒ ϕ(x)Kα(ρu(S))
3 v

⊔
S#∈U

J∀x : iso(x)⇒ ϕ(x)KS
#

3

and thus by Lem. 1, we have

J∀x : ϕ(x)KS2 v
⊔

S#∈U

J∀x : iso(x)⇒ ϕ(x)KS
#

3

12 Authors Suppressed Due to Excessive Length

Eqn. (2) follows from properties of t and the soundness of the abstract seman-
tics [12]. ut

Example 7. Consider again the example of the server with code given in Fig. 2
checked against the specification NoFlowHistory(Worker,Worker, ∅). Let the server
code execute under random-isolation semantics with isolation relations isoproc
and isotag. We want to verify that every state reachable by the program satisfies
the formula NoFlowHistory(P,Q,D). Thm. 1 can be applied here in two ways:

1. One can introduce a unary relation isoproc that holds true for exactly one
process id and then check

∀p : isoproc(p)→ ∀q : ((RP (p) ∧RQ(q))→ ¬RFlow:G−{D}(p, q))

Intuitively, this has the effect of checking only the isolated process to see if
it can leak information.

2. Consider instances where a flow relation RFlow:G is updated on a send from
the isolated process. Information will only be allowed to flow from the sender
if the label of the sender is a subset of the label of the endpoint. The code
in Fig. 2 does not allow this to happen, but the abstraction of the (ordi-
nary) concrete semantics fails to establish that the flow is definitely blocked
(illustrated in Ex. 6).
By Thm. 1, one can now introduce a unary relation isotag that holds for at
most one tag and instead of checking subset as defined in Eqn. (1), check
the formula: ∀t : isotag(t) → (RTag(x, t) ⇒ RTag(y, t)). When the tag is
in the sender’s label, the abstract structure encodes the fact that the tag
is held by exactly one process: the isolated sender. Thus the abstraction of
the random-isolation semantics is able to establish that the flow is definitely
blocked.

5 Experiments

There is an immediate correspondence between the operations defined in the
grammar of LLab and the API of the DIFC system Flume. We took advantage
of a close correspondence between abstraction via 3-valued logic and predicate
abstraction (details can be found in [13]) and modeled the abstraction of the
random-isolation semantics in C code via a source-to-source translation tool im-
plemented with CIL [14], a front-end and analysis framework for C (see [13]).
The tool takes as input a program written against the Flume API that may
execute using bounded or unbounded sets of processes, tags, and endpoints. Our
experiments demonstrate that information-flow policies for real-world programs
used in related work [1–4] can often be expressed as logical formulas over struc-
tures that record DIFC state; that these policies can be checked quickly, and
proofs or violations can be found for systems that execute using bounded sets
of processes and tags; and that these policies can be checked precisely, albeit in
significantly more time, using random isolation to find proofs or violations for
programs that execute using unbounded processes and tags.

Verifying Information Flow Control Over Unbounded Processes 13

Program Size (LOC) # Procs. (runtime) Property Result Time

FlumeWiki 110 unbounded Correct safe 1h 9m 16s
Interference possible bug 37m 53s

Apache 596 unbounded Correct safe 1h 13m 27s
Interference possible bug 18m 30s

ClamAV 3427 2 Correct safe 7m 55s
NoRead possible bug 3m 25s
Export possible bug 3m 25s

OpenVPN 29494 3 Correct safe 2m 17s
NoRead possible bug 2m 52s

Leak possible bug 2m 53s

Table 2. Results of model checking.

We applied the tool to three application modules—the request handler for
FlumeWiki, the Apache multi-process module, and the scanner module of the
ClamAV virus scanner—as well as the entire VPN client, OpenVPN. For each
program, we first used the tool to verify that a correct implementation satisfied
a given DIFC property. We then injected faults into the implementations that
mimic potential mistakes by real programmers, and used the tool to identify
executions that exhibited the resulting incorrect flow of information. The results
are given in Fig. 2.
FlumeWiki. FlumeWiki [3] is a Wiki based on the MoinMoin Wiki engine [15],
but redesigned and implemented using the Flume API to enforce desired DIFC
properties. A simplification of the design architecture for FlumeWiki serves as
the basis for the running example in Fig. 1. We focused on verifying the following
properties:

– Security: Information from one Worker process should never reach another
Worker process. Formally, NoFlowHistory(Worker,Worker, ∅).

– Functionality: A Worker process should always be able to send data to the
Handler process. Formally, DefiniteSingleStepFlow(Worker,Handler).

We created a buggy version (“Interference”) by retaining the DIFC code that
allocates a new tag for each process, but removing the code that initializes each
new process with the tag. The results for both versions are presented in Fig. 2.
Apache. The Apache [7] web server modularizes implementations of policies
for servicing requests. We analyzed the preforking module, which pre-emptively
launches a set of worker processes, each with its own channel for receiving re-
quests. We checked this module against the properties checked for FlumeWiki
above. Because there was no preexisting Flume code for Apache, we wrote label-
manipulation code by hand and then verified it automatically using our tool.
ClamAV. ClamAV [8] is a virus-detection tool that periodically scans the files
of a user, checking for the presence of viruses by comparing the files against a
database of virus signatures. We verified flow properties over the module that

14 Authors Suppressed Due to Excessive Length

ClamAV uses to scan files marked as sensitive by a user. Our results demonstrate
that we are able to express and check a policy, export protection (given below as
the security property), that is significantly different from the policy checked for
the server models above. The checked properties are as follows:

– Security: ClamAV should never be able to send private information out
over the network. Formally, NoFlowHistory(Private,Network, ∅).

– Functionality: ClamAV should always be able to read data from private
files. Formally, DefiniteSingleStepFlow(Private,ClamAV).

Because there was no DIFC manipulation code in ClamAV, we implemented
a “manager” module that initializes private files and ClamAV with DIFC la-
bels, similar to the scenario described in [2]. We introduced a functionality bug
(“NoRead”) into the manager in which we did not initialize ClamAV with the
tags needed to be able to read data from private files. We introduced a secu-
rity bug (“Export”) in which the handler accidentally gives ClamAV sufficient
capabilities to export private data over the network.

OpenVPN. OpenVPN [9] is an open-source VPN client. As described in [2],
because VPNs act as a bridge between networks on both sides of a firewall, they
represent a serious security risk. Similar to ClamAV, OpenVPN is a program that
manipulates sensitive data using a bounded number of processes. We checked
OpenVPN against the following flow properties:

– Security: Information from a private network should never be able to reach
an outside network unless it passes through OpenVPN. Conversely, data from
the outside network should never reach the private network without going
through OpenVPN. Formally, NoFlowHistory(Private,Outside,OpenVPN) ∧
NoFlowHistory(Outside,Private,OpenVPN).

– Functionality: OpenVPN should always be able to access data from both
networks. Formally, DefiniteSingleStepFlow(Private,OpenVPN) ∧
DefiniteSingleStepFlow(Outside,OpenVPN).

Because there was no DIFC manipulation code in OpenVPN, we implemented
a “manager” module that initializes the networks and OpenVPN with suitable
labels and capabilities. We introduced a bug (“NoRead”) in which the manager
does not initialize OpenVPN with sufficient capabilities to read data from the
networks. We introduced another bug (“Leak”) in which the manager initializes
the network sources with tag settings that allow some application other than
OpenVPN to pass data from one network to the other. Our results indicate
that the approach allows us to analyze properties over bounded processes for
large-scale programs.

The analyzes of FlumeWiki and Apache take significantly longer than those
of the other modules. We hypothesize that this is due to the fact that both of
these modules may execute using unbounded sets of processes and tags, whereas
the other modules do not. Their abstract models can thus frequently generate
non-deterministic values, leading to the examination of many control-flow paths.

Verifying Information Flow Control Over Unbounded Processes 15

Limitations. Although the tool succeeded in proving or finding counterex-
amples for all properties that we specified, we do not claim that the tool can
be applied successfully to all DIFC properties. For instance, our current meth-
ods cannot verify certain correctness properties for the full implementation of
FlumeWiki [3], which maintains a database that relates users to their DIFC
state, and checks and updates the database with each user action, because to
do so would require an accurate model of the database. The extension of our
formalism and implementation to handle such properties is left for future work.

6 Related Work

Much work has been done in developing interprocess information-flow systems,
including the systems Asbestos [16], Hi-Star [2], and Flume [3]. While the mech-
anisms of these systems differ, they all provide powerful low-level mechanisms
based on comparison over a partially ordered set of labels, with the goal of im-
plementing interprocess data secrecy and integrity. Our approach can be viewed
as a tool to provide application developers with assurance that code written for
these systems adheres to a high-level security policy.

Logical structures have been used previously to model and analyze programs
to check invariants, including heap properties [12] and safety properties of con-
current programs [17]. In this paper, we used the semantic machinery of first-
order logic to justify the use of random isolation, which was introduced in [6] to
check atomic-set serializability problems.

There has been previous work on static verification of information-flow sys-
tems. Multiple systems [18, 19] have been proposed for reasoning about finite
domains of security classes at the level of variables. These systems analyze infor-
mation flow at a granularity that does not match that enforced by interprocess
DIFC systems, and they do not aim to reason about concurrent processes.

The papers that are most closely related to our work are by Chaudhuri et
al. [10] and Krohn and Turner [11]. The EON system of Chaudhuri et al. ana-
lyzes secrecy and integrity-control systems by modeling them in an expressive
but decidable extension of Datalog and translating questions about the presence
of an attack into a query. Although the authors analyze a model of an Asbestos
web server, there is no discussion of how the model is extracted. Krohn and
Turner [11] analyze the Flume system itself and formally prove a property of
non-interference. In contrast, our approach focuses on automatically extracting
and checking models of applications written for Flume and using abstraction
and model checking. Our work concerns verifying a different portion of the sys-
tem stack and can be viewed as directly complementing the analysis of Flume
described in [11].

Guttman et al. [20] present a systematic way based on model checking to
determine the information-flow security properties of systems running Security-
Enhanced Linux. The goal of these researchers was to verify the policy. Our work
reasons at the code level whether an application satisfies its security goal. Zhang

16 Authors Suppressed Due to Excessive Length

et al. [21] describe an approach to the verification of LSM authorization-hook
placement using CQUAL, a type-based static-analysis tool.

References

1. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E.,
Mazières, D., Kaashoek, F., Morris, R.: Labels and event processes in the Asbestos
operating system. SIGOPS Oper. Syst. Rev. 39(5) (2005) 17–30

2. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: OSDI. (2006)

3. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information flow control for standard os abstractions. In: SOSP. (2007)

4. Conover, M.: Analysis of the Windows Vista Security Model. Technical report,
Symantec Corporation (2008)

5. Chaki, S., Clarke, E., Groce, A., Ouaknine, J., Strichman, O., Yorav, K.: Efficient
verification of sequential and concurrent C programs. Form. Methods Syst. Des.
25(2-3) (2004) 129–166

6. Kidd, N.A., Reps, T.W., Dolby, J., Vaziri, M.: Finding concurrency-related bugs
using random isolation. In: VMCAI. (2009)

7. Apache: Apache. http://www.apache.org
8. ClamAV: ClamAV. http://www.clamav.net
9. OpenVPN: OpenVPN. http://www.openvpn.net

10. Chaudhuri, A., Naldurg, P., Rajamani, S.K., Ramalingam, G., Velaga, L.: EON:
Modeling and analyzing dynamic access control systems with logic programs. In:
CCS. (2008)

11. Krohn, M., Tromer, E.: Non-interference for a practical DIFC-based operating
system. In: IEEE Symposium on Security and Privacy. (2009)

12. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3) (2002) 217–298

13. Harris, W.R., Kidd, N.A., Chaki, S., Jha, S., Reps, T.: Verifying information flow
control over unbounded processes. Technical Report UW-CS-TR-1655, Univ. of
Wisc. (May 2009)

14. Necula, G., McPeak, S., Rahul, S., Weimer, W.: CIL: Intermediate language and
tools for analysis and transformation of C programs (2002)

15. MoinMoin: The MoinMoin wiki engine. http://moinmoin.wikiwikiweb.de (Decem-
ber 2006)

16. Vandebogart, S., Efstathopoulos, P., Kohler, E., Krohn, M., Frey, C., Ziegler, D.,
Kaashoek, F., Morris, R., Mazières, D.: Labels and Event Processes in the Asbestos
Operating System. ACM Trans. Comput. Syst. 25(4) (2007) 11

17. Yahav, E.: Verifying safety properties of concurrent java programs using 3-valued
logic. In: POPL. (2001)

18. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7) (1977) 504–513

19. Myers, A.C.: JFlow: practical mostly-static information flow control. In: POPL.
(1999)

20. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying
Information-Flow Goals in Security-Enhanced Linux. Journal of Computer Se-
curity (2005)

21. Zhang, X., Edwards, A., Jaeger, T.: Using CQUAL for static analysis of autho-
rization hook placement. In: USENIX Security Symposium. (2002) 33–48

