
Finite Differencing of Logical Formulas

for Static Analysis

THOMAS REPS

University of Wisconsin and GrammaTech, Inc.

MOOLY SAGIV

Tel Aviv University

and

ALEXEY LOGINOV

GrammaTech, Inc.

This paper concerns mechanisms for maintaining the value of an instrumentation relation (also
known as a derived relation or view), defined via a logical formula over core relations, in response
to changes in the values of the core relations. It presents an algorithm for transforming the
instrumentation relation’s defining formula into a relation-maintenance formula that captures
what the instrumentation relation’s new value should be.

The technique applies to program-analysis problems in which the semantics of statements is
expressed using logical formulas that describe changes to core-relation values, and provides a way
to reflect those changes in the values of the instrumentation relations.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—formal methods; D.3.3 [Programming Languages]: Language Constructs and Features—
data types and structures; dynamic storage management; E.1 [Data]: Data Structures—graphs
and networks; lists, stacks, and queues; records; trees; E.2 [Data]: Data Storage Representa-
tions—composite structures; linked representations; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—assertions; invariants; mechanical ver-
ification; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—
program analysis

General Terms: Algorithms, Languages, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, finite differencing, materialized view,
shape analysis, static analysis, 3-valued logic

1. INTRODUCTION

This paper addresses an instance of the following fundamental challenge in abstract
interpretation:

Authors’ addresses: T. Reps, Comp. Sci. Dept., University of Wisconsin, and GrammaTech, Inc.,
reps@cs.wisc.edu. M. Sagiv, School of Comp. Sci., Tel Aviv University, msagiv@post.tau.ac.il.
A. Loginov, GrammaTech, Inc., alexey@grammatech.com. At the time the research reported in
the paper was carried out, A. Loginov was affiliated with the Univ. of Wisconsin.

The work was supported in part by NSF under grants CCR-{9619219,9986308}, and CCF-
{0540955,0524051}, by the U.S.-Israel BSF under grant 96-00337, by ONR under contracts
N00014-01-1-{0708,0796}, and by the von Humboldt and Guggenheim Foundations. Portions of
the work appeared in the 12th European Symp. on Programming [Reps et al. 2003], R. Wilhelm’s
60th-birthday Festschrift [Loginov et al. 2007], and A. Loginov’s Ph.D. dissertation [Loginov 2006].
c© 2009 T. Reps, M. Sagiv, and A. Loginov

2 · T. Reps et al.

Given the concrete semantics for a language and a desired abstraction,
how does one create the associated abstract transformers?

The problem that we address arises in program-analysis problems in which the
semantics of statements is expressed using logical formulas that describe changes to
core-relation values. When instrumentation relations (defined via logical formulas
over the core relations) have been introduced to refine an abstraction, the challenge
is to reflect the changes in core-relation values in the values of the instrumentation
relations [Graf and Säıdi 1997; Das et al. 1999; McMillan 1999; Sagiv et al. 2002;
Ball et al. 2001]. The algorithm presented in this paper provides a way to create
formulas that maintain correct values for the instrumentation relations, and thereby
provides a way to generate, completely automatically, the part of the transformers
of an abstract semantics that deals with instrumentation relations. The algorithm
runs in time linear in the size of the instrumentation relation’s defining formula.

This research was motivated by our work on static analysis based on 3-valued
logic [Sagiv et al. 2002]; however, any analysis method that relies on logic—2-valued
or 3-valued—to express a program’s semantics may be able to benefit from these
techniques.

In our setting, two related logics come into play: an ordinary 2-valued logic, as
well as a related 3-valued logic. A memory configuration, or store, is modeled by
what logicians call a logical structure; an individual of the structure’s universe either
models a single memory element or, in the case of a summary individual, it models
a collection of memory elements. A run of the analyzer carries out an abstract
interpretation to collect a set of structures at each program point P . This involves
finding the least fixed point of a certain set of equations. When the fixed point
is reached, the structures that have been collected at program point P describe a
superset of all the execution states that can occur at P . To determine whether a
property always holds at P , one checks whether it holds in all of the structures
that were collected there. Instantiations of this framework are capable of estab-
lishing nontrivial properties of programs that perform complex pointer-based ma-
nipulations of a priori unbounded-size heap-allocated data structures. The TVLA
system (Three-Valued-Logic Analyzer) implements this approach [Lev-Ami and
Sagiv 2000; TVLA].

Summary individuals play a crucial role. They are used to ensure that abstract
descriptors have an a priori bounded size, which guarantees that a fixed-point is
always reached. However, the constraint of working with limited-size descriptors
implies a loss of information about the store. Intuitively, certain properties of
concrete individuals are lost due to abstraction, which groups together multiple
individuals into summary individuals: a property can be true for some concrete
individuals of the group but false for other individuals. It is for this reason that
3-valued logic is used; uncertainty about a property’s value is captured by means
of the third truth value, 1/2.

An advantage of using 2- and 3-valued logic as the basis for static analysis is that
the language used for extracting information from the concrete world and the ab-
stract world is identical: every syntactic expression—i.e., every logical formula—can
be interpreted either in the 2-valued world or the 3-valued world. The consistency
of the 2-valued and 3-valued viewpoints is ensured by a basic theorem that relates

Finite Differencing of Logical Formulas · 3

the two logics [Sagiv et al. 2002, Theorem 4.9]. This provides a partial answer to
the fundamental challenge posed above: formulas that define the concrete seman-
tics, when interpreted in 2-valued logic, define a sound abstract semantics when
interpreted in 3-valued logic [Sagiv et al. 2002].

Unfortunately, unless some care is taken in the design of an analysis, there is
a danger that as abstract interpretation proceeds, the indefinite value 1/2 will be-
come pervasive. This can destroy the ability to recover interesting information from
the 3-valued structures collected (although soundness is maintained). A key role in
combating indefiniteness is played by instrumentation relations, which record aux-
iliary information in a logical structure. The benefit of introducing instrumentation
relations was annunciated as the Instrumentation Principle:

Observation 1.1. (Instrumentation Principle [Sagiv et al. 2002, Obser-
vation 2.8]). Suppose that S is a 3-valued structure that represents the 2-valued
structure S♮. By explicitly “storing” in S the values that a formula ϕ has in S♮, it is
sometimes possible to extract more precise information from S than can be obtained
just by evaluating ϕ in S.

Instrumentation relations provide a mechanism to fine-tune an abstraction: an
instrumentation relation, which is defined by a logical formula ϕ over the core
relation symbols, captures a property that may or may not be possessed by a
structure, an individual memory cell, or a tuple of memory cells (according to
whether ϕ is a nullary, unary, or k-ary formula, respectively). In general, the
introduction of additional instrumentation relations refines an abstraction into one
that is prepared to track finer distinctions among stores. For reasons discussed in
§3, the values of instrumentation relations are stored and maintained in response to
the store transformations performed by program statements. In general, this allows
more precise properties of the program’s stores to be established.

From the standpoint of the concrete semantics, instrumentation relations rep-
resent cached information that could always be recomputed by reevaluating the
instrumentation relation’s defining formula in the local state. From the standpoint
of the abstract semantics, however, reevaluating a formula in the local (3-valued)
state can lead to a drastic loss of precision. To gain maximum benefit from instru-
mentation relations, an abstract-interpretation algorithm must obtain their values
in some other way.

This problem, instrumentation-relation maintenance, is solved by incremental
computation. After a transition via transformer τ from abstract state σ to abstract
state σ′, the new value that instrumentation relation p should have is computed
from the stored value of p in σ. The contributions of the work reported in the paper
can be summarized as follows:

—We give an algorithm for the relation-maintenance problem; it creates a relation-
maintenance formula by applying a finite-differencing transformation to p’s defin-
ing formula. The algorithm runs in time linear in the size of the defining formula.

—We present experimental evidence that our technique is an effective one, at least
for the analysis of programs that manipulate (cyclic and acyclic) singly-linked
lists, doubly-linked lists, and binary trees, and for certain sorting programs. In
particular, the relation-maintenance formulas produced automatically using our

4 · T. Reps et al.

approach are as effective for maintaining precision as the best available hand-
crafted ones.

—This work is related to the view-maintenance problem in databases [Gupta and
Mumick 1999; Dong and Su 1995; Patnaik and Immerman 1997]. Compared with
that work, the novelty is the ability to create relation-maintenance formulas that
are suitable for use when abstraction has been performed.

The remainder of the paper is organized as follows: §2 introduces terminology
and notation. §3 defines the relation-maintenance problem. §4 presents a method
for generating maintenance formulas for instrumentation relations. §5 discusses ex-
tensions to handle instrumentation relations that use transitive closure. §6 presents
experimental results. §7 discusses related work. §8 presents some concluding re-
marks. Finally, the Appendix presents a proof of the correctness of our solution to
the relation-maintenance problem.

2. BACKGROUND

This section introduces terminology and notation; it presents the logic that we
employ and describes the use of logical structures for representing memory stores.

The first half of §2.1 introduces 2-valued first-order logic with transitive closure.
These concepts are standard in logic. The second half of §2.1 presents a straightfor-
ward extension of the logic to the 3-valued setting, in which a third truth value—
1/2—is introduced to denote uncertainty. §2.2 summarizes the program-analysis
framework described in [Sagiv et al. 2002]. In that approach, memory configura-
tions are encoded as logical structures, the semantics of programs, as well as the
properties of memory configurations, is encoded as logical formulas, and abstract
interpretation computes the set of logical structures that describe the memory con-
figurations that can arise at each point in the program being analyzed.

2.1 First-Order Logic with Transitive Closure

2-Valued First-Order Logic with Transitive Closure. The syntax of first-order
formulas with equality and reflexive transitive closure is defined as follows:

Definition 2.1. Let Ri denote a set of arity-i relation symbols, with eq ∈ R2.
A formula over the vocabulary R =

⋃

i Ri is defined by

p ∈ Rk ϕ ::= 0 | 1 | p(v1, . . . , vk)
ϕ ∈ Formulas | (¬ϕ1) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (∃v : ϕ1) | (∀v : ϕ1)
v ∈ Variables | (RTC v′1, v

′
2 : ϕ1)(v1, v2)

A formula of the form 0, 1, or p(v1, . . . , vk) is called an atomic formula.
The set of free variables of a formula is defined as usual. “RTC” stands for

reflexive transitive closure. In ϕ ≡ (RTC v′1, v
′
2 : ϕ1)(v1, v2), if ϕ1’s free-variable

set is V , we require v1, v2 6∈ V . The free variables of ϕ are (V −{v′1, v
′
2})∪{v1, v2}.

We use several shorthand notations: (v1 =v2)
def

= eq(v1, v2); (v1 6=v2)
def

= ¬eq(v1, v2);

and for a binary relation p, p∗(v1, v2)
def

= (RTC v′1, v
′
2 : p(v′1, v

′
2))(v1, v2). We also

Finite Differencing of Logical Formulas · 5

use a C-like syntax for conditional expressions: ϕ1 ? ϕ2 : ϕ3.
1 The order of prece-

dence among the connectives, from highest to lowest, is as follows: ¬, ∧, ∨, ∀, and
∃. We drop parentheses wherever possible, except for emphasis.

Definition 2.2. A 2-valued interpretation over R is a 2-valued logical structure
S = 〈US , ιS〉, where US is a set of individuals and ιS maps each relation symbol
p of arity k to a truth-valued function: ιS(p) : (US)k → {0, 1}. In addition, (i) for
all u ∈ US , ιS(eq)(u, u) = 1, and (ii) for all u1, u2 ∈ US such that u1 and u2 are
distinct individuals, ιS(eq)(u1, u2) = 0.

An assignment Z is a function that maps variables to individuals (i.e., it has
the functionality Z : {v1, v2, . . .} → US). When Z is defined on all free variables
of a formula ϕ, we say that Z is complete for ϕ. (We generally assume that ev-
ery assignment that arises in connection with the discussion of some formula ϕ is
complete for ϕ.)

The (2-valued) meaning of a formula ϕ, denoted by [[ϕ]]S2 (Z), yields a truth value
in {0, 1}; it is defined inductively as follows:

[[0]]S2 (Z) = 0 [[ϕ1 ∧ ϕ2]]
S
2 (Z) = min([[ϕ1]]

S
2 (Z), [[ϕ2]]

S
2 (Z))

[[1]]S2 (Z) = 1 [[ϕ1 ∨ ϕ2]]
S
2 (Z) = max([[ϕ1]]

S
2 (Z), [[ϕ2]]

S
2 (Z))

[[p(v1, . . . , vk)]]S2 (Z) = ιS(p)(Z(v1), . . . , Z(vk)) [[∃v : ϕ1]]
S
2 (Z) = max

u∈US
[[ϕ1]]

S
2 (Z[v1 7→ u])

[[¬ϕ1]]
S
2 (Z) = 1− [[ϕ1]]

S
2 (Z) [[∀v : ϕ1]]

S
2 (Z) = min

u∈US
[[ϕ1]]

S
2 (Z[v1 7→ u])

[[(RTC v′1, v
′
2 : ϕ1)(v1, v2)]]

S
2 (Z)

=























1 ifZ(v1) = Z(v2)

max
n ≥ 1,

u1, . . . , un+1 ∈ U,
Z(v1) = u1,

Z(v2) = un+1

n

min
i=1

[[ϕ1]]
S
2 (Z[v′1 7→ ui, v

′
2 7→ ui+1]) otherwise

S and Z satisfy ϕ if [[ϕ]]S2 (Z) = 1. The set of 2-valued structures is denoted by
S2[R].

3-Valued Logic and Embedding. In 3-valued logic, the formulas that we work with
are identical to the ones used in 2-valued logic. At the semantic level, a third truth
value—1/2—is introduced to denote uncertainty.

Definition 2.3. The truth values 0 and 1 are definite values ; 1/2 is an indefinite
value. For l1, l2 ∈ {0, 1/2, 1}, the information order is defined as follows: l1 ⊑ l2
iff l1 = l2 or l2 = 1/2. l1 ⊑ l2 denotes that l1 is at least as definite as l2. We use
l1 ⊏ l2 when l1 ⊑ l2 and l1 6= l2. The symbol ⊔ denotes the least-upper-bound
operation with respect to ⊑.

As shown in Fig. 1, we place two orderings on 0, 1, and 1/2: (i) the information
order, denoted by ⊑ and illustrated in Fig. 1(a), captures “(un)certainty”; (ii) the
logical order, shown in Fig. 1(b), defines the meaning of ∧ and ∨; that is, ∧ and ∨
are meet and join in the logical order. 3-valued logic retains a number of properties
that are familiar from 2-valued logic, such as De Morgan’s laws, associativity of
∧ and ∨, and distributivity of ∧ over ∨ (and vice versa). Because ϕ1 ? ϕ2 : ϕ3 is
treated as a shorthand for (ϕ1 ∧ϕ2)∨ (¬ϕ1 ∧ϕ3)∨ (ϕ2 ∧ϕ3) in 3-valued logic [Reps

1In 2-valued logic, one can think of ϕ1 ? ϕ2 : ϕ3 as a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3). In
3-valued logic, it becomes a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3) [Reps et al. 2002].

6 · T. Reps et al.

1/2

0

1
J

J
J

J
⊔ 0 1/2 1

0 0 1/2 1/2
1/2 1/2 1/2 1/2
1 1/2 1/2 1

1

1/2

0

∨ 0 1/2 1

0 0 1/2 1
1/2 1/2 1/2 1
1 1 1 1

(a) (b)

Fig. 1. (a) The information order (⊑) and its join operation (⊔). (b) The logical order and its
join operation (∨).

et al. 2002], the value of 1/2 ? V1 : V2 equals V1 ⊔V2. We now generalize Defn. 2.2
to define the meaning of a formula with respect to a 3-valued structure.

Definition 2.4. A 3-valued interpretation over R is a 3-valued logical structure
S = 〈US , ιS〉, where US is a set of individuals and ιS maps each relation symbol p
of arity k to a truth-valued function: ιS(p) : (US)k → {0, 1/2, 1}. In addition, (i)
for all u ∈ US , ιS(eq)(u, u) ⊒ 1, and (ii) for all u1, u2 ∈ US such that u1 and u2

are distinct individuals, ιS(eq)(u1, u2) = 0.
For an assignment Z, the (3-valued) meaning of a formula ϕ, denoted by [[ϕ]]S3 (Z),

yields a truth value in {0, 1/2, 1}. The meaning of ϕ is defined exactly as in
Defn. 2.2, but interpreted over {0, 1/2, 1}. S and Z potentially satisfy ϕ if [[ϕ]]S3 (Z) ⊒
1. The set of 3-valued structures is denoted by S3[R].

Defn. 2.4 requires that for each individual u, the value of ιS(eq)(u, u) is 1 or 1/2.
An individual for which ιS(eq)(u, u) = 1/2 is called a summary individual. In the
program-analysis framework of [Sagiv et al. 2002], a summary individual abstracts
one or more nodes of a data structure, and hence can represent more than one
concrete memory cell.

The embedding ordering on structures is defined as follows:

Definition 2.5. Let S = 〈US , ιS〉 and S′ = 〈US′

, ιS
′

〉 be two structures, and let
f : US → US′

be a surjective function. We say that f embeds S in S′ (denoted by
S ⊑f S′) if for every relation symbol p ∈ R of arity k and for all u1, . . . , uk ∈ U

S ,
ιS(p)(u1, . . . , uk) ⊑ ιS

′

(p)(f(u1), . . . , f(uk)). We say that S can be embedded in S′

(denoted by S ⊑ S′) if there exists a function f such that S ⊑f S′.

The Embedding Theorem says that if S ⊑f S′, then every piece of information
extracted from S′ via a formula ϕ is a conservative approximation of the information
extracted from S via ϕ. To formalize this, we extend mappings on individuals
to operate on assignments: if f : US → US′

is a function and Z : V ar → US

is an assignment, f ◦ Z denotes the assignment f ◦ Z : V ar → US′

such that
(f ◦ Z)(v) = f(Z(v)).

Theorem 2.6. (Embedding Theorem [Sagiv et al. 2002, Theorem 4.9]).
Let S = 〈US , ιS〉 and S′ = 〈US′

, ιS
′

〉 be two structures, and let f : US → US′

be a
function such that S ⊑f S′. Then, for every formula ϕ and complete assignment Z
for ϕ, [[ϕ]]S3 (Z) ⊑ [[ϕ]]S

′

3 (f ◦ Z).

2.2 Stores as Logical Structures and their Abstractions

Finite Differencing of Logical Formulas · 7

x 1 8 5
n n

Fig. 2. A possible store for a linked list.

typedef struct node {

struct node *n;

int data;

} *List;

Relation Intended Meaning

eq(v1, v2) Do v1 and v2 denote the same memory cell?
x(v) Does pointer variable x point to memory cell v?
n(v1, v2) Does the n field of v1 point to v2?
dle(v1, v2) Is the data field of v1 less than or equal to

that of v2?

(a) (b)

Fig. 3. (a) Declaration of a linked-list datatype in C. (b) Core relations used for representing the
stores manipulated by programs that use type List.

Program Analysis Via 3-Valued Logic. The remainder of this section summarizes
the program-analysis framework described in [Sagiv et al. 2002]. In that approach,
concrete memory configurations (i.e., stores) are encoded as logical structures (as-
sociated with a vocabulary of relation symbols with given arities) in terms of a
fixed collection of core relations, C. Core relations are part of the underlying se-
mantics of the language to be analyzed; they record atomic properties of stores.
For instance, Fig. 3 gives the definition of a C linked-list datatype, and lists the
relations that would be used to represent the stores manipulated by programs that
use type List, such as the store in Fig. 2. (The core relations are fixed for a
given combination of language and datatype; in general, different languages and
datatypes require different collections of core relations.) 2-valued logical structures
then represent memory configurations: the individuals of the structure are the set
of memory cells; a nullary relation represents a Boolean variable of the program;
a unary relation represents either a pointer variable or a Boolean-valued field of a
record; and a binary relation represents a pointer field of a record. In this exam-
ple, unary relations represent pointer variables and binary relation n represents the
n-field of a List cell. Numeric-valued variables and numeric-valued fields (such as
data) can be modeled by introducing other relations, such as the binary relation
dle (which stands for “data less-than-or-equal-to”) listed in Fig. 3; dle captures
the relative order of two nodes’ data values. (Alternatively, numeric-valued enti-
ties can be handled by combining abstractions of logical structures with previously
known techniques for creating numeric abstractions [Gopan et al. 2004].) Fig. 4
shows 2-valued structure S4, which represents the store of Fig. 2 using the relations
of Fig. 3. S4 has three individuals, u1, u2, and u3, which represent the three list
elements.

Information about a concrete memory configuration encoded as a logical structure
can be extracted from the logical structure by evaluating formulas.

A concrete operational semantics is defined by specifying a structure transformer
st(n1,n2) for each outgoing control-flow graph (CFG) edge (n1, n2). (Ordinarily
(n1, n2) is understood, and we just write st.) A structure transformer is specified by
providing a collection of relation-transfer formulas, τc,st, one for each core relation
c. These formulas define how the core relations of a 2-valued logical structure S

8 · T. Reps et al.

x

dle

dle

n

dle

n

dle

u1

dle

u2

dle

u3

x

u1 1

u2 0

u3 0

n u1 u2 u3

u1 0 1 0

u2 0 0 1

u3 0 0 0

dle u1 u2 u3

u1 1 1 1

u2 0 1 0

u3 0 1 1

Fig. 4. A logical structure S4 that represents the store shown in Fig. 2 in graphical and tabular
forms using the relations of Fig. 3 (Relation eq is not shown explicitly; each node has an eq
self-loop, and the relation in tabular form is the identity matrix.)

that arises at n1 are transformed by st(n1,n2) to create a 2-valued logical structure
S′ at n2; typically, they define the value of relation c in S′ as a function of c’s value
in S and the values of other core relations in S. Transformer st may optionally
have a precondition formula, which filters out structures that should not follow
the transition along (n1, n2). The postcondition operator post for edge (n1, n2) is
defined by lifting (n1, n2)’s structure transformer to sets of structures.

Abstract stores are 3-valued logical structures. Concrete stores are abstracted to
abstract stores by means of embedding functions—onto functions that map individ-
uals of a 2-valued structure S♮ to those of a 3-valued structure S. The Embedding
Theorem ensures that every piece of information extracted from S by evaluating a
formula ϕ is a conservative approximation (⊒) of the information extracted from
S♮ by evaluating ϕ.

To obtain a computable abstract domain, we ensure that the size of the 3-valued
structures used to represent memory configurations is always bounded. We do this
by defining an equivalence relation on individuals and considering the (bounded-
size) quotient structure with respect to this equivalence relation; in particular, each
individual of a 2-valued logical structure (representing a concrete memory cell) is
mapped to an individual of a 3-valued logical structure according to the vector
of values that the concrete individual has for a user-chosen collection of unary
abstraction relations:

Definition (Canonical Abstraction). Let S ∈ S2[R], and let A ⊆ R1 be
some chosen (nonempty) subset of the unary relation symbols. The relations in A
are called abstraction relations ; they define the following equivalence relation ≃A

on US :

u1 ≃A u2 ⇐⇒ for all p ∈ A, pS(u1) = pS(u2),

and the surjective function fA : US → US/ ≃A, such that fA(u) = [u]≃A
, which

maps an individual to its equivalence class. The canonical abstraction of S with
respect to A (denoted by fA(S)) performs the join (in the information order) of
relation values, thereby introducing 1/2’s.

Intuitively, canonical abstraction maps a group of individuals that are indis-
tinguishable according to the set of (unary) abstraction relations A to a single
individual.

If A = {x}, the canonical abstraction of 2-valued logical structure S4 is S5, shown

Finite Differencing of Logical Formulas · 9

dlex

dle n,dle
n

u1
u23

x

u1 1

u23 0

n u1 u23

u1 0 1/2

u23 0 1/2

dle u1 u23

u1 1 1

u23 0 1/2

Fig. 5. A 3-valued structure S5 that is the canonical abstraction of structure S4.

in Fig. 5, with fA(u1) = u1 and fA(u2) = fA(u3) = u23. In addition to S4, S5

represents any list with two or more elements that is pointed to by program variable
x, and in which the first element’s data value is (definitely) lower than the data

values in the rest of the list (note the absence of either a 1-valued or 1/2-valued
dle edge from individual u23 to individual u1). The following graphical notation is
used for depicting 3-valued logical structures:

—Individuals are represented by circles containing their names and (non-0) values
for unary relations. Summary individuals are represented by double circles.

—A unary relation p corresponding to a pointer-valued program variable is repre-
sented by a solid arrow from p to the individual u for which p(u) = 1, and by
the absence of a p-arrow to each node u′ for which p(u′) = 0. (If p = 0 for all
individuals, the relation name p is not shown.)

—A binary relation q is represented by a solid arrow labeled q between each pair
of individuals ui and uj for which q(ui, uj) = 1, and by the absence of a q-arrow
between pairs u′i and u′j for which q(u′i, u

′
j) = 0.

—Relations with value 1/2 are represented by dotted arrows.

Canonical abstraction ensures that each 3-valued structure is no larger than some
fixed size, known a priori.

2.2.1 Instrumentation Relations. The abstraction function on which an analysis
is based, and hence the precision of the analysis defined, can be tuned by (i) choos-
ing to equip structures with additional instrumentation relations to record derived
properties, and (ii) varying which of the unary core and unary instrumentation
relations are used as the set of abstraction relations. The set of instrumentation
relations is denoted by I. Each arity-k relation symbol p ∈ I is defined by an
instrumentation-relation definition formula ψp(v1, . . . , vk). Instrumentation rela-
tions may appear in the defining formulas of other instrumentation relations as
long as there are no circular dependences.

The introduction of unary instrumentation relations that are used as abstraction
relations provides a way to control which concrete individuals are merged together
into an abstract individual, and thereby control the amount of information lost by
abstraction. Instrumentation relations that involve reachability properties, which
can be defined using RTC, often play a crucial role in the definitions of abstractions.
For instance, in program-analysis applications, reachability properties from specific
pointer variables have the effect of keeping disjoint sublists summarized separately.
Fig. 6 lists some instrumentation relations that are important for the analysis of
programs that use type List.

10 · T. Reps et al.

p Intended Meaning ψp

isn(v) Do n fields of two or more list nodes point to v? ∃ v1, v2 : n(v1, v)∧ n(v2, v) ∧ v1 6=v2
tn(v1, v2) Is v2 reachable from v1 along zero or more n fields? n∗(v1, v2)

rn,x(v) Is v reachable from pointer variable x ∃ v1 : x(v1)∧ tn(v1, v)
along zero or more n fields?

cn(v) Is v on a directed cycle of n fields? ∃ v1 : n(v1, v)∧ tn(v, v1)

Fig. 6. Defining formulas of some commonly used instrumentation relations. The relation name
isn abbreviates “is-shared”. There is a separate reachability relation rn,x for every program
variable x. (Recall that v1 6=v2 is a shorthand for ¬eq(v1, v2), and n∗(v1, v2) is a shorthand for
(RTC v′

1
, v′

2
: n(v′

1
, v′

2
))(v1, v2).)

x

tn,dle

tn,dle

dle

u1rn,x

tn,dle

u2rn,x

n,tn

dle
tn,dle

u3rn,x

n,tn

x rn,x cn

u1 1 1 0

u2 0 1 0

u3 0 1 0

n u1 u2 u3

u1 0 1 0

u2 0 0 1

u3 0 0 0

tn u1 u2 u3

u1 1 1 1

u2 0 1 1

u3 0 0 1

dle u1 u2 u3

u1 1 1 1

u2 0 1 0

u3 0 1 1

Fig. 7. A logical structure S7 that represents the store shown in Fig. 2 in graphical and tabular
forms using the relations of Figs. 3 and 6

.

tn,dle
x

tn,dle n,tn,dle
n

u1rn,x

u23rn,x

x rn,x cn

u1 1 1 0

u23 0 1 0

n u1 u23

u1 0 1/2

u23 0 1/2

tn u1 u23

u1 1 1

u23 0 1/2

dle u1 u23

u1 1 1

u23 0 1/2

Fig. 8. A 3-valued structure S8 that is the canonical abstraction of structure S7.

Fig. 7 shows 2-valued structure S7, which represents the store of Fig. 2 using
the core relations of Fig. 3, as well as the instrumentation relations of Fig. 6. If
all unary relations are abstraction relations (A = R1), the canonical abstraction
of 2-valued logical structure S7 is S8, shown in Fig. 8, with fA(u1) = u1 and
fA(u2) = fA(u3) = u23.

2.2.2 Abstract Interpretation. For each kind of statement in the programming
language, the abstract semantics is again defined by a collection of formulas: the
same relation-transfer formula that defines the concrete semantics, in the case of
a core relation, and, in the case of an instrumentation relation p, by a relation-
maintenance formula µp,st.

2

2In [Sagiv et al. 2002], relation-transfer formulas and relation-maintenance formulas are both called
“relation-update formulas”. Here we use separate terms so that we can refer easily to relation-

Finite Differencing of Logical Formulas · 11

Structure before

unary rels. binary rels.

indiv. x y

u1 1 0
u 0 0

n u1 u

u1 0 1/2
u 0 1/2

eq u1 u

u1 1 0
u 0 1/2

x // ?>=<89:;u1
n //?>=<89:;/.-,()*+u

n

��

Statement y = x

Relation-transfer formulas

τx,y=x(v) = x(v)
τy,y=x(v) = x(v)

τn,y=x(v1, v2) = n(v1, v2)
τeq,y=x(v1, v2) = eq(v1, v2)

Structure after

unary rels. binary rels.

indiv. x y

u1 1 1
u 0 0

n u1 u

u1 0 1/2
u 0 1/2

eq u1 u

u1 1 0
u 0 1/2

x, y // ?>=<89:;u1
n //?>=<89:;/.-,()*+u

n

��

Fig. 9. The relation-transfer formulas for x, y, and n express a transformation on logical structures
that corresponds to the semantics of y = x.

Abstract interpretation collects a set of 3-valued structures at each program point.
It can be implemented as an iterative procedure that finds the least fixed point of
a certain set of equations [Sagiv et al. 2002]. (It is important to understand that
although the analysis framework is based on logic, it is model theoretic, not proof
theoretic: the abstract interpretation collects sets of 3-valued logical structures—
i.e., abstracted models; its actions do not rely on deduction or theorem proving.)
When the fixed point is reached, the structures that have been collected at program
point P describe a superset of all the execution states that can occur at P . To
determine whether a property always holds at P , one checks whether it holds in all
of the structures that were collected there.

Fig. 9 illustrates the abstract execution of the statement y = x on a 3-valued
logical structure that represents concrete lists of length 2 or more. Instrumentation
relations and relation-maintenance formulas have been omitted from the figure.
The abstract execution of the statement y = x is revisited in Ex. 3.2 of §3, which
discusses relation-maintenance formulas.

Other Operations on Logical Structures. focus[ϕ] is a heuristic that elaborates
a 3-valued structure—causing it to be replaced by a collection of more precise
structures that, taken together, represent the same set of concrete stores;3 the
criterion for refinement is to ensure that the formula ϕ evaluates to a definite value
for all complete assignments to ϕ’s free variables. The operation thus brings ϕ “into
focus”.

By invoking focus before applying each structure transformer, focusing is used to
reduce the number of indefinite values that arise when relation-transfer and relation-
maintenance formulas are evaluated in 3-valued structures. The focus formulas aim
to sharpen the values of relations when applied to the individuals that are affected
by the transformer. (This often involves the materialization of a concrete individual

maintenance formulas, which are the main subject of this paper. The term “relation-maintenance
formula”emphasizes the connection to work in the database community on view maintenance (see
§7). (“View updating” is something different: an update is made to the value of a view relation
and changes are propagated back to the base relations.)
3This operation can be viewed as a partial concretization.

12 · T. Reps et al.

out of a summary individual.) For program-analysis applications, it was proposed
in [Sagiv et al. 2002] that for a statement of the form lhs = rhs, the focus formula
should identify the memory cells that correspond to the L-value of lhs and the R-
value of rhs. This ensures that the application of an abstract transformer performs
a strong update of the values of core relations that represent pointer variables and
fields that are updated by the statement, i.e., does not set those values to 1/2.

Not all logical structures represent admissible stores. To exclude structures that
do not, we impose integrity constraints. For instance, relation x(v) of Fig. 3 cap-
tures whether pointer variable x points to memory cell v; x would be given the
attribute “unique”, which imposes the integrity constraint that x can hold for at
most one individual in any structure: ∀ v1, v2 : x(v1)∧x(v2) ⇒ v1 = v2. This
formula evaluates to 1 in any 2-valued logical structure that corresponds to an ad-
missible store. Integrity constraints contribute to the concretization function (γ)
for our abstraction [Yorsh et al. 2007]. Integrity constraints are enforced by coerce,
a clean-up operation that may “sharpen” a 3-valued logical structure by setting an
indefinite value (1/2) to a definite value (0 or 1), or discard a structure entirely
if an integrity constraint is definitely violated by the structure (e.g., if it cannot
represent any admissible store). To help prevent an analysis from losing precision,
coerce is applied at certain steps of the algorithm, e.g., after the application of an
abstract transformer.

In addition, most of the operations described in this section are not constrained
to manipulate 3-valued structures that are images of canonical abstraction; they
rely on the Embedding Theorem, which applies to any pair of structures for which
one can be embedded into the other. Thus, it is not necessary to perform canonical
abstraction after the application of each abstract structure transformer. To ensure
that abstract interpretation terminates, it is only necessary that canonical abstrac-
tion be applied somewhere in each loop, e.g., at the target of each backedge in the
CFG.

3. THE PROBLEM: MAINTAINING INSTRUMENTATION RELATIONS

The execution of a statement st transforms a logical structure S, which represents
a store that arises just before st, into a new structure S′, which represents the
corresponding store just after st executes. The structure that consists of just the
core relations of S′ is called a proto-structure, denoted by S′

proto. The creation of
S′

proto from S, denoted by S′
proto := [[st]]3(S), can be expressed as

for each c ∈ C and u1, . . . , uk ∈ U
S ,

ιS
′

proto(c)(u1, . . . , uk) := [[τc,st(v1, . . . , vk)]]S3 ([v1 7→ u1, . . . , vk 7→ uk]). (1)

In general, if we compare the various relations of S′
proto with those of S, some tuples

will have been added and others will have been deleted.
We now come to the crux of the matter: Suppose that ψp defines instrumentation

relation p; how should the static-analysis engine obtain the value of p in S′?
An instrumentation relation whose defining formula is expressed solely in terms

of core relations is said to be in core normal form. Because there are no circular
dependences, an instrumentation relation’s defining formula can always be put in
core normal form by repeated substitution until only core relations remain. When

Finite Differencing of Logical Formulas · 13

ψp is in core normal form, or has been converted to core normal form, it is possible to
determine the value of each instrumentation relation p by evaluating ψp in structure
S′

proto:

for each u1, . . . , uk ∈ U
S,

ιS
′

(p)(u1, . . . , uk) := [[ψp(v1, . . . , vk)]]
S′

proto

3 ([v1 7→ u1, . . . , vk 7→ uk]). (2)

Thus, in principle it is possible to maintain the values of instrumentation relations
via Eqn. (2). In practice, however, this approach does not work very well. As
observed elsewhere [Sagiv et al. 2002], when working in 3-valued logic, it is usu-
ally possible to retain more precision by defining a special instrumentation-relation
maintenance formula, µp,st(v1, . . . , vk), and evaluating µp,st(v1, . . . , vk) in structure
S:

for each u1, . . . , uk ∈ U
S,

ιS
′

(p)(u1, . . . , uk) := [[µp,st(v1, . . . , vk)]]S3 ([v1 7→ u1, . . . , vk 7→ uk]). (3)

The advantage of the relation-maintenance approach is that the results of program
analysis can be more accurate. In 3-valued logic, when µp,st is defined appropriately,
the relation-maintenance strategy can generate a definite value (0 or 1) when the
evaluation of ψp on S′

proto generates the indefinite value 1/2.
To ensure that an analysis is conservative, however, one must also show that the

following property holds:

Definition 3.1. Suppose that p is an instrumentation relation defined by for-
mula ψp. Relation-maintenance formula µp,st maintains p correctly for statement

st if, for all S ∈ S2[R] and all Z, [[µp,st]]
S
2 (Z) = [[ψp]]

[[st]]2(S)
2 (Z).

For an instrumentation relation in core normal form, it is always possible to
provide a relation-maintenance formula that satisfies Defn. 3.1 by defining µp,st as

µp,st
def

= ψp[c ←֓ τc,st | c ∈ C], (4)

where ϕ[q ←֓ ϕ′] denotes the formula obtained from ϕ by replacing each relation
occurrence q(w1, . . . , wk) by ϕ′{w1, . . . , wk}, and ϕ′{w1, . . . , wk} denotes the for-
mula obtained from ϕ′(v1, . . . , vk) by replacing each free occurrence of variable vi

by wi.
The formula µp,st defined in Eqn. (4) maintains p correctly for statement st

because, by the 2-valued version of Eqn. (1), [[τc,st]]
S
2 (Z) = [[c]]

S′

proto

2 (Z); conse-
quently, when µp,st of Eqn. (4) is evaluated in structure S, the use of τc,st in
place of c is equivalent to using the value of c when ψp is evaluated in S′

proto;

i.e., for all Z, [[ψp[c ←֓ τc,st | c ∈ C]]]S2 (Z) = [[ψp]]
S′

proto

2 (Z). However—and this is
precisely the drawback of using Eqn. (4) to obtain the µp,st—the steps of evalu-

ating [[ψp[c ←֓ τc,st | c ∈ C]]]S2 (Z) mimic exactly those of evaluating [[ψp]]
S′

proto

2 (Z).
Consequently, when we pass to 3-valued logic, for all Z, [[ψp[c ←֓ τc,st | c ∈ C]]]

S
3 (Z)

yields exactly the same value as [[ψp]]
S′

proto

3 (Z) (i.e., as evaluating Eqn. (2)). Thus,
although µp,st that satisfy Defn. 3.1 can be obtained automatically via Eqn. (4),
this approach does not provide a satisfactory solution to the relation-maintenance
problem.

14 · T. Reps et al.

u2

u1

u

Fig. 10. A store in which u is shared; i.e., isn(u) = 1.

Example 3.2. Eqn. (5) shows the defining formula for the instrumentation re-
lation isn (“is-shared using n fields”),

isn(v)
def

= ∃ v1, v2 : n(v1, v)∧n(v2, v)∧ v1 6=v2, (5)

which captures whether a memory cell is pointed to by two or more pointer fields
of memory cells, e.g., see Fig. 10.

Fig. 11 illustrates how execution of the statement y = x causes the value of isn

to lose precision when its relation-maintenance formula is created according to
Eqn. (4). The initial 3-valued structure represents all singly-linked lists of length 2
or more in which all memory cells are unshared. Because execution of y = x does not
change the value of core relation n, τn,y=x(v1, v2) is n(v1, v2), and hence the formula
µisn,y=x(v) created according to Eqn. (4) is ∃ v1, v2 : n(v1, v)∧n(v2, v)∧ v1 6=v2. As
shown in Fig. 11, the structure created using this maintenance formula is not as
precise as we would like. In particular, isn(u) = 1/2, which means that u can
represent a shared cell. Thus, the final 3-valued structure also represents certain
cyclic linked lists, such as

x, y // GFED@ABCu1
n // GFED@ABCu2

n // GFED@ABCu3
n // GFED@ABCu4

n // GFED@ABCu5ee
2

This sort of imprecision can usually be avoided by devising better relation-
maintenance formulas. For instance, when µisn,y=x(v) is defined to be the formula
isn(v)—meaning that y = x does not change the value of isn(v)—the imprecision
illustrated in Fig. 11 is avoided (see Fig. 12). Hand-crafted relation-maintenance
formulas for a variety of instrumentation relations are given in [Sagiv et al. 2002;
Lev-Ami and Sagiv 2000; TVLA]; however, those formulas were created by ad hoc
methods.

To sum up, prior to the work presented in this paper, the user needed to supply
a formula µp,st for each instrumentation relation p and each statement st. In effect,
the user needed to write down two separate characterizations of each instrumenta-
tion relation p: (i) ψp, which defines p directly; and (ii) µp,st, which specifies how
execution of each kind of statement in the language affects p. Moreover, it was the
user’s responsibility to ensure that the two characterizations were mutually consis-
tent. In contrast, with the method for automatically creating relation-maintenance
formulas presented in §4 and §5, the user’s responsibility is dramatically reduced:
he only needs to give a single characterization of each instrumentation relation p—
namely, by defining ψp. (In separate work, we have developed ways to use inductive
logic programming to discover an appropriate set of instrumentation relations that
define a suitable abstraction for checking whether a given program has a given
property [Loginov et al. 2005; Loginov 2006; Loginov et al. 2007].)

Finite Differencing of Logical Formulas · 15

Structure before

unary rels. binary rels.

indiv. x y isn

u1 1 0 0
u 0 0 0

n u1 u

u1 0 1/2
u 0 1/2

eq u1 u

u1 1 0
u 0 1/2

x // ?>=<89:;u1
n //?>=<89:;/.-,()*+u

n

��

Statement y = x

Relation-transfer formulas

τx,y=x(v) = x(v)
τy,y=x(v) = x(v)

τn,y=x(v1, v2) = n(v1, v2)
τeq,y=x(v1, v2) = eq(v1, v2)

Relation-maintenance formula µisn,y=x(v) = ∃v1, v2 : n(v1, v) ∧n(v2, v) ∧v1 6=v2

Structure after

unary rels. binary rels.

indiv. x y isn

u1 1 1 0
u 0 0 1/2

n u1 u

u1 0 1/2
u 0 1/2

eq u1 u

u1 1 0
u 0 1/2

x, y // ?>=<89:;u1
n //?>=<89:;/.-,()*+u

n

��

isn

OO

Fig. 11. An illustration of the loss of precision in the value of isn when its relation-maintenance
formula is defined by ∃v1, v2 : n(v1, v) ∧n(v2, v) ∧v1 6=v2. The use of this relation-maintenance
formula causes a structure to be created in which the individual u may represent a shared memory
cell.

Structure before

unary rels. binary rels.

indiv. x y isn

u1 1 0 0
u 0 0 0

n u1 u

u1 0 1/2
u 0 1/2

eq u1 u

u1 1 0
u 0 1/2

x // ?>=<89:;u1
n //?>=<89:;/.-,()*+u

n

��

Statement y = x

Relation-transfer formulas

τx,y=x(v) = x(v)
τy,y=x(v) = x(v)

τn,y=x(v1, v2) = n(v1, v2)

τeq,y=x(v1, v2) = eq(v1, v2)

Relation-maintenance formula µisn,y=x(v) = isn(v)

Structure after

unary rels. binary rels.

indiv. x y isn

u1 1 1 0
u 0 0 0

n u1 u

u1 0 1/2
u 0 1/2

eq u1 u

u1 1 0
u 0 1/2

x, y // ?>=<89:;u1
n //?>=<89:;/.-,()*+u

n

��

Fig. 12. Example showing how the imprecision that was illustrated in Fig. 11 is avoided with
the relation-maintenance formula µisn,y=x(v) = isn(v). (Ex. 4.1 shows how this is generated
automatically.)

4. A FINITE-DIFFERENCING SCHEME FOR 2-VALUED (AND 3-VALUED) FIRST-
ORDER LOGIC

This section presents a finite-differencing scheme for creating relation-maintenance
formulas. The discussion will be couched in terms of 2-valued logic; however, by the
Embedding Theorem (Theorem 2.6, [Sagiv et al. 2002, Theorem 4.9]), the relation-
maintenance formulas that we derive provide sound results when interpreted in
3-valued logic. In 3-valued logic, as demonstrated in Fig. 12 (and discussed further
in Ex. 4.1), the resulting formula can lead to a strictly more precise result than
merely reevaluating an instrumentation relation’s defining formula.

A relation-maintenance formula µp,st for p ∈ I is defined in terms of two finite-
differencing operators, denoted by ∆−

st[·] and ∆+
st[·], which capture the negative and

positive changes, respectively, that execution of structure transformer st induces in
an instrumentation relation’s value. The formula µp,st is created by combining p

16 · T. Reps et al.

evaluate
�p

retrieve
stored
value

execute statement st
S

p p′′ b p′

∆–[�p]st

∆+[�p]st

evaluate
∆+[�p]stevaluate

∆–[�p]st

p ? ¬∆–[�p] : ∆+[�p]st st

S′proto

Fig. 13. How to maintain the value of ψp in 3-valued logic in response to changes in the values of
core relations caused by the execution of structure transformer st.

ϕ ∆+
st [ϕ] ∆−

st [ϕ]

1 0 0

0 0 0

p(w1, . . . , wk),
p ∈ C, and τp,st

is of the form

p ? ¬δ−p,st : δ+p,st

(δ+p,st ∧¬p){w1, . . . , wk} (δ−p,st ∧p){w1, . . . , wk}

p(w1, . . . , wk),
p ∈ C, and τp,st

is of the form
p∨δp,st or
δp,st ∨p

(δp,st ∧¬p){w1, . . . , wk} 0

p(w1, . . . , wk),
p ∈ C, and τp,st

is of the form
p∧δp,st or
δp,st ∧p

0 (¬δp,st ∧p){w1, . . . , wk}

p(w1, . . . , wk),
p ∈ C,but τp,st

is not of the
above forms

(τp,st ∧¬p){w1, . . . , wk} (p∧¬τp,st){w1, . . . , wk}

p(w1, . . . , wk),
p ∈ I

((∃v : ∆+
st [ϕ1]) ∧¬p){w1, . . . , wk} ifψp ≡ ∃v : ϕ1

∆+
st [ψp]{w1, . . . , wk} otherwise

((∃v : ∆−

st [ϕ1]) ∧p){w1, . . . , wk} ifψp ≡ ∀v : ϕ1

∆−

st [ψp]{w1, . . . , wk} otherwise

¬ϕ1 ∆−

st [ϕ1] ∆+
st [ϕ1]

ϕ1 ∨ϕ2 (∆+
st [ϕ1] ∧¬ϕ2) ∨(¬ϕ1 ∧∆+

st [ϕ2]) (∆−

st [ϕ1]∧¬Fst[ϕ2]) ∨(¬Fst[ϕ1]∧∆−

st [ϕ2])

ϕ1 ∧ϕ2 (∆+
st [ϕ1] ∧Fst[ϕ2])∨(Fst[ϕ1] ∧∆+

st [ϕ2]) (∆−

st [ϕ1]∧ϕ2) ∨(ϕ1 ∧∆−

st [ϕ2])

∃v : ϕ1 (∃v : ∆+
st [ϕ1])∧¬(∃v : ϕ1) (∃v : ∆−

st [ϕ1])∧¬(∃v : Fst[ϕ1])

∀v : ϕ1 (∃v : ∆+
st [ϕ1])∧(∀v : Fst[ϕ1]) (∃v : ∆−

st [ϕ1])∧(∀v : ϕ1)

Fig. 14. Finite-difference formulas for first-order formulas.

with ∆−
st[ψp] and ∆+

st[ψp] as follows: µp,st = p ? ¬∆−
st[ψp] : ∆+

st[ψp]. The formula
µp,st states the conditions under which the new value of p (i.e., its value in S′) is 1.
These conditions are specified in terms of the old values of p, ∆−

st[ψp], and ∆+
st[ψp]

(i.e., their values in S). The formula µp,st states that if p’s old value is 1, then its
new value is 1 unless there is a negative change; if p’s old value is 0, then its new
value is 1 if there is a positive change.

Fig. 13 depicts how the static-analysis engine evaluates ∆−
st[ψp] and ∆+

st[ψp] in
S and combines these values with the old value p to obtain the desired new value
p′′. The operators ∆−

st[·] and ∆+
st[·] are defined recursively, as shown in Fig. 14.

The definitions in Fig. 14 make use of the operator Fst[ϕ] (standing for “Future”),
defined as follows:

Fst[ϕ]
def

= ϕ ? ¬∆−
st[ϕ] : ∆+

st[ϕ]. (6)

Thus, maintenance formula µp,st can also be expressed as µp,st = Fst[p].

Finite Differencing of Logical Formulas · 17

Formula (6) and Fig. 14 define a syntax-directed translation scheme that can be
implemented via a recursive walk over a formula ϕ. The operators ∆−

st[·] and ∆+
st[·]

are mutually recursive. For instance, ∆+
st[¬ϕ1] = ∆−

st[ϕ1] and ∆−
st[¬ϕ1] = ∆+

st[ϕ1].
Moreover, each occurrence of Fst[ϕi] contains additional occurrences of ∆−

st[ϕi] and
∆+

st[ϕi].
Note how ∆−

st[·] and ∆+
st[·] for ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 exhibit the “convolution”

pattern characteristic of differentiation, finite differencing, and divided differencing.
Continuing the analogy with differentiation, it helps to bear in mind that the

“independent variables” are the core relations—which are being changed by the
τc,st formulas; the dependent variable is the value of ϕ. A formal justification of
Fig. 14 is stated later (Theorem 4.3 and Cor. 4.4); here we merely explain informally
a few of the cases from Fig. 14:

∆+
st[1] = 0, ∆−

st[1] = 0. The value of atomic formula 1 does not depend on any
core relations; hence its value is unaffected by changes in them.

∆−
st[ϕ1 ∧ϕ2] = (∆−

st[ϕ1] ∧ϕ2)∨(ϕ1 ∧ ∆−
st[ϕ2]). Tuples of individuals removed

from ϕ1 ∧ϕ2 are either tuples of individuals removed from ϕ1 for which ϕ2 also
holds (i.e., (∆−

st[ϕ1] ∧ϕ2)), or they are tuples of individuals removed from ϕ2 for
which ϕ1 also holds, (i.e., (ϕ1 ∧ ∆−

st[ϕ2]).

∆+
st[∃ v : ϕ1] = (∃ v : ∆+

st[ϕ1])∧¬(∃ v : ϕ1). For ∃ v : ϕ1 to change value from 0
to 1, there must be at least one individual for which ϕ1 changes value from 0 to 1
(i.e., ∃ v : ∆+

st[ϕ1] holds), and ∃ v : ϕ1 must not already hold (i.e., ¬(∃ v : ϕ1) holds).

∆+
st[p(w1, . . . , wk)] = (∃ v : ∆+

st[ϕ1])∧¬p, if p ∈ I and ψp ≡ ∃ v : ϕ1. This is
similar to the previous case, except that the term to ensure that ∃ v : ϕ1 does
not already hold (i.e., ¬(∃ v : ϕ1)) is replaced by the formula ¬p. Thus, when
(∃ v : ∆+

st[ϕ1])∧ ¬p is evaluated, the stored value of ∃ v : ϕ1, i.e., p, will be used
instead of the value obtained by reevaluating ∃ v : ϕ1.

∆+
st[p(w1, . . . , wk)] = ∆+

st[ψp{w1, . . . , wk}], if p ∈ I and ψp 6≡ ∃ v : ϕ1. To charac-
terize the positive changes to p, apply ∆+

st to p’s defining formula ψp.

One special case is also worth noting: ∆+
st[v1 =v2] = 0 and ∆−

st[v1 =v2] = 0 because
the value of the atomic formula (v1 =v2) (shorthand for eq(v1, v2)) does not depend
on any core relations; hence, its value is unaffected by changes in them.4

Example 4.1. Consider the instrumentation relation isn (“is-shared using n

fields”), defined in Eqn. (5). Fig. 15 shows the formulas obtained for ∆+
st[isn(v)]

and ∆−
st[isn(v)].

For a particular statement, the formulas in Fig. 15 can usually be simplified.
For instance, for y = x, the relation-transfer formula τn,y=x(v1, v2) is n(v1, v2); see
Fig. 11. Thus, by Fig. 14, the formulas for ∆−

y=x[n(v1, v)] and ∆+
y=x[n(v1, v)] are

both n(v1, v)∧¬n(v1, v), which simplifies to 0. (In our implementation, sim-
plifications are performed greedily at formula-construction time; e.g., the con-
structor for ∧ rewrites 0∧ p to 0, 1∧ p to p, p∧¬p to 0, etc.) The formulas
in Fig. 15 simplify to ∆+

y=x[isn(v)] = 0 and ∆−
y=x[isn(v)] = 0. Consequently,

4We avoid issues that could arise due to changes in a structure’s universe of individuals by modeling
storage allocation and deallocation via a free-storage list. We describe our solution in more detail
at the end of this section.

18 · T. Reps et al.

∆+
st [isn(v)] =

„

∃v1, v2 :

„

(∆+
st [n(v1, v)] ∧Fst[n(v2, v)])

∨ (Fst[n(v1, v)] ∧∆+
st [n(v2, v)])

«

∧v1 6=v2

«

∧¬isn(v)

∆−

st [isn(v)] =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

„

∃v1, v2 :

„

(∆−

st [n(v1, v)] ∧n(v2, v))

∨ (n(v1, v) ∧∆−

st [n(v2, v)])

«

∧v1 6=v2

«

∧

¬

0

B

B

B

B

@

∃v1, v2 :

0

B

B

B

B

@

(n(v1, v) ∧n(v2, v) ∧v1 6=v2)

? ¬

„„

(∆−

st [n(v1, v)] ∧n(v2, v))

∨ (n(v1, v) ∧∆−

st [n(v2, v)])

«

∧v1 6=v2

«

:

„

(∆+
st [n(v1, v)] ∧Fst[n(v2, v)])

∨ (Fst[n(v1, v)] ∧∆+
st [n(v2, v)])

«

∧v1 6=v2

1

C

C

C

C

A

1

C

C

C

C

A

Fig. 15. Finite-difference formulas for the instrumentation relation isn(v).

µisn,y=x(v) = Fy=x[isn(v)] = isn(v) ? ¬0 : 0 = isn(v). As shown in Fig. 12, this
definition of µisn,y=x(v) avoids the imprecision that was illustrated in Ex. 3.2. 2

Correctness of the Finite-Differencing Scheme

The correctness of the finite-differencing scheme given above is established with the
help of the following lemma:

Lemma 4.2. For every formula ϕ, ϕ1, ϕ2 and structure transformer st, the fol-
lowing properties hold:5

(i). ∆+
st[ϕ]

meta

⇐⇒ Fst[ϕ] ∧ ¬ϕ

(ii). ∆−
st[ϕ]

meta

⇐⇒ ϕ∧¬Fst[ϕ]

(iii). (a). Fst[¬ϕ1]
meta

⇐⇒ ¬Fst[ϕ1]

(b). Fst[ϕ1 ∨ϕ2]
meta

⇐⇒ Fst[ϕ1] ∨Fst[ϕ2]

(c). Fst[ϕ1 ∧ϕ2]
meta

⇐⇒ Fst[ϕ1] ∧Fst[ϕ2]

(d). Fst[∃ v : ϕ1]
meta

⇐⇒ ∃ v : Fst[ϕ1]

(e). Fst[∀ v : ϕ1]
meta

⇐⇒ ∀ v : Fst[ϕ1]

Proof. See App. A.

Lemma 4.2 shows that for structures in S2, ∆+
st[ϕ] specifies the tuples that are not

in the relation defined by ϕ, but need to be added in response to the execution of st,
and that ∆−

st[ϕ] specifies the tuples that are in the relation defined by ϕ that need
to be removed. This lemma is used in the proof of the following theorem, which
ensures the correctness of the finite-differencing transformation given in Fig. 14:

Theorem 4.3. Let S be a structure in S2, and let S′
proto be the proto-

structure obtained from S using structure transformer st. Let S′ be the struc-
ture obtained by using S′

proto as the first approximation to S′ and then fill-
ing in instrumentation relations in a topological ordering of the dependences
among them: for each arity-k relation p ∈ I, ιS

′

(p) is obtained by evaluating
[[ψp(v1, . . . , vk)]]S

′

2 ([v1 7→ u′1, . . . , vk 7→ u′k]) for all tuples (u′1, . . . , u
′
k) ∈ (US′

)k.

5To simplify the presentation, we use lhs
meta
⇐⇒rhs and lhs

meta
=⇒rhs as shorthands for [[lhs]]S2 (Z) =

[[rhs]]S2 (Z) and [[lhs]]S2 (Z) ≤ [[rhs]]S2 (Z), respectively, for any S ∈ S2 and assignment Z that is
complete for lhs and rhs.

Finite Differencing of Logical Formulas · 19

ϕ Fst[ϕ]

1 1

0 0

p(w1, . . . , wk), p ∈ C τp,st{w1, . . . , wk}

p(w1, . . . , wk), p ∈ I p(w1, . . . , wk) ? ¬∆−

st [p(w1, . . . , wk)] : ∆+
st [p(w1, . . . , wk)]

¬ϕ1 ¬Fst[ϕ1]

ϕ1 ∨ϕ2 Fst[ϕ1] ∨ Fst[ϕ2]

ϕ1 ∧ϕ2 Fst[ϕ1] ∧ Fst[ϕ2]

∃ v : ϕ1 ∃ v : Fst[ϕ1]

∀ v : ϕ1 ∀ v : Fst[ϕ1]

Fig. 16. Optimized formulas for the operator Fst[ϕ].

Then for every formula ϕ(v1, . . . , vk) and complete assignment Z for ϕ(v1, . . . , vk),
[[Fst[ϕ(v1, . . . , vk)]]]S2 (Z) = [[ϕ(v1, . . . , vk)]]S

′

2 (Z).

Proof. See App. A.

For structures in S3, the soundness of the finite-differencing transformation given
in Fig. 14 follows from Theorem 4.3 by the Embedding Theorem (Theorem 2.6):

Corollary 4.4. Let S, S′ ∈ S2 be defined as in Theorem 4.3. Let S♯ ∈

S3 be such that f : US → US♯

embeds S in S♯, i.e., S ⊑f S♯. Then
for every formula ϕ(v1, . . . , vk) and complete assignment Z for ϕ(v1, . . . , vk),

[[Fst[ϕ(v1, . . . , vk)]]]S
♯

3 (f ◦ Z) ⊒ [[ϕ(v1, . . . , vk)]]S
′

2 (Z).

Optimized Formulas for Fst[ϕ]

For a non-atomic formula ϕ, the operator Fst[ϕ] defined in Formula (6) intro-
duces a copy of ϕ, because it has no way, in general, to refer to a relation that
holds the stored value of ϕ. The reevaluation inherent in the version of Fst[·]
from Formula (6) may cause a substantial loss of precision. One way to retain
higher precision is to propagate Fst[·] into the subformulas of ϕ, down to the
level of atomic formulas—either core-relation symbols or instrumentation-relation
symbols—as shown in Fig. 16.

Suppose that ϕ′ is the result of Fst[ϕ] by the method of Fig. 16. An evaluation
of ϕ′ will evaluate (copies of) the operators of ϕ, down to the level of each atomic
subformula p(w1, . . . , wk) in ϕ. At that level, if p ∈ I, Fst[·] will have introduced
an occurrence of p in ϕ′:

Fst[p(w1, . . . , wk)]
def

= p(w1, . . . , wk) ? ¬∆−
st[p(w1, . . . , wk)] : ∆+

st[p(w1, . . . , wk)]. (7)

The occurrence of p in the test refers to the stored (“pre-state”) value of
instrumentation-relation p; consequently, the stored tuples of relation p will be
used when evaluating ϕ′.

Note that ∆+
st[p] and ∆−

st[p] in Formula (7) dispatch according to the case for
p ∈ I in Fig. 14. In particular, because Fst[·] occurs in four of the eight cases for
∆+

st[·] and ∆−
st[·] in Fig. 14—i.e., for ∨, ∧, ∃, and ∀—the optimized Fst[·] is invoked

recursively on various subterms of ψp.
The correctness of the version of Fst[·] defined in Fig. 16 follows from Lemma 4.2.

20 · T. Reps et al.

The method described above also usually produces smaller instrumentation-
relation maintenance formulas, and hence creates abstract transformers that gen-
erally can be evaluated more quickly. This technique is incorporated into our im-
plementation.

Discussion

Because earlier in the paper we touted the advantages of being able to apply re-
lated 2-valued and 3-valued interpretation functions to a single formula, it may seem
somewhat inconsistent for us to make use of a transformation-based approach to
maintaining instrumentation relations, in lieu of an approach based on overloading.
The reason that we use a transformation-based approach is that it gives us an op-
portunity to simplify the resulting formulas (either on the fly, or in a post-processing
phase after finite differencing).

In the context of evaluation in 3-valued logic, simplification is important be-
cause even formulas that are tautologies in 2-valued logic may evaluate to 1/2 in
3-valued logic. For instance, p∨¬p yields 1/2 when p has the value 1/2, even
when p is a nullary relation symbol. The finite-differencing transformation that
we implemented uses a formula-minimization procedure for 3-valued logic that we
developed [Reps et al. 2002]. The minimization procedure applies to propositional
logic; for propositional logic, it is guaranteed to return an answer that captures
the formula’s “supervaluational meaning” [van Fraassen 1966]. This procedure is
used as a subroutine in a heuristic method for minimizing first-order formulas; the
method works on a formula bottom-up, applying the propositional minimizer to the
body of each non-propositional operator (i.e., each quantifier or transitive-closure
operator).

A relation-maintenance formula that has been simplified in this way can some-
times yield a definite value in situations where the evaluation of the unsimplified
relation-maintenance formula—or, equivalently, an overloaded evaluation of the re-
lation’s defining formula—yields 1/2. (For instance, minimizing p∨¬p yields 1,
which evaluates to 1 even when p has the value 1/2.) Consequently, the formula-
transformation approach to the relation-maintenance problem leads to more precise
static-analysis algorithms.

Malloc and Free

In [Sagiv et al. 2002], the modeling of storage-allocation/deallocation operations is
carried out with a two-stage structure transformer, the first stage of which changes
the number of individuals in the structure. This creates some problems for the
finite-differencing approach in establishing appropriate, mutually consistent values
for relation tuples that involve the newly allocated individual. Such relation values
are needed for the second stage, in which relation-transfer formulas for core relations
and relation-maintenance formulas for instrumentation relations are applied in the
usual fashion, using Eqns. (1) and (3).

However, there is a simple way to sidestep this problem, which is to model the
free-storage list explicitly, making the following substructure part of every 3-valued

Finite Differencing of Logical Formulas · 21

p IntendedMeaning ψp

tn(v1, v2) Is v2 reachable from v1 along n fields? n∗(v1, v2)
rn,z(v) Is v reachable from pointer variable z along n fields? ∃v1 : z(v1) ∧ tn(v1, v)
cn(v) Is v on a directed cycle of n fields? ∃v1 : n(v1, v) ∧ tn(v, v1)

Fig. 17. Defining formulas of some instrumentation relations that depend on RTC. (Recall that
n∗(v1, v2) is a shorthand for (RTC v′

1
, v′

2
: n(v′

1
, v′

2
))(v1, v2).)

structure:

freelist // GFED@ABCu1
n // ?>=<89:;/.-,()*+u

n

��
(8)

A malloc is modeled by advancing the pointer freelist into the list, and returning
the memory cell that it formerly pointed to. A free is modeled by inserting, at
the head of freelist’s list, the cell being deallocated. This approach models limits
on available storage naturally, while the introduction of one integrity constraint
enables it to model unbounded storage.6

It is true that the use of structure (8) to model storage-allocation/deallocation
operations also causes the number of individuals in a 3-valued structure to change;
however, because the new individual is materialized using the usual mechanisms
from [Sagiv et al. 2002] (namely, the focus and coerce operations), values for relation
tuples that involve the newly materialized individual will always have safe, mutually
consistent values.

5. MAINTENANCE FORMULAS FOR REACHABILITY AND TRANSITIVE CLO-
SURE

Several instrumentation relations that depend on RTC are shown in Fig. 17. Un-
fortunately, finding a good way to maintain instrumentation relations defined using
RTC is challenging because the evaluation of a formula that uses the RTC op-
erator in a 3-valued structure generally produces many tuples with the value 1/2.
This happens because in an abstracted binary relation, tuples (“edges”) that involve
summary individuals often have the value 1/2. (For instance, see the dashed n
edges incident on u in Eqn. (8)).) Because the semantics of a tuple (u1, u2) com-
puted via RTC is defined to be the “max over all paths P from u1 to u2 of the
minimum value of an edge along P” (see Defns. 2.2 and 2.4), the presence of indef-
inite edge-tuples often causes the path-tuple computed for a pair (u1, u2) to have
the value 1/2. Moreover, it is not known, in general, whether it is possible to write
a first-order formula (i.e., without using a transitive-closure operator) that speci-
fies how to maintain the closure of a directed graph in response to edge insertions
and deletions. Thus, our strategy has been to investigate special cases for classes
of instrumentation relations for which first-order maintenance formulas do exist.
Whenever these do not apply, the system falls back on safe maintenance formulas
(which themselves use RTC).

6Instead of a free-storage list, one could use a (bounded or unbounded) set of memory locations
to model storage allocation and deallocation. In that approach, instead of reachability from the
pointer freelist, a core unary relation would mark free cells, thus distinguishing them from
allocated cells that have been leaked.

22 · T. Reps et al.

In this section, we confine ourselves to important special cases for the main-
tenance of instrumentation relations specified via the RTC of a binary formula
ϕ1(v1, v2). In §5.1, we consider the case that ϕ1(v1, v2) defines a directed acyclic
graph. In §5.2, we consider the case that ϕ1(v1, v2) defines a tree-shaped graph.
Finally, in §5.3, we consider the case that ϕ1(v1, v2) defines a deterministic graph—
i.e., a possibly-cyclic graph, in which every node has outdegree at most one (this
class of graphs corresponds to possibly-cyclic linked lists). This collection of tech-
niques allows us to handle most common data structures, such as lists (singly- and
doubly-linked; cyclic and acyclic) and trees. The precision of all of these techniques
is due to the fact that maintenance of RTC after unit-size changes (single-edge
additions or deletions)7 is performed via first-order logical formulas only. However,
maintaining RTC of an arbitrary directed graph, as well as maintaining RTC of
restricted classes of graphs with arbitrary-size changes, is not known to be first-
order expressible. In such cases, our algorithm returns a formula that uses the
RTC operator; the evaluation of such a formula may yield more indefinite answers
than necessary.

To specify that the maintenance of binary relation p(v1, v2) defined as the RTC of
binary formula ϕ1(v1, v2) should rely on one of the special cases, the user annotates
formula ϕ1 with attributes. To state that ϕ1(v1, v2) defines a directed acyclic
graph, the user gives ϕ1 attribute “acyclic”; to state that ϕ1(v1, v2) defines a tree-
shaped graph, the user gives ϕ1 attribute “tree”; to state that ϕ1(v1, v2) defines a
deterministic graph, the user gives ϕ1 attribute “function”.

The analysis uses those attributes to generate integrity constraints to be enforced
by the coerce operation. For instance, when relation p(v1, v2) is defined as the RTC
of formula ϕ1(v1, v2) that is annotated with the attribute “acyclic”, the analysis
generates the following two constraints:

∀ v1, v2 : p(v1, v2)∧ p(v2, v1) ⇒ v1 = v2

∀ v1, v2 : p(v1, v2)∧ v1 6= v2 ⇒ ¬p(v2, v1).

When ϕ1(v1, v2) is annotated with the attribute “tree”, the analysis generates the
above acyclicity constraints, together with constraints that ensure that ϕ1(v1, v2)
is an inverse partial function.

Whenever coerce determines that a constraint is (possibly) not satisfied after the
application of a transformer, a warning is generated.

5.1 Transitive-Closure Maintenance in Directed Acyclic Graphs

Consider a binary instrumentation relation p, defined by ψp(v1, v2) ≡
(RTC v′1, v

′
2 : ϕ1)(v1, v2). If the graph defined by ϕ1 is acyclic, it is possible to

give a first-order formula that maintains p after the addition or deletion of a single
ϕ1-edge. The method we use is a minor modification of a method for maintaining
non-reflexive transitive closure in a directed acyclic graph, due to Dong and Su
[Dong and Su 2000].

In the case of an insertion of a single ϕ1-edge, the maintenance formula is

Fst[p](v1, v2) = p(v1, v2)∨(∃ v′1, v
′
2 : p(v1, v

′
1)∧ ∆+

st[ϕ1](v
′
1, v

′
2)∧ p(v′2, v2)). (9)

7These techniques can be extended to handle bounded-size addition and deletion sets.

Finite Differencing of Logical Formulas · 23

u1

ba

ui ui+1

uk

Fig. 18. Edge (a, b) is being deleted; ui is the last node along path u1, . . ., ui, ui+1, . . ., uk from
which a is reachable.

The new value of p contains the old tuples of p, as well as those that represent
two old paths (i.e., p(v1, v

′
1) and p(v′2, v2)) connected with the new ϕ1-edge (i.e.,

∆+
st[ϕ1](v

′
1, v

′
2)).

The maintenance formula to handle the deletion of a single ϕ1-edge is a bit more
complicated. We first identify the tuples of p that represent paths that might rely
on the edge to be deleted, and thus may need to be removed from p (S stands for
suspicious):

S[p, ϕ1](v1, v2) = ∃ v′1, v
′
2 : p(v1, v

′
1)∧∆−

st[ϕ1](v
′
1, v

′
2)∧ p(v′2, v2).

We next collect a set of p-tuples that definitely remain in p (T stands for trusted):

T [p, ϕ1](v1, v2) = (p(v1, v2)∧ ¬S[p, ϕ1](v1, v2))∨Fst[ϕ1](v1, v2). (10)

Finally, the maintenance formula for p for a single ϕ1-edge deletion is

Fst[p](v1, v2) = ∃ v′1, v
′
2 : T [p, ϕ1](v1, v

′
1)∧T [p, ϕ1](v

′
1, v

′
2)∧T [p, ϕ1](v

′
2, v2). (11)

Maintenance formulas (9) and (11) maintain p when two conditions hold: the
graph defined by ϕ1 is acyclic, and the change to the graph is a single edge addition
or deletion (but not both). To see that under these assumptions the maintenance
formula for a ϕ1-edge deletion is correct, suppose that there is a suspicious tuple
p(u1, uk), i.e., S[p, ϕ1](u1, uk) = 1, but there is a ϕ1-path u1, . . . , uk that does
not use the deleted ϕ1-edge. We need to show that Fst[p](u1, uk) has the value 1.
Suppose that (a, b) is the ϕ1-edge being deleted; because the graph defined by ϕ1

is acyclic, there is a ui 6= uk that is the last node along path u1, . . . , ui, ui+1, . . . , uk

from which a is reachable (see Fig. 18). Because p(u1, ui) and p(ui+1, uk) both
hold, and because ui cannot be reachable from b (by acyclicity), neither tuple is
suspicious; consequently, T [p, ϕ1](u1, ui) = 1 and T [p, ϕ1](ui+1, uk) = 1. Because
(ui, ui+1) is an edge in the new (as well as the old) graph defined by ϕ1, we have
Fst[ϕ1](ui, ui+1) = 1, which means that T [p, ϕ1](ui, ui+1) = 1 as well, yielding
Fst[p](u1, uk) = 1 by Eqn. (11).

Fig. 19 extends the method for generating relation-maintenance formulas to han-
dle instrumentation relations specified via the RTC of a binary formula that de-
fines a directed acyclic graph. Fig. 19 makes use of the operator T [p, ϕ1](v, v

′)
(Eqn. (10)), but recasts Eqns. (9) and (11) as finite-difference expressions ∆+

st[ψp]
and ∆−

st[ψp], respectively.
Figs. 20 and 21 show the formulas obtained via the finite-differencing scheme

given in Figs. 14 and 19 for positive and negative changes, respectively, for instru-
mentation relations defined in Fig. 17.

24 · T. Reps et al.

ϕ ∆+
st [ϕ]

p(w1, . . . , wk),

p ∈ I

((∃v : ∆+
st [ϕ1]) ∧¬p){w1, . . . , wk} ifψp ≡ ∃v : ϕ1

(∃v′1, v
′

2 : ∆+
st [ϕ1](v

′

1, v
′

2))

∧

0

B

@

0

B

@
∃v′1, v

′

2 :

p(v1, v
′

1)

∧ ∆+
st [ϕ1](v

′

1, v
′

2)

∧ p(v′2, v2)

1

C

A
∧¬p(v1, v2)

1

C

A
{w1, w2}

ifψp ≡

(RTC v′1, v
′

2 : ϕ1)(v1, v2)

∆+
st [ψp]{w1, . . . , wk} otherwise

ϕ ∆−

st [ϕ]

p(w1, . . . , wk),

p ∈ I

((∃v : ∆−

st [ϕ1]) ∧p){w1, . . . , wk} ifψp ≡ ∀v : ϕ1

(∃v′1, v
′

2 : ∆−

st [ϕ1](v
′

1, v
′

2))

∧

0

B

@
¬

0

B

@
∃v′1, v

′

2 :

T [p,ϕ1](v1, v
′

1)

∧ T [p,ϕ1](v′1, v
′

2)

∧ T [p,ϕ1](v′2, v2)

1

C

A
∧p(v1, v2)

1

C

A
{w1, w2}

ifψp ≡

(RTC v′1, v
′

2 : ϕ1)(v1, v2)

∆−

st [ψp]{w1, . . . , wk} otherwise

Fig. 19. Extension of the finite-differencing method from Fig. 14 to cover RTC formulas, for
unit-sized changes to a directed acyclic graph defined by ϕ1.

relation p ∆+
st [ψp]

tn(v3, v4) ∆+
st [tn(v3, v4)]

= (tn(v3, v4) ∨(∃v1, v2 : tn(v3, v1) ∧∆+
st [n(v1, v2)] ∧ tn(v2, v4))) ∧¬tn(v3, v4)

rn,z(v) ∆+
st [rn,z(v)]

= (∃v1 : ∆+
st [z(v1) ∧ tn(v1, v)]) ∧¬rn,z(v)

= (∃v1 : (∆+
st [z(v1)] ∧Fst[tn(v1, v)]) ∨(Fst[z(v1)] ∧∆+

st [tn(v1, v)])) ∧¬rn,z(v)

cn(v) ∆+
st [cn(v)]

= (∃v1 : ∆+
st [n(v1, v) ∧ tn(v, v1)])∧¬cn(v)

= (∃v1 : (∆+
st [n(v1, v)] ∧Fst[tn(v, v1)]) ∨(Fst[n(v1, v)] ∧∆+

st [tn(v, v1)])) ∧¬cn(v)

Fig. 20. The formulas obtained via the finite-differencing scheme given in Figs. 14 and 19 for the
positive changes in the values of the instrumentation relations defined in Fig. 17.

5.1.1 Testing the Unit-Size-Change Assumption. To know whether this special-
case maintenance strategy can be applied, for each statement st we need to know at
analysis-generation time whether the change performed at st, to the graph defined
by ϕ1, always results in a single edge addition or deletion. If in any admissible
structure in S2[R] there is a unique satisfying assignment to the two free variables
of ∆+

st[ϕ1] and no assignment satisfies ∆−
st[ϕ1], then the pair ∆+

st[ϕ1], ∆−
st[ϕ1] defines

a change that adds exactly one edge to the graph. Similarly, if in any admissible
structure in S2[R] there is a unique satisfying assignment to the two free variables of
∆−

st[ϕ1] and no assignment satisfies ∆+
st[ϕ1], then the change is a deletion of exactly

one edge from the graph.
Because answering (unique-)satisfiability questions in this logic is in general un-

decidable, we employ a conservative approximation based on a syntactic analysis of
logical formulas. The analysis uses a heuristic to determine a set of variables V such
that for each admissible structure, the variables in V have a single possible bind-
ing in the formula’s satisfying assignments. We refer to such variables as anchored
variables. For instance, if relation q has the attribute “unique”, for each admissible
structure there is a single possible binding for variable v in any assignment that

Finite Differencing of Logical Formulas · 25

relation p ∆−

st [p]

tn(v3, v4) ∆−

st [tn(v3, v4)]
= (∃v1, v2 : T [tn, n](v3, v1) ∧T [tn, n](v1, v2) ∧T [tn, n](v2, v4)) ∧ tn(v3, v4)

=

0

@∃v1, v2 :
(tn(v3, v1) ∧¬S[tn, n](v3, v1) ∨Fst[n](v3, v1))

∧ (tn(v1, v2) ∧¬S[tn, n](v1, v2) ∨Fst[n](v1, v2))
∧ (tn(v2, v4) ∧¬S[tn, n](v2, v4) ∨Fst[n](v2, v4))

1

A ∧ tn(v3, v4)

=

0

@∃v1, v2 :

(tn(v3, v1) ∧¬(∃v′1, v
′

2 : tn(v3, v′1) ∧∆−

st [n](v′1, v
′

2) ∧ tn(v′2, v1)) ∨Fst[n](v3, v1))

∧ (tn(v1, v2) ∧¬(∃v′
1
, v′

2
: tn(v1, v′1) ∧∆−

st [n](v′
1
, v′

2
) ∧ tn(v′

2
, v2)) ∨Fst[n](v1, v2))

∧ (tn(v2, v4) ∧¬(∃v′1, v
′

2 : tn(v2, v′1) ∧∆−

st [n](v′1, v
′

2) ∧ tn(v′2, v4)) ∨Fst[n](v2, v4))

1

A

∧ tn(v3, v4)

rn,z(v) ∆−

st [rn,z(v)]

= ∆−

st [∃v1 : x(v1) ∧ tn(v1, v)]

= (∃v1 : ∆−

st [z(v1) ∧ tn(v1, v)])∧¬(∃v1Fst[z(v1) ∧ tn(v1, v)])

=

8

>

>

>

>

<

>

>

>

>

:

(∃v1 : ((∆−

st [z(v1)] ∧ tn(v1, v)) ∨(z(v1) ∧∆−

st [tn(v1, v)])))
∧

¬

0

@∃v1 :

0

@

(z(v1) ∧ tn(v1, v))

? ¬∆−

st [z(v1) ∧ tn(v1, v)]

: ∆+
st [z(v1) ∧ tn(v1, v)]

1

A

1

A

=

8

>

>

>

>

<

>

>

>

>

:

(∃v1 : ((∆−

st [z(v1)] ∧ tn(v1, v)) ∨(z(v1) ∧∆−

st [tn(v1, v)])))
∧

¬

0

@∃v1 :

0

@

(z(v1) ∧ tn(v1, v))

? ¬((∆−

st [z(v1)] ∧ tn(v1, v)) ∨(z(v1) ∧∆−

st [tn(v1, v)]))

: ((∆+
st [z(v1)] ∧Fst[tn(v1, v)]) ∨(Fst[z(v1)] ∧∆+

st [tn(v1, v)]))

1

A

1

A

cn(v) ∆−

st [cn(v)]

= ∆−

st [∃v1 : n(v1, v) ∧ tn(v, v1)]

= (∃v1 : ∆−

st [n(v1, v) ∧ tn(v, v1)]) ∧¬Fst[∃v1 : n(v1, v) ∧ tn(v, v1)]

= (∃v1 : (∆−

st [n(v1, v)] ∧ tn(v, v1)) ∨(n(v1, v) ∧∆−

st [tn(v, v1)])) ∧¬Fst[∃v1 : n(v1, v) ∧ tn(v, v1)]

Fig. 21. The formulas obtained via the finite-differencing scheme given in Figs. 14 and 19 for the
negative changes in the values of the instrumentation relations defined in Fig. 17.

satisfies q(v); in a formula that contains an occurrence of q(v), v is an anchored
variable.

If both free variables of ∆+
st[ϕ1] are anchored and ∆−

st[ϕ1] = 0, then the change
adds one edge to the graph defined by ϕ1. Similarly, if both free variables of ∆−

st[ϕ1]
are anchored and ∆+

st[ϕ1] = 0, then the change removes one edge from the graph. In
these cases, the reflexive transitive closure of ϕ1 can be updated using the method
discussed above.

A Test for Anchored Variables. Function Anchored, shown in Fig. 22, conserva-
tively identifies anchored variables in a formula ϕ. It is invoked as Anchored(ϕ, ∅).
(In our application, at top-level ϕ is always either ∆+

st[ϕ1] or ∆−
st[ϕ1].) Anchored

uses a handful of patterns to identify anchored variables. For example, if vari-
able v1 is anchored and binary relation p has the attribute “function”,8 then v2
is anchored as well. In essence, negations are handled by pushing the negation
deeper into the formula. In a disjunction, an anchored variable must be anchored
in both subformulas. The conjunction rule accumulates anchored variables in A
by a process of successive approximation, during which variables anchored in the
left subformula are used to identify new anchored variables in the right subformula
and vice versa; this process is iterated until a fixed point is reached. The rules for
∃ v : ϕ1 and ∀ v : ϕ1 contain recursive calls on Anchored with v removed from the
second argument (because bound variable v refers to a different occurrence of v

8For instance, in program-analysis applications a relation n(v1, v2) that records whether field n of
v1 points to v2 has the “function” attribute.

26 · T. Reps et al.

ϕ Anchored(ϕ,A0)

0,1 A0

v1 = v2 v1 ∈ A0 → A0 ∪ {v2}[]v2 ∈ A0 → A0 ∪ {v1}[]A0

p() A0

p(v) unique(p) → A0 ∪ {v}[]A0

p(v1, v2)
function(p)∧ v1 ∈ A0 → A0 ∪ {v2}

[] invfunction(p) ∧ v2 ∈ A0 → A0 ∪ {v1}
[] A0

¬ϕ1

ϕ1 ≡ ¬ϕ2 → Anchored(ϕ2, A0)
[] ϕ1 ≡ ϕ2 ∨ϕ3 → Anchored(¬ϕ2 ∧ ¬ϕ3), A0)
[] ϕ1 ≡ ϕ2 ∧ϕ3 → Anchored(¬ϕ2 ∨ ¬ϕ3), A0)
[] ϕ1 ≡ ∀ v : ϕ2 → Anchored(∃ v : ¬ϕ2), A0)
[] ϕ1 ≡ ∃ v : ϕ2 → Anchored(∀ v : ¬ϕ2), A0)
[] A0

ϕ1 ∨ϕ2 Anchored(ϕ1, A0) ∩ Anchored(ϕ2, A0)

ϕ1 ∧ϕ2 µA.(Anchored(ϕ1, A ∪A0) ∪ Anchored(ϕ2, A ∪ A0))

∃ v : ϕ1,∀ v : ϕ1 (Anchored(ϕ1, A0 − {v}) − {v}) ∪A0

(RTC v′1, v
′

2 : ϕ1)(v1, v2) (Anchored(ϕ1, A0 − {v′1, v
′

2}) − {v′1, v
′

2}) ∪A0

Fig. 22. Function Anchored conservatively identifies anchored variables in ϕ. A0 contains variables
known to be anchored due to the surrounding context.

from an identically named v in A0). If v is anchored in ϕ1, it needs to be removed
before this call returns, to avoid confusion with a v in the outer scope (note the
second subtraction of {v}). Finally, the union of A0 is performed because v may be
in A0, in which case it has to be included in the answer. (RTC v′1, v

′
2 : ϕ1)(v1, v2)

is handled similarly to ∃ v : ϕ1 and ∀ v : ϕ1.

5.2 Transitive-Closure Maintenance in Tree-Shaped Graphs

Consider a binary instrumentation relation p, defined by ψp(v1, v2) ≡
(RTC v′1, v

′
2 : ϕ1)(v1, v2). If the graph defined by ϕ1 is not only acyclic but is

tree-shaped, it is possible to take advantage of this fact.9 This fact has no bearing
on the maintenance formula that updates the values of relation p after a positive
unit-size change ∆+[ϕ1] to the relation ϕ1 (see Formula (9)). However, it allows
the values of p to be updated in a more efficient manner after a negative unit-size
change ∆−[ϕ1] to ϕ1. In a tree-shaped graph, there exists at most one path between
a pair of nodes; if that path goes through the ϕ1 edge to be deleted, it should be
removed (cf. Formula (11)):

Fst[p](v1, v2) = p(v1, v2)∧¬(∃ v′1, v
′
2 : p(v1, v

′
1)∧ ∆−

st[ϕ1](v
′
1, v

′
2)∧ p(v′2, v2)). (12)

Fig. 23 extends the method for generating relation-maintenance formulas to han-
dle instrumentation relations specified via the RTC of a binary formula that de-
fines a tree-shaped graph. Fig. 23 recasts Eqn. (12) as a finite-difference expression
∆−

st[ψp].
When comparing the techniques of §5.1 for the maintenance of the RTC of a

9The special-case maintenance strategy that we describe in this subsection also applies only in
the case that the change to the graph is a single edge addition or deletion (but not both). We
rely on the test described in §5.1.1 to ensure that this is the case.

Finite Differencing of Logical Formulas · 27

ϕ ∆−

st [ϕ]

p(w1, . . . , wk),

p ∈ I

((∃v : ∆−

st [ϕ1]) ∧p){w1, . . . , wk} ifψp ≡ ∀v : ϕ1

(∃v′1, v
′

2 : p(v1, v′1) ∧∆−

st [ϕ1](v′1, v
′

2) ∧p(v′2, v2)){w1, w2}
ifψp ≡

(RTC v′1, v
′

2 : ϕ1)(v1, v2)

∆−

st [ψp]{w1, . . . , wk} otherwise

Fig. 23. Extension of the finite-differencing method from Fig. 14 to cover RTC formulas, for
unit-sized changes to a tree-shaped graph defined by ϕ1. The finite-difference expression ∆+

st [ψp]
is as defined in Fig. 19.

binary formula ϕ1 with those presented in this subsection, we will refer to the
method of §5.1 as acyclic-ϕ1 maintenance and the method of this subsection as
tree-shaped-ϕ1 maintenance.

5.3 Reachability Maintenance in Deterministic Graphs

A deterministic graph is a graph in which every node has outdegree at most one. If
the graph defined by ϕ1 is deterministic, it is possible to give first-order formulas
that maintain reachability information in the graph in response to the addition or
deletion of a single ϕ1-edge.

The class of deterministic graphs corresponds exactly to the set of possibly-cyclic
linked lists. Our solution to the problem of reachability maintenance in possibly-
cyclic linked lists can be summarized as follows:

(1) A binary instrumentation relation sfen(for spanning-forest edge) is introduced
to maintain a spanning forest of the (possibly-cyclic) graph defined by the n
edges. Thus, we have two types of edges: possibly-cyclic n edges and acyclic
sfen edges.

(2) We introduce an instrumentation relation sfpn (for spanning-forest path) that
captures reachability along the (acyclic) sfen edges. sfpn is the RTC of sfen,
but because sfen is acyclic and tree-shaped, sfpn can be maintained via the
techniques described in §5.1 and §5.2.

(3) We introduce an instrumentation relation tn to capture reachability along n
edges. Instead of defining tn as n∗, as done in Fig. 17, we express tn using
first-order logic, based on sfpn (cf. Fig. 28). Thus, tn can be maintained in
terms of sfpn, via the techniques described in §4.

(4) A unary core relation rocn (for representative of the cycle) is introduced to
identify a distinguished node of each cycle; the outgoing n edge from a rocn

node is a cycle-breaking edge that is not used in the construction of the spanning
forest.

In other words, we have a two-level scheme: reachability in the induced, acyclic
spanning forest (sfpn) is maintained via the rules from §5.1 and §5.2; reachability
in the underlying, possibly-cyclic graph (tn) is then maintained via the rules from
§4.

5.3.1 Abstractions of Possibly-Cyclic Linked Lists. We will illustrate our tech-
niques on panhandle lists, i.e., linked lists that contain a cycle but in which at least
the head of the list is not part of the cycle. (The lists shown in Fig. 24 are exam-
ples of panhandle lists.) Fig. 3 gives the definition of a C linked-list datatype, and

28 · T. Reps et al.

1

x

8 4n n 9 5n n

n

3n 2n 7n 4n
(a)

3 9 1n n 4 3n n

n

7n 2n 8n 5n

yx

(b)

Fig. 24. Possible stores for panhandle linked lists. (a) A panhandle list pointed to by x. We will
refer to lists of this shape as type-X lists. (b) A panhandle list pointed to by x with y pointing
into the middle of the cycle. We will refer to lists of this shape as type-XY lists.

u3
n

u4
n

u5
nu2

n
u1

n
u6

nx

n
u7

u9
n

u8
n

(a)

u3

n
u4

nisncnrn,x u5

n
u2

n
u1

n

x

u6

n
u7

n
u9

n

u8

n

rn,xrn,xrn,x
cnrn,x

cnrn,x

cnrn,x

cnrn,x

cnrn,x
(b)

Fig. 25. A logical structure S25 that represents the store shown in Fig. 24(a) in graphical form:
(a) S25 with relations from Fig. 3; (b) S25 with relations from Figs. 3 and 6. (Transitive-closure
relation tn has been omitted to reduce clutter.)

n
u3

n
u4u2u1

n

x
n nn

isncnrn,x

rn,x rn,x
cnrn,x

Fig. 26. A 3-valued structure S26 that is the canonical abstraction of structure S25. In addition
to S25, S26 represents any type-X panhandle list with at least two nodes in the panhandle and at
least two nodes in the cycle.

lists the core relations that would be used to represent the stores manipulated by
programs that use type List, such as the stores in Fig. 24.

Fig. 25 shows two versions of 2-valued structure S25, which represents the store
shown in Fig. 24(a): Fig. 25(a) shows the relations from Fig. 3.10 Fig. 25(b) shows
the relations from Fig. 3, as well as the instrumentation relations from Fig. 6.

If all unary relations are abstraction relations (A = R1), the canonical ab-
straction of 2-valued logical structure S25 is S26, shown in Fig. 26, with list nodes
corresponding to u2 and u3 in S25 represented by the summary individual u2 of
S26 and list nodes corresponding to u5 and u6 in S25 represented by the summary
individual u4 of S26. S26 represents any type-X panhandle list with at least two
nodes in the panhandle and at least two nodes in the cycle.

5.3.2 Reachability Maintenance in Possibly-Cyclic Linked Lists. Unfortunately,
the relations defined in Figs. 3 and 6 do not permit precise maintenance of reach-

10We will not show the dle relation in the rest of this section because it is not relevant to the
problem of reachability maintenance.

Finite Differencing of Logical Formulas · 29

u3
n n

u5
nnn n

u7

x y

u1 u4

n

u6

n

u2

n

n

n nu8

Fig. 27. Logical structure S27 that represents type-XY panhandle lists, such as the store depicted
in Fig. 24(b). The relations from Fig. 6 are omitted to reduce clutter. Their values are as expected
for a type-XY list: rn,x holds for all nodes, rn,y and cn hold for all nodes on the cycle, and isn

holds for u3.

ability information, such as relation rn,x, in possibly-cyclic lists. A difficulty arises
when reachability information has to be updated after the deletion of an n edge
on a cycle (e.g., as a result of statement y->n = NULL). With the relations defined
in Figs. 3 and 6, such an update requires the reevaluation of a transitive-closure
formula, which generally results in a drastic loss of precision in the presence of
abstraction.

We demonstrate the issue on panhandle lists represented by the abstract structure
S27 shown in Fig. 27, i.e., lists of type XY . (Note that although the store depicted
in Fig. 24(b) embeds into structure S27, S27 is not the canonical abstraction of
the store from Fig. 24(b); in particular, nodes u4, u6, u7, and u8 are all indistin-
guishable according to the instrumentation relations discussed thus far. However,
this embedding gives Fig. 27 a shape similar to figures that appear later in the
section, which will help in illustrating our solution.) Statement y->n = NULL has
the effect of deleting the n edge leaving u5, thus making the nodes represented by
u6, u7, and u8 unreachable from x.11 Note that a first-order-logic formula over the
relations of Figs. 3 and 6 cannot distinguish the list nodes represented by u4 from
those represented by u6, u7, and u8: all of those nodes are reachable from both x

and y, none of those nodes are shared, and all of them lie on a cycle. Our inability
to characterize the group of nodes represented by u4 via a first-order formula re-
quires the maintenance formula for the reachability relation rn,x to recompute some
transitive-closure information, e.g., the transitive-closure subformula of the defini-
tion of rn,x, namely, n∗(v1, v). However, in the presence of abstraction, reevaluating
transitive-closure formulas often yields 1/2. For instance, in S27, formula n∗(v1, v)
evaluates to 1/2 under the assignment [v1 7→ u1, v 7→ u4] because of the many 1/2
values of relation n (see the dashed edges connecting u1 with u2, for example).

The essence of a solution that enables maintaining reachability relations for
possibly-cyclic lists in first-order logic is to find a way to break the symmetry
of each cycle. The basic idea for a solution was suggested to us by W. Hesse and
N. Immerman. As discussed at the beginning of §5.3, it consists of maintaining a
spanning-tree representation of a possibly-cyclic list. Reachability in such a rep-
resentation can be maintained using first-order-logic formulas. Reachability in the
actual list can be expressed in first-order logic based on the spanning-tree repre-
sentation. We now explain our approach and highlight some differences with the

11Clearly, all nodes except u5 also become unreachable from y.

30 · T. Reps et al.

p Intended Meaning ψp

isn(v) Do n fields of two or more list nodes ∃ v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 6=v2
point to v?

sfen(v1, v2) Is there an n edge from v2 to v1 n(v2, v1) ∧ ¬rocn(v2)
(assuming that v2 is not a rocn node)

sfpn(v1, v2) Is v2 reachable from v1 along sfen edges? sfe∗

n(v1, v2)

tn(v1, v2) Is v2 reachable from v1 along n fields?

sfpn(v2, v1)∨

∃ u,w :

0

@

sfpn(u, v1) ∧

rocn(u) ∧ n(u,w)
∧ sfpn(v2, w)

1

A

rn,x(v) Is v reachable from pointer variable x ∃ v1 : x(v1)∧ tn(v1, v)
along n fields?

cn(v) Is v on a directed cycle of n fields?
∃ v1, v2 : rocn(v1) ∧n(v1, v2)

∧ sfpn(v, v2)

prx(v) Does v lie on an sfen path from x (does v ∃ v1 : x(v1)∧ sfpn(v1, v)
precede x on an n-path to a rocn node)?

pr is(v) Does v lie on an sfen path from a shared ∃ v1 : isn(v1) ∧ sfpn(v1, v)
node (does v precede a shared node
on an n-path to a rocn node)?

Fig. 28. Defining formulas of instrumentation relations. The sharing relation isn is defined as in
Fig. 6. Relations tn, rn,x, and cn are redefined via first-order-logic formulas in terms of other
relations. The exact meaning and purpose of relations sfen, sfpn, prx, and pr is will be explained
later in the section. Their names stand for spanning-forest edge, spanning-forest path, precedes
x (along a certain path in a cycle), and precedes a shared node (along a certain path in a cycle),
respectively.

approach taken by Hesse [Hesse 2003].
Our approach relies on the introduction of additional core and instrumentation

relations. We extend the set of core relations (Fig. 3) with unary relation rocn,
which designates one node on each cycle to be the representative of the cycle. (We
refer to such a node as a rocn node.) Relation rocn is used for tracking a unique
cut edge on each cycle, which allows the maintenance of a spanning tree. Fig. 29(a)
shows 2-valued structure S29, which represents the store of Fig. 24(a) using the
extended set of core relations. Here, we let u7 be the rocn node. In general, we
simply require that exactly one node on each cycle be designated as a rocn node.
Later in this section we describe how we ensure this.12

Fig. 28 lists the extended set of instrumentation relations. Note that relation
rocn is not part of the semantics of the language. A natural question is whether
rocn(v) can be defined as an instrumentation relation. For instance, we could try
to define it using the following defining formula:

cn(v)∧ ∃ v1 : n(v1, v)∧ ¬cn(v1) (13)

Formula (13) identifies nodes that lie on a cycle but have a predecessor that does not
lie on the cycle. There are three problems with this approach. First, this definition

12With the relation-transfer formulas that we use for relation rocn in this paper, the rocn node
for a cycle is the source of the n edge that was inserted to complete the cycle. Note that with
this approach, the node that receives the rocn designation in a given cycle depends on the order
of operations that the program performs to construct the cycle.

Finite Differencing of Logical Formulas · 31

n
u3

n
u4

n u7
rocn

n
u2

n
u1

n
u6u5

x nu9
n

u8
n

(a)

isn
rn,x,cn
pris

u3 u4 u5u2rn,x
prx
pris

u1 u6 rocnrn,x,cn

u7n

x

n n n n

sfen sfen sfensfen sfen

nn
sfen

n

sfen

n

sfen

rn,x
pris

rn,x
pris

cnrn,x

cnrn,x

u8
rn,x,cn
pris

u9
rn,x,cn
pris

(b)

Fig. 29. A logical structure S29 that represents the store shown in Fig. 24(a) in graphical form:
(a) S29 with the extended set of core relations.(b) S29 with the extended set of core and instru-
mentation relations (core relations appear in grey). Transitive-closure relations sfpn and tn have
been omitted to reduce clutter. The values of the transitive-closure relations can be readily seen
from the graphical representation of relations sfen and n. For instance, node u5 is related via the
sfpn relation to itself and all nodes appearing to the left or above it in the pictorial representation.

works for panhandle lists but not for cyclic lists without a panhandle. (In general, no
other definition can work for cyclic lists without a panhandle because if one existed,
it would need to choose one list node among identical-looking nodes that lie on each
cycle.) Second, because the cyclicity relation cn is defined in terms of rocn (and
sfpn), the definition of rocn has a circular dependence, which is disallowed. (This
circularity cannot be avoided, if we want all reachability relations to benefit from
the precise maintenance of one transitive-closure relation—here, sfpn.) The third
problem with introducing rocn as an instrumentation relation is discussed later in
the section (see footnote 14).

We divide our description of the abstraction based on the new set of relations into
three parts, which describe (i) how the relations of Fig. 28 define directed spanning
forests, (ii) how we maintain precision on a cycle in the presence of abstraction, and
(iii) how we generate maintenance formulas for instrumentation relations automat-
ically. The three parts highlight the differences between our approach and that of
Hesse.

Defining Directed Spanning Forests. Recall from §5.3.2 that the core relations
are extended with unary relation rocn, which designates one node on each cycle to
be the representative of the cycle. The rocn nodes can be used to define a (di-
rected) spanning forest of the n edges. Instrumentation relation sfen—sfe stands
for spanning-forest edge—is used to maintain the set of edges that forms the span-
ning forest. In Hesse’s work, the spanning-forest edges are directed in the same
direction as the n edges; as a result, he maintains a directed spanning forest in
which each edge is directed towards the root of a spanning-forest tree. In our work,
we define sfen to be directed in the direction opposite to that of the n edges. The
graph defined by the sfen relation then defines a directed spanning forest with rocn

nodes as spanning-forest roots, and with each spanning-forest edge directed away
from the root of a spanning-forest tree (see Fig. 29(b)).

Instrumentation relation sfpn—sfp stands for spanning-forest path—is used to
maintain the set of paths in the spanning forest of list nodes. Binary reachability

32 · T. Reps et al.

in the actual lists (see relation tn in Fig. 28) can be defined in terms of n, rocn, and
sfpn using a first-order-logic formula: v2 is reachable from v1 if there is a spanning-
forest path from v2 to v1 or there is a pair of spanning-forest paths, one from the
source of a cut edge (a rocn node) to v1 and the other from v2 to the target of the
cut edge (the n-successor of the same rocn node).

Unary reachability relations rn,x and the cyclicity relation cn can be defined
via first-order formulas, as well. We defined rn,x in terms of binary reachability
relation tn. While we could define cn in terms of tn, as well, we chose another
simple definition by observing that a node lies on a cycle if and only if there is a
spanning-forest path from it to the target of a cut edge (the n-successor of a rocn

node).

Fig. 29(b) shows 2-valued structure S29, which represents the store of Fig. 24(a)
using the extended set of core and instrumentation relations. The relations prx and
pr is will be explained shortly.

Preserving Node Ordering on a Cycle in the Presence of Abstraction. The fact
that our techniques need to be applicable in the presence of abstraction introduces
a complication that is not present in the setting studied by Hesse. His concern
was with the expressibility of certain properties within the confines of a logic with
certain syntactic restrictions. Our concern is with the ability to maintain precision
in the framework of canonical abstraction.

n
u3 u4u2u1 n

rn,xrn,x

n,sfen

rocnrn,x,cn
rn,y

n,sfen

sfen

nsfe
n

sfen

n
sfe

n

n

sfe
n

yx

isn
rn,x,cn

rn,y

rn,x,cn
rn,y

u6

u5

rn,xrn,y

cn

Fig. 30. A 3-valued structure S30 that is the
canonical abstraction of structure S27 if relations
prx and pr is are not added to A and node u7 is
the rocn node.

Unary reachability relations
rn,x (one for every program
variable x) play a crucial role
in the analysis of programs
that manipulate acyclic linked
lists. In addition to keeping
disjoint lists summarized sep-
arately, they keep list nodes
that have been visited during a
traversal summarized separately
from nodes that have not been
visited: if x is the pointer used
to traverse the list, then the
nodes that have been visited will
have value 0 for relation rn,x,
while the nodes that have not
been visited will have value 1. If
a list contains a cycle, then all nodes on the cycle are reachable from the same set
of variables, namely, all variables that point to any node in that list. As a result,
the instrumentation relations discussed thus far cannot prevent nodes u4, u6, and
u8 of S27 shown in Fig. 27 from being summarized together. Thus, assuming that
u7 is the rocn node, the canonical abstraction of S27 is the 3-valued structure S30

shown in Fig. 30. The nodes represented by u4, u6, and u8 of S27 are represented
by the single summary individual u6 in S30. The symmetry hides all information
about the order of traversal via pointer variable y. Moreover, the values of the sfpn

relation (not shown in Fig. 30) lose precision because ancestors of the shared node

Finite Differencing of Logical Formulas · 33

n n nnn n

x y
n n

u3 u5u1 u4u2

n

prypris

pry
pris

pry

prx
prypris

pry rocn

n

prypris
n n

u7u6

u8

Fig. 31. A 3-valued structure S31 that is the canonical abstraction of structure S27 if node u7 is
the rocn node. S31 represents panhandle lists of type XY , such as the store of Fig. 24(b). The
only instrumentation relations shown in the figure are prx, pry, and pr is . As in structure S27

shown in Fig. 27, rn,x holds for all nodes, rn,y and cn hold for all nodes on the cycle, and isn

holds for u3.

in the spanning tree are summarized together with its descendants in the spanning
tree.

We break the symmetry of the nodes on a cycle using a general mechanism via
unary properties akin to unary reachability relations rn,x. In the definitions of rela-
tions prx of Fig. 28, full reachability (relation tn) has been replaced with spanning-
forest reachability (relation sfpn). The relations prx distinguish nodes according to
whether or not they are reachable from program variable x along spanning-forest
edges. The relation pr is is defined similarly but using instrumentation relation isn;
pr is partitions the nodes of a panhandle list into ancestors and descendants of the
shared node in the spanning tree. Fig. 31 shows structure S31 that is the canonical
abstraction of S27 of Fig. 27, assuming that u7 is the rocn node. In S31, each of the
nodes u4, u6, and u8 has a distinct vector of values for the relations pry and pr is ,
thus breaking the symmetry.13

Automatic Generation of Maintenance Formulas for Instrumentation Relations.
In his thesis, Hesse gives hand-specified relation-maintenance formulas for a col-
lection of relations that are used for maintaining a spanning-forest representation
of possibly-cyclic linked lists. Instead of specifying relation-maintenance formulas
by hand, we rely on finite differencing, as described in previous sections of this
paper, to generate maintenance formulas for all instrumentation relations. Finite-
differencing-generated maintenance formulas have been effective in maintaining all
relations defined via first-order-logic formulas, i.e., all relations of Fig. 28 except
sfpn. Additionally, under certain conditions, finite-differencing-generated mainte-
nance formulas have been effective in maintaining relations defined via the reflexive
transitive closure of binary relations. Two conditions are necessary for this tech-
nique to be applicable for maintaining relation sfpn:

Graph-shape condition. The graph defined by sfen must be acyclic or tree-shaped.

Unit-size-change condition. Each program statement must only change the graph

13Note that in the presence of multiple panhandles, we may be required to introduce finer distinc-
tions to account for the possibility of multiple shared nodes on a cycle. These distinctions could
take the form of a family of is-shared relations—one for each variable—to capture the panhandle
that contributes to sharing. We do not discuss a detailed solution to this problem here, as it will
not provide significant further insight.

34 · T. Reps et al.

of n edges by adding a single edge or deleting a single edge (but not both).

The graph-shape condition applies in our setting because the graph defined by sfen

defines a spanning forest (which is both acyclic and tree-shaped). The unit-size-
change condition requires some discussion.

The relation sfen is defined in terms of n and rocn. While we have not yet
discussed the relation-update formulas for core relation rocn, it should be clear
that the value of the relation rocn should only change in response to a change in
the value of a node’s n field. There are two types of statements that change the value
of the n field and thus may have an effect on the value of the sfen relation—namely,
statements of the forms x->n = NULL and x->n = y. The former destroys the n
edge leaving the node pointed to by x, and the latter creates a new n-connection
from the node pointed to by x to the node pointed to by y. While both of these
statements add or remove a single edge of the n relation, it is not necessarily the
case that they add or remove a single edge of the sfen relation. When interpreted
on logical structure S31 of Fig. 31, statement y->n = NULL has the effect of deleting
the n edge leaving u5, an action that should result in the deletion of the sfen edge
entering u5 (not shown in the figure). However, to preserve the spanning-forest
representation, we need to ensure that rocn holds only for nodes that lie on a cycle,
and that sfen represents spanning-forest edges. This requires setting the value of
rocn for u7 to 0 and adding an sfen edge from u8 to u7. Because, as this example
illustrates, a language statement may result in the deletion of one sfen edge and the
addition of another, neither of the techniques from §5.1 and §5.2 for maintaining
instrumentation relations defined via RTC applies.

To work around this problem, we apply each transformer associated with state-
ments x->n = NULL and x->n = y in two phases. In the first phase, we apply the
part of the transformer that corresponds to the relation n, and update the values
of all instrumentation relations. In the second phase, we apply the part of the
transformer that corresponds to the relation rocn, and update the values of all in-
strumentation relations. As we explain below, each phase of the two transformers
satisfies the requirement that the change adds a single edge or removes a single edge
of the sfen relation.14 Additionally, by paying attention to the order of phases, we
ensure that the graph defined by the relation sfen remains acyclic and tree-shaped
throughout the application of the transformers.

To preserve the graph-shape condition in the case of statement x->n = NULL, we
apply the part of the transformer that corresponds to the relation n first:

τn,x−>n = NULL(v1, v2) = n(v1, v2)∧ ¬x(v1). (14)

Unless x points to a rocn node (or x->n is NULL), this phase results in the deletion
of the sfen edge that enters the node pointed to by x. In the second phase, we
apply the part of the transformer that corresponds to the relation rocn:

τrocn,x−>n = NULL(v) = rocn(v)∧ ∃ v1 : n(v, v1)∧ sfpn(v, v1). (15)

14The third problem with defining rocn as an instrumentation relation (alluded to earlier in the
section) is that we would lose the ability to apply the two parts of a transformer separately: the
change in the values of n would immediately trigger a change in the values of rocn. The resulting
transformer would not be able to satisfy the unit-size-change condition.

Finite Differencing of Logical Formulas · 35

This phase sets the rocn property of the source ns of a cut edge to 0, if there is no
longer a spanning-forest path from ns to the target nt of the same cut edge. When
this happens and x does not point to ns, i.e., the cut edge is not being deleted, this
phase results in the addition of an sfen edge from nt to ns.

To preserve the graph-shape condition in the case of statement x->n = y, we
apply the part of the transformer that corresponds to the relation rocn first:

τrocn,x−>n = y(v) = rocn(v)∨(x(v)∧ ∃ v1 : y(v1)∧ sfpn(v, v1)). (16)

If there is a spanning-forest path from node nx, pointed to by x, to node ny, pointed
to by y, the statement creates a new cycle in the data structure. The update of
Formula (16) sets the rocn property of nx to 1, thus making nx the source of a new
cut edge and ny the target of the cut edge. Because there was no n edge from nx

to ny prior to the execution of this statement,15 this phase results in no change to
the sfen relation. In the second phase, we apply the part of the transformer that
corresponds to the relation n:

τn,x−>n = y(v1, v2) = n(v1, v2)∨(x(v1)∧ y(v2)). (17)

Unless the node pointed to by x became a rocn node in the first phase, this phase
results in the addition of an sfen edge from ny to nx.

The break-up of the transformers corresponding to statements x->n = NULL and
x->n = y into two phases, as described above, ensures that the sfen relation re-
mains acyclic and tree-shaped throughout the analysis (the graph-shape condition)
and that the change to the sfen relation that results from each phase is a unit-
size change (the unit-size-change condition).16 Thus, it is sound to maintain sfpn

(= sfe∗
n) via the techniques described in either §5.1 or §5.2. Additionally, it is also

sound to maintain the remaining instrumentation relations via the techniques of §4
because the remaining relations are defined by first-order-logic formulas. Sound-
ness guarantees that the stored values of instrumentation relations agree with the
relations’ defining formulas throughout the analysis. However, the stored values
may not agree with the relations’ intended meanings. For instance, if the n-transfer
phase of the transformer for statement x->n = NULL removes a non-cut n edge on a
cycle, the sfen relation will temporarily not span the entire list. However, we do not
query the results of abstract interpretation in between the phases of a two-phase
transformer. Thus, the stored values of instrumentation relations agree with the
relations’ intended meanings, as well as their defining formulas, at all points in the
program’s control-flow graph.

Optimized Maintenance of Relation sfpn. By demonstrating that the acyclicity
and unit-size-change conditions hold for relation sfen, we were able to rely on the
techniques of §5.1 to maintain the relation sfpn. Note, however, that the definition
of sfen ensures that the graph defined by sfen is not only acyclic but is tree-shaped.
This fact has no bearing on the maintenance formula that updates the values of
relation sfpn after a positive unit-size change ∆+[sfen] to sfen (see Formula (9)).
However, it allows the values of sfpn to be updated in a more efficient manner after

15By normalizing procedures to include a statement of the form x->n = NULL prior to a statement
of the form x->n = y, we ensure that x->n is always NULL prior to the latter assignment.
16The test described in §5.1.1 confirms that the unit-size-change condition holds for each phase.

36 · T. Reps et al.

of non-identity Performance

Category Test Program maintenance formulas Analysis Time (sec.) % increase

schemas # inst. Ref. FD FD

total TC non-TC acyc. tree acyc. tree

Search 2 0 2 2 0.30 0.30 0.31 1.10 1.90

GetLast 3 0 3 4 0.31 0.32 0.32 2.23 2.22

SLL DeleteAll 11 2 9 15 0.30 0.32 0.30 4.97 -0.13

Shape Reverse 12 2 10 16 0.43 0.49 0.44 12.69 1.99

Analysis Create 11 2 9 21 0.28 0.31 0.28 9.61 -0.60

Delete 12 2 10 39 1.13 2.13 1.23 87.90 7.76

Merge 11 2 9 64 1.77 3.67 1.96 107.27 10.42

Insert 12 2 10 72 1.19 2.03 1.31 70.43 9.67

DLL Append 15 2 13 50 1.76 1.78 1.77 1.13 0.57

Shape Delete 16 2 14 74 8.35 8.78 8.38 5.15 0.36

Analysis Splice 15 2 13 96 1.06 1.69 1.10 59.70 3.79

Binary InsertSorted 13 2 11 43 1.25 1.28 1.28 1.97 1.54

Tree Lindstrom 10 2 8 43 40.44 82.29 41.48 103.47 2.57

Shape DSW 10 2 8 52 101.30 180.20 109.51 77.89 8.15

Analysis DeleteSorted 13 2 11 554 75.26 409.31 97.71 443.85 29.69

ReverseSorted 18 2 16 23 0.47 0.54 0.49 13.05 2.58

BubbleSort 18 2 16 80 5.74 8.91 6.42 55.32 11.77

SLL BubbleSortBug 18 2 16 80 5.41 7.61 6.01 40.75 11.14

Sorting InsertSortBug2 18 2 16 87 5.19 17.57 6.09 238.55 17.04

InsertSort 18 2 16 88 5.65 18.55 6.66 228.26 17.95

InsertSortBug1 18 2 16 88 18.94 32.93 20.25 73.84 7.27

MergeSorted 18 2 16 91 2.26 4.22 2.53 86.35 11.46

Information Good Flow 12 2 10 66 13.59 23.28 15.37 71.30 13.59

Flow Bad Flow 12 2 10 86 78.05 180.85 94.92 131.70 21.79

Fig. 32. Results from using hand-crafted vs. automatically-generated maintenance formulas for
instrumentation relations.

a negative unit-size change ∆−[sfen] to sfen. In a tree-shaped graph, there exists
at most one path between a pair of nodes; if that path goes through the sfen edge
to be deleted, the corresponding sfpn edge should be removed (cf. Formula (11)):

sfp′
n(v1, v2) = sfpn(v1, v2)

∧ ¬(∃ v′1, v
′
2 : sfpn(v1, v

′
1)∧ ∆−[sfen](v′1, v

′
2)∧ sfpn(v′2, v2)).

(18)

6. EXPERIMENTAL EVALUATION

To evaluate the techniques presented in §4 and §5, we extended TVLA to generate
relation-maintenance formulas, and applied it to a test suite of five existing analy-
sis specifications, involving twenty-four programs, along with a variety of different
abstractions and properties to check (see Fig. 32). The experiment was designed to
determine what penalty is incurred when the relation-maintenance formulas gen-
erated by our finite-differencing-based algorithm are used in place of hand-crafted
relation-maintenance formulas. In the experiment, we used the set of hand-crafted
relation-maintenance formulas that had been built up during several years of ex-
perience with TVLA. The idea was that if the penalty is low for the programs,
abstractions, and program properties in the test suite, that would be evidence that
the penalty will be low for other examples—and that one can afford to forgo the
effort of hand-crafting maintenance formulas for other analysis examples.

The test programs consisted of various operations on acyclic singly-linked lists,
doubly-linked lists, binary trees, and binary-search trees, plus several sorting pro-
grams [Lev-Ami et al. 2000]. The system was used to verify some partial-correctness

Finite Differencing of Logical Formulas · 37

properties of the test programs. For instance, Reverse, an in-situ list-reversal pro-
gram, must preserve list properties and lose no elements; InsertSorted and Delete-
Sorted must preserve binary-search-tree properties; InsertSort must return a sorted
list; Good Flow must not allow high-security input data to flow to a low-security
output channel. (Loginov et al. discuss the verification of stronger properties, such
as the partial correctness of several of the algorithms [Loginov et al. 2005; Loginov
2006; Loginov et al. 2007].)

Lindstrom and DSW are two variants of Deutsch-Schorr-Waite, a constant-space
tree-traversal algorithm that uses destructive pointer rotation. For Lindstrom and
DSW, we verified that the algorithms have no unsafe pointer operations or memory
leaks, and that the data structure produced at the end is, in fact, a binary tree.
(Loginov et al. discuss the verification of the total correctness of Deutsch-Schorr-
Waite—i.e., that the binary tree produced at the end is identical to the input tree
and that the algorithm terminates [Loginov et al. 2006].)

A few of the programs contained bugs: for instance, InsertSortBug2 is an insert-
sort program that ignores the first element of the list; BubbleBug is a bubble-sort
program with an incorrect condition for swapping elements, which causes an infinite
loop if the input list contains duplicate data values. (See [Lev-Ami et al. 2000; Dor
et al. 2000; Lev-Ami and Sagiv 2000] for more details.)

In TVLA, the operational semantics of a programming language is defined by
specifying, for each kind of statement, an action schema to be used on outgoing
CFG edges. Action schemas are instantiated according to a program’s statement
instances to create the CFG. For each combination of action schema and instru-
mentation relation, a maintenance-formula schema must be provided. The number
of non-identity maintenance-formula schemas is reported in columns 3–5 of Fig. 32,
broken down in columns 4–5 into those whose defining formula contains an occur-
rence of RTC, and those that do not. Relation-maintenance formulas produced
by finite differencing are generally larger than the hand-crafted ones. Because this
affects analysis time, the number of instances of non-identity maintenance-formula
schemas is a meaningful size measure for our experiments. These numbers appear
in column 6. The number of instances of non-identity schemas for DeleteSorted

is high because DeleteSorted includes three inline expansions of the routine that
finds the tree node that takes the place of the deleted node.17

The data structures manipulated by all programs in our test suite are acyclic and
tree-shaped, thus acyclic reachability maintenance (i.e., the techniques of §5.1), as
well as tree-shaped reachability maintenance (i.e., the techniques of §5.2), apply
for the maintenance of reachability relations. In the absence of hand-crafted main-
tenance formulas for reachability relations in possibly-cyclic linked lists, we could
not extend our experiments to cover the techniques of §5.3.2. Instead, we validated
those techniques as part of the verification of properties of Reverse when applied
to possibly-cyclic linked lists (see [Loginov et al. 2007]).

For each program in the test suite, we first ran the analysis using hand-crafted
maintenance formulas, to obtain a reference answer in which CFG nodes were anno-
tated with their final sets of logical structures. We then ran the analysis using au-

17Work on interprocedural shape analysis provides a solution that does not require inline-expanded
programs [Rinetzky and Sagiv 2001; Rinetzky et al. 2005; Jeannet et al. 2004].

38 · T. Reps et al.

tomatically generated maintenance formulas with acyclic reachability maintenance
and compared the result against the reference answer. For all 24 test programs,
the analysis using automatically generated formulas yielded answers identical to
the reference answers. Finally, we ran the analysis using automatically generated
maintenance formulas with tree-shaped reachability maintenance and compared the
result against the reference answer. Again, for all 24 test programs, the analysis
using automatically generated formulas yielded answers identical to the reference
answers.

Columns 7–11 show performance data, which were collected on a 3GHz PC with
3.7GB of RAM running CentOS 4 Linux. The column labeled “Ref.” gives the ref-
erences times. Columns labeled “acyc.” give the data for the analyses that used au-
tomatically generated maintenance formulas with acyclic reachability maintenance.
Columns labeled “tree” give the data for the analyses that used automatically gen-
erated maintenance formulas with tree-shaped reachability maintenance. In each
case, five runs were made; the longest and shortest times were discarded from each
set, and the remaining three averaged. The geometric mean of the slowdowns when
using the automatically generated formulas with acyclic reachability maintenance
was approximately 60%, with a median of 55%, mainly due to the fact that the
automatically generated formulas are larger than the hand-crafted ones. The maxi-
mum slowdown was 444%. The highest slowdowns occurred in analyses of programs
that involved deletions of edges in a data structure’s graph.

Because the edge-deletion maintenance formulas produced by the tree-shaped
reachability-maintenance technique are much smaller than those that are produced
by acyclic reachability maintenance, our expectation was that the use of tree-shaped
reachability-maintenance formulas would cause a much smaller slowdown. This
expectation was confirmed: the geometric mean of the slowdowns when using the
automatically generated formulas with tree-shaped reachability maintenance was
approximately 8%, with a median of 7%. The maximum slowdown was 30%.18 A
few analyses were actually faster with the automatically generated formulas; these
speedups are either due to random variation or are accidental benefits of subformula
orderings that are advantageous for short-circuit evaluation.

These results are encouraging. At least for abstractions of several common data
structures, they suggest that the algorithm for generating relation-maintenance
formulas from §4 and §5 is capable of automatically generating formulas that (i)
are as precise as the hand-crafted ones, and (ii) have a tolerable effect on runtime
performance.

The extended version of TVLA also uncovered several bugs in the hand-crafted
formulas. A maintenance formula of the form µp,st(v1, . . . , vk) = p(v1, . . . , vk)
is called an identity relation-maintenance formula. For each identity relation-
maintenance formula in the hand-crafted specification, we checked that (after sim-
plification) the corresponding generated relation-maintenance formula was also an
identity formula. Each inconsistency turned out to be an error in the hand-crafted
specification. We also found one instance of an incorrect non-identity hand-crafted
maintenance formula. (The measurements reported in Fig. 32 are based on cor-

18We expect that some simple optimizations, such as caching the results from evaluating subfor-
mulas, could reduce the slowdown further.

Finite Differencing of Logical Formulas · 39

rected hand-crafted specifications.)

7. RELATED WORK

A weakness of the original formulation of TVLA [Sagiv et al. 2002; Lev-Ami and
Sagiv 2000] was that the user needed to define relation-maintenance formulas by
hand to specify how each structure transformer affects each instrumentation rela-
tion. Past criticisms of TVLA based on this deficiency [Ball et al. 2001; Møller and
Schwartzbach 2001] are no longer valid, at least for analyses that can be defined
using formulas that define acyclic relations (and also for some classes of formulas
that define cyclic relations). With the algorithm presented in §4 and §5, the user’s
responsibility is merely to write the ψp formulas; appropriate relation-maintenance
formulas are created automatically.

Graf and Säıdi [Graf and Säıdi 1997] showed that theorem provers can be used
to generate best abstract transformers [Cousot and Cousot 1979] for abstract do-
mains that are fixed, finite, Cartesian products of Boolean values. (The use of such
domains is known as predicate abstraction; predicate abstraction is also used in
SLAM [Ball et al. 2001] and other systems [Das et al. 1999].) In contrast, the ab-
stract transformers created using the algorithm described in §4 and §5 are not best
transformers; however, this algorithm uses only very simple, linear-time, recursive
tree-traversal procedures, whereas the theorem provers used in predicate abstrac-
tion are not even guaranteed to terminate. Moreover, our setting makes available
much richer abstract domains than the ones offered by predicate abstraction, and
experience to date has been that very little precision is lost (using only good abstract
transformers) once the right instrumentation relations have been identified.

Paige studied how finite-differencing transformations of applicative set-former
expressions could be exploited to optimize loops in very-high-level languages, such
as SETL [Paige and Koenig 1982]. Liu et al. used related program-transformation
methods in the setting of a functional programming language to derive incremental
algorithms for various problems from the specifications of exhaustive algorithms
[Liu and Teitelbaum 1995; Liu et al. 1996]. In their work, the goal is to maintain
the value of a function F (x) as the input x undergoes small changes. The methods
described in §4 and §5 address a similar kind of incremental-computation problem,
except that the language in which the exhaustive and incremental versions of the
problem are expressed is first-order logic with reflexive transitive closure.

The finite-differencing operators defined in §4 and §5 are most closely related
to a number of previous papers on logic and databases: finite-difference operators
for the propositional case were studied by Akers [Akers 1959] and Sharir [Sharir
1982]. Previous work on incrementally maintaining materialized views in databases
[Gupta and Mumick 1999], “first-order incremental evaluation schemes (FOIES)”
[Dong and Su 1995], and“dynamic descriptive complexity” [Patnaik and Immerman
1997] has also addressed the problem of maintaining one or more auxiliary relations
after new tuples are inserted into or deleted from the base relations. In databases,
view maintenance is solely an optimization; the correct information can always be
obtained by reevaluating the formula. In the abstract-interpretation context, where
abstraction has been performed, this is no longer true: reevaluating a formula in the
local (3-valued) state can lead to a drastic loss of precision. Thus, one aspect that
sets our work apart from previous work is the goal of developing a finite-differencing

40 · T. Reps et al.

ϕ ∆st[ϕ]

1 0

0 0

p(w1, . . . , wk), p ∈ C (τp,st ⊕p){w1, . . . , wk}

p(w1, . . . , wk), p ∈ I ∆st[ψp]{w1, . . . , wk}

ϕ1 ⊕ϕ2 ∆st[ϕ1] ⊕∆st[ϕ2]

ϕ1 ∧ϕ2 (∆st[ϕ1]∧ϕ2) ⊕(ϕ1 ∧∆st[ϕ2]) ⊕(∆st[ϕ1] ∧∆st[ϕ2])

∀v : ϕ1 (∀v : ϕ1) ? (∃v : ∆st[ϕ1]) : (∀v : ϕ1 ⊕∆st[ϕ1])

Fig. 33. An alternative finite-differencing scheme for first-order formulas.

transformation suitable for use when abstraction has been performed.
Not all finite-differencing transformations that are correct in 2-valued logic (i.e.,

satisfy Theorem 4.3), are appropriate for use in 3-valued logic. For instance, Fig. 33
presents an alternative finite-differencing scheme for first-order formulas. In this
scheme, ∆st[ϕ] captures both the negative and positive changes to ϕ’s value. With
Fig. 33, the maintenance formula for instrumentation relation p is

µp,st
def

= p⊕∆st[ψp], (19)

where ⊕ denotes exclusive-or. However, in 3-valued logic, we have 1/2⊕V = 1/2,
regardless of whether V is 0, 1, or 1/2. Consequently, Eqn. (19) has the unfortunate
property that if p(u) = 1/2, then µp,st evaluates to 1/2 on u, and p(u) becomes
“pinned” to the indefinite value 1/2; it will have the value 1/2 in all successor
structures S′, in all successors of S′, and so on. With Eqn. (19), p(u) can never
reacquire a definite value.

In contrast, the maintenance formulas created using the finite-differencing scheme
of Fig. 14 do not have this trouble because they have the form p?¬∆−

st[ψp] : ∆+
st[ψp].

The use of if-then-else allows p(u) to reacquire a definite value after it has been set
to 1/2: if p(u) is 1/2, µp,st evaluates to a definite value on u if [[∆−

st[ψp(v)]]]
S
3 ([v 7→ u])

is 1 and [[∆+
st[ψp(v)]]]

S
3 ([v 7→ u]) is 0, or vice versa.

In §5.3.2, we compared our work to that of W. Hesse, which is closest in spirit
to our techniques for maintaining reachability information in possibly-cyclic linked
lists. Below, we discuss a few approaches that bear resemblance to ours in that
they attempt to translate or simulate a data structure that cannot be handled by
some core techniques into one that can.

The idea of using spanning-tree representations for specifying or reasoning about
data structures that are “close to trees” is not new. Klarlund and Schwartzbach
introduced graph types, which can be used to specify some common non-tree-
shaped data structures in terms of a spanning-tree backbone and regular expressions
that specify where non-backbone edges occur within the backbone [Klarlund and
Schwartzbach 1993]. Examples of data structures that can be specified by graph
types are doubly-linked lists and threaded trees. A panhandle list cannot be spec-
ified by a graph type because in a graph type the location of each non-backbone
edge has to be defined in terms of the backbone using a regular expression, and a
regular expression cannot be used to specify the existence of a backedge to some
node that occurs earlier in the list. In the PALE project [Møller and Schwartzbach
2001], which incorporates work on graph types, automated reasoning about pro-
grams that manipulate data structures specified as graph types can be carried out

Finite Differencing of Logical Formulas · 41

using a decision procedure for monadic second-order logic. Unfortunately, the deci-
sion procedure has non-elementary complexity. An advantage of our approach over
that of PALE is that we do not rely on the use of a decision procedure.

Immerman et al. presented structure simulation, a technique that broadens the
applicability of decision procedures to a larger class of data structures [Immerman
et al. 2004]. Under certain conditions, it allows data structures that cannot be
reasoned about using decidable logics to be translated into data structures that
can, with the translation expressed as a first-order-logic formula. Unlike graph
types, structure simulation is capable of specifying panhandle lists. However, this
technique shares a limitation of graph types because it relies on decision procedures
for automated reasoning about programs.

Manevich et al. specified abstractions (in canonical-abstraction and predicate-
abstraction forms) for showing safety properties of programs that manipulate
possibly-cyclic linked lists [Manevich et al. 2005]. By maintaining reachability
within list segments that are not interrupted by nodes that are shared or pointed
to by a variable, they are able to break the symmetry of a cycle. The definition of
several key instrumentation relations in that work makes use of transitive-closure
formulas that cannot be handled precisely by finite differencing. As a result, a draw-
back of that work is the need to define some relation-maintenance formulas by hand.
Another drawback is the difficulty of reasoning about reachability (in a list) from a
program variable (see reachability relations rn,x of Fig. 28). Because in [Manevich
et al. 2005] reachability in a list has to be expressed in terms of reachability over
a sequence of uninterrupted segments, a formula that expresses the reachability of
node v from program variable x in a list has to enumerate all permutations of other
program variables that may act as interruptions on a path from x to v in the list.

A number of past approaches to the analysis of programs that manipulate linked
lists relied on first-order axiomatizations of reachability information. All of these
approaches involved the use of first-order-logic decision procedures. While our
approach does not have this limitation, it is instructive to compare our work with
those approaches that included mechanisms for breaking the symmetry on a cycle.
Nelson defined a set of first-order axioms that describe the ternary reachability
relation rn(u, v, w), which has the meaning: w is reachable from u along n edges
without encountering v [Nelson 1983]. The use of this relation alone is not sufficient
in our setting because in the presence of abstraction we require unary distinctions
(such as the relations prx and pr is of Fig. 28) to break the symmetry. Additionally,
the maintenance of ternary relations is more expensive than the maintenance of
binary relations. Lahiri and Qadeer specify a collection of first-order axioms that
are sufficient to verify properties of procedures that perform a single change to a
cyclic list, e.g., the removal of an element [Lahiri and Qadeer 2006]. They also
verify properties of in-situ list reversal, albeit under the assumption that the input
list is acyclic. In a recent publication, we describe a case study in which we use the
techniques developed in §5.3.2 to verify the total correctness (partial correctness
and termination) of Reverse when applied to any linked list, including cyclic and
panhandle lists [Loginov et al. 2007]. Lahiri and Qadeer break the symmetry of
cycles in a similar fashion to how it is done in [Manevich et al. 2005]: the blocking
cells of [Lahiri and Qadeer 2006] are a subset of the interruptions of [Manevich et al.
2005]. The blocking cells include only the set of head variables—program variables

42 · T. Reps et al.

that act as heads of lists used in the program. This set has to be maintained
carefully by the user to (i) satisfy the system’s definition of acceptable (well-founded)
lists, (ii) allow the system to verify useful postconditions, and (iii) avoid falling prey
to the difficulty—that arises in [Manevich et al. 2005]—of expressing reachability
in the list. The current mechanism of [Lahiri and Qadeer 2006] is insufficient for
reasoning about panhandle lists because the set of blocking cells does not include
shared nodes. This limitation can be partially addressed by generalizing the set
of blocking cells to mimic interruptions of [Manevich et al. 2005] more faithfully.
However, this may make it more difficult to satisfy points (ii) and (iii) above. As
in our work, Lahiri and Qadeer rely on the insight that reachability information
can be maintained in first-order logic. They use a collection of manually-specified
update formulas that define how their relations are affected by the statements of the
language and the (user-inserted) statements that manage the set of head variables.

8. CONCLUSIONS

This paper addresses a fundamental challenge that arises in abstract interpretation:

Given the concrete semantics for a language and a desired abstraction,
how does one create the associated abstract transformers?

This challenge arises in program-analysis problems in which the semantics of state-
ments is expressed using logical formulas that describe changes to core-relation
values. When instrumentation relations have been introduced to refine an abstrac-
tion, the challenge is to reflect the changes in core-relation values in the values of the
instrumentation relations. The algorithm presented in this paper provides a way
to create formulas that maintain correct values for the instrumentation relations,
and thereby provides a way to generate—completely automatically—the part of the
transformers of an abstract semantics that deals with instrumentation relations.

The work described in this paper opened the way for TVLA to be extended to
support automatic abstraction refinement [Loginov et al. 2005; Loginov 2006]. The
idea is to start the analyzer with a crude abstraction, and use the results of analysis
runs that fail to establish a definite answer (about whether the property of interest
does or does not hold) as feedback about how the abstraction should be refined.

Abstraction refinement had previously been used in the model-checking commu-
nity [Kurshan 1994; Clarke et al. 2000; Ball and Rajamani 2001]; however, finding
an analog of this that was suitable for TVLA was a challenging problem because
canonical abstraction is considerably more sophisticated than the abstractions used
by the model-checking community: in particular, predicate abstraction [Graf and
Säıdi 1997] can be viewed as the degenerate case of canonical abstraction in which
only nullary relations are retained [Reps et al. 2004, §4]. Because of this differ-
ence, we had to use completely different mechanisms than those used in tools such
as SLAM [Ball and Rajamani 2001], BLAST [Henzinger et al. 2002], and Magic
[Chaki et al. 2003]. Instead, we developed ways to use inductive logic program-
ming to discover an appropriate set of instrumentation relations that refine the
abstraction in use [Loginov et al. 2005; Loginov 2006]. Finite-differencing is a cru-
cial enabling technique in this approach because it provides the ability to create
relation-maintenance formulas automatically after refinement has been performed.

Finite Differencing of Logical Formulas · 43

Finally, although the work described in the paper was motivated by a problem
that arose in work on static analysis based on 3-valued logic, any method in which
systems are described as evolving (2-valued or 3-valued) logical structures—e.g.,
Alloy [Jackson 2006] or Abstract State Machines [Boerger and Staerk 2003]—may
be able to benefit from these techniques.

Acknowledgments. We are grateful to W. Hesse, N. Immerman, T. Lev-Ami and
R. Wilhelm for their comments and suggestions concerning this work. R. Manevich
provided invaluable help with TVLA.

REFERENCES

Akers, Jr., S. 1959. On a theory of Boolean functions. J. Soc. Indust. Appl. Math. 7, 4 (Decem-
ber), 487–498.

Ball, T., Majumdar, R., Millstein, T., and Rajamani, S. 2001. Automatic predicate abstrac-
tion of C programs. In Prog. Lang. Design and Impl. 203–213.

Ball, T. and Rajamani, S. 2001. Automatically validating temporal safety properties of inter-
faces. In Spin Workshop. 103–122.

Boerger, E. and Staerk, R. 2003. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer.

Chaki, S., Clarke, E., Groce, A., Jha, S., and Veith, H. 2003. Modular verification of software
components in C. In Int. Conf. on Softw. Eng. 385–395.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2000. Counterexample-guided
abstraction refinement. In Computer Aided Verif. 154–169.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. In Princ.
of Prog. Lang. 269–282.

Das, S., Dill, D., and Park, S. 1999. Experience with predicate abstraction. In Computer Aided
Verif. Springer-Verlag, 160–171.

Dong, G. and Su, J. 1995. Incremental and decremental evaluation of transitive closure by
first-order queries. Inf. and Comp. 120, 101–106.

Dong, G. and Su, J. 2000. Incremental maintenance of recursive views using relational calcu-
lus/SQL. SIGMOD Record 29, 1, 44–51.

Dor, N., Rodeh, M., and Sagiv, M. 2000. Checking cleanness in linked lists. In Static Analysis
Symp. 115–134.

Gopan, D., DiMaio, F., Dor, N., Reps, T., and Sagiv, M. 2004. Numeric domains with sum-
marized dimensions. In Tools and Algs. for the Construct. and Anal. of Syst. 512–529.

Graf, S. and Säıdi, H. 1997. Construction of abstract state graphs with PVS. In Computer
Aided Verif. 72–83.

Gupta, A. and Mumick, I., Eds. 1999. Materialized Views: Techniques, Implementations, and
Applications. The M.I.T. Press, Cambridge, MA.

Henzinger, T., Jhala, R., Majumdar, R., and Sutre, G. 2002. Lazy abstraction. In Princ. of
Prog. Lang. 58–70.

Hesse, W. 2003. Dynamic computational complexity. Ph.D. thesis, Dept. of Computer Science,
University of Massachusetts.

Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., and Yorsh, G. 2004. Verification via
structure simulation. In Computer Aided Verif. 281–294.

Jackson, D. 2006. Software Abstractions: Logic, Language, and Analysis. The M.I.T. Press.

Jeannet, B., Loginov, A., Reps, T., and Sagiv, M. 2004. A relational approach to interproce-
dural shape analysis. In Static Analysis Symp. 246–264.

Klarlund, N. and Schwartzbach, M. 1993. Graph types. In Princ. of Prog. Lang. 196–205.

Kurshan, R. 1994. Computer-Aided Verification of Coordinating Processes. Princeton Univ.
Press.

Lahiri, S. and Qadeer, S. 2006. Verifying properties of well-founded linked lists. In Princ. of
Prog. Lang. 115–126.

44 · T. Reps et al.

Lev-Ami, T., Reps, T., Sagiv, M., and Wilhelm, R. 2000. Putting static analysis to work for

verification: A case study. In Int. Symp. on Softw. Testing and Analysis. 26–38.

Lev-Ami, T. and Sagiv, M. 2000. TVLA: A system for implementing static analyses. In Static
Analysis Symp. 280–301.

Liu, Y., Stoller, S., and Teitelbaum, T. 1996. Discovering auxiliary information for incremental
computation. In Symp. on Princ. of Prog. Lang. 157–170.

Liu, Y. and Teitelbaum, T. 1995. Systematic derivation of incremental programs. Sci. of Comp.
Program. 24, 1–39.

Loginov, A. 2006. Refinement-based program verification via three-valued-logic analysis. Ph.D.
thesis, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI. Tech. Rep. 1574.

Loginov, A., Reps, T., and Sagiv, M. 2005. Abstraction refinement via inductive learning. In
Computer Aided Verif. 519–533.

Loginov, A., Reps, T., and Sagiv, M. 2006. Automated verification of the Deutsch-Schorr-Waite
tree-traversal algorithm. In Static Analysis Symp. 261–279.

Loginov, A., Reps, T., and Sagiv, M. 2007. Refinement-based verification for possibly-cyclic
lists. In Program Analysis and Compilation, Theory and Practice: Essays Dedicated to Reinhard
Wilhelm. 247–272.

Manevich, R., Yahav, E., Ramalingam, G., and Sagiv, M. 2005. Predicate abstraction and
canonical abstraction for singly-linked lists. In Verif., Model Checking, and Abs. Interp. 181–
198.

McMillan, K. 1999. Verification of infinite state systems by compositional model checking. In
Correct Hardware Design and Verification Methods (CHARME). 219–234.

Møller, A. and Schwartzbach, M. 2001. The pointer assertion logic engine. In Prog. Lang.
Design and Impl. 221–231.

Nelson, G. 1983. Verifying reachability invariants of linked structures. In Princ. of Prog. Lang.
38–47.

Paige, R. and Koenig, S. 1982. Finite differencing of computable expressions. Trans. on Prog.
Lang. and Syst. 4, 3 (July), 402–454.

Patnaik, S. and Immerman, N. 1997. Dyn-FO: A parallel, dynamic complexity class. J. Comput.
Syst. Sci. 55, 2 (Oct.), 199–209.

Reps, T., Loginov, A., and Sagiv, M. 2002. Semantic minimization of 3-valued propositional
formulae. In Proc. Symp. on Logic in Comp. Sci. 40–54.

Reps, T., Sagiv, M., and Loginov, A. 2003. Finite differencing of logical formulas for static
analysis. In European Symp. On Programming. 380–398.

Reps, T., Sagiv, M., and Wilhelm, R. 2004. Static program analysis via 3-valued logic. In
Computer Aided Verif. 15–30.

Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., and Wilhelm, R. 2005. A semantics for procedure
local heaps and its abstractions. In Princ. of Prog. Lang. 296–309.

Rinetzky, N. and Sagiv, M. 2001. Interprocedural shape analysis for recursive programs. In
Comp. Construct. 133–149.

Sagiv, M., Reps, T., and Wilhelm, R. 2002. Parametric shape analysis via 3-valued logic. Trans.
on Prog. Lang. and Syst. 24, 3, 217–298.

Sharir, M. 1982. Some observations concerning formal differentiation of set theoretic expressions.
Trans. on Prog. Lang. and Syst. 4, 2 (April), 196–225.

TVLA. TVLA system. “www.cs.tau.ac.il/∼tvla/”.

van Fraassen, B. 1966. Singular terms, truth-value gaps, and free logic. J. Phil. 63, 17 (Sept.),
481–495.

Yorsh, G., Reps, T., Sagiv, M., and Wilhelm, R. 2007. Logical characterizations of heap
abstractions. Trans. on Computational Logic (TOCL) 8(1).

Finite Differencing of Logical Formulas · 45

A. CORRECTNESS OF THE FINITE-DIFFERENCING SCHEME OF §4

The proofs in this section are by induction, using a size measure for formulas based
on the process of putting ϕ in core normal form. Because of the assumption of
no circular dependences among the definitions of instrumentation relations, ϕ can
always be put in core normal form by repeated substitution until only core relations
remain. The size measure is basically the size of ϕ when put in core normal form,
except that each occurrence of an instrumentation relation p(w1, . . . , wk), p ∈ I,
encountered during the process is counted as being 1 larger than the size measure
of ψp{w1, . . . , wk}, the defining formula for relation p with w1, . . . , wk substituted
for ψp’s formal parameters. The proofs, therefore, look like standard structural-
induction proofs, except that in the case for p(w1, . . . , wk), p ∈ I, we are permitted
to assume that the induction hypothesis holds for ψp{w1, . . . , wk}.

Recall from §4 that our results are couched in terms of 2-valued logic, but by the
Embedding Theorem (Theorem 2.6, [Sagiv et al. 2002, Theorem 4.9]), the relation-
maintenance formulas that we define provide sound results when interpreted in
3-valued logic.

We only consider first-order formulas because the correctness of the extension of
the Finite-Differencing Scheme for Reachability and Transitive Closure of has been
argued in §5.

Lemma 4.2. For every formula ϕ, ϕ1, ϕ2 and structure transformer st, the fol-
lowing properties hold:19

(i). ∆+
st[ϕ]

meta

⇐⇒ Fst[ϕ] ∧ ¬ϕ

(ii). ∆−
st[ϕ]

meta

⇐⇒ ϕ∧¬Fst[ϕ]

(iii). (a). Fst[¬ϕ1]
meta

⇐⇒ ¬Fst[ϕ1]

(b). Fst[ϕ1 ∨ϕ2]
meta

⇐⇒ Fst[ϕ1] ∨Fst[ϕ2]

(c). Fst[ϕ1 ∧ϕ2]
meta

⇐⇒ Fst[ϕ1] ∧Fst[ϕ2]

(d). Fst[∃ v : ϕ1]
meta

⇐⇒ ∃ v : Fst[ϕ1]

(e). Fst[∀ v : ϕ1]
meta

⇐⇒ ∀ v : Fst[ϕ1]

Proof:

Atomic. For the cases ϕ ≡ l, where l ∈ {0,1}, and ϕ ≡ (v1 = v2), ∆+
st[ϕ] =

∆−
st[ϕ] = 0, and (i) and (ii) follow immediately.
For ϕ ≡ p(w1, . . . , wk), p ∈ C, and τp,st is of the form p ? ¬δ−p,st : δ+p,st

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ (δ+p,st ∧¬p){w1, . . . , wk}

meta

⇐⇒





p(w1, . . . , wk)
? ¬(δ−p,st ∧ p){w1, . . . , wk}
: (δ+p,st ∧¬p){w1, . . . , wk}



 ∧¬p(w1, . . . , wk)

meta

⇐⇒ (Fst[p] ∧¬p){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

19To simplify the presentation, we use lhs
meta
⇐⇒rhs and lhs

meta
=⇒rhs as shorthands for [[lhs]]S2 (Z) =

[[rhs]]S2 (Z) and [[lhs]]S2 (Z) ≤ [[rhs]]S2 (Z), respectively, for any S ∈ S2 and assignment Z that is
complete for lhs and rhs.

46 · T. Reps et al.

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ (δ−p,st ∧ p){w1, . . . , wk}

meta

⇐⇒ p{w1, . . . , wk}∧





p(w1, . . . , wk)
? (δ−p,st ∧ p){w1, . . . , wk}
: ¬(δ+p,st ∧ ¬p){w1, . . . , wk}





meta

⇐⇒ p{w1, . . . , wk}∧¬





p(w1, . . . , wk)
? ¬(δ−p,st ∧ p){w1, . . . , wk}
: (δ+p,st ∧ ¬p){w1, . . . , wk}





meta

⇐⇒ (p∧¬Fst[p]){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

For ϕ ≡ p(w1, . . . , wk), p ∈ C, and τp,st is of the form p∨ δp,st or δp,st ∨ p

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ (δp,st ∧¬p){w1, . . . , wk}

meta

⇐⇒
(p(w1, . . . , wk) ? ¬0 : (δp,st ∧¬p){w1, . . . , wk})

∧ ¬p(w1, . . . , wk)
meta

⇐⇒ (Fst[p] ∧¬p){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ 0
meta

⇐⇒ p{w1, . . . , wk}∧¬p{w1, . . . , wk}∧(¬δp,st ∨ p){w1, . . . , wk}

meta

⇐⇒
p{w1, . . . , wk}

∧ ¬(p{w1, . . . , wk}∨(δp,st ∧¬p){w1, . . . , wk})

meta

⇐⇒
p{w1, . . . , wk}

∧ ¬(p(w1, . . . , wk) ? ¬0 : (δp,st ∧ ¬p){w1, . . . , wk})
meta

⇐⇒ (p∧¬Fst[p]){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

For ϕ ≡ p(w1, . . . , wk), p ∈ C, and τp,st is of the form p∧ δp,st or δp,st ∧ p

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ 0
meta

⇐⇒ p{w1, . . . , wk}∧(δp,st ∨ ¬p){w1, . . . , wk}∧¬p{w1, . . . , wk}

meta

⇐⇒
(p(w1, . . . , wk) ? (δp,st ∨ ¬p){w1, . . . , wk} : 0)

∧ ¬p{w1, . . . , wk}

meta

⇐⇒
(p(w1, . . . , wk) ? ¬(¬δp,st ∧ p){w1, . . . , wk} : 0)

∧ ¬p{w1, . . . , wk}
meta

⇐⇒ (Fst[p] ∧¬p){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

Finite Differencing of Logical Formulas · 47

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ (¬δp,st ∧ p){w1, . . . , wk}

meta

⇐⇒
p{w1, . . . , wk}

∧ (p(w1, . . . , wk) ? (¬δp,st ∧ p){w1, . . . , wk} : 1)

meta

⇐⇒
p{w1, . . . , wk}

∧ ¬(p(w1, . . . , wk) ? ¬(¬δp,st ∧ p){w1, . . . , wk} : 0)
meta

⇐⇒ (p∧ ¬Fst[p]){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

For ϕ ≡ p(w1, . . . , wk), p ∈ C, but τp,st is not of the above forms

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ (τp,st ∧ ¬p){w1, . . . , wk}

meta

⇐⇒





p(w1, . . . , wk)
? ¬(p∧ τp,st){w1, . . . , wk}
: (τp,st ∧ ¬p){w1, . . . , wk}



∧ ¬p(w1, . . . , wk)

meta

⇐⇒ (Fst[p] ∧¬p){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ (p∧ ¬τp,st){w1, . . . , wk}

meta

⇐⇒ p{w1, . . . , wk}∧





p(w1, . . . , wk)
? (p∧¬τp,st){w1, . . . , wk}
: ¬(τp,st ∧ ¬p){w1, . . . , wk}





meta

⇐⇒ p{w1, . . . , wk}∧¬





p(w1, . . . , wk)
? ¬(p∧¬τp,st){w1, . . . , wk}
: (τp,st ∧ ¬p){w1, . . . , wk}





meta

⇐⇒ (p∧ ¬Fst[p]){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

For p(w1, . . . , wk), p ∈ I,

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ ∆+
st[ψp{w1, . . . , wk}]

meta

⇐⇒ Fst[ψp{w1, . . . , wk}] ∧ ¬ψp{w1, . . . , wk}

(by inductive hypothesis (i) for ψp)
meta

⇐⇒ (Fst[p] ∧ ¬p){w1, . . . , wk}

(ψp is the defining formula for p)

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ ∆−
st[ψp{w1, . . . , wk}]

meta

⇐⇒ ψp{w1, . . . , wk}∧¬Fst[ψp{w1, . . . , wk}]

(by inductive hypothesis (ii) for ψp)
meta

⇐⇒ (p∧¬Fst[p]){w1, . . . , wk}

(ψp is the defining formula for p)

48 · T. Reps et al.

Not. ϕ ≡ ¬ϕ1.

(i) ∆+
st[¬ϕ1]

meta

⇐⇒ ∆−
st[ϕ1]

meta

⇐⇒ ϕ1 ∧ ¬Fst[ϕ1] (by inductive hypothesis (ii) for ϕ1)
meta

⇐⇒ Fst[¬ϕ1] ∧¬(¬ϕ1) (by inductive hypothesis (iii) for ϕ1)

(ii) ∆−
st[¬ϕ1]

meta

⇐⇒ ∆+
st[ϕ1]

meta

⇐⇒ Fst[ϕ1] ∧ ¬ϕ1 (by inductive hypothesis (i) for ϕ1)
meta

⇐⇒ (¬ϕ1)∧¬¬Fst[ϕ1]
meta

⇐⇒ (¬ϕ1)∧¬Fst[¬ϕ1] (by inductive hypothesis (iii) for ϕ1)

(iii) Fst[¬ϕ1]
meta

⇐⇒ (¬ϕ1) ? ¬∆−
st[¬ϕ1] : ∆+

st[¬ϕ1]
meta

⇐⇒ ϕ1 ? ∆+
st[¬ϕ1] : ¬∆−

st[¬ϕ1]
meta

⇐⇒ ϕ1 ? ∆−
st[ϕ1] : ¬∆+

st[ϕ1] (by the definitions of ∆+
st[·] and ∆−

st[·])
meta

⇐⇒ ¬(ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])
meta

⇐⇒ ¬Fst[ϕ1]

Or. ϕ ≡ ϕ1 ∨ϕ2.

(i) ∆+
st[ϕ1 ∨ϕ2]

meta

⇐⇒ (∆+
st[ϕ1] ∧ ¬ϕ2)∨(¬ϕ1 ∧∆+

st[ϕ2])
meta

⇐⇒ (Fst[ϕ1] ∧¬ϕ1 ∧ ¬ϕ2)∨(¬ϕ1 ∧Fst[ϕ2] ∧¬ϕ2)

(by inductive hypothesis (i) for ϕ1 and ϕ2)
meta

⇐⇒ (Fst[ϕ1] ∨Fst[ϕ2])∧(¬ϕ1 ∧¬ϕ2)
meta

⇐⇒ (Fst[ϕ1 ∨ϕ2])∧ ¬(ϕ1 ∨ϕ2)

(by part (iii) for ϕ1 ∨ϕ2, proved independently below)

(ii) ∆−
st[ϕ1 ∨ϕ2]

meta

⇐⇒ (∆−
st[ϕ1] ∧¬Fst[ϕ2])∨(¬Fst[ϕ1] ∧∆−

st[ϕ2])
meta

⇐⇒ (ϕ1 ∧ ¬Fst[ϕ1] ∧ ¬Fst[ϕ2])∨(¬Fst[ϕ1] ∧ ¬Fst[ϕ2] ∧ϕ2)

(by inductive hypothesis (ii) for ϕ1 and ϕ2)
meta

⇐⇒ (ϕ1 ∨ϕ2)∧(¬Fst[ϕ1] ∧¬Fst[ϕ2])
meta

⇐⇒ (ϕ1 ∨ϕ2)∧ ¬(Fst[ϕ1] ∨Fst[ϕ2])
meta

⇐⇒ (ϕ1 ∨ϕ2)∧ ¬Fst[ϕ1 ∨ϕ2]

(by part (iii) for ϕ1 ∨ϕ2, proved independently below)

Finite Differencing of Logical Formulas · 49

(iii) Fst[ϕ1 ∨ϕ2]
meta

⇐⇒ (ϕ1 ∨ϕ2) ? ¬∆−
st[ϕ1 ∨ϕ2] : ∆+

st[ϕ1 ∨ϕ2]

meta

⇐⇒

(ϕ1 ∨ϕ2)
? ¬

[

(∆−
st[ϕ1] ∧ ¬Fst[ϕ2])∨(¬Fst[ϕ1] ∧ ∆−

st[ϕ2])
]

: (∆+
st[ϕ1] ∧¬ϕ2)∨(¬ϕ1 ∧ ∆+

st[ϕ2])

(by the definitions of ∆+
st[·] and ∆−

st[·])

meta

⇐⇒

(

(ϕ1 ∨ϕ2)
∧ ¬

[

(∆−
st[ϕ1] ∧ ¬Fst[ϕ2])∨(¬Fst[ϕ1] ∧ ∆−

st[ϕ2])
]

)

∨

(

¬(ϕ1 ∨ϕ2)
∧

[

(∆+
st[ϕ1] ∧ ¬ϕ2)∨(¬ϕ1 ∧∆+

st[ϕ2])
]

)

meta

⇐⇒

(

(ϕ1 ∨ϕ2)
∧ ¬

[

(∆−
st[ϕ1] ∧ ¬Fst[ϕ2])∨(¬Fst[ϕ1] ∧ ∆−

st[ϕ2])
]

)

∨ (¬ϕ1 ∧∆+
st[ϕ1] ∧ ¬ϕ2)∨(¬ϕ1 ∧∆+

st[ϕ2] ∧¬ϕ2)

meta

⇐⇒



















(ϕ1 ∨ϕ2)
∧ (¬∆−

st[ϕ1] ∨Fst[ϕ2])
∧ (Fst[ϕ1] ∨¬∆−

st[ϕ2])





∨ (¬ϕ1 ∧ ∆+
st[ϕ1] ∧¬ϕ2)∨(¬ϕ1 ∧∆+

st[ϕ2] ∧ ¬ϕ2)

meta

⇐⇒































































ϕ1 ∧ ¬∆−
st[ϕ1] ∧Fst[ϕ1]

∨ ϕ1 ∧ ¬∆−
st[ϕ1] ∧ ¬∆−

st[ϕ2]
∨ ϕ1 ∧Fst[ϕ2] ∧Fst[ϕ1]
∨ ϕ1 ∧Fst[ϕ2] ∧¬∆−

st[ϕ2]
∨ ϕ2 ∧ ¬∆−

st[ϕ1] ∧Fst[ϕ1]
∨ ϕ2 ∧ ¬∆−

st[ϕ1] ∧ ¬∆−
st[ϕ2]

∨ ϕ2 ∧Fst[ϕ2] ∧Fst[ϕ1]
∨ ϕ2 ∧Fst[ϕ2] ∧¬∆−

st[ϕ2]
∨ ¬ϕ1 ∧ ∆+

st[ϕ1] ∧¬ϕ2

∨ ¬ϕ1 ∧ ∆+
st[ϕ2] ∧¬ϕ2

(20)

We consider the direction Fst[ϕ1 ∨ϕ2]
meta

=⇒ Fst[ϕ1] ∨Fst[ϕ2] first. We consider
the ten cases that correspond to the cases that (at least) one of the ten disjuncts
of Formula (20) holds. Each case that concerns a disjunct that contains Fst[ϕ1] or
Fst[ϕ2] as a conjunct trivially implies that Fst[ϕ1] ∨Fst[ϕ2] holds. We consider the
remaining four cases.

ϕ1 ∧¬∆−
st[ϕ1] ∧¬∆−

st[ϕ2]
meta

=⇒ ϕ1 ∧¬∆−
st[ϕ1]

meta

=⇒ ϕ1 ∧¬∆−
st[ϕ1] ∨¬ϕ1 ∧ ∆+

st[ϕ1]
meta

⇐⇒ Fst[ϕ1] (by the definition of Fst[·])

ϕ2 ∧¬∆−
st[ϕ1] ∧¬∆−

st[ϕ2]
meta

=⇒ ϕ2 ∧¬∆−
st[ϕ2]

meta

=⇒ ϕ2 ∧¬∆−
st[ϕ2] ∨¬ϕ2 ∧ ∆+

st[ϕ2]
meta

⇐⇒ Fst[ϕ2] (by the definition of Fst[·])

50 · T. Reps et al.

¬ϕ1 ∧∆+
st[ϕ1] ∧ ¬ϕ2

meta

=⇒ ¬ϕ1 ∧ ∆+
st[ϕ1]

meta

=⇒ ϕ1 ∧¬∆−
st[ϕ1] ∨¬ϕ1 ∧ ∆+

st[ϕ1]
meta

⇐⇒ Fst[ϕ1] (by the definition of Fst[·])

¬ϕ1 ∧∆+
st[ϕ2] ∧ ¬ϕ2

meta

=⇒ ¬ϕ2 ∧ ∆+
st[ϕ2]

meta

=⇒ ϕ2 ∧¬∆−
st[ϕ2] ∨¬ϕ2 ∧ ∆+

st[ϕ2]
meta

⇐⇒ Fst[ϕ2] (by the definition of Fst[·])

We consider the direction Fst[ϕ1] ∨Fst[ϕ2]
meta

=⇒ Fst[ϕ1 ∨ϕ2] next. Without loss of
generality, assume that Fst[ϕ1] holds. We consider two cases: ϕ1 ∧¬∆−

st[ϕ1] holds;
¬ϕ1 ∧ ∆+

st[ϕ1] holds. We show that both cases imply that a disjunct of Formula (20)
holds. If a disjunct of Formula (20) holds, then Fst[ϕ1 ∨ϕ2] must hold because the
latter holds if and only if Formula (20) holds. First, assume that ϕ1 ∧¬∆−

st[ϕ1]
holds.

ϕ1 ∧ ¬∆−
st[ϕ1]

meta

⇐⇒ ϕ1 ∧¬∆−
st[ϕ1] ∧Fst[ϕ1] (by inductive hypothesis (ii) for ϕ1)

meta

=⇒ Fst[ϕ1 ∨ϕ2] (the RHS above is a disjunct of Formula (20))

Now, assume that ¬ϕ1 ∧∆+
st[ϕ1] holds. We consider two subcases: ϕ2 holds; ¬ϕ2

holds. Assume that ϕ2 holds.

ϕ2 ∧ ¬ϕ1 ∧∆+
st[ϕ1]

meta

⇐⇒ ϕ2 ∧ ¬∆−
st[ϕ1] ∧ ¬ϕ1 ∧∆+

st[ϕ1]

(¬ϕ1
meta

=⇒ ¬∆−
st[ϕ1] by inductive hypothesis (ii))

meta

=⇒ ϕ2 ∧ ¬∆−
st[ϕ1] ∧Fst[ϕ1] (by the definition of Fst[·])

meta

=⇒ Fst[ϕ1 ∨ϕ2] (the RHS above is a disjunct of Formula (20))

If ¬ϕ2 holds (the second subcase), the result is immediate; it implies that the
following disjunct of Formula (20) holds: ¬ϕ1 ∧ ∆+

st[ϕ1] ∧ ¬ϕ2.

And. ϕ ≡ ϕ1 ∧ϕ2. The entries for ∆+
st[ϕ1 ∧ϕ2] and ∆−

st[ϕ1 ∧ϕ2] can be derived
from those for ∆+

st[ϕ1 ∨ϕ2], ∆−
st[ϕ1 ∨ϕ2], ∆+

st[¬ϕ1], and ∆−
st[¬ϕ1].

∆+
st[ϕ1 ∧ϕ2]

meta

⇐⇒ ∆+
st[¬(¬ϕ1 ∨¬ϕ2)]

meta

⇐⇒ ∆−
st[¬ϕ1 ∨¬ϕ2] (by the definition of ∆+

st[·])
meta

⇐⇒ (∆−
st[¬ϕ1] ∧¬Fst[¬ϕ2])∨(¬Fst[¬ϕ1] ∧ ∆−

st[¬ϕ2])

(by the definition of ∆−
st[·])

meta

⇐⇒ (∆+
st[ϕ1] ∧Fst[ϕ2])∨(Fst[ϕ1] ∧ ∆+

st[ϕ2])

(by the definition of ∆−
st[·] and inductive hypothesis (iii))

Finite Differencing of Logical Formulas · 51

∆−
st[ϕ1 ∧ϕ2]

meta

⇐⇒ ∆−
st[¬(¬ϕ1 ∨ ¬ϕ2)]

meta

⇐⇒ ∆+
st[¬ϕ1 ∨¬ϕ2] (by the definition of ∆−

st[·])
meta

⇐⇒ (∆+
st[¬ϕ1] ∧ ¬(¬ϕ2))∨(¬(¬ϕ1)∧ ∆+

st[¬ϕ2])

(by the definition of ∆+
st[·])

meta

⇐⇒ (∆−
st[ϕ1] ∧ϕ2)∨(ϕ1 ∧∆−

st[ϕ2]) (by the definition of ∆+
st[·])

Exists. ϕ ≡ ∃ v1 : ϕ1.

(i) ∆+
st[∃ v1 : ϕ1]

meta

⇐⇒ (∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1) (by the definition of ∆+

st[·])
meta

⇐⇒ (∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1)∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒





(∃ v1 : ϕ1)
? ¬

[

(∃ v1 : ∆−
st[ϕ1])∧¬(∃ v1 : Fst[ϕ1])

]

: (∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1)



∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒
[

(∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]
]

∧ ¬(∃ v1 : ϕ1)

(by the definitions of ∆−
st[·] and ∆+

st[·])
meta

⇐⇒ Fst[∃ v1 : ϕ1] ∧ ¬(∃ v1 : ϕ1) (by the definition of Fst[·])

(ii) ∆−
st[∃ v1 : ϕ1]

meta

⇐⇒ (∃ v1 : ∆−
st[ϕ1])∧ ¬(∃ v1 : Fst[ϕ1]) (by the definition of ∆−

st[·])
meta

⇐⇒ (∃ v1 : ϕ1)∧(∃ v1 : ∆−
st[ϕ1])∧ ¬(∃ v1 : Fst[ϕ1])

((∃ v1 : ∆−
st[ϕ1])

meta

=⇒ (∃ v1 : ϕ1) by inductive hypothesis (ii))

meta

⇐⇒ (∃ v1 : ϕ1)∧





(∃ v1 : ϕ1)
? (∃ v1 : ∆−

st[ϕ1])∧ ¬(∃ v1 : Fst[ϕ1])
: ¬

[

(∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1)

]





meta

⇐⇒ (∃ v1 : ϕ1)∧ ¬





(∃ v1 : ϕ1)
? ¬

[

(∃ v1 : ∆−
st[ϕ1])∧¬(∃ v1 : Fst[ϕ1])

]

: (∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1)





meta

⇐⇒ (∃ v1 : ϕ1)∧ ¬
[

(∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]
]

(by the definitions of ∆−
st[·] and ∆+

st[·])
meta

⇐⇒ (∃ v1 : ϕ1)∧ ¬Fst[∃ v1 : ϕ1] (by the definition of Fst[·])

52 · T. Reps et al.

(iii) We consider the direction Fst[∃ v1 : ϕ1]
meta

=⇒ ∃ v1 : Fst[ϕ1] first.

Fst[∃ v1 : ϕ1]
meta

⇐⇒ (∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]

meta

⇐⇒







(∃ v1 : ϕ1)
? ¬

[

(∃ v1 : ∆−
st[ϕ1])∧ ¬(∃ v1 : Fst[ϕ1])

]

: (∃ v1 : ∆+
st[ϕ1])∧¬(∃ v1 : ϕ1)

(by the definitions of ∆−
st[·] and ∆+

st[·])

meta

⇐⇒







(∃ v1 : ϕ1)∧ ¬(∃ v1 : ∆−
st[ϕ1])

∨ (∃ v1 : ϕ1)∧(∃ v1 : Fst[ϕ1])
∨ ¬(∃ v1 : ϕ1)∧(∃ v1 : ∆+

st[ϕ1])
(21)

We consider the three cases that correspond to the cases that (at least) one of
the three disjuncts of Formula (21) holds. The case that concerns the middle
disjunct, which contains (∃ v1 : Fst[ϕ1]) as a conjunct, is immediate. We consider
the remaining two cases. First, assume that (∃ v1 : ϕ1)∧ ¬(∃ v1 : ∆−

st[ϕ1]) holds.

(∃ v1 : ϕ1)∧¬(∃ v1 : ∆−
st[ϕ1])

meta

=⇒ ∃ v1 : (ϕ1 ∧ ¬∆−
st[ϕ1])

meta

=⇒ ∃ v1 : (ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])
meta

⇐⇒ ∃ v1 : Fst[ϕ1] (by the definition of Fst[·])

Now, assume that ¬(∃ v1 : ϕ1)∧(∃ v1 : ∆+
st[ϕ1]) holds.

¬(∃ v1 : ϕ1)∧(∃ v1 : ∆+
st[ϕ1])

meta

=⇒ ∃ v1 : (¬ϕ1 ∧ ∆+
st[ϕ1])

meta

=⇒ ∃ v1 : (ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])
meta

⇐⇒ ∃ v1 : Fst[ϕ1] (by the definition of Fst[·])

We consider the direction ∃ v1 : Fst[ϕ1]
meta

=⇒ Fst[∃ v1 : ϕ1] next.

∃ v1 : Fst[ϕ1]
meta

⇐⇒ ∃ v1 : (ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1]) (by the definition of Fst[·])
meta

⇐⇒ ∃ v1 : (ϕ1 ∧ ¬∆−
st[ϕ1] ∨ ¬ϕ1 ∧∆+

st[ϕ1])
meta

⇐⇒ (∃ v1 : ϕ1 ∧ ¬∆−
st[ϕ1])∨(∃ v1 : ¬ϕ1 ∧∆+

st[ϕ1]) (22)

We consider the two cases that correspond to the cases that (at least) one of the two

Finite Differencing of Logical Formulas · 53

disjuncts of Formula (22) holds. First, assume that (∃ v1 : ϕ1 ∧ ¬∆−
st[ϕ1]) holds.

∃ v1 : ϕ1 ∧¬∆−
st[ϕ1]

meta

⇐⇒ (∃ v1 : ϕ1)∧(∃ v1 : ϕ1 ∧¬∆−
st[ϕ1])

meta

=⇒ (∃ v1 : ϕ1)∧(∃ v1 : ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])
meta

⇐⇒ (∃ v1 : ϕ1)∧(∃ v1 : Fst[ϕ1]) (by the definition of Fst[·])
meta

=⇒ (∃ v1 : ϕ1)∧
[

¬(∃ v1 : ∆−
st[ϕ1])∨(∃ v1 : Fst[ϕ1])

]

meta

=⇒

(∃ v1 : ϕ1)
? ¬

[

(∃ v1 : ∆−
st[ϕ1])∧¬(∃ v1 : Fst[ϕ1])

]

: (∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒ (∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]

(by the definitions of ∆−
st[·] and ∆+

st[·])
meta

⇐⇒ Fst[∃ v1 : ϕ1] (by the definition of Fst[·])

Now, assume that (∃ v1 : ¬ϕ1 ∧ ∆+
st[ϕ1]) holds. We consider two subcases: (∃ v1 : ϕ1)

holds; ¬(∃ v1 : ϕ1) holds. Assume that (∃ v1 : ϕ1) holds.

(∃ v1 : ϕ1)∧(∃ v1 : ¬ϕ1 ∧∆+
st[ϕ1])

meta

=⇒ (∃ v1 : ϕ1)∧(∃ v1 : ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])
meta

⇐⇒ (∃ v1 : ϕ1)∧(∃ v1 : Fst[ϕ1])

(by the definition of Fst[·])
meta

=⇒ (∃ v1 : ϕ1)∧
[

¬(∃ v1 : ∆−
st[ϕ1])∨(∃ v1 : Fst[ϕ1])

]

meta

=⇒

(∃ v1 : ϕ1)
? ¬

[

(∃ v1 : ∆−
st[ϕ1])∧¬(∃ v1 : Fst[ϕ1])

]

: (∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒ (∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]

(by the definitions of ∆−
st[·] and ∆+

st[·])
meta

⇐⇒ Fst[∃ v1 : ϕ1] (by the definition of Fst[·])

Assume that ¬(∃ v1 : ϕ1) holds (the second subcase).

¬(∃ v1 : ϕ1)∧(∃ v1 : ¬ϕ1 ∧ ∆+
st[ϕ1])

meta

=⇒ ¬(∃ v1 : ϕ1)∧(∃ v1 : ∆+
st[ϕ1])

meta

⇐⇒ ¬(∃ v1 : ϕ1)∧(∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1)

meta

=⇒

(∃ v1 : ϕ1)
? ¬

[

(∃ v1 : ∆−
st[ϕ1])∧ ¬(∃ v1 : Fst[ϕ1])

]

: (∃ v1 : ∆+
st[ϕ1])∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒ (∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]

(by the definitions of ∆−
st[·] and ∆+

st[·])
meta

⇐⇒ Fst[∃ v1 : ϕ1] (by the definition of Fst[·])

Forall. ϕ ≡ ∀ v1 : ϕ1. The entries for ∆+
st[∀ v1 : ϕ1] and ∆−

st[∀ v1 : ϕ1] can be

54 · T. Reps et al.

derived from those for ∆+
st[∃ v1 : ϕ1], ∆−

st[∃ v1 : ϕ1], ∆+
st[¬ϕ1], and ∆−

st[¬ϕ1].

∆+
st[∀ v1 : ϕ1]

meta

⇐⇒ ∆+
st[¬(∃ v1 : ¬ϕ1)]

meta

⇐⇒ ∆−
st[∃ v1 : ¬ϕ1] (by the definition of ∆+

st[·])
meta

⇐⇒ (∃ v1 : ∆−
st[¬ϕ1])∧ ¬(∃ v1 : Fst[¬ϕ1]) (by the definition of ∆−

st[·])
meta

⇐⇒ (∃ v1 : ∆+
st[ϕ1])∧¬(∃ v1 : ¬Fst[ϕ1])

(by the definition of ∆−
st[·] and inductive hypothesis (iii))

meta

⇐⇒ (∃ v1 : ∆+
st[ϕ1])∧(∀ v1 : Fst[ϕ1])

∆−
st[∀ v1 : ϕ1]

meta

⇐⇒ ∆−
st[¬(∃ v1 : ¬ϕ1)]

meta

⇐⇒ ∆+
st[∃ v1 : ¬ϕ1] (by the definition of ∆−

st[·])
meta

⇐⇒ (∃ v1 : ∆+
st[¬ϕ1])∧ ¬(∃ v1 : ¬ϕ1) (by the definition of ∆+

st[·])
meta

⇐⇒ (∃ v1 : ∆−
st[ϕ1])∧(∀ v1 : ϕ1) (by the definition of ∆+

st[·])

2

Theorem 4.3. Let S be a structure in S2, and let S′
proto be the proto-structure

for statement st obtained from S. Let S′ be the structure obtained by using S′
proto

as the first approximation to S′ and then filling in instrumentation relations in
a topological ordering of the dependences among them: for each arity-k relation
p ∈ I, ιS

′

(p) is obtained by evaluating [[ψp(v1, ... , vk)]]S
′

2 ([v1 7→ u′1, ... , vk 7→ u′k]) for

all tuples (u′1, ... , u
′
k) ∈ (US′

)k. Then for every formula ϕ(v1, ... , vk) and complete
assignment Z for ϕ(v1, ... , vk),

[[Fst[ϕ(v1, ... , vk)]]]S2 (Z) = [[ϕ(v1, ... , vk)]]S
′

2 (Z)

Proof. The proof is by induction on the size of ϕ. Let Z be [v1 7→ u1, ... , vk 7→
uk]. By Lemma 4.2(iii) and the induction hypothesis, we need only consider the
cases for atomic formulas.

(1) For ϕ ≡ l, where l ∈ {0,1},

[[Fst[l]]]
S
2 (Z) = [[l ? ¬∆−

st[l] : ∆+
st[l]]]

S
2 (Z)

= [[l ? ¬0 : 0]]S2 (Z)

= [[l]]S2 (Z)

= l

= [[l]]S
′

2 (Z)

(2) For ϕ ≡ (vi1 =vi2),

[[Fst[vi1 =vi2]]]
S
2 (Z) = [[vi1 =vi2 ? ¬∆−

st[vi1 =vi2] : ∆+
st[vi1 =vi2]]]

S
2 (Z)

= [[vi1 =vi2 ? ¬0 : 0]]S2 (Z)

= [[vi1 =vi2]]
S
2 (Z)

= Z(vi1) = Z(vi2)

= [[vi1 =vi2]]
S′

2 (Z)

Finite Differencing of Logical Formulas · 55

(3) For ϕ ≡ p(vi1 , ... , vik
), p ∈ C, and τp,st is of the form p ? ¬δ−p,st : δ+p,st

[[Fst[p(vi1 , ... , vik
)]]]S2 (Z) = [[p(vi1 , ... , vik

) ? ¬∆−
st[p(vi1 , ... , vik

)] : ∆+
st[p(vi1 , ... , vik

)]]]S2 (Z)

=









p(vi1 , ... , vik
)

? ¬(δ−p,st ∧ p){vi1 , ... , vik
}

: (δ+p,st ∧¬p){vi1 , ... , vik
}









S

2

(Z)

= [[(p ? ¬δ−p,st : δ+p,st){vi1 , ... , vik
}]]S2 (Z)

= [[τp,st(vi1 , ... , vik
)]]S2 (Z)

= [[p(vi1 , ... , vik
)]]S

′

2 (Z)

(4) For ϕ ≡ p(w1, ... , wk), p ∈ C, and τp,st is of the form p∨ δp,st or δp,st ∨ p

[[Fst[p(vi1 , ... , vik
)]]]S2 (Z) = [[p(vi1 , ... , vik

) ? ¬∆−
st[p(vi1 , ... , vik

)] : ∆+
st[p(vi1 , ... , vik

)]]]S2 (Z)

= [[p(vi1 , ... , vik
) ? ¬0 : (δp,st ∧ ¬p){vi1 , ... , vik

}]]S2 (Z)

= [[(p∨¬p∧ δp,st){vi1 , ... , vik
}]]S2 (Z)

= [[(p∨ δp,st){vi1 , ... , vik
}]]S2 (Z)

= [[τp,st(vi1 , ... , vik
)]]S2 (Z)

= [[p(vi1 , ... , vik
)]]S

′

2 (Z)

(5) For ϕ ≡ p(w1, ... , wk), p ∈ C, and τp,st is of the form p∧ δp,st or δp,st ∧ p

[[Fst[p(vi1 , ... , vik
)]]]S2 (Z) = [[p(vi1 , ... , vik

) ? ¬∆−
st[p(vi1 , ... , vik

)] : ∆+
st[p(vi1 , ... , vik

)]]]S2 (Z)

= [[p(vi1 , ... , vik
) ? ¬(¬δp,st ∧ p){vi1 , ... , vik

} : 0]]S2 (Z)

= [[(p∧¬(¬δp,st ∧ p)){vi1 , ... , vik
}]]S2 (Z)

= [[(p∧(δp,st ∨¬p)){vi1 , ... , vik
}]]S2 (Z)

= [[(p∧ δp,st){vi1 , ... , vik
}]]S2 (Z)

= [[τp,st(vi1 , ... , vik
)]]S2 (Z)

= [[p(vi1 , ... , vik
)]]S

′

2 (Z)

(6) For ϕ ≡ p(vi1 , ... , vik
), p ∈ C, but τp,st is not of the above forms

[[Fst[p(vi1 , ... , vik
)]]]S2 (Z) = [[p(vi1 , ... , vik

) ? ¬∆−
st[p(vi1 , ... , vik

)] : ∆+
st[p(vi1 , ... , vik

)]]]S2 (Z)

=









p(vi1 , ... , vik
)

? ¬(p∧¬τp,st){vi1 , ... , vik
}

: (τp,st ∧¬p){vi1 , ... , vik
}









S

2

(Z)

= [[((p∧ ¬p)∨(p∧ τp,st)∨(τp,st ∧ ¬p)){vi1 , ... , vik
}]]S2 (Z)

= [[τp,st(vi1 , ... , vik
)]]S2 (Z)

= [[p(vi1 , ... , vik
)]]S

′

2 (Z)

56 · T. Reps et al.

(7) For ϕ ≡ p(vi1 , ... , vik
), p ∈ I,

[[Fst[p(vi1 , ... , vik
)]]]S2 (Z) = [[p(vi1 , ... , vik

) ? ¬∆−
st[p(vi1 , ... , vik

)] : ∆+
st[p(vi1 , ... , vik

)]]]S2 (Z)

=

[[

p(vi1 , ... , vik
)

?¬∆−
st[ψp]{vi1 , ... , vik

} : ∆+
st[ψp]{vi1 , ... , vik

}

]]S

2

(Z)

=

[[

ψp{vi1 , ... , vik
}

?¬∆−
st[ψp]{vi1 , ... , vik

} : ∆+
st[ψp]{vi1 , ... , vik

}

]]S

2

(Z)

= [[Fst[ψp]{vi1 , ... , vik
}]]S2 (Z)

= [[ψp{vi1 , ... , vik
}]]S

′

2 (Z)

= [[p(vi1 , ... , vik
)]]S

′

2 (Z)

