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Abstract. Over the last seven years, we have developed static-analysis
methods to recover a good approximation to the variables and dynam-
ically allocated memory objects of a stripped executable, and to track
the flow of values through them. It is relatively easy to track the effects
of an instruction operand that refers to a global address (i.e., an access
to a global variable) or that uses a stack-frame offset (i.e., an access to a
local scalar variable via the frame pointer or stack pointer). In our work,
our algorithms are able to provide useful information for close to 100%
of such “direct” uses and defs.
It is much harder for a static-analysis algorithm to track the effects of

an instruction operand that uses a non-stack-frame register. These “indi-
rect” uses and defs correspond to accesses to an array or a dynamically
allocated memory object. In one study, our approach recovered useful
information for only 29% of indirect uses and 33% of indirect defs. How-
ever, using the technique described in this paper, the algorithm recovered
useful information for 81% of indirect uses and 90% of indirect defs.

1 Introduction

Research carried out during the last decade by our research group [64, 65, 6, 56,
55, 7, 8, 36, 4, 49, 9] as well as by others [48, 22, 33, 14, 2, 31, 13, 44, 32, 3, 54, 37, 21,
46, 28, 19, 16, 34, 66] has developed the foundations for performing static analy-
sis at the machine-code level. The machine-code-analysis problem comes in two
versions: (i) with symbol-table/debugging information (unstripped executables),
and (ii) without symbol-table/debugging information (stripped executables).
Many tools address both versions of the problem, but are severely hampered
when symbol-table/debugging information is absent.

In 2004, we supplied a key missing piece, particularly for analysis of stripped
executables [6]. Previous to that work, static-analysis tools for machine code had
rather limited abilities: it was known how to (i) track values in registers and,
in some cases, the stack frame [48], and (ii) analyze control flow (sometimes by
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applying local heuristics to try to resolve indirect calls and indirect jumps, but
otherwise ignoring them).

The work presented in [6] provided a way to apply the tools of abstract inter-
pretation [27] to the problem of analyzing stripped executables, and we followed
this up with other techniques to complement and enhance the approach [56,
47, 55, 7, 8, 4, 9]. This body of work has resulted in a method to recover a good
approximation to an executable’s variables and dynamically allocated memory
objects, and to track the flow of values through them. These methods are incor-
porated in a tool called CodeSurfer/x86 [5].

It is relatively easy to track the effects of an instruction operand that refers to
a global address (i.e., an access to a global variable) or that uses a stack-frame
offset (i.e., an access to a local scalar variable via the frame pointer or stack
pointer). In our work, our algorithms are able to provide useful information for
close to 100% of such “direct” uses and defs.

It is much harder for a static-analysis algorithm to track the effects of an
instruction operand that uses a non-stack-frame register. These “indirect” uses
and defs correspond to accesses to an array or a dynamically allocated memory
object. This paper describes a technique that had an important impact on the
precision obtained for indirect uses and defs in CodeSurfer/x86. As we describe in
§5, in one validation study on a collection of stripped device-driver executables,
the algorithm reported in [8] recovered useful information for only 29% of indirect
uses and 33% of indirect defs. However, using the improved technique described
in this paper, the algorithm recovered useful information for 81% of indirect uses
and 90% of indirect defs.

The remainder of the paper is organized as follows: §2 motivates the work by
describing some of the advantages of analyzing machine code. §3 explains some
of the ideas used in CodeSurfer/x86 for recovering intermediate representations
(IRs). §4 describes an extension that we made to CodeSurfer/x86’s IR-recovery
algorithm, which had an important impact on precision. §5 presents experimental
results that measure the gain in precision. §6 discusses related work.

2 The Case for Analyzing Machine Code

Recent research in programming languages, software engineering, and computer
security has led to new kinds of tools for analyzing programs for bugs and security
vulnerabilities [38, 60, 35, 26, 17, 12, 20, 39, 30]. In these tools, static analysis is
used to determine a conservative answer to the question “Can the program reach
a bad state?”4 Some of this work has already been transitioned to commercial
products for source-code analysis [17, 11, 29, 23].

4 Static analysis provides a way to obtain information about the possible states that
a program reaches during execution, but without actually running the program on
specific inputs. Static-analysis techniques explore the program’s behavior for all pos-
sible inputs and all possible states that the program can reach. To make this feasible,
the program is “run in the aggregate”—i.e., on descriptors that represent collections

of memory configurations [27].



However, these tools all focus on analyzing source code written in a high-level
language. Unfortunately, most programs that an individual user will install on
his computer, and many commercial off-the-shelf (COTS) programs that a com-
pany will purchase, are delivered as stripped machine code (i.e., neither source
code nor symbol-table/debugging information is available). If an individual or
company wishes to vet such programs for bugs, security vulnerabilities, or ma-
licious code (e.g., back doors, time bombs, or logic bombs) the availability of
good source-code-analysis products is irrelevant.

Less widely recognized is that even when source code is available, source-
code analysis has certain drawbacks [40, 62]. The reason is that computers do
not execute source code; they execute machine-code programs that are generated
from source code. The transformation that takes place between high-level source
code and low-level machine code can cause there to be subtle but important
differences between what a programmer intended and what is actually executed
by the processor. Consequently, analyses that are performed on source code can
fail to detect certain bugs and vulnerabilities.

For instance, during the Windows security push in 2002, the Microsoft C++
.NET compiler was found to introduce a vulnerability in the machine code for
the following code fragment [40]:

memset(password, ‘\0’, len);

free(password);

Assume that the program has temporarily stored the user’s password—in clear
text—in a dynamically allocated buffer pointed to by the pointer variable
password. To minimize the lifetime of the password, which is sensitive infor-
mation, the code fragment shown above zeroes-out the buffer pointed to by
password before returning it to the freelist. Unfortunately, the compiler’s useless-
code-elimination algorithm reasoned that the program never uses the values writ-
ten by the call on memset, and therefore the call on memset could be removed—
thereby leaving sensitive information exposed in the freelist.

Such a vulnerability is invisible in the source code; it can only be detected
by examining the low-level code emitted by the optimizing compiler. Elsewhere
[56, 10, 4], we have called this the WYSINWYX phenomenon (What You See
Is Not What You eXecute).

WYSINWYX is not restricted to the presence or absence of procedure calls;
on the contrary, it is pervasive. Some of the reasons why analyses based on source
code can provide the wrong level of detail include

– Many security exploits depend on platform-specific details that exist because
of features and idiosyncrasies of compilers and optimizers. These include
memory-layout details (such as the positions—i.e., offsets—of variables in
the runtime stack’s activation records and the padding between structure
fields), register usage, execution order (e.g., of actual parameters at a call),
optimizations performed, and artifacts of compiler bugs. Bugs and security
vulnerabilities can escape notice when a tool is unable to take into account
such fine-grained details.



– Analyses based on source code5 typically make (unchecked) assumptions,
e.g., that the program is ANSI C compliant. This often means that an anal-
ysis does not account for behaviors that are allowed by the compiler and that
can lead to bugs or security vulnerabilities (e.g., arithmetic is performed on
pointers that are subsequently used for indirect function calls; pointers move
off the ends of arrays and are subsequently dereferenced; etc.)

– Programs are sometimes modified subsequent to compilation, e.g., to perform
optimizations or insert instrumentation code [61]. They may also be modified
to insert malicious code. Such modifications are not visible to tools that
analyze source code.

In short, even when source code is available, a substantial amount of infor-
mation is hidden from source-code-analysis tools, which can cause bugs, security
vulnerabilities, and malicious behavior to be invisible to such tools.

The alternative is to perform static analysis at the machine-code level. The
advantage of this approach is that the machine code contains the actual in-
structions that will be executed; this addresses the WYSINWYX phenomenon
because it provides information that reveals the actual behavior that arises dur-
ing program execution. Although having to perform static analysis on machine
code represents a daunting challenge, there is also a possible silver lining: by
analyzing an artifact that is closer to what is actually executed, a static-analysis
tool may be able to obtain a more accurate picture of a program’s properties!

The reason is that—to varying degrees—the semantic definition of every
programming language leaves certain details unspecified. Consequently, for a
source-code analyzer to be sound, it must account for all possible implemen-
tations, whereas a machine-code analyzer only has to deal with one possible
implementation—namely, the one for the code sequence chosen by the compiler.

For instance, in C and C++ the order in which actual parameters are eval-
uated is not specified: actuals may be evaluated left-to-right, right-to-left, or in
some other order; a compiler could even use different evaluation orders for dif-
ferent functions. Different evaluation orders can give rise to different behaviors
when actual parameters are expressions that contain side effects. For a source-
level analysis to be sound, at each call site it must take the join (t) of the results
from analyzing each permutation of the actuals.6 In contrast, an analysis of an
executable only needs to analyze the particular sequence of instructions that
lead up to the call.

Static-analysis tools are always fighting imprecision introduced by the join
operation. One of the dangers of static-analysis tools is that loss of precision by
the analyzer can lead to the user being swamped with a huge number of reports
of potential errors, most of which are false positives. As illustrated in Fig. 1,

5 Terms like “analyses based on source code” and “source-code analyses” are used as
a shorthand for “analyses that work on IRs built from source code.”

6 We follow the conventions of abstract interpretation [27], where the lattice of prop-
erties is oriented so that the confluence operation used where paths come together
is join (t). In dataflow analysis, the lattice is often oriented so that the confluence
operation is meet (u). The two formulations are duals of one another.



because a source-code-analysis tool summarizes more behaviors than a tool that
analyzes machine code, the join performed at q must cover more abstract states.
This can lead to less-precise information than that obtained from machine-code
analysis. Because more-precise answers mean a lower false-positive rate, machine-
code-analysis tools have the potential to report fewer false positives.

There are other trade-offs between performing analysis at source level versus
the machine-code level: with source-code analysis one can hope to learn about
bugs and vulnerabilities that exist on multiple platforms, whereas analysis of
the machine code only provides information about vulnerabilities on the specific
platform on which the executable runs.
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Fig. 1. Source-code analysis, which must ac-
count for all possible choices made by the com-
piler, must summarize more paths (see (a)) than
machine-code analysis (see (b)). Because the lat-
ter can focus on fewer paths, it can yield more
precise results.

Although it is possible to
create source-code tools that
strive to have greater fidelity
to the program that is actu-
ally executed—examples in-
clude [18, 51]—in the limit,
the tool would have to in-
corporate all the platform-
specific decisions that would
be made by the compiler.
Because such decisions de-
pend on the level of op-
timization chosen, to build
these choices into a tool that
works on a representation
that is close to the source
level would require simulat-
ing much of the compiler and optimizer inside the analysis tool. Such an approach
is impractical.

In addition to addressing the WYSINWYX issue, performing analysis at the
machine-code level provides a number of other benefits:

– Programs typically make extensive use of libraries, including dynamically
linked libraries (DLLs), which may not be available as source code. Typi-
cally, source-code analyses are performed using code stubs that model the
effects of library calls. Because these are created by hand, they may contain
errors, which can cause an analysis to return incorrect results. In contrast,
a machine-code-analysis tool can analyze the library code directly [36].

– The source code may have been written in more than one language. This
complicates the life of designers of tools that analyze source code because
multiple languages must be supported, each with its own quirks.

– Even if the source code is primarily written in one high-level language, it
may contain inlined assembly code in selected places. Source-code-analysis
tools typically either skip over inlined assembly [24] or do not push the
analysis beyond sites of inlined assembly [52]. To a machine-code-analysis
tool, inlined assembly just amounts to additional instructions to analyze.



– Source-code-analysis tools are only applicable when source is available, which
limits their usefulness in security applications (e.g., to analyzing code from
open-source projects).

3 CodeSurfer/x86: A Platform for Recovering IRs from
Stripped Executables

Given a stripped executable as input, CodeSurfer/x86 [5] recovers IRs that are
similar to those that would be available had one started from source code.
This section explains some of the ideas used in the IR-recovery algorithms of
CodeSurfer/x86 [4, 6, 8].

The recovered IRs include control-flow graphs (CFGs), with indirect jumps
resolved; a call graph, with indirect calls resolved; information about the pro-
gram’s variables; possible values for scalar, array, and pointer variables; sets of
used, killed, and possibly-killed variables for each CFG node; and data depen-
dences. The techniques employed by CodeSurfer/x86 do not rely on debugging
information being present, but can use available debugging information (e.g.,
Windows .pdb files) if directed to do so.

The analyses used in CodeSurfer/x86 are a great deal more ambitious than
even relatively sophisticated disassemblers, such as IDAPro [41]. At the technical
level, they address the following problem: Given a (possibly stripped) executable
E, identify the procedures, data objects, types, and libraries that it uses, and, for
each instruction I in E and its libraries, for each interprocedural calling context
of I, and for each machine register and variable V in scope at I, statically
compute an accurate over-approximation to the set of values that V may contain
when I executes.

It is useful to contrast this approach against the approach used in much of
the other work that now exists on analyzing executables. Many research projects
have focused on specialized analyses to identify aliasing relationships [33], data
dependences [2, 22], targets of indirect calls [31], values of strings [21], bounds on
stack height [54], and values of parameters and return values [66]. In contrast,
CodeSurfer/x86 addresses all of these problems by means of a set of analyses that
focuses on the problem stated above. In particular, CodeSurfer/x86 discovers an
over-approximation of the set of states that can be reached at each point in
the executable—where a state means all of the state: values of registers, flags,
and the contents of memory—and thereby provides information about aliasing
relationships, targets of indirect calls, etc.

One of the goals of CodeSurfer/x86 is to be able to detect whether an ex-
ecutable conforms to a standard compilation model. By “standard compilation
model” we mean that the executable has procedures, activation records (ARs),
a global data region, and a free-storage pool; might use virtual functions and
DLLs; maintains a runtime stack; each global variable resides at a fixed off-
set in memory; each local variable of a procedure f resides at a fixed offset in
the ARs for f ; actual parameters of f are pushed onto the stack by the caller
so that the corresponding formal parameters reside at fixed offsets in the ARs



for f ; the program’s instructions occupy a fixed area of memory, and are not
self-modifying.

During the analysis performed by CodeSurfer/x86, these aspects of the pro-
gram are checked. When violations are detected, an error report is issued, and
the analysis proceeds. In doing so, however, we generally choose to have the
analyzer only explore behaviors that stay within those of the desired execution
model. For instance, if the analysis finds that the return address might be mod-
ified within a procedure, it reports the potential violation, but proceeds without
modifying the control flow of the program. Consequently, if the executable con-
forms to the standard compilation model, CodeSurfer/x86 creates a valid IR for
it; if the executable does not conform to the model, then one or more violations
will be discovered, and corresponding error reports will be issued; if the (human)
analyst can determine that the error report is indeed a false positive, then the
IR is valid. The advantages of this approach are (i) it provides the ability to
analyze some aspects of programs that may deviate from the desired execution
model; (ii) it generates reports of possible deviations from the desired execution
model; (iii) it does not force the analyzer to explore all of the consequences of
each (apparent) deviation, which may be a false positive due to loss of precision
that occurs during static analysis.

Variable and Type Discovery. One of the major stumbling blocks in an-
alyzing executables is the difficulty of recovering information about variables
and types, especially for aggregates (i.e., structures and arrays). When perform-
ing source-code analysis, the programmer-defined variables provide us with the
compartments for tracking data manipulations. When debugging information is
absent, an executable’s data objects are not easily identifiable. Consider, for in-
stance, an access on a source-code variable x in some source-code statement. At
the machine-code level, an access on x is performed either directly—by speci-
fying an absolute address—or indirectly—through an address expression of the
form “[base + index × scale + offset ]”, where base and index are registers and
scale and offset are integer constants. The variable and type-discovery phase
of CodeSurfer/x86 [8, 4] recovers information about variables that are allocated
globally, locally (i.e., on the stack), and dynamically (i.e., from the freelist).
The recovered variables, called a-locs (for “abstract locations”) are the basic
variables used in CodeSurfer/x86’s value-set-analysis (VSA) algorithm [6, 8, 4].

To accomplish this task, CodeSurfer/x86 makes use of a number of analyses,
and the sequence of analyses performed is itself iterated [4, 8]. On each round,
CodeSurfer/x86 uses VSA to identify an over-approximation of the memory
accesses performed at each instruction. Subsequently, the results of VSA are
used to perform aggregate structure identification (ASI) [53], which identifies
commonalities among accesses to an aggregate data value, to refine the current
set of a-locs. The new set of a-locs are used to perform another round of VSA.
If the over-approximation of memory accesses computed by VSA improves from
the previous round, the a-locs computed by the subsequent round of ASI may
also improve. This process is repeated as long as desired, or until the process



converges. By this means, CodeSurfer/x86 bootstraps its way to a set of a-locs
that serve as proxies for the program’s original variables.

4 GMOD-Based Merge Function

This section describes one of the extensions that we made to our IR-recovery
algorithm that had an important impact on precision. The context-sensitive VSA
algorithm associates each program point with an AbsMemConfig:

AbsMemConfig = (CallStringk → AbsEnv⊥)

where an AbsEnv value [4, 8] maps each a-loc and register to an over-approximation
of its set of possible values (referred to as a value-set), and a CallStringk value
is an abstraction of the structure of the run-time stack.7 The context-sensitive
VSA algorithm characterizes a set of concrete states by a set of calling contexts
in which those states can arise.

end-call P

call P

end-call P

call P

exit main

enter main

enter P

exit P
g++

1

2

3

4

5

6

7

9

10

g := 0

8

Fig. 3. Example showing the
need for a GMOD-based merge
function.

Fig. 2 shows the context-sensitive VSA al-
gorithm, which is based on a worklist. For
the time being, consider the statements that
are underlined as being absent. The entries
in the worklist are 〈CallStringk, Node〉 pairs,
and each entry represents the calling contexts
of the corresponding node that have not yet
been explored. The algorithm selects an en-
try from the worklist, executes the abstract
transformer for each edge out of the node,
and propagates the information to all the suc-
cessors of the node.

For all nodes, including an end-call8 node,
the algorithm combines the result of the ab-
stract transformer with the old abstract state
at the successor. Although Propagate com-
putes a sound AbsEnv value for an end-call node, it may not always be precise.
Consider the interprocedural CFG (ICFG) shown in Fig. 3. In any concrete exe-
cution, the only possible value for g at node 4 is 0. However, context-insensitive
VSA (i.e., VSA with call-strings of length 0) computes the range [−231, 231−1] for

7 Let CallSites denote the set of call-sites in an executable. The executable’s call graph

is a labeled multi-graph in which each node represents a procedure, and each edge
(labeled with a call-site in the calling procedure) represents a call. A call-string in
the call graph is a finite-length path (c1 . . . cn) such that c1 is a call-site in the entry
procedure. CallString is the set of all call-strings.

A call-string suffix of length k [59] is either (c1 . . . ck) ∈ CallString, or (∗c1 . . . ck),
where c1, . . . , ck ∈ CallSites; the latter, referred to as a saturated call-string, rep-
resents the set of call-strings {cs | cs ∈ CallString, cs = πc1 . . . ck, and |π| ≥ 1}.
CallStringk is the set of saturated call-strings of length k, plus non-saturated call-
strings of length ≤ k.

8 An end-call node represents the return site for a call node.



1: decl worklist: set of 〈CallStringk, Node〉
2:
3: proc ContextSensitiveVSA()
4: worklist := {〈∅, enter〉}
5: absEnventer := Initial values of global a-locs and esp

6: while (worklist 6= ∅) do

7: while (worklist 6= ∅) do

8: Remove a pair 〈cs, n〉 from worklist

9: m := Number of successors of node n
10: for i = 1 to m do

11: succ := GetSuccessor(n, i)
12: edge ae := AbstractTransformer(n → succ, absMemConfign [cs])
13: cs set := GetCSSuccs(cs, n, succ)
14: for (each succ cs ∈ cs set) do

15: Propagate(succ cs, succ, edge ae)
16: end for

17: end for

18: end while

19: GMOD′ := ComputeGMOD()

20: if (GMOD′ 6= GMOD) then

21: for each call-site c ∈ CallSites and cs ∈ CallStringk do

22: if inc[cs] 6= ⊥ then worklist := worklist ∪ {〈cs, c〉}

23: end for

24: GMOD := GMOD′

25: end if

26: end while

27: end proc

28:
29: proc GetCSSuccs(pred cs: CallStringk, pred: Node, succ: Node): set of CallStringk

30: result := ∅
31: if (pred is an exit node and succ is an end-call node) then

32: Let c be the call node associated with succ
33: for each succ cs in absMemConfigc do

34: if (pred cs ;
cs succ cs) then

35: result := result ∪ {succ cs}
36: end if

37: end for

38: else if (succ is a call node) then

39: result := {(pred cs �cs c)}
40: else

41: result := {pred cs}
42: end if

43: return result

44: end proc

45:
46: proc Propagate(cs: CallStringk, n: Node, edge ae: AbsEnv)
47: old := absMemConfign [cs]
48: if n is an end-call node and round > 0 then

49: Let c be the call node associated with n
50: edge ae := GMODMergeAtEndCall(edge ae, absMemConfigc [cs])

51: end if

52: new := oldtae edge ae
53: if (old 6= new) then

54: absMemConfign [cs] := new
55: worklist := worklist ∪ {〈cs, n〉}
56: end if

57: end proc

Fig. 2. Context-sensitive VSA algorithm with GMOD-based merge function.

g at node 4. In context-insensitive VSA, the call-return structure of the ICFG is
ignored (i.e., the ICFG is considered to be an ordinary graph). Note that 6→9 is
a back-edge, and hence is a suitable location for widening to be performed [15].



Consider the path π = (6, 9, 10, 4). Although π is an invalid execution path,
context-insensitive VSA explores π. The effects of statement g++ at node 5 and
the results of widening at 6→9 are propagated to node 4, and consequently, the
range computed for g at node 4 by context-insensitive VSA is [−231, 231 − 1]
(due to widening and wrap-around in 32-bit arithmetic). One possible solution
to the problem is to increase the length of call-strings. However, it is impractical
to increase the length of call-strings beyond a small value. Therefore, increasing
the call-string length is not a complete solution to the problem.

1: proc GMODMergeAtEndCall(inc: AbsEnv, inx: AbsEnv): AbsEnv

2: in′

c
:= SetAlocsToTop(inc, GMOD[X])

3: in′

x
:= SetAlocsToTop(inx, U − GMOD[X])

4: out := in′

c
uae in′

x

5: return out
6: end proc

Fig. 4. GMOD-based merge function. GMOD[X] represents the set of a-locs modi-
fied (directly or transitively) by procedure X, and U is the universal set of a-locs.)

Suppose that we modify Propagate in Fig. 4 by adding line [50], which invokes
procedure GMODMergeAtEndCall . GMODMergeAtEndCall takes two AbsEnv

values: (1) inc, the AbsEnv value at the corresponding call node, and (2) inx,
the AbsEnv value at the corresponding exit node. Let C and X be the procedures
containing the call and exit nodes, respectively. SetAlocsToTop(ae, AlocSet) re-
turns the AbsEnv value ae[a 7→ >vs | a ∈ AlocSet]. Operation ae1 u

ae ae2 yields a
new AbsEnv value in which the set of values for each a-loc (register) is the meet
of the value-sets for the corresponding a-loc (register) in ae1 and ae2.

In the earlier implementation of Propagate (i.e., when Propagate does not
call GMODMergeAtEndCall on line [50]), the value-sets of all a-locs in inx

are propagated to the end-call node. In contrast, when Propagate does call
GMODMergeAtEndCall , only the value-sets of a-locs that are modified (directly
or transitively) in procedure X are propagated from inx to the AbsEnv value at
the end-call node. The value-sets for other a-locs are obtained from inc. Because
procedure P does not modify global variable g, using GMODMergeAtEndCall
during context-insensitive VSA results in better information at nodes 4 and 7;
at node 4 the range for g is [0, 0], and at node 7 the range for g is [1, 1].

The actual implementation [4, Ch. 7] of GMODMergeAtEndCall is slightly
more complicated. In addition to combining the information from the call-site
and the exit node, it performs the following operations:
– At the exit node, the stack pointer esp points to the activation record of

callee X. The value of esp in the AbsEnv value returned by GMODMergeAt-
EndCall is adjusted to point to the activation record of caller C .

– The value of the frame pointer ebp is set to the value of ebp in inc. This
change corresponds to the common situation in which the value of ebp at the
exit node of a procedure is usually restored to the value of ebp at the call-
site. (This is one of the aspects of the executable that VSA checks; a report
is issued to the user if the behavior does not conform to what is expected.)

– The values of those a-locs that go out of scope, such as the local variables
of callee X, are set to a special invalid abstract address.



The procedure shown in Fig. 4 uses GMOD information [25]; i.e., for each
procedure P in the executable, information is required about the set of a-locs
that P could possibly modify (directly or transitively). To perform GMOD anal-
ysis, information is required for each instruction about the set of a-locs that the
instruction could possibly modify (i.e., IMOD information [25]). However, com-
plete information about the a-locs accessed by each instruction is not available
until the end of VSA. As discussed in §3, CodeSurfer/x86 makes use of a number
of analyses, and the sequence of analyses performed is itself iterated. At the end
of each round of VSA, GMOD information is computed for use during the next
round of VSA (see lines [19]–[25] in Fig. 2); i.e., the GMOD sets for use during
VSA round i are computed using the VSA results from round i−1. For the initial
round of VSA (i = 0), GMODMergeAtEndCall is not used.9 For each subsequent
round, procedure GMODMergeAtEndCall is used as the merge function.

The process mentioned above may not be sound in the presence of indirect
jump and indirect calls. In addition to determining an over-approximation of the
set of states at each program point, VSA also determines the targets of indirect
jumps and indirect calls. For pragmatic reasons, if VSA determines that the
target address of an indirect jump or indirect call is >vs, it does not add any
new edges.10 Consequently, in the presence of indirect jumps and indirect calls,
the ICFG used during round i − 1 of VSA can be different from the ICFG used
during round i. Therefore, for round i of VSA, it may not be sound to use the
GMOD sets computed using the VSA results from round i − 1. To ensure that
the VSA results computed by round i are sound with respect to the current
ICFG, the context-sensitive VSA algorithm of Fig. 2 does not terminate until
the GMOD sets are consistent with the VSA results (see lines [19]–[25] in Fig. 2):
when VSA reaches a fix-point in round i, the GMOD sets are recomputed using
the current VSA results (GMOD′ on line [19] in Fig. 2) and compared against
the current GMOD sets; if they are equal, then the VSA results are sound, and
VSA terminates; otherwise, all call-sites c ∈ CallSites are added to the worklist
(line [22]) and VSA is resumed with the new worklist (line [5]). (For each call-
site c, only those call-strings that have a non-⊥ AbsEnv at c are added to the
worklist (line [22] in Fig. 2).) Even though VSA is restarted from a non-⊥ state
by reinitializing the worklist (line [22]), VSA is guaranteed to converge because
Propagate accumulates values at each program point using join (t); see line [52].

5 Experiments

This section describes a study that we carried out to measure the gain in preci-
sion that was obtained via the technique presented in §4. The study measured
certain characteristics of the variables and values discovered by IR-recovery. The
characteristics that we measured provide information about how good the re-
covered information would be as a starting point for some client tool that needs
to perform additional static analysis on the executable. In particular, because

9 Alternatively, GMODMergeAtEndCall could be called with GMOD[X] = U .
10 A report is issued so that the user will be aware of the situation.



resolution of indirect operands is a fundamental primitive that essentially any
subsequent analysis would need, we were particularly interested in how well our
techniques could resolve indirect memory operands that use a non-stack-frame
register (e.g., accesses to arrays and heap-allocated data objects).

Running time (seconds)
Driver Procedures Instructions No GMOD With GMOD
src/vdd/dosioctl/krnldrvr 70 284 34 25
src/general/ioctl/sys 76 2824 63 58
src/general/tracedrv/tracedrv 84 3719 122 45
src/general/cancel/startio 96 3861 44 32
src/general/cancel/sys 102 4045 43 33
src/input/moufiltr 93 4175 369 427
src/general/event/sys 99 4215 53 61
src/input/kbfiltr 94 4228 370 404
src/general/toaster/toastmon 123 6261 576 871
src/storage/filters/diskperf 121 6584 647 809
src/network/modem/fakemodem 142 8747 1410 2149
src/storage/fdc/flpydisk 171 12752 2883 5336
src/input/mouclass 192 13380 10484 13380
src/input/mouser 188 13989 4031 8917
src/kernel/serenum 184 14123 3777 9126
src/wdm/1394/driver/1394diag 171 23430 3149 12161
src/wdm/1394/driver/1394vdev 173 23456 2461 10912

Table 1. Running times for VSA with and without the GMOD-based merge
function. (For the drivers listed above in boldface, round-by-round details of
the percentages of strongly-trackable indirect operands are given in Fig. 7.)

To evaluate the effect of using the GMOD-based merge function on the preci-
sion of value-set analysis, we selected seventeen device drivers from the Windows
Driver Development Kit [63] release 3790.1830; see Tab. 1. The executable for
each device driver was obtained by compiling the driver source code along with
the harness and OS environment model used in the SDV toolkit [11] (see [9] for
more details). The resulting executable was then stripped; i.e., symbol-table and
debugging information was removed.

We analyzed each executable using two versions of VSA: (1) VSA without the
GMOD-based merge function (as sketched at the beginning of §4), and (2) VSA
with the GMOD-based merge function shown in Fig. 4. For the experiments, we
used a Dell Precision 490 Desktop, equipped with a 64-bit Intel Xeon 5160 3.0
GHz dual core processor and 16GB of physical memory, running Windows XP.
(Although the machine has 16GB of physical memory, the size of the per-process
virtual user-address space for a 32-bit application is limited to 4GB.)

Except for the difference in the merge function, all other parameters, such
as the lengths of call-strings, the number of rounds of VSA-ASI iteration, etc.,
were the same for both versions. We ran VSA-ASI iteration until convergence,



and then, based on the results of the final round of each run, we classified the
memory operands in the executable into strongly-trackable, weakly-trackable, and
untrackable operands:

– A memory operand is strongly-trackable (see Fig. 5) if
• the lvalue evaluation of the operand does not yield >vs, and
• each lvalue obtained refers to a 4-, 2-, or 1-byte (inferred) variable.

– A memory operand is weakly-trackable if
• the lvalue evaluation of the operand does not yield >vs, and
• at least one of the lvalues obtained refers to a 4-, 2-, or 1-byte (inferred)

variable.
– Otherwise, the memory operand is untrackable; i.e., either

• the lvalue evaluation of the operand yields >vs, or
• all of the lvalues obtained refer to an (inferred) variable whose size is

greater than 4 bytes.

VSA tracks value-sets for a-locs whose size is less than or equal to 4 bytes,
but treats a-locs greater than 4 bytes as having the value-set >vs [6, 55, 4]. There-
fore, untrackable memory operands are ones for which VSA provides no useful
information at all, and strongly-trackable memory operands are ones for which
VSA can provide useful information.

evaluated operand ≠ SvsIndirect operand
[eax] 
[ebp + ecx*4 - 60]
. . .

4-, 2-, or 1-byte a-loc

4-, 2-, or 1-byte a-loc

Fig. 5. Properties of a strongly-trackable memory
operand.

We refer to a mem-
ory operand that is used
to read the contents
of memory as a use-
operand, and a mem-
ory operand that is used
to update the contents
of memory as a kill-
operand. VSA can pro-
vide some useful infor-
mation for a weakly-
trackable kill-operand, but provides no useful information for a weakly-trackable
use-operand. To understand why, first consider the kill-operand [eax] in “mov
[eax], 10”. If [eax] is weakly-trackable, then VSA may be able to update the
value-set—to a value other than >vs—of those a-locs that are (i) accessed by
[eax] and (ii) of size less than or equal to 4 bytes. (The value-sets for a-locs ac-
cessed by [eax] that are of size greater than 4 bytes already hold the value >vs.)
In contrast, consider the use-operand [eax] in “mov ebx, [eax]”; if [eax] is
weakly-trackable, then at least one of the a-locs accessed by [eax] holds the
value >vs. In a mov instruction, the value-set of the destination operand (ebx
in our example) is set to the join (tvs) of the value-sets of the a-locs accessed
by the source operand ([eax] in our example); consequently, the value-set of
ebx would be set to >vs—which is the same as what happens when [eax] is
untrackable.

We classified memory operands as either direct or indirect. A direct memory
operand is a memory operand that uses a global address or stack-frame offset.



Geometric Mean (for the final round)
Category Strongly-trackable Strongly-trackable Weakly-trackable

indirect uses indirect kills indirect kills
Without GMOD-based merge function 29% 30% 33%
With GMOD-based merge function 81% 85% 90%

Table 2. Percentages of trackable memory operands in the final round.

An indirect memory operand is a memory operand that uses a non-stack-frame
register (e.g., a memory operand that accesses an array or a heap-allocated data
object).

Direct Memory Operands. For direct use-operands and direct kill-operands,
both versions perform equally well: the percentages of strongly-trackable di-
rect use-operands and both strongly-trackable and weakly-trackable direct kill-
operands are 100% for almost all of the drivers [4, §7.5.1].

Indirect Memory Operands. Tab. 2 summarizes the results for indirect
operands. As shown in Tab. 2, when the technique described in §4 is used, the
percentages of trackable indirect memory operands in the final round improve
dramatically. (Note that the “Weakly-trackable indirect kills” are a superset of
the “Strongly-trackable indirect kills”.)

Fig. 6 shows the effects, on a per-application basis, of using the GMOD-
based merge function on the percentages of strongly-trackable indirect use-
operands, strongly-trackable indirect kill-operands, and weakly-trackable indi-
rect kill-operands.

For the six Windows device drivers listed in boldface in Tab. 1, the graphs
in Fig. 7 show the percentages of strongly-trackable indirect operands in different
rounds for the two versions. The graphs show the positive interaction that exists
between VSA and ASI: the percentages of strongly-trackable indirect operands
increase with each round for both versions. However, for the VSA algorithm
without the GMOD-based merge function, the improvements in the percentages
of strongly-trackable indirect operands peter out after the third round because
the value-sets computed for the a-locs are not as precise as the value-sets com-
puted by the VSA algorithm with the GMOD-based merge function.

Columns 4 and 5 of Tab. 1 show the times taken for the two versions of VSA.
The running times are comparable for smaller programs. However, for larger pro-
grams, the VSA algorithm with the GMOD-based merge function runs slower
by a factor of 2 to 5. We believe that the slowdown is due to the increased
precision during VSA obtained using the GMOD-based merge function. We use
applicative AVL trees [50] to represent abstract stores. In our representation, if
the value-set of a-loc a is >vs, meaning that a could hold any possible address
or value, the AVL tree for the abstract store has no entry for a (and abstract
operations on such values are performed quickly). When a technique improves
the precision of VSA, there will be more a-locs whose value-set is not >vs; con-
sequently, there will be more entries in the AVL trees for the abstract stores,
and each abstract operation on the abstract store takes more time.
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Fig. 6. Effects of using the GMOD-based merge function on the percent-
ages of strongly-trackable indirect use-operands, strongly-trackable indirect kill-
operands, and weakly-trackable indirect kill-operands.
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Fig. 7. Percentage of strongly-trackable indirect operands in different rounds
(for the six device drivers listed in boldface in Tab. 1).

6 Related Work

A large amount of related work has already been mentioned in the body of the
paper. This section discusses a few additional issues.

Knoop and Steffen [45] introduced the use of merge functions in interproce-
dural dataflow analysis as a way to handle local variables at procedure returns.
At a call site at which procedure P calls procedure Q, the local variables of P are
modeled as if the current incarnations of P ’s locals are stored in locations that
are inaccessible to Q and to procedures transitively called by Q—consequently,
the contents of P ’s locals cannot be affected by the call to Q. To create the ab-
stract state at the end-call node in P , the merge function integrates the stored
abstract values for P ’s locals into the abstract state returned by Q. This idea is
used in many other papers on interprocedural dataflow analysis, including [58,
42, 47, 1], as well as several systems (e.g., [57, 43]).

Note that this model agrees with programming languages like Java, where it
is not possible to have pointers to local variables (i.e., pointers into the stack).
For machine-code programs, as well as programs written in languages such as C
and C++ (where the address-of operator (&) allows the address of a local variable



to be obtained), if P passes the address of a local to Q, it is possible for Q (or a
procedure transitively called from Q) to affect a local of P by making an indirect
assignment through the address. Conventional interprocedural dataflow-analysis
algorithms address this issue by (i) performing several preliminary analyses (e.g.,
first points-to analysis, which is used to determine IMOD information [25] for
individual statements, and then GMOD analysis [25]), and (ii) using the GMOD-
analysis results to create sound transformers for the primary interprocedural
dataflow analysis of interest.

The approach taken in the algorithm from §4 is similar, except that because
VSA is not only the primary interprocedural dataflow analysis of interest but is
also used to obtain points-to information, VSA and GMOD analysis are iterated.
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