
Reducing the Dependence of SPKI/SDSI on PKI

Hao Wang1⋆, Somesh Jha1⋆, Thomas Reps1⋆, Stefan Schwoon2, and
Stuart Stubblebine3

1 University of Wisconsin, Madison, U.S.A., {hbwang, jha, reps}@cs.wisc.edu
2 Universität Stuttgart, Germany, schwoosn@fmi.uni-stuttgart.de

3 Stubblebine Research Labs, stuart@stubblebine.com

Abstract. Trust-management systems address the authorization problem in dis-
tributed systems. They offer several advantages over other approaches, such as
support for delegation and making authorization decisions in a decentralized man-
ner. Nonetheless, trust-management systems such as KeyNote and SPKI/SDSI
have seen limited deployment in the real world. One reason for this is that both
systems require a public-key infrastructure (PKI) for authentication, and PKI has
proven difficult to deploy, because each user is required to manage his/her own
private/public key pair. The key insight of our work is that issuance of certificates
in trust-management systems, a task that usually requires public-key cryptogra-
phy, can be achieved using secret-key cryptography as well. We demonstrate this
concept by showing how SPKI/SDSI can be modified to use Kerberos, a secret-key
based authentication system, to issue SPKI/SDSI certificates. The resulting trust-
management system retains all the capabilities of SPKI/SDSI, but is much easier
to use because a public key is only required for each SPKI/SDSI server, but no
longer for every user. Moreover, because Kerberos is already well established, our
approach makes SPKI/SDSI-based trust management systems easier to deploy in
the real world.

1 Introduction

Authorization is a central problem in distributed environments where resources
are shared among many users across different administrative domains. Trust-
management systems [3] are designed to address the authorization problem in
distributed environments; they answer the question “Is principal A allowed to
perform operation O on a shared resource R?”. Existing trust-management sys-
tems, such as KeyNote [2] and SPKI/SDSI1 [9], rely heavily on public-key in-
frastructure (PKI). They use PKI to produce digitally-signed certificates, which
authorize a principal to perform an operation on a shared resource.

However, PKI-based systems have proved difficult to deploy in practice be-
cause of several reasons [17]. Some issues (e.g., naming) have been addressed by
trust-management systems, such as KeyNote and SPKI/SDSI. However, each
user is still required to possess a public-private key pair, and it is cumbersome
to securely transport and retrieve private keys. Complexity of PKI is another
issue that makes PKI-based systems difficult to deploy. Implementing PKI-based

⋆ Supported by NSF under grants CCF-0524051 and CCR-9986308, and by ONR under grants
N00014-01-1-{0796,0708}.

1 Strictly speaking, SPKI/SDSI would not be considered to be a trust-management system
according to the definition given by Blaze et al. [3]—if the processing of the certificates is
not standardized (i.e., is application specific). In the context of this paper, we assume that
certificate processing in SPKI/SDSI is standardized, and hence consider SPKI/SDSI to be
a trust-management system.



solutions requires in-depth knowledge of PKI and much modification to existing
systems.

Despite the issues mentioned above, trust-management systems are still de-
sirable for authorization in distributed environments because they offer several
advantages over traditional centralized authorization systems [2]. For example,
because the trust-management system SPKI/SDSI has no conceptual require-
ment for a central authority and provides the ability to make authorization
decisions in a truly distributed fashion [14], it is very scalable—an important
requirement in distributed systems. SPKI/SDSI is also simple to use as it sup-
ports delegation, which simplifies access control, and provides locally defined
name spaces, which allows each user to define his/her own security policies.

We introduce a technique to reduce the dependence of trust-management
systems on PKI so that they become easier to deploy in the real-world. We
observe that the main use of PKI in trust-management systems is to digitally sign
each certificate with the private key of the principal who issues the certificate.
The key behind our work is that the signing process can be achieved using secret-
key-based systems as well. Although the notion of using secret-key cryptography
in place of public-key cryptography as the building block of security operations
has been studied previously [16, 8] and has been used in distributed military and
banking systems, to the best of our knowledge, our work is the first to apply this
technique in the context of trust-management systems, specifically SPKI/SDSI.

By utilizing existing secret-key-based systems, which are already widely de-
ployed, we can reduce the dependence of trust-management systems on PKI
because end users no longer need to have public-private key pairs. In our ap-
proach, each site in a distributed environment has a dedicated trust-management
server, whose sole purpose is to issue digitally-signed certificates, and this server
possesses a public-private key pair. Users at a site authenticate themselves to
this server using a secret key, and the server issues digitally-signed certificates
on their behalves. Thus, in our solution just one server per site needs to have
a public-private key pair, as opposed to traditional trust-management systems,
where each principal must possess a public-private key pair.

Kerberized
SPKI/SDSI

Server

[Certificates][Certificates][Certificates] [Certificates]

Self−Issued

Bob Charlie

(a). Original SPKI/SDSI system. (b). Kerberized SPKI/SDSI system.

CharlieBobSPKI/SDSI Site SPKI/SDSI Site

Certificate

(Encrypted)
Requests

KstKstKb Kc

KcKb

Kst

Fig. 1. Reducing SPKI/SDSI’s dependence on PKI using Kerberos.

In this paper, we focus on the trust-management system SPKI/SDSI and
show how to reduce its dependence on PKI by using Kerberos [19], a widely-
deployed secret-key-based authentication system. In our approach, we allow
authenticated Kerberos users to issue SPKI/SDSI certificates. The Kerberized



SPKI/SDSI server2 (K-SPKI/SDSI) accepts certificate requests from authenti-
cated Kerberos users, and generates corresponding SPKI/SDSI certificates on
their behalves. In the original SPKI/SDSI system, shown in Figure 1(a), each
principal has the ability to issue name certificates and auth certificates, signed
using his/her public-private key. In contrast, with our solution, shown in Fig-
ure 1(b), each user no longer needs to have a public-private key pair. Instead, a
site has a dedicated Kerberized SPKI/SDSI server—with its own public-private
key—that is responsible for signing certificates. To issue a SPKI/SDSI certifi-
cate, a user first authenticates with the local Kerberos server and obtains a se-
cure communication channel with the K-SPKI/SDSI server. The user can then
issue the same certificates, in the form of certificate requests, but without the
public-private key pair. The certificate requests are sent by the user, through the
secure channel, to the K-SPKI/SDSI server, which creates and signs the certifi-
cates. The signed certificates can be either stored at the K-SPKI/SDSI server or
sent back to the user, depending on the configuration of the system. In the case
where the newly issued certificates are sent back to the user, the new system
operates identically to the original SPKI/SDSI system because the certificates
are stored locally, and authorization decisions can still be made locally. If the
certificates are kept on the server, the server would act as a repository for the
certificates issued by users in its domain. Such repositories could be used to or-
ganize certificate-chain discovery either centrally or in a distributed manner [14],
leaving the burden of certificate management completely to the server.

Our technique offers several tangible benefits. Because end-users of the sys-
tem authenticate themselves with a dedicated trust-management server using
secret keys, it rids trust-management systems of the requirement that each prin-
cipal must possess a public-private key pair. Furthermore, because we use secret
keys to authenticate users to the dedicated server, and secret-key cryptography
is widely deployed, we believe that the solution we present will make it eas-
ier to deploy PKI-based trust-management systems. In addition, only a small
change is required at the end-user level to deploy our solution: each Kerberos
application can now pass an optional parameter to the Kerberos library function
kuserok to indicate that it wants to use our K-SPKI/SDSI server to perform
an authorization check. Finally, because the dedicated trust-management server
still uses a public-private key pair, our solution retains all the advantages of
trust-management systems, such as delegation and distributed authorization.

The contributions of this paper are as follows:

• We show how to make SPKI/SDSI easier to deploy in the real world by
reducing its dependence on PKI through leveraging Kerberos, a secret-key-
based system that is already widely deployed.

• Our approach synthesizes the benefits of both secret-key-based authentica-
tion systems, such as Kerberos, and PKI-based trust-management systems,
such as SPKI/SDSI. We utilize Kerberos’ proven authentication frame-
work while retaining SPKI/SDSI’s elegant distributed authorization fea-

2 Here, Kerberize means that we modify the SPKI/SDSI server to use Kerberos library.



tures, such as delegation, authorization proofs, local name spaces, and dis-
tributed certificate-chain discovery.

• We have created a prototype that implements the technique; the paper pro-
vides a preliminary report about our implementation and its performance.

Background on SPKI/SDSI is given in Section 2; readers with a knowl-
edge of SPKI/SDSI may choose to skip this section. The method for combining
SPKI/SDSI and Kerberos is described in Section 3. Section 4 discusses deploy-
ment and performance issues of our prototype. Section 5 discusses related work.

2 Background on SPKI/SDSI

SPKI/SDSI [9] is a novel public-key infrastructure designed to address the au-
thorization problem in distributed systems. In SPKI/SDSI, a principal can be
an individual, process, host, or any other entity. All principals are represented
by their public keys, i.e., a principal is its public key. Let K denote the set of
public keys; specific keys are denoted by K, KA, KB, K ′, etc. An identifier is a
word over some alphabet Σ. The set of identifiers is denoted by A. Identifiers
will be written in typewriter font, e.g., A and Bob. A term is a key followed by
zero or more identifiers. Terms are either keys, local names, or extended names.
A local name is of the form K A, where K ∈ K and A ∈ A. For example, K Bob

is a local name. Local names are important in SPKI/SDSI because they create
a decentralized name space. The local name space of K is the set of local names
of the form K A. An extended name is of the form K σ, where K ∈ K and σ is a
sequence of identifiers of length greater than one. For example, K UW CS faculty

is an extended name.

2.1 Certificates

SPKI/SDSI has two types of certificates, or “certs”:
Name Certificates (or name certs): A name cert provides a definition of a
local name in the issuer’s local name space. Only key K may issue or sign a cert
that defines a name in its local name space. A name cert is a signed four-tuple
(K, A, S, V ). The issuer K is a public key and the certificate is signed by K. A
is an identifier. The subject S is a term. Intuitively, S gives additional meaning
for the local name K A. V is the validity specification of the certificate. Usually,
V takes the form of an interval [t1, t2], i.e., the cert is valid from time t1 to t2
inclusive.
Authorization Certificates (or auth certs): An auth cert grants (with or with-
out delegation privileges) a specific authorization from an issuer to a subject.
Specifically, an auth cert is a five-tuple (K, S, D, T, V ). The issuer K is a public
key, which is also used to sign the cert. The subject S is a term. If the delegation
bit D is turned on, then a subject receiving this authorization can delegate this
authorization to other keys. The authorization specification T specifies the per-
mission being granted; for example, it may specify a permission to read a specific
file, or a permission to login to a particular host. The validity specification V for
an auth cert is the same as in the case of a name cert.



2.2 Certificates as Rewrite Rules

A labeled rewrite rule is a triple L
T

−→ R, where L and R are terms and T is an
authorization specification. T̂ is the authorization specification such that for all
other authorization specifications t, T̂ ∩ t = t, and T̂ ∪ t = T̂ .3 Sometimes

we will write
T̂

−→ simply as −→, i.e., a rewrite rule of the form L −→ R has an
implicit label of T̂ . We will treat certs as labeled rewrite rules:

• A name cert (K, A, S, V ) will be written as a labeled rewrite rule K A−→S.

• An auth cert (K, S, D, T, V ) will be written as K �
T

−→ S � if the delegation

bit D is turned on; otherwise, it will be written as K �
T

−→ S �.

Note that in authorization problems, we only consider valid certificates, so, as a
pre-processing step, we first check the validity specification V for each certificate
in use. For the rest of the paper, we assume that only valid certificates are
considered for authorization proofs.

Because we only use labeled rewrite rules in this paper, we refer to them as
rewrite rules or simply rules. A term S appearing in a rule can be viewed as
a string over the alphabet K ∪ A, in which elements of K appear only at the
beginning. For uniformity, we also refer to strings of the form S � and S � as

terms. Assume that we are given a labeled rewrite rule L
T

−→ R that corresponds
to an auth cert. Consider a term S = LX . In this case, the labeled rewrite rule

L
T

−→ R applied to the term S (denoted by (L
T

−→ R)(S)) yields the term RX .
Therefore, a rule can be viewed as a function from terms to terms that rewrites
the left prefix of its argument, for example,

(KA Bob −→ KB)(KA Bob myFriends) = KB myFriends.

Consider two rules c1 = (L1
T

−→ R1) and c2 = (L2
T

′

−→ R2), and, in addition,
assume that L2 is a prefix of R1, i.e., there exists an X such that R1 = L2X .

Then the composition c2 ◦ c1 is the rule L1
T∩T

′

−→ R2X . For example, consider the
two rules:

c1 : KA friends
T

−→ KA Bob myFriends

c2 : KA Bob
T

′

−→ KB

The composition c2 ◦ c1 is KA friends
T∩T

′

−→ KB myFriends. Two rules c1 and
c2 are called compatible if their composition c2 ◦ c1 is well defined.4

A certificate chain ch is a sequence of certificates [c1, c2, · · · , ck]. The label
of a certificate chain ch = [c1, · · · , ck], denoted by L(ch), is the label obtained
from ck ◦ ck−1 · · · ◦ c1.

3 Kerberizing SPKI/SDSI

In this section, we explain how we can reduce the dependence of SPKI/SDSI on
PKI by utilizing a secret-key-based authentication system, namely Kerberos. We
first introduce an example that will be used throughout this section. Next, we use

3 The issue of intersection and union of authorization specifications is discussed in [9, 11].
4 In general, the composition operator ◦ is not associative. However, when (c3 ◦c2)◦c1 exists,

so does c3 ◦ (c2 ◦ c1); moreover, the expressions are equal when both are defined. Thus, we
allow ourselves to omit parentheses and assume that ◦ is right associative.



this example to illustrate how the original SPKI/SDSI system works. Finally, in
Section 3.2, we describe how the reliance of SPKI/SDSI on PKI can be reduced
by using Kerberos. We assume that the reader is familiar with Kerberos (for a
detailed description of Kerberos see [19]).

Example. Suppose that there are two sites, Bio and CS, which correspond to
the biology and the computer science departments, respectively. Two professors,
Alice from CS and Bob from Bio, are collaborating on a project. Bob wants to
delegate to Alice full access rights to a shared resource R. In addition, Alice plans
to delegate access rights to resource R to her students, who are also involved in
the project, without allowing them to delegate these rights further.

BobX

R

Alice YCS Bio

②

③

① ①

[KAlicestudents → Kx]

[KAlicestudents → Ky ] [KBob �
TR
−→ KAlice �]

[KAlice �
TR
−→ KAlice students �]

Fig. 2. Distributed authorization using SPKI/SDSI.

3.1 Authorization in SPKI/SDSI

In this section, we describe how SPKI/SDSI authorization works in a distributed
environment, using the example given above. There are three components to a
SPKI/SDSI authorization scenario, denoted by the circled numbers in Figure 2.

Certificate issuance (Figure 2
①
→). First, each user issues auth and name certs.

In our example, Bob delegates access rights TR to resource R to Alice by issuing
the following auth cert, signed with his private key:

KBob �
TR−→ KAlice �

At CS, Alice grants two of her students, X and Y , access to R by issuing the
following two name certs and one auth cert, all signed with Alice’s private key:

KAlice students −→ KX

KAlice students −→ KY

KAlice �
TR−→ KAlice students �

The two name certs state that X and Y are students of Alice; the auth cert states
that all of her students (i.e., X and Y ) can access resource R with authorization
specification TR, but they cannot delegate the access right.

Now assume that student X wants to access R at site Bio according to au-
thorization specification TR. He needs to perform the following two steps:

Certificate-chain discovery (Figure 2
②
→). To request access to resource R, a

user U first performs certificate-chain discovery to obtain a proof that he can
access resource R. This can be achieved by executing a distributed certificate-
chain-discovery algorithm [14], and, if the algorithm finds that U is authorized,
it returns a proof in the form of a finite set of certificate chains {ch1, · · · , chm}.
In our example, student X initiates the distributed certificate-chain discovery,



which will involve both Alice and Bob. The distributed certificate-chain discovery
returns the singleton set of chains {ch1}, where ch1 = [c1, c2, c3] and ci are the
following certificates:

c3 = KBob �
TR−→ KAlice �

c2 = KAlice �
TR−→ KAlice students �

c1 = KAlice students −→ KX

Requesting a resource (Figure 2
③
→). After user U obtains a set of certificate

chains SCH = {ch1, · · · , chm} from the previous step, he presents SCH to
the owner of the resource R to which TR refers. The owner authorizes KU iff
TR ⊆

⋃m

i=1 L(chi) (this step is usually called compliance checking).
In our example, after making the certificate-chain-discovery request, “Does

KBob � resolve to KX� or KX� with authorization specification TR?”, student
X presents {ch1} to KBob. KBob checks that TR ⊆ L(ch1), which is true, and
hence grants X access to resource R.

3.2 Authorization in Kerberized SPKI/SDSI

Notice that, to use SPKI/SDSI, every user needs to have a public-private key
pair. In this section, we describe how to reduce SPKI/SDSI’s dependence on
PKI by using the distributed authentication system Kerberos in a SPKI/SDSI
implementation. The key insight behind our work is that the certificate issuance
process in SPKI/SDSI can also be achieved using secret-key-based systems, such
as Kerberos. In SPKI/SDSI, each certificate is signed by its issuer using the
private key, and the signature serves as the proof for the authenticity of the
certificate. In a secret-key-based system such as Kerberos, the authentication
process also produces the evidence for who the user is, and this evidence can be
employed by the user to issue certificates. In Kerberos, an authenticated user
obtains a token called Ticket Granting Ticket (TGT), which contains digital ev-
idence about the user. This token can be used to obtain a secure communication
channel with various Kerberos services. Therefore, in our approach, we use a
Kerberized SPKI/SDSI server for each site so that an authenticated Kerberos
user can securely issue certificate requests through the Kerberized SPKI/SDSI
server. In essence, our approach relaxes SPKI/SDSI’s binding requirement where
each user is identified by its public key. Instead, each principal will be a Kerberos
principal in a Kerberos realm. Consequently, with our approach, a SPKI/SDSI
user no longer needs to have a public-private key pair, and we only require one
public-private key pair per site—namely, for the SPKI/SDSI server. Our new
system is called K-SPKI/SDSI, short for Kerberized SPKI/SDSI.

In our system, each SPKI/SDSI site runs a Kerberized SPKI/SDSI server
(K-SPKI/SDSI), which shares a public-private key pair with the Kerberos Key
Distribution Center (KDC) at its site. The public-private key of site st is denoted
by Kst. We now describe the three components of our authorization scenario in
this new setting. Figure 3 illustrates the high-level idea behind our approach.

Certificate issuance (Figure 3
①
→). To issue K-SPKI/SDSI certificates, a Ker-

beros user first authenticates with the local KDC using the standard Kerberos
authentication protocol and receives a Ticket Granting Ticket (TGT) from the



SPKI/SDSI
Kerberized

Server
SPKI/SDSI
Kerberized

Server

XYAlice CS Bob
R

Bio

...

①

①

②

③

[Alice students → X]Ks [Bob �
TR
−→ CS Alice �]K

s′

[KBio Bob �
TR
−→ KBio CS Alice �]

[KCS Alice students → KCSX]

[KCS Alice students → KCSY]

[KCS �
TR
−→ KCS Alice students �]

Fig. 3. Reducing SPKI/SDSI’s dependence on PKI using Kerberos. Dashed lines
represent secure Kerberos communication channels.

KDC. Using the TGT, the user requests a Service Granting Ticket (SGT) for
accessing the Kerberized SPKI/SDSI (K-SPKI/SDSI) server. Throughout the
rest of the section, we assume that the user has obtained an SGT for the K-
SPKI/SDSI server at its site. Using the SGT, the user issues requests for gen-
erating SPKI/SDSI name certs or auth certs. The session key Ks provided in
the SGT is used to protect both the integrity and confidentiality of the requests
sent over the communication channel.

To issue an auth cert, a user at site st sends a cert request EKs
[U, S, D, T, V ],

encrypted with the session key Ks from the SGT, to the K-SPKI/SDSI server.
Here U is the name of the user, S is the subject, D is the delegation bit, T is the
authorization specification, and V is validity information. Upon receiving this
encrypted auth-cert request, the K-SPKI/SDSI server ascertains its validity, and
if the auth cert is valid, it creates a new K-SPKI/SDSI auth cert of the form
[Kst U, Kst S, D, T, V ], signs it with its private key. The newly issued certificates
can be stored in the K-SPKI/SDSI server so that authorization can be done more
efficiently. However, to fully emulate SPKI/SDSI, the certs could also be sent
back to the users who have requested them. In this scenario, authorization would
be carried out exactly as in the original SPKI/SDSI. Notice that in the new auth
cert the public key Kst of site st is added before both U and S. In our example,
Bob sends the following auth-cert request, encrypted with the appropriate session
key (obtained from his SGT), to the K-SPKI/SDSI server SBio :

Bob �
TR−→ CS Alice �

The auth cert states that Bob delegates full access rights to resource R to Alice
from CS. The K-SPKI/SDSI server SBio verifies the encrypted auth certs shown
above, then creates and signs the following K-SPKI/SDSI auth cert:

KBio Bob �
TR−→ KBio CS Alice �

To issue a name cert, a user at site st sends an encrypted name-cert request
EKs

[U, A, S, V ] to the K-SPKI/SDSI server. Here U , S, and V are the same as
in an auth cert, while A is an identifier. The validation step is exactly the same
as that for issuing auth certs. After a request is validated, the K-SPKI/SDSI
server creates a new name cert of the form [Kst U, A, Kst S, V ], signs it with its
private key. Similar to auth certs, the name certs can be either stored in the
K-SPKI/SDSI server or sent back to the users who have requested them. As
before, we will write the name cert as U A −→ S. In our example, Alice sends



two name certs and one auth cert (Figure 3.2 (a)), encrypted with the session
key Ks, to the K-SPKI/SDSI server at her site. The K-SPKI/SDSI server verifies
the encrypted name certs, creates the corresponding K-SPKI/SDSI name certs,
and signs them (Figure 3.2 (b)). Notice that the left-hand sides of K-SPKI/SDSI
certificates have three symbols: the left-hand side of an extended auth cert is of
the form Kα U � or Kα U �, where Kα is the public key of site α and U is a user;
the left-hand side of an extended name cert is of the form Kα U A, where both U

and A are identifiers. In SPKI/SDSI the left-hand sides of auth and name certs
have just two symbols. However, the translation from user certificate requests
to the actual certificate can be done automatically because this is just a special
case of left-prefix rewriting, and the primitives generalize to arbitrary left-prefix
rewriting systems [5], which covers the case of K-SPKI/SDSI certs with three
left-hand-side symbols.

Alice students −→ X KCS Alice students −→ KCS X

Alice students −→ Y −→ KCS Alice students −→ KCS Y

Alice �
TR−→ CS Alice students � KCS Alice �

TR−→ KCS Alice students �

(a) Name-cert requests (b) K-SPKI/SDSI name certs

Fig. 4. Issuing SPKI/SDSI certificates using K-SPKI/SDSI.

Besides user-issued certificates, each SPKI/SDSI site also needs to exchange
its public key with other SPKI/SDSI sites, represented as name certificates. For
example, the site Bio would issue the following name certificate:

KBio CS −→ KCS

Certificate Chain Discovery (Figure 3
②
→). Suppose that user U at site st1 wishes

to access resource R at site st2 with access rights given by T . U first initiates
a certificate-chain discovery, e.g., using the algorithms from [20] or, in the case
where certificates are stored at the K-SPKI/SDSI servers, using the distributed
algorithm from [14]. If the search is successful and returns a set of certificate
chains SCH, U needs its site st1 to prepare a proof of authorization that U can
present to the owner of R. This is because, while SCH proves that user U at site
st1 has access to R, only st1 can assure the owner of R (who possibly resides at
a different site st2) that the requesting user is indeed U . Thus, U sends SCH to
st1, and st1 sends back the following Kerberos tokens:

TokenU = EKs(K1)TicketU

TicketU = EKst2
(K2) EK2

[st1, (R, st2, U, st1, T, SCH , K1, TS1,Lifetime
1
)Kst1

]

where Ks is the session key for U and st1, K1 and K2 are fresh secret keys gen-
erated by st1, and ( · )Kst1

denotes data signed by st1. Intuitively, TokenU makes
the key K1 known to U , and TicketU says that SCH is a proof of authorization
for access to R at site st2 (with access type T ) by user U at site st1. By signing
the message, site st1 confirms that anybody in possession of key K1 is indeed U .
Notice that R, st2, U , and st1 are implicitly contained in SCH and can be omit-
ted in practice. In our example, assume that student X receives a token with
the set of certificate chains SCH = {ch1}, where ch1 is the certificate chain
[c1, c2, c3, c4]: Notice that (c4 ◦ c3 ◦ c2 ◦ c1)(KBioBob �) ∈ {KCS X �, KCS X �}
and TR ⊆ L([c1, c2, c3, c4]).



c1 = KBio Bob �
TR−→ KBio CS Alice � c3 = KCS Alice� −→ KCS Alice students �

c2 = KBio CS −→ KCS c4 = KCS Alice students −→ KCS X

Requesting a resource (Figure 3
③
→). Upon receiving TokenU , user U decrypts

EKs
(K1) and retrieves the session key K1. He then constructs the following

Kerberos authenticator:5

AuthenticatorU = EK1
[ U, st1,TS2,Lifetime2 ]

User U sends the message [TicketU AuthenticatorU ] to the owner of resource
R (at site st2), who requests its local K-SPKI/SDSI server st2 to verify the
message. The server performs the following steps:

• Decrypts the message EKst2
(K2) with its private key and retrieves K2.

• Decrypts the part of TicketU encrypted with K2.

• Obtains the public key Kst1 and verifies the signature of st1.

• Ascertains freshness and validity of the token using the time-stamp TS 1 and
the lifetime Lifetime1; checks that SCH indeed proves the desired access.

• Similarly, the K-SPKI/SDSI server ascertains the validity of the authenti-
cator, thus making sure that the sender is indeed user U at st1. Notice that
the server knows the session key K1 from TicketU .

If all the steps given above are successful, then the K-SPKI/SDSI server sends
a message to R indicating that U should be granted access, and that communi-
cation between R and U should be protected using key K1.

3.3 Analysis

Correctness of the Protocol. The key idea behind our work is to rely on
Kerberos to provide a secure channel for users to submit SPKI/SDSI name
certs and auth certs, which are signed and stored at each site. In contrast, in
the original SPKI/SDSI system, each user can issue and sign her own certs.
We note that there is no conceptual difference between these two approaches;
only the underlying security mechanisms used are different (one uses secret-
key cryptography and the other uses public-key cryptography). For example,
in the original SPKI/SDSI approach, a user U issues a name cert this way:
(K, A, S, V )K′ . Here the subscript K ′ denotes that the name cert is signed by
the user using the private key K ′. In comparison, the corresponding step in our
approach is implemented by issuing the certificate request EK [U, A, S, V ], where
EK denotes that the name-cert request is encrypted by the session key shared
between the user and the K-SPKI/SDSI server. The request is first validated,
then translated by the K-SPKI/SDSI server into actual certificates, signed with
K-SPKI/SDSI server’s private key. Thus, in both cases, the possession of a secret
(K ′ in SPKI/SDSI, and K in Kerberos) provides the digital links between the
certs issued and the user who has issued them.

5 The actual content of the authenticator is irrelevant in our example.



Trade Offs. Although previous work has shown that secret keys can be used in
place of public keys to implement the same security objectives, such as building
a secure broadcast-communication channel [8, 16], there are pros and cons with
each approach. A secret-key-based system is simpler to set up and use. However,
secret-key-based systems often require both communication parties to be online
to function properly. For example, sending a message between two Kerberos
users usually requires both the sender and receiver to be active at the same time
so that they can exchange a secret encryption key.6 On the other hand, public-
key-based systems can operate in offline mode. For example, to send a message
using PKI, the sender can simply encrypt the message using the recipient’s public
key, without contacting the recipient first. However, key management is a major
issue that has hindered wider acceptance of PKI-based systems because it is
much more cumbersome to maintain public-private key pairs.

Our approach eliminates the public-private key pairs for individual users.
Instead, each K-SPKI/SDSI server has a dedicated public-private key pair that
is used for signing SPKI/SDSI certificates, whereas users use secret keys in their
communication with the server (e.g., for requesting certificates). We chose this
hybrid approach for the following reasons. First, the use of PKI in the autho-
rization mechanism of SPKI/SDSI lends itself to offline checking of certificate
chains. Indeed, when a user requesting access to a resource presents a set of
certificate chains to the owner of that resource, the architecture of SPKI/SDSI
ensures that the owner can check the validity of these chains without contacting
the owners of the keys involved in the chains (in fact, without even verifying
their identities). While it is worth noting that by adopting the ideas of Lampson
et al. [16] or Davis and Swick [8] it is possible to emulate SPKI/SDSI using
secret keys only, such a scheme would not allow offline checking of certificates.
Secondly, the communication between users and servers usually happens online,
which motivates the use of secret keys in this context. Finally, if the certificates
issued by users are stored in the SPKI/SDSI servers, our approach can be very
well combined with the distributed certificate-chain algorithm presented in [14].

Threat Analysis. Our message exchange for requesting a resource is very
similar to the exchange of messages between the client and KDC in Kerberos.
In essence, the ticket TicketU states that “anyone who uses K1 is U”. Since
in TokenU K1 is encrypted with Ks, which can only be known by the user U

(because Ks is in the SGT issued to U), only U could have known K1 (assuming
that authentication in Kerberos is correct). It is possible for an adversary to
replay the message [TicketU AuthenticatorU ] to the resource R and masquerade
as U . However, this attack fails if R and U communicate using K1, which is
unknown to the attacker.

3.4 Extension to Other PKI-based Trust-Management Systems

Different trust-management systems have different logics to express security poli-
cies. Most of the components (auth and name certs in SPKI/SDSI) of these se-
curity policies are signed by principals using their private keys. Recall that our
protocol essentially allows a server to sign statements on behalf of an authenti-

6 Unless the two sides have previously agreed upon a shared secret key.



KeyNote -Version : 2
Local -Constants: Alice="DSA:4401 ff92"

Authorizer: "RSA:abc123"
Licensees: Alice

Conditions: (app_domain == "RFC822 -EMAIL") && (address ~= ".*@labs \\.com\$");
Signature: "RSA -SHA1:213354 f9"

Fig. 5. An example of a KeyNote credential. Line 2 represents Alice’s public key.

KeyNote -Version : 2

Local -Constants: Alice=" Kerberos :alice@LABS.COM"
Authorizer: "RSA:abc123"

Licensees: Alice
Conditions: (app_domain == "RFC822 -EMAIL") && (address ~= ".*@labs \\.com\$");
Signature: "RSA -SHA1:213354 f9"

Fig. 6. An example of the same KeyNote credential, but without requiring Alice
to have a public key.

cated user. Although we have explained our protocol for SPKI/SDSI, it is clear
that it can be used for other trust-management systems. We now demonstrate
how our protocol can be extended for the trust-management system KeyNote [2].
Figure 5 shows an example of a KeyNote credential that grants some rights
(RFC822-EMAIL) to Alice, who has the public key DSA:4401ff92 (Line 2). We
can achieve the same goal using our technique, as shown in Figure 6. In our ap-
proach, the credential states that if Alice is an authenticated Kerberos user with
the Kerberos identity alice@LABS.COM, then she can have the rights specified
in the credential. It must be noted that the two credentials, although they ap-
pear similar, have very different operational semantics. In the original KeyNote
example, Alice can further delegate the rights she has received by issuing new
credentials directly—without any compliance checking. However, in the Kerber-
ized scenario, because Alice no longer has a public-private key pair, she can
only delegate her rights by first authenticating herself through Kerberos, and
then issue a delegation request through a dedicated Kerberized KeyNote server.
In both cases, the Authorizer (Line 3) represents the public-private key for the
Kerberized KeyNote server.

4 Implementation and Evaluation

We have built a prototype system to evaluate our approach. The implementa-
tion uses MIT’s Kerberos distribution (version 1.3.1 [19]) and the Distributed
SPKI/SDSI library, which is based on a model checker for weighted pushdown
systems [20]. The test environment contains 1500 name certs and 30 auth certs,
distributed over different sites. Each site runs on a dedicated machine on a local
area network. All test machines have identical configurations: 800 MHz Pentium
III with 256 MB RAM, running TAO Linux version 1.0.

We evaluated our approach using two criteria: ease of deployment and per-
formance. Because our implementation is still a prototype, and we have not
deployed the system in a real-world environment, we evaluated the prototype in
a simulated environment, using synthetic data. We summarize the results based
on these two criteria:



Ease of deployment: Three steps are required to deploy our system, assuming
that Kerberos is already installed.

1. Install a public-private key pair: In our approach, only one public-private
key pair is needed for each Kerberos site. In addition, sites need to exchange
their public keys. However, we believe that this is a reasonable requirement
because the exchange is done only once. Alternatively, public keys could be
obtained on demand using existing solutions for public-key exchange.

2. Install the K-SPKI/SDSI server: Each Kerberos site must have its own K-
SPKI/SDSI server. Because each K-SPKI/SDSI server is implemented as
a Kerberos service, this does not require any changes to Kerberos besides
setting up the secret key between the KDC and the K-SPKI/SDSI server.

3. Enhance Kerberos clients: Kerberos clients that want to take advantage of
our distributed authorization features can be updated easily by using a new
library call to access the K-SPKI/SDSI server.

Performance: We have tested our implementation in a model where all certifi-
cates are stored at the K-SPKI/SDSI servers, which then uses the distributed
algorithm from [14] for certificate-chain discovery (for results, see Section 4.2).
In these experiments, the performance of distributed authorization is highly de-
pendent on how K-SPKI/SDSI certificates are distributed among the sites: the
more distributed the certs are, the more sites are needed to resolve authorization
queries, and the longer it takes to process an authorization query. In our study,
distributed authorization performed well: in a test environment with about 1,500
certificates and eight Kerberos sites, it took about 1 second to process a complex
authorization request, and took half as long to process a simple one. Because
this is only a prototype implementation, there is still plenty of opportunity for
optimizations that would improve the performance. Notice, however, that this
issue is slightly orthogonal to the issue of integrating SPKI/SDSI with Kerberos,
since certificate-chain discovery could still be done locally.

4.1 Ease of Deployment

The objective of this work is to make SPKI/SDSI, and potentially other PKI-
based trust-management systems, less reliant on PKI and easier to deploy in
the real world. We achieve this by two means. SPKI/SDSI’s reliance on PKI is
reduced by using the authentication provided by existing infrastructures, such as
Kerberos, that are proven and in use. The approach tries to make SPKI/SDSI fit
into existing systems seamlessly instead of introducing substantial changes that
would present an impediment to adoption. Deploying our system in environments
where Kerberos is installed only requires a few small changes.

Second, in terms of implementation, we tried to minimize the changes to
Kerberos, because such changes usually result in additional complications for
deployment. We achieved this goal by implementing the K-SPKI/SDSI server as
an independent unit, instead of changing the KDC. As a result, our implemen-



tation requires no changes to the KDC, and only one minor modification to the
Kerberos library.7

Our approach also has some drawbacks. First, by using a separate server,
clients must be modified to use the provided features—although the change is
very simple. The alternative is to provide these functionalities inside the KDC.
When a Kerberos client requests an SGT for a service, the KDC automatically
performs the necessary authorization query on behalf of the client and stores the
authorization token as part of the SGT. This approach makes the authorization
process transparent to the clients, but it does require changes to the KDC.
This technique is also used by others for adding authorization support inside
Kerberos [4, 10, 22, 15]. We are currently evaluating both approaches.

In addition to the changes above, when deploying our system, each site must
install a public-private key pair. Furthermore, each site needs to send its pub-
lic key to other sites with which it plans to collaborate. However, we believe
that this is a reasonable requirement because setting up a collaboration is an
administrative task that only needs to be done once for each collaborating site.

4.2 Performance

We also evaluated the performance of our system in a simulated distributed en-
vironment using the algorithm from [14]. We only considered the performance
for distributed authorization because issuing certificates is an infrequent admin-
istrative task. The simulated test environment consisted of eight Kerberos sites,
as shown in Figure 7. Each node in the graph represents a Kerberos site; nodes
with a symbol R represent a service that Kerberos users can access. To illustrate
what goes on, some of the certificates used in the experiments are shown next
to each site. Because in a distributed environment every Kerberos site stores its
own certificates, resolving an authorization request may involve multiple sites,
depending on how the K-SPKI/SDSI certificates are distributed. For instance, in
Figure 7 when Manager from the site GOV attempts to access resource R from NSF,
only these two sites are involved in distributed authorization, as indicated by the
solid arrow. In contrast, when Alice, from CS, wants to access the same resource
R, multiple sites (along the dashed arrows) must participate in the distributed
authorization. Therefore, we expect the number of sites involved in distributed
authorization to be an important factor in performance. For this reason, we
tested distributed authorization using three different scenarios, indicated by the
three types of arrows in Figure 7.

Table 1 shows the results of the experiments. As expected, the number of sites
involved in distributed authorization has a direct impact on the performance of
the system. In the most complex case (Alice@CS), where six Kerberos sites were
involved, resolving an authorization request took almost twice as long as the time
required in the simplest case (Manager@GOV), where only two sites were involved.
However, as this is only a prototype, we expect to improve the performance in
the future by optimizing the code. Furthermore, our test setup is an extreme

7 We changed the function kuserok, which, when called, evaluates whether a Kerberos prin-
cipal is allowed to login to a host. Our change provides an option for callers of this function
to use the K-SPKI/SDSI server to check for authorization.



NSF (R)

��

t
}

Knsf R �
t1−→ Knsf edu programs �

Knsf edu → Kedu

yy y9
y9

y9 y9
y9 y9

Knsf R �
t2−→ Kgov�

��Kedu programs → Kedu schools faculty

Kedu schools → Kwisc schools
EDU

))

B
K

R %%%e%e%e%e%e%e
GOV

Kgov �
t2−→ Kgovprograms �

Kgov programs → KgovManager

WISC

��

��
*

��
�O
�O
�O

Kwisc schools → Kuw

UW Kuw faculty → KuwChancellor

��

��
*

Kuw faculty → Kls faculty

LS

��

l
s

|

Kls faculty → Kcs faculty Kls faculty → Kbio faculty

CSKcs faculty → KcsAlice
BIO

Fig. 7. Test setup with 1500 name certs and 30 auth certs (only a few are shown due
to space constraints).

case where every Kerberos site has its own physical KDC. In practice, different
logical Kerberos sites could share a single physical KDC, which would improve
the performance by reducing the communication overhead.

Table 1. Distributed Authorization Performance Results

Scenario # of sites Request Time (ms)
Manager@GOV (→) 2 (fundB apply) 581
Chancellor@UW ( ) 4 (fundA apply) 930
Alice@CS (99K) 6 (fundA apply) 1128

5 Related Work

The key idea behind our approach is that we can use secret-key cryptography
to implement the same SPKI/SDSI operations (e.g., issuing certificates) with
the same level of security as with public-key cryptography. The notion of using
secret keys in place of public-private key pairs as the building block of security
operations was first proposed by Lampson et al. [16], who showed that, by using
a relay (an agent that everyone trusts, e.g. the Kerberos KDC), one can build
public-key-style secure communication channels. This idea has been extended by
Davis and Swick to build other public-key-style security protocols using secret
keys [8]. Our work also uses this idea, but applies it in the context of PKI-based
trust-management systems, specifically SPKI/SDSI.

Leveraging the advantages of both Kerberos and Public-Key Infrastructure
(PKI) has been explored before. PKINIT [23], PKCROSS [12], and PKDA [21]
all extend Kerberos by using public-key cryptography for authentication pur-
poses. Our work has a different goal: it is targeted toward authorization rather
than authentication; in particular, the goal is to use Kerberos to reduce the
dependence of SPKI/SDSI on PKI. Furthermore, the approaches of [23, 12, 21]
require modifications to the Kerberos infrastructure itself, while our approach
does not.



K-PKI [6, 15] addresses the problem of accessing Kerberos services from PKI-
based systems, such as web applications. K-PKI provides a special Kerberos
server, KCA, that can generate short-term X.509 certificates for authenticated
Kerberos clients. Later on, when a client tries to access Kerberos services through
some web applications, (s)he first authenticates with the web services using the
generated certificate. The web services, in turn, can obtain necessary Kerberos
credentials and access the Kerberos services on behalf of the client. While K-
PKI provides a glue between Kerberos and the PKI world, the complexity of
the PKI systems is not reduced: all clients are required to manage public-private
key pairs. Our work, on the other hand, tries to reduce the reliance of trust-
management systems on PKI so that individual users no longer need to have
public-private key pairs.

Another aspect of our work is to bring trust management, such as SPKI/SDSI,
to Kerberos-based infrastructures. Although there has been previous work on
extending Kerberos’ authentication framework with authorization services, that
work generally assumes a centralized authority and does not address cross-realm
authorization. Of these, Neuman’s work on restricted proxy [18] is the closest to
ours. Restricted proxy is a model for building various authorization services such
as authorization servers, capabilities, and access control. However, SPKI/SDSI
is a superset of restricted proxy, and offers other features, such as distributed
trust management. DCE’s Privilege Service (PS) [22], ECMA’s SESAME [10],
and Microsoft’s Kerberos extension [4] provide authorization capability through
the use of an optional field (called authorization data) provided by Kerberos. For
each authenticated Kerberos principal, authorization information (such as group
membership, security identifiers) about the principal is stored in the field. This
authorization data is used by application servers to check users’ access privileges.
These systems have the common drawback that, unlike SPKI/SDSI, they rely on
a centralized authority for granting access privileges. In contrast, our approach
uses SPKI/SDSI, which does not require a central authority, and authorization
decisions can be made in a truly decentralized manner [14].

SPKI/SDSI [9], based on public-key infrastructure, was designed to address
the centralized authority issue of conventional PKI-based systems. SPKI/SDSI
provides a novel framework for managing trust (in the form of certificates) using
a decentralized approach. In SPKI/SDSI, no central authority is needed because
each principal can issue her own certificates. Much of the previous work on
SPKI/SDSI focuses on theoretical aspects of SPKI/SDSI [1, 7, 13, 20]. Despite
such work, SPKI/SDSI has not been adopted in the real world, primarily due
to the difficulty of key-management issues in PKI-based systems. Our work ad-
dresses this problem by reducing SPKI/SDSI’s reliance on PKI—by making use
of Kerberos, essentially unchanged. By relying on Kerberos, a well-accepted and
widely used system, our approach should make it possible for SPKI/SDSI to be
adopted in the real world more easily.

References
1. L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in access-control

systems. In Proceedings of the 2005 IEEE Symposium on Security and Privacy,



pages 81–95, May 2005.
2. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote trust-

management system version 2. RFC 2704, Sept. 1999.
3. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The role of trust man-

agement in distributed systems security. In Secure Internet Programming: Security
Issues for Mobile and Distributed Objects, pages 185–210, 1999.

4. J. Brezak. Utilizing the Windows 2000 authorization data in Kerberos tickets
for access control to resources. http://msdn.microsoft.com/library/default.asp?myurl=

/library/enus/dnkerb/html/MSDN PAC.asp.
5. D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer

Science, 106(1):61–86, 1992.
6. CITI: Projects. Kerberos leveraged PKI. http://www.citi.umich.edu/projects/kerb pki/.
7. D. Clarke, J.-E. Elien, C. M. Ellison, M. Fredette, A. Morcos, and R. L.

Rivest. Certficate chain discovery in SPKI/SDSI. Journal of Computer Security,
9(1/2):285–322, 2001.

8. D. Davis and R. Swick. Network security via private-key certificates. In Proceedings
of the 3rd USENIX Security Symposium, September 1992.

9. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylönen. RFC
2693: SPKI Certificate Theory. The Internet Society, September 1999.

10. European Computer Manufacturers Association (ECMA). Secure European system
for applications in a multi-vendor environment (SESAME). https://www.cosic.esat.

kuleuven.ac.be/sesame/html/sesame documents.html.
11. J. Howell and D. Kotz. A formal semantics for SPKI. Technical Report 2000-363,

Department of Computer Science, Dartmouth College, Hanover, NH, Mar. 2000.
12. M. Hur, B. Tung, T. Ryutov, C. Neuman, A. Medvinsky, G. Tsudik, and B. Som-

merfeld. Public key cryptography for cross-realm authentication in Kerberos, Nov.
2001. Internet-Draft, draft-ieft-cat-kerberos-pk-cross-08.txt.

13. S. Jha and T. Reps. Model checking SPKI/SDSI. Journal of Computer Security,
12(3–4):317–353, 2004.

14. S. Jha, S. Schwoon, H. Wang, and T. Reps. Weighted pushdown systems and
trust-management systems. In TACAS, 2006.

15. O. Kornievskaia, P. Honeyman, B. Doster, and K. Coffman. Kerberized credential
translation: A solution to web access control. In 10th USENIX Security Symposium,
pages 235–250, 2001.

16. B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265–310, 1992.

17. J. Linn and M. Branchaud. An examination of assorted PKI issues and proposed
alternatives. In Proceedings of the 3rd Annual PKI R&D Workshop, April 2004.

18. B. C. Neuman. Proxy-based authorization and accounting for distributed systems.
In ICDCS, pages 283–291, 1993.

19. B. C. Neuman and T. Ts’o. Kerberos: An authentication service for computer
networks. IEEE Communications Magazine, 32(9):33–38, September 1994.

20. S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized authorization
problems. In Proceedings of the 16th IEEE Computer Security Foundations Work-
shop (CSFW), pages 202–218. IEEE Computer Society, June 2003.

21. M. Sirbu and J. Chuang. Distributed authentication in Kerberos using public key
cryptography, Feb. 1997.

22. The Open Group. DCE 1.1: Authentication and security services. http://www.

opengroup.org/onlinepubs/9668899/.
23. B. Tung, C. Neuman, M. Hur, A. Medivinsky, S. Medvinsky, J. Wray, and J. Tros-

tle. Public key cryptography for initial authentication in Kerberos, 2004. Internet-
Draft, draft-ieft-cat-kerberos-pk-init-17.txt.


