
Program Specialization via Program Slicing

Thomas Reps and Todd Turnidge
Computer Sciences Department, University of Wisconsin−Madison

1210 West Dayton Street, Madison, WI 53706 USA
e-mail: {reps,turnidge}@cs.wisc.edu

Abstract. This paper concerns the use of program slicing to perform a certain kind
of program-specialization operation. We show that the specialization operation that
slicing performs is different from the specialization operations performed by algo-
rithms for partial evaluation, supercompilation, bifurcation, and deforestation. To
study the relationship between slicing and these operations in a simplified setting,
we consider the problem of slicing functional programs. We identify two different
goals for what we mean by “slicing a functional program” and give algorithms that
correspond to each of them.

1. Introduction
Program slicing is an operation that identifies semantically meaningful decomposi-
tions of programs, where the decompositions consist of elements that are not textually
contiguous [43, 28, 13]. Program slicing has been studied primarily in the context of
imperative programming languages [37]. In such languages, slicing is typically car-
ried out using program dependence graphs [19, 28, 6, 13]. There are two kinds of
slices of imperative programs: (i) a backward slice of a program with respect to a set
of program elements S consists of all program elements that might affect (either
directly or transitively) the values of the variables used at members of S; (ii) a for-
ward slice with respect to S consists of all program elements that might be affected by
the computations performed at members of S [13]. For example, a C program and
one of its backward slices is shown in Figure 1. Slicing—and subsequent manipula-
tion of slices—shows great promise for helping with many software-engineering
problems: It has applications in program understanding, maintenance [9, 10], debug-
ging [23], testing [3, 2], differencing [12,14], reuse [27], and merging [12].

This paper concerns the use of slicing to perform program specialization, and how
slicing-based specialization relates to partial evaluation and other specialization
operations. The contributions of the paper can be summarized as follows:

� We show that the specialization operation that slicing performs is different from
the specialization operations performed by partial evaluation, supercompilation,
bifurcation, and deforestation. In particular, there are situations in which the
specialized programs that we create via slicing could not be created as the result
of applying partial evaluation, supercompilation, bifurcation, or deforestation to
the original unspecialized program.

� To study the relationship between slicing and partial evaluation in a simplified
setting, we consider the problem of slicing functional programs. We identify two
different goals for what we mean by “slicing a functional program” and give algo-
rithms that correspond to each of them.

� We adapt techniques from shape analysis [16], strictness analysis [39], and pro-
gram bifurcation [26] so that our slicing algorithms can handle certain kinds of
heap-allocated data structures (e.g., lists, trees, and dags). This represents a con-
tribution to the slicing literature: By permitting programs to be sliced with respect
to “partially needed structures”, our techniques create non-trivial slices of pro-
grams that make use of heap-allocated data structures.



� �����������������������������������������������������������������������������������������������������������������������������������������

static int add(a, b)
int a, b;
{

return(a + b);
}
void main()
{

int sum, i;
sum = 0;
i = 1;
while (i < 11) {

sum = add(sum, i);
i = add(i, 1);

}
printf("sum = %d\n", sum);
printf("i = %d\n", i);

}

static int add(a, b)
int a, b;
{

return(a + b);
}
void main()
{

int
���� �����
� ����� i;

� �� �������������
� �������������
i = 1;
while (i < 11) {� �� ���������������������������
� ���������������������������
i = add(i, 1);

}� �� �����������������������������������
� �����������������������������������
printf("i = %d\n", i);

}
���������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1. A C program and the backward slice of the program with respect to the statement
printf(“i = %d\n”, i). In the slice, the starting point for the slice is shown in italics, and the
empty boxes indicate where program elements have been removed from the original program.

� We present a re-examination of certain aspects of program bifurcation in terms
of the machinery developed for slicing functional programs.

The remainder of the paper is organized as follows: Section 2 demonstrates speciali-
zation via slicing, and shows that slicing performs a different kind of specialization
operation from those performed by partial evaluation, supercompilation, bifurcation,
and deforestation. Section 3 presents our methods for slicing functional programs.
Section 4 compares the semantic issues that arise in specialization via partial evalua-
tion versus specialization via slicing. Section 5 describes how our techniques relate
to work on program bifurcation. Section 6 discusses related work. Section 7 presents
some concluding remarks.

2. Program Specialization: Slicing Versus Partial Evaluation
In some circles, the terms “program specialization” and “partial evaluation” are
treated almost as synonyms, although sometimes “program specialization” carries the
nuance of expressing a broader perspective that encompasses a number of kindred
techniques, such as “generalized partial evaluation” [8], “supercompilation” [38],
“bifurcation” [26], and “deforestation” [40]. However, this overlooks an often unap-
preciated fact, namely that program slicing can also be used to perform a kind of pro-
gram specialization—and one that is different from the kinds of specializations that
partial evaluation and its close relatives are capable of performing.

Example. In the context of imperative programs, this phenomenon is illustrated by
the C program shown in the first column of Figure 2 and the two slices shown in the
second and third columns. The program in the first column is a scaled-down version
of the UNIX word-count utility. It scans a file, counts the number of lines and charac-
ters in the file, and prints the results. Thus, this program implements the same action
that would be obtained by invoking the UNIX word-count utility with the −lc flag (i.e.,
wc −lc). However, unlike the actual UNIX word-count utility, procedure
line_char_count is not parameterized by a second argument to allow the caller to
choose which of the output quantities are to be printed.



� �����������������������������������������������������������������������������������������������������������������������������������������

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Equivalent to wc −lc Equivalent to wc −c Equivalent to wc −l� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������

void line_char_count(FILE *f)
{
int lines = 0;
int chars;
BOOLEAN eof_flag = FALSE;
int n;
extern void scan_line(

FILE *f,
BOOLEAN *bptr,
int *iptr);

scan_line(f, &eof_flag, &n);
chars = n;
while (eof_flag == FALSE) {

lines = lines + 1;
scan_line(f, &eof_flag, &n);
chars = chars + n;

}
printf("lines = %d\n", lines);
printf("chars = %d\n", chars);

}

void char_count(FILE *f)
{� ��������������������
�������������������
int chars;
BOOLEAN eof_flag = FALSE;
int n;
extern void scan_line(

FILE *f,
BOOLEAN *bptr,
int *iptr);

scan_line(f, &eof_flag, &n);
chars = n;
while (eof_flag == FALSE) {� �� �������������������������
� �������������������������
scan_line(f, &eof_flag, &n);
chars = chars + n;

}� �� ���������������������������������������������
� ���������������������������������������������
printf("chars = %d\n", chars);

}

void line_count(FILE *f)
{
int lines = 0;� ����������������
���������������
BOOLEAN eof_flag = FALSE;� �� �������
� �������
extern void scan_line2(

FILE *f,
BOOLEAN *bptr� �� �����������
� ����������� );

scan_line2(f, &eof_flag
���� ���
� ��� );� ������������������

�����������������
while (eof_flag == FALSE) {

lines = lines + 1;
scan_line2(f, &eof_flag

���� ���
� ��� );� �� ���������������������������

� ���������������������������
}
printf("lines = %d\n", lines);� ������������������������������������������������
�����������������������������������������������

}� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Figure 2. A scaled-down version of the UNIX word-count utility and two of its backward
slices.

The procedure char_count shown in column two of Figure 2 is the (backward) slice
of line_char_count with respect to the statement printf(“chars = %d\n”, chars). This
slice implements the same action that would be obtained by invoking wc −c: it scans a
file and counts only characters. The procedure line_count shown in column three is
the slice of line_char_count with respect to the statement
printf(“lines = %d\n”, lines). Line_count implements the same action that would be
obtained by invoking wc −l: it scans a file and counts only lines.

Had the implementor of line_char_count foreseen the need to parameterize the pro-
cedure with a second parameter to allow the caller to vary the procedure’s output
behavior (call this hypothetical procedure “line_char_count+”), then char_count and
line_count could have been obtained by partially evaluating line_char_count+ with
respect to −c and −l, respectively. However, given the unparameterized
line_char_count of Figure 2, partial evaluation does not provide a way to obtain
procedures char_count and line_count. Procedure line_char_count has only the sin-
gle parameter f, and thus there is no opportunity for partial evaluation with respect to
a full parameter value. We can perform full evaluation (if f’s value is provided) or no
evaluation (if f’s value is withheld). Furthermore, none of the information in parame-
ter f controls whether the output consists of just the character count, just the line
count, or both the character count and line count together. Thus, even if a partially
static value were supplied for f, it would not provide the right kind of information that
a partial evaluator would need to create char_count and line_count. �

This example shows that slicing performs a different program-specialization opera-
tion than that obtained via partial evaluation (or the other forwards-oriented speciali-
zation operations). The two approaches are actually complementary: Partial evalua-
tion and its forwards-oriented relatives take information known at the beginning of a
program and push it forward; backward slicing takes a demand for information at the
end of a program and pushes it backward.



In addition, slicing-based specialization has another characteristic that sets it apart
from the forwards-oriented specialization operations. The parameters to functions
and procedures define the range of usage patterns that the designer of a piece of
software has anticipated. This imposes some limitations on partial evaluation, super-
compilation, and bifurcation in the sense that they support tailoring of existing
software only in ways that have already been “foreseen” by the software’s author. In
contrast, slicing-based specialization permits programs to be specialized in ways that
do not have to be anticipated—via parameterization—by the writer of the original
program.

3. Slicing Functional Programs
To elucidate further the relationship between partial evaluation and program slicing,
in this section of the paper we study the problem of how to slice functional programs.
By considering slicing in a simplified context—and in particular one in which the
majority of work on partial evaluation has been carried out—we can better under-
stand the relationship between partial evaluation and slicing, including both common
and complementary aspects.

There are other benefits as well: Past work on shape analysis [16], strictness
analysis [39], and program bifurcation [26] for functional programs has developed
techniques to handle certain kinds of heap-allocated data structures (e.g., lists, trees,
and dags); we use similar techniques to formulate a slicing algorithm that can handle
programs that use (heap-allocated) lists, trees, and dags. The slicing algorithm can
create non-trivial slices, where the goal is to satisfy a demand for a “partially needed
structure”.

The slicing algorithm will be formulated for a first-order LISP-like functional
language that has the constructor and selector operations NIL, CONS, CAR, and
CDR for manipulating heap-allocated data (i.e., lists and dotted pairs), together with
appropriate predicates (EQUAL, ATOM, and NULL), but no operations for destruc-
tive updating (e.g., RPLACA and RPLACD). The constructs of the language are

xi (ATOM e 1) (CONS e 1 e 2) (OP op e 1 e 2)
(QUOTE c) (NULL e 1) (IF e 1 e 2 e 3) (DEFINE (main x 1

. . . xk) emain)
(CAR e 1) (EQUAL e 1 e 2) (CALL f e 1

. . . ek) (DEFINE (f x 1
. . . xk) ef)

(CDR e 1)

A program is a list of function definitions, with a distinguished top-level goal func-
tion, named main, that cannot be called by any of the other functions. We assume
that the distinguished atom “NIL” is used for terminating lists, and that there is also a
special empty-tree value (different from NIL), denoted by “?”.

3.1. Projection Functions and Regular Tree Grammars
Our approach to slicing functional programs involves formulating the problem as one
of symbolically composing the program to be sliced with an appropriate projection
function πmain. A projection function π is an idempotent function (i.e., π � π = π) that
approximates the identity function (i.e., π �

��� ��� id). A projection function can be used to
characterize what information should be “discarded” and what information should be
“retained” from the value that a function computes. Thus, projection function πmain
represents a demand for a “partially needed structure”. In the nomenclature used in
the slicing literature, πmain is called the slicing criterion.

Example. Let ID be the identity function λx.x and let Ω be λx.?, the function that
always returns the empty-tree value. If f and g are two projection functions, let 〈f.g〉
denote the projection function on pairs such that 〈f.g〉(x.y) = (f (x).g (y)). Suppose



we want to slice a functional version of the line_char_count program from Figure 2,
say LineCharCount, where LineCharCount takes a string and returns a pair consisting
of the line count and the character count. Then a program LineCount that only counts
lines can be defined by LineCount =df 〈ID.Ω〉 � LineCharCount. That is, program
LineCount can be created by slicing LineCharCount with respect to the slicing cri-
terion 〈ID.Ω〉.

�

The challenge is to devise a slicing algorithm that, given a program p and a projec-
tion function π, creates a program that behaves like π � p. The slicing algorithm will
create the composed program by symbolically pushing π backwards through the body
of p and simplifying the function body in appropriate ways.

There are a number of techniques developed for partial evaluation that are related
to this goal. For example, projection functions have been used in binding-time
analysis for partial evaluation in the presence of partially static structures [20,25].
However, for slicing, we need to propagate projection functions backwards—from
function outputs to function arguments. Thus, the slicing problem has similarities
with algorithms that propagate projection functions backwards to perform strictness
analysis of lazy functional languages [15,39].

Instead of the fixed, finite domain of projection functions used in [15] and [39], we
will use regular tree grammars (see below), which can be viewed as (representations
of) projection functions. Specifically, we will use the variant of regular tree gram-
mars that Mogensen used in his work on program bifurcation [26].1

A finite tree (or dag) T can be treated formally as a finite prefix-closed set of strings
L (T), where L (T) consists of the set of access paths in T. Strings in L (T) are either ε
(the empty string), or of the form s 1.s 2. . . . .sk , where the si are selectors, or of the
form s 1.s 2. . . . .sk .a, where a is an atom. There is a further “tree constraint” on L (T),
which is that if s 1.s 2. . . . .sk .a ∈ L (T), then L (T) cannot contain any string of the
form s 1.s 2. . . . .sk .x, where x is either a selector or an atom different from a. The
special empty-tree value “?” corresponds to the empty set of access paths (i.e.,
L (?) = ∅).

A projection function π on tree- (or dag-)structured data can also be treated for-
mally as a prefix-closed set of strings L (π). However, we do not insist that L (π) have
the “tree constraint”, nor must L (π) necessarily be finite. Given a tree T and projec-
tion function π, the application of π to T, denoted by π(T), yields a tree T′ such that
L (T′) = L (π) ∩ L (T). In other words, π(T) prunes tree T, producing tree T′.

For our purposes, we need projection functions that correspond to infinite sets of
paths. To represent each projection function in a finite way, we use a certain kind of
regular tree grammar. Regular tree grammars are a formalism for defining a (possibly
infinite) collection of trees that share certain structural properties in common. In this
paper, we use a limited class of regular tree grammars, which has two main restric-
tions: (i) each nonterminal appears on the left-hand side of exactly one production;
(ii) each production has one of the following five forms, where A and B stand for
either ��� � , ��� � , or a set of nonterminal names:

N → � � � N → � � � N → � N → 〈A.B〉 N → � | 〈A.B〉

The symbol “� ” is a special symbol that denotes any atom; “ ��� � ” denotes the set of all
trees; “ ��� � ” denotes the set consisting of the empty tree; the symbols “〈” and “〉”
� �������������������������������������������������������
1In Mogensen’s work, regular tree grammars are used as “shape descriptors”, to summarize the possible
“shapes” that heap-allocated structures in a program can take on, as well as (representations of) projection
functions. We will also use regular tree grammars in both of these ways; they are used as shape descriptors
in Section 3.4.



denote the pairing of trees.
Example. In the following regular tree grammar, nonterminal OddList denotes the

collection of all odd-length finite lists in which all elements in odd positions along the
list are atoms:

Atom → � OddList → 〈{Atom}.{EvenList}〉 EvenList → � | 〈 �
�
� .{OddList}〉

(Because we do not distinguish NIL from the other atoms, OddList actually denotes
lists terminated by any atom. This is only a matter of convenience; it would be possi-
ble to extend the class of grammars introduced above to treat NIL separately from the
other atoms.)

�

Given a regular tree grammar G, each nonterminal of G can be viewed as denoting
(i.e., generating) a set of trees. However, we have no direct use for this view, and
instead view each nonterminal as denoting a (possibly infinite) prefix-closed set of
access paths. (Actually, this set of paths is the union of the sets of access paths in the
aforementioned set of trees.)

To define the access paths VN denoted by a nonterminal N, we treat the grammar as
a collection of equations on prefix-closed sets of strings. For example, if the right-
hand side for nonterminal N is �

�
� , then we have the equation VN = Paths, where Paths

is the universe of finite access paths. If the right-hand side for nonterminal N is �
�
� ,

then we have the equation VN = ∅. If the right-hand side for nonterminal N is
� | 〈{A 1, . . . , Aa}.{B 1, . . . , Bb}〉,

the equation for N is

VN = ATOM ∪ cons(VA1
∪ . . . ∪ VAa

, VB1
∪ . . . ∪ BAb

).

In this equation, ATOM is the set of atoms, and cons is a set-valued function defined
as follows:

cons =df λS 1.λS 2.{ε,hd,tl} ∪ {hd.p 1 | p 1 ∈ S 1} ∪ {tl.p 2 | p 2 ∈ S 2}.

The language of access paths denoted by a nonterminal N is the value of VN in the
least solution to the grammar’s equations.

Because a regular tree grammar has a finite number of productions, it provides a
way to give a finite presentation of a collection of projection functions: Every nonter-
minal N corresponds to an associated projection function πN, where L (πN) = VN.

During context analysis (see Section 3.2), we create an appropriate projection func-
tion for each point in the program. This requires us to be able to perform certain
operations on projection functions. However, during context analysis all “manipula-
tions of projection functions” are done indirectly, by performing (syntactic) manipu-
lations on right-hand sides of regular-tree-grammar productions. In particular, Figure
3 defines the operator “join”, denoted by ������ , which combines two regular-tree-
grammar right-hand sides. It follows from Figure 3 and the equations for VN given
above that if A and B are two regular-tree-grammar right-hand sides, A ������ B denotes
the union of the languages that A and B denote. (Note that “ | ” is a “syntactic” sym-
bol that appears in regular-tree-grammar right-hand sides. It should not be confused
with ������ , which is an operation for combining two right-hand sides (to yield a third
right-hand side).)

For any given regular tree grammar, we will occasionally use a nonterminal as a
synonym for its right-hand side. In addition, we allow �

�
� to be replaced with

� | 〈 �
�
� . �

�
� 〉 whenever convenient or necessary.

Remark. The regular tree grammars defined above are not the only form of regu-
lar tree grammars that have been defined. For example, one alternative definition has
only singleton nonterminals in each branch of each pair that occurs on the right-hand



� �����������������������������������������������������������������������������������������������������������������������������������������

� ��������� x = x� �� ������ x =
� ��

� ������ � | 〈A.B〉 = � | 〈A.B〉� ������ 〈A.B〉 = � | 〈A.B〉
〈A.B〉 ������ 〈C.D〉 = 〈A ⊗ C.B ⊗ D〉� | 〈A.B〉 ������ 〈C.D〉 = � | 〈A ⊗ C.B ⊗ D〉� | 〈A.B〉 ������ � | 〈C.D〉 = � | 〈A ⊗ C.B ⊗ D〉

X ⊗ Y =

�		

 		
� X ∪ Y

Y

X

� ��

otherwise
if X = � ��
if Y = � ��
if X =

� ��
or Y =

� ��

��������������������������������������������������������������������������������������������������������������������������������������������������������
Figure 3. Definition of the join operator ������ for combining two regular-tree-grammar right-
hand sides. (Join is also commutative; i.e., x ������ y = y ������ x.)

side of a grammar rule, but allows there to be more than one such pair in each right-
hand side [16]. This yields a more powerful tree-definition formalism. A feeling for
the kind of information that is lost by using sets of nonterminals can be obtained by
considering how the join of two right-hand sides is handled under the two
approaches:

〈N 1 .N 2〉 ������ 〈N 3 .N 4〉 = 〈N 1 .N 2〉 | 〈N 3 .N 4〉 〈{N 1}.{N 2}〉 ������ 〈{N 3}.{N 4}〉 = 〈{N 1 , N 3}.{N 2 , N 4}〉
(a) Jones and Muchnick [16] (b) Mogensen [26]

Approach (a) forms a right-hand side with multiple alternatives; this preserves the
links between N 1 and N 2 and between N 3 and N 4. In approach (b), a single right-
hand-side pair is formed that has a set of nonterminals in each arm; this breaks the
links between N 1 and N 2 and between N 3 and N 4. The tree descriptions are sharper
with regular tree grammars of type (a): With type-(a) grammars, nonterminals N 1 and
N 4 can never occur simultaneously, whereas type-(b) grammars permit N 1-trees to be
paired with N 4-trees.

However, the way we have defined the correspondence between a nonterminal and
its projection function is based on the set of access paths of a set of trees (and not on
the set of trees per se). That is, our intention is to use type-(b) grammars as a way to
define sets of access paths, one set per nonterminal. For this purpose, type-(a) gram-
mars are no sharper than type-(b) grammars. In addition, it is computationally more
expensive to use and manipulate type-(a) grammars [26]. (It should be noted that
type-(b) grammars can be thought of as simply a formalism for defining prefix-closed
regular string languages. Our use of the term “regular tree grammars” for them fol-
lows Mogensen’s usage [26].)

�

3.2. Context Analysis via Regular Tree Grammars
For slicing, we are concerned with information that might be needed to compute some
portion of the desired part of function main’s return value, where the “desired part”
of the return value is characterized by the “slicing criterion”, namely projection func-
tion πmain. Projection function πmain represents a “contract” to limit attention to the
portions—if any—of main’s return value that lie on the access paths in L (πmain).
Thus, in the slice we need only retain the parts of the original program that could con-
tribute to a portion of main’s return value that lies on an access path in L (πmain). To
identify these parts of the program, the slicing algorithm will propagate πmain back-
wards through the body of the program and simplify the program’s subexpressions in
appropriate ways.

The goal of slicing is to create a program q such that, on all inputs, q returns the
same value as πmain � p applied to the same input. That is,



[[q]] = πmain � [[p]] (†)
where [[ ⋅ ]] represents the meaning function of the language. Because projection
function πmain is idempotent, we have

πmain � [[q]] = πmain � (πmain � [[p]]) = (πmain � πmain) � [[p]] = πmain � [[p]] = [[q]].

Thus, strictly speaking, the return value of q’s main function should contain no por-
tions that lie outside of the access paths in L (πmain). In certain situations, we will
relax condition (†) to [[q]] ��� ��� � πmain � [[p]] and (safely) let q’s main function return a
value that does have portions that lie outside of the access paths in L (πmain).

Slicing criterion πmain is specified by giving a regular tree grammar. For example,
the Atom/OddList/EvenList grammar given earlier is an example of the kind of
description that could be furnished as input to the slicing procedure.

The process of propagating πmain backwards through the program is carried out by
a context-analysis phase. Context analysis is concerned with describing, for each
subexpression n of the program, what parts of the values computed by n are possibly
needed in main’s return value [15,39]. In our case, context analysis creates a regular
tree grammar whose nonterminals correspond to the interior points in the program’s
expression tree, thereby associating each subexpression of the program with (a
representation of) a projection function.

The context analysis is specified in Figure 4, which gives schemas for generating
one or more equations at each node of the program’s expression tree. In general,
these schemas generate a collection of mutually recursive equations over two sets of
variables: variables of the form Context(n), where n is an interior point in the
program’s expression tree, and variables of the form ContextEnv(m), where m is the
name of a function or a formal parameter.2 These variables take on right-hand sides
of regular-tree-grammar productions as their values. For example, ContextEnv(f),
ContextEnv(xi), and Context(n) are “right-hand-side-valued” variables that
correspond to a function named f, a parameter named xi , and a subexpression labeled
n, respectively. We then find the least solution of these equations in the (syntactic)
domain of right-hand sides of regular-tree-grammar productions. The solution to the
Context equations is then interpreted as a regular tree grammar whose productions are
of the form “n → value of Context(n)”. This grammar associates each nonterminal
(i.e., program point) n with a prefix-closed set of access paths Vn. Thus, the grammar
represents (in a finite way) a projection function for each interior point in the
program’s expression tree.

Example. We illustrate context analysis for a functional version of the
line_char_count program from Figure 2. Function LineCharCountAux uses two
accumulating parameters, lc and cc, to build up the line and character counts as it
travels down the list-valued parameter str.

(DEFINE (main str) (CALL LineCharCountAux str ′0 ′0)) -- LineCharCount
(DEFINE (LineCharCountAux str lc cc)

(IF (NULL str)
(CONS lc cc)
(IF (EQUAL (CAR str) ′nl)

(CALL LineCharCountAux (CDR str) (OP + lc ′1) (OP + cc ′1))
(CALL LineCharCountAux (CDR str) lc (OP + cc ′1)))))

The annotated version of the program is
� �������������������������������������������������������
2We assume that all formal parameters have unique names (e.g., by qualifying them with the name of the
function to which they belong).



� �����������������������������������������������������������������������������������������������������������������������������������������

Form of expression Equations associated with expression���������������������������������������������������������������������������������������������������������������������������������������������������������
n : xi Context(xi) = Context(n)
n : (QUOTE c) ---
n : (CAR n 1: e 1) Context(n 1) = if Context(n) = � �� then � �� else 〈{n}. � �� 〉
n : (CDR n 1: e 1) Context(n 1) = if Context(n) = � �� then � �� else 〈 � �� .{n}〉
n : (ATOM n 1: e 1) Context(n 1) = if Context(n) = � �� then � �� else � | 〈 � �� . � �� 〉
n : (NULL n 1: e 1) Context(n 1) = if Context(n) = � �� then � �� else � | 〈 � �� . � �� 〉
n : (EQUAL n 1: e 1 n 2: e 2) Context(n 1) = if Context(n) = � �� then � �� else � ��

Context(n 2) = if Context(n) = � �� then � �� else � ��
n : (CONS n 1: e 1 n 2: e 2)

Context(n 1) =

��
	 �


a ∈ A

� ����
Context(a) if Context(n) = � | 〈A.B〉 or 〈A.B〉
� �� if Context(n) = � �� or � or � | 〈 � �� .B〉 or 〈 � �� .B〉
� �� if Context(n) = � �� or � | 〈 � �� .B〉 or 〈 � �� .B〉

Context(n 2) =

��
	 �


a ∈ A

� ����
Context(a) if Context(n) = � | 〈B.A〉 or 〈B.A〉
� �� if Context(n) = � �� or � or � | 〈B. � �� 〉 or 〈B. � �� 〉
� �� if Context(n) = � �� or � | 〈B. � �� 〉 or 〈B. � �� 〉

n : (IF n 1: e 1 n 2: e 2 n 3: e 3) Context(n 1) = if Context(n) = � �� then � �� else � | 〈 � �� . � �� 〉
Context(n 2) = Context(n)
Context(n 3) = Context(n)

n : (CALL f n 1: e 1
. . .

nk: ek)
Context(ni) = if Context(n) = � �� then � �� else ContextEnv(xi),
where f is defined by (DEFINE ( f x 1

. . . xk) e f)
n : (OP op n 1: e 1 n 2: e 2) Context(n 1) = if Context(n) = � �� then � �� else �

Context(n 2) = if Context(n) = � �� then � �� else �
(DEFINE (main x 1

. . . xk)
n 0: emain)

ContextEnv(main) = πmain
ContextEnv(xi) =

m : xi ∈ emain

� ����
Context(xi)

Context(n 0) = ContextEnv(main)
(DEFINE ( f x 1

. . . xk)
n 0: e f)

ContextEnv( f) =
m : (CALL f a 1

. . . ak) ∈ CallsTo(f )

� ����
Context(m)

ContextEnv(xi) =
m : xi ∈ ef

� ����
Context(xi)

Context(n 0) = ContextEnv( f)���������������������������������������������������������������������������������������������������������������������������������������������������������
Figure 4. Equations for context analysis.

(DEFINE (main str) n 0: (CALL LineCharCountAux n 1: str n 2: ′0 n 3: ′0))
(DEFINE (LineCharCountAux str lc cc)

n 4: (IF n 5: (NULL n 6: str)
n 7: (CONS n 8: lc n 9: cc)
n 10: (IF n 11: (EQUAL n 12: (CAR n 13: str) n 14: ′nl)

n 15: (CALL LineCharCountAux n 16: (CDR n 17: str)
n 18: (OP + n 19: lc n 20: ′1)
n 21: (OP + n 22: cc n 23: ′1))

n 24: (CALL LineCharCountAux n 25: (CDR n 26: str)
n 27: lc
n 28: (OP + n 29: cc n 30: ′1)))))

Suppose we want to slice LineCharCount with respect to slicing criterion 〈 � � � .
� � �

〉. The
value of πmain is 〈 � � � .

� � �
〉; the initial value of Context for all program points and of

ContextEnv for all functions and parameters is
� � �

. The values for the Context and
ContextEnv variables in the least-fixed-point solution of the equations are:



ContextEnv(main) = 〈 �
�
� . �

�
� 〉

ContextEnv(main:str) = � | 〈 �
�
� .{n 16, n 25}〉

ContextEnv(LineCharCountAux) = 〈 �
�
� . �

�
� 〉

ContextEnv(LineCharCountAux:str) = � | 〈 �
�
� .{n 16, n 25}〉

ContextEnv(LineCharCountAux:lc) = �
�
�

ContextEnv(LineCharCountAux:cc) = �
�
�

Context(n 0) = 〈 �
�
� . �

�
� 〉 Context(n 1) = � | 〈 �

�
� .{n 16, n 25}〉 Context(n 2) = �

�
�

Context(n 3) = �
�
� Context(n 4) = 〈 �

�
� . �

�
� 〉 Context(n 5) = � | 〈 �

�
� . �

�
� 〉

Context(n 6) = � | 〈 �
�
� . �

�
� 〉 Context(n 7) = 〈 �

�
� . �

�
� 〉 Context(n 8) = �

�
�

Context(n 9) = �
�
� Context(n 10) = 〈 �

�
� . �

�
� 〉 Context(n 11) = � | 〈 �

�
� . �

�
� 〉

Context(n 12) = �
�
� Context(n 13) = 〈{n 12}. �

�
� 〉 Context(n 14) = �

�
�

Context(n 15) = 〈 �
�
� . �

�
� 〉 Context(n 16) = � | 〈 �

�
� .{n 16, n 25}〉 Context(n 17) = 〈 �

�
� .{n 16}〉

Context(n 18) = �
�
� Context(n 19) = � Context(n 20) = �

Context(n 21) = �
�
� Context(n 22) = �

�
� Context(n 23) = �

�
�

Context(n 24) = 〈 �
�
� . �

�
� 〉 Context(n 25) = � | 〈 �

�
� .{n 16, n 25}〉 Context(n 26) = 〈 �

�
� .{n 25}〉

Context(n 27) = �
�
� Context(n 28) = �

�
� Context(n 29) = �

�
�

Context(n 30) = �
�
�

These values agree with our intuition. Slicing criterion 〈 �
�
� . �

�
� 〉 means: “The line

count is of interest, but not the character count.” As we would hope, the arithmetic
expressions concerned with computing the line count (program points n 2, n 18, and
n 27) are all associated with �

�
� (i.e., “needed”), but the arithmetic expressions that

compute the character count (n 3, n 21, and n 28) are all associated with �
�
� .

We can trace the flow of these context values through the program as follows: The
call to LineCharCountAux in main causes the context πmain to be propagated to n 4,
the body of LineCharCountAux. This context then passes through the IF expression
at n 4 to the CONS expression at n 7. Here the context 〈 �

�
� . �

�
� 〉 is split up, generating

context �
�
� for variable lc and context �

�
� for cc. Because lc is one of the formal

parameters of LineCharCountAux, its context is collected and propagated to the
appropriate expressions at all of LineCharCountAux’s call sites, which causes expres-
sions n 2, n 18, and n 27 to have the context �

�
� .

�

� �����������������������������������������������������������������������������������������������������������������������������������������

SliceExp(n : e) =
if Context(n) = ���� then (QUOTE ?)
else case e of

n : xi: xi
n : (QUOTE c): (QUOTE πContext(n)(c))
n : (CAR n 1: e 1): (CAR SliceExp(n 1: e 1))
n : (CDR n 1: e 1): (CDR SliceExp(n 1: e 1))
n : (ATOM n 1: e 1): (ATOM SliceExp(n 1: e 1))
n : (NULL n 1: e 1): (NULL SliceExp(n 1: e 1))
n : (EQUAL n 1: e 1 n 2: e 2): (EQUAL SliceExp(n 1: e 1) SliceExp(n 2: e 2))
n : (CONS n 1: e 1 n 2: e 2): (CONS SliceExp(n 1: e 1) SliceExp(n 2: e 2))
n : (IF n 1: e 1 n 2: e 2 n 3: e 3): (IF SliceExp(n 1: e 1) SliceExp(n 2: e 2) SliceExp(n 3: e 3))
n : (CALL f n 1: e 1

. . . nk: ek): (CALL f SliceExp(n 1: e 1) . . . SliceExp(nk ek))
n : (OP op n 1: e 1 n 2: e 2): (OP op SliceExp(n 1: e 1) SliceExp(n 2: e 2))

endcase fi���������������������������������������������������������������������������������������������������������������������������������������������������������
Figure 5. Type I slicing: Given the results of context analysis, function SliceExp is applied to
each function body to create the sliced program.



3.3. Creating the Slice
For slicing, we also need to create a simplified version of the program (i.e., the slice
itself). We can actually identify two different goals for what we mean by “slicing a
functional program”, which we call Type I and Type II slices.

In Weiser’s original definition of slicing for imperative programs, a slice is
obtained from the original program by deleting zero or more statements [43, pp. 353].
Type I slicing is the analogue for functional programs of Weiser’s slicing operation:
subexpressions of the program, rather than statements, are deleted. A Type I slice
prunes the program as follows: For every subexpression whose context is �

�
� , the

result of evaluating the expression will not be used, as long as the client of the sliced
program abides by the access “contract” given by πmain. Consequently, it is safe to
replace every such subexpression by the expression ′?. In other words, as long as the
client of the sliced program abides by the access “contract” given by πmain, the values
that can be inspected will be the same as those generated by the original main pro-
gram. The Type I slicing operation is shown in Figure 5.

Example. The final program that results from slicing LineCharCount is as follows:

(DEFINE (main str) (CALL LineCharCountAux str ′0 ′?))
(DEFINE (LineCharCountAux str lc cc)

(IF (NULL str)
(CONS lc ′?)
(IF (EQUAL (CAR str) ′nl)

(CALL LineCharCountAux (CDR str) (OP + lc ′1) ′?)
(CALL LineCharCountAux (CDR str) lc ′?))))

In this program, all expressions associated solely with the computation of the charac-
ter count have been replaced by ′?.

A simple clean-up step removes formal parameter cc from LineCharCountAux and
the corresponding actual parameters at the three calls on LineCharCountAux: A for-
mal parameter and its corresponding actual parameters can be removed whenever the
context of the formal parameter is �

�
� .

�

In SliceExp, the case for a subexpression n of the form (QUOTE c) is handled by
applying a projection function πContext(n) to c. This function is constructed from the
value of Context(n) as follows:
(i) We first normalize the regular tree grammar so that each branch of each pair

consists of a single symbol: �
�

� , �
�

� , or a (single) nonterminal. Normalization of
the grammar is carried out by the following method (which we will call join-
normalization):

� A set of nonterminals {N 1, N 2, . . . , Nk} is replaced by a new nonterminal N
and a production for N is added to the grammar; the right-hand side of the
new production is the join of the right-hand sides of the productions for N 1,
N 2, . . . , and Nk . This process is repeated until each branch of each pair on
the right-hand side of a production (including the newly introduced produc-
tions) consists of a single symbol.

� During this process, a table is kept of which new nonterminals correspond to
which sets of old nonterminals, and this table is consulted to reuse new non-
terminals whenever possible. Because there is a finite number of such non-
terminal sets, the process must terminate.

(ii) Given such a normalized grammar, πContext(n) is defined as follows:



π � �� = λt.t π � = λt.if atom(t) then t else ? fi
π � �� = λt.? π〈A.B〉 = λt.if atom(t) then ? else cons(πA(t), πB(t)) fi

π � | 〈A.B〉 = λt.if atom(t) then t else cons(πA(t), πB(t)) fi

(For the sake of uniformity, in these rules we assume that A and B stand for
either

��� �
, � � � , or a nonterminal symbol.)

A Type II slice differs from a Type I slice because it is allowed to introduce addi-
tional material into the sliced program. A Type II slice prunes out “extra” informa-
tion that is found in the values returned by programs created by Type I slicing. The
reason that such extra information exists is that the context analysis of Section 3.2 is a
monovariant analysis. Because different portions of the result of a function may be
needed at different call sites, with a Type I slice a function may return more informa-
tion than is needed at a specific call site. In addition, more information may be
present in a variable than is needed at all uses of that variable. For this reason, a
sliced program generated by a Type I slice may occasionally return more information
than is actually needed. This does not present a problem as long as all accesses are
confined to the “contract” implicit in πmain. However, there may be times when we
want the slice to be “stingy”; we want it to remove unneeded information when it
arises. For this purpose, we define the method for Type II slicing shown in Figure 6.
In places where it can detect that unneeded information might be introduced, the
Type II slicing procedure inserts an explicit call to an appropriate projection function
to trim down the return value.

(In the LineCharCount example, the Type I and Type II slices are identical; no pro-
jection functions would be inserted by the Type II slicing method.)

3.4. An Improved Slicing Algorithm
A further improvement of the slicing algorithm can be obtained by combining shape
information with context information. To describe this extension, it is convenient to
give a formulation of the shape-analysis problem in a way that is similar in style to

� �����������������������������������������������������������������������������������������������������������������������������������������

SliceExp(n : e) =
if Context(n) = �
	� then (QUOTE ?)
else case e of

n : xi: if Context(n) = ContextEnv(xi) then xi
else (CALL πContext(n) xi) fi

n : (QUOTE c): (QUOTE πContext(n)(c))
n : (CAR n 1: e 1): (CAR SliceExp(n 1: e 1))
n : (CDR n 1: e 1): (CDR SliceExp(n 1: e 1))
n : (ATOM n 1: e 1): (ATOM SliceExp(n 1: e 1))
n : (NULL n 1: e 1): (NULL SliceExp(n 1: e 1))
n : (EQUAL n 1: e 1 n 2: e 2): (EQUAL SliceExp(n 1: e 1) SliceExp(n 2: e 2))
n : (CONS n 1: e 1 n 2: e 2): (CONS SliceExp(n 1: e 1) SliceExp(n 2: e 2))
n : (IF n 1: e 1 n 2: e 2 n 3: e 3): (IF SliceExp(n 1: e 1) SliceExp(n 2: e 2) SliceExp(n 3: e 3))
n : (CALL f n 1: e 1

. . . nk: ek): if Context(n) = ContextEnv( f) then
(CALL f SliceExp(n 1: e 1) . . . SliceExp(nk ek))

else (CALL πContext(n)
(CALL f SliceExp(n 1: e 1) . . . SliceExp(nk ek)))

fi
n : (OP op n 1: e 1 n 2: e 2): (OP op SliceExp(n 1: e 1) SliceExp(n 2: e 2))

endcase fi������������������������������������������������������������������������������
Figure 6. Type II slicing: A second method for slicing a functional program.



the context-analysis equation schemas of Figure 4. The equation schemas for shape
analysis are presented in Figure 7. In shape analysis, regular tree grammars are used
as shape descriptors to summarize the possible shapes of values (as characterized by a
set of access paths) that may be returned by a subexpression.

To be able to combine shape information with context information, we also need
the operation on right-hand sides of regular-tree-grammar productions that is defined
as follows:

M ⊕ N =df ((M = � � � ) or (N = � � � ) or (M = � and N = 〈A.B〉) or (N = � and M = 〈A.B〉)).
The improvement to the slicing algorithm consists of replacing the first line of (either
version of) SliceExp with

if Shape(n) ⊕ Context(n) then (QUOTE ?)

The reason this is safe is that if Shape(n) ⊕ Context(n) is true at subexpression n,
then the value created at n can never contain any of the access paths in
L (Context(n)). Because we are limiting attention to the portions of n’s possible
return values that lie on the access paths in L (Context(n))—of which there are
none—we can replace subexpression n with ′?.

Example. Suppose we use slicing criterion � to slice the following program:

� �����������������������������������������������������������������������������������������������������������������������������������������

Form of expression Equations associated with expression���������������������������������������������������������������������������������������������������������������������������������������������������������
n : xi Shape(n) = ShapeEnv(xi)
n : (QUOTE c) Shape(n) = ConstShape(c)

n : (CAR n 1: e 1)

Shape(n) =

��
� �
�
a ∈ A

� �	� � Shape(a) if Shape(n 1) = 
 | 〈A.B〉 or 〈A.B〉
��� if Shape(n 1) = ��� or 
 or 
 | 〈 ��� .B〉 or 〈 ��� .B〉

� �� if Shape(n 1) =
� �� or 
 | 〈

� �� .B〉 or 〈
� �� .B〉

n : (CDR n 1: e 1)

Shape(n) =

��
� �
�
a ∈ A

� �	� � Shape(a) if Shape(n 1) = 
 | 〈B.A〉 or 〈B.A〉
��� if Shape(n 1) = ��� or 
 or 
 | 〈B. ��� 〉 or 〈B. ��� 〉

� �� if Shape(n 1) =
� �� or 
 | 〈B.

� �� 〉 or 〈B.
� �� 〉

n : (ATOM n 1: e 1) Shape(n) = if Shape(n 1) = ��� then ��� else 

n : (NULL n 1: e 1) Shape(n) = if Shape(n 1) = ��� then ��� else 

n : (EQUAL n 1: e 1 n 2: e 2) Shape(n) = if Shape(n 1) = ��� or Shape(n 2) = ��� then ��� else 

n : (CONS n 1: e 1 n 2: e 2) Shape(n) = 〈{n 1} . {n 2}〉
n : (IF n 1: e 1 n 2: e 2 n 3: e 3)

Shape(n) =

�� � Shape(n 2) ������ Shape(n 3)
� ��

otherwise

if Shape(n 1) = ���

n : (CALL f e 1
. . . ek) Shape(n) = ShapeEnv( f)

n : (OP op n 1: e 1 n 2: e 2) Shape(n) = if (
 �������� Shape(n 1)) and (
 �������� Shape(n 2)) then 
 else ���
(DEFINE (main x 1

. . . xk)
n 0: emain)

ShapeEnv(main) = Shape(n 0)
ShapeEnv(xi) = InitialShapeEnv(xi)

(DEFINE ( f x 1
. . . xk)

n 0: e f)
ShapeEnv( f) = Shape(n 0)
ShapeEnv(xi) =

m : (CALL f n 1: a 1
. . . nk : ak) ∈ CallsTo(f )

� �	� � Shape(ni)

���������������������������������������������������������������������������������������������������������������������������������������������������������
Figure 7. Equations for shape analysis. The desired solution of these equations is the least-
fixed-point solution. The notation “
 �������� Shape(n)” means that 
 is in Shape(n). Auxiliary func-
tion ConstShape(c) returns a shape descriptor for a constant c. InitialShapeEnv is a map from
main’s formal parameters to their (known) initial shape descriptors.



(DEFINE (main) (CALL mycons ′1 ′2))
(DEFINE (mycons x y) (CONS x y)).

Without the suggested improvement, both versions of SliceExp create the program

(DEFINE (main) (CALL mycons ′? ′?))
(DEFINE (mycons x y) (CONS ′? ′?)),

which contains a wasted function call and also returns a value that contains extra
information. With the improvement, both versions of SliceExp create

(DEFINE (main) ′?)
(DEFINE (mycons x y) ′?).

�

4. Semantic Issues
We do not have space in this paper for an in-depth treatment of the issue of how the
semantics of a slice relates to the semantics of the original program. In fact, our tech-
niques do not guarantee that equation (†) of Section 3.2 holds (i.e., [[q]] = πmain � [[p]])
when the programming language has a call-by-value semantics. The reason is that,
for a call-by-value language, slicing may change the termination behavior; that is, a
slice may terminate on inputs on which the original program diverges. Slicing can
never introduce divergence; it can only introduce termination, which, from a prag-
matic standpoint, is a quite reasonable situation.

Example. For (single-procedure) programs in imperative languages, the need for a
lazy semantics can be illustrated by means of the following example: Consider the
three programs P 1, P 2, and P 3:

P 1 P 2 P 3� �����������������������������������������������������������������
x = 0;
for (i = 1; ; i++) { }
y = x;

x = 0;
w = 1;
y = x;

x = 0;� ������������
�����������
y = x;

��
�
�
�

��
�
�
�

P 3 is the slice of P 1 with respect to y = x; P 3 is also the slice of P 2 with respect to
y = x. Let ���� ��� sl denote the “is-a-slice-of” relation, and let ���� ��� sem denote the semantic
approximation relation.

In a standard direct denotational semantics for an imperative language (denoted by
M[[ ⋅ ]]), commands are (strict) store-to-store transformers. Because program P 1 con-
tains an infinite loop, we have M[[P 1]] = λs. 	�
 	 store . Consequently, even though
P 3 ���� ��� slP 1 and P 3 ���� ��� slP 2, we have M[[P 1]] ���� ��� semM[[P 3]] ���� ��� semM[[P 2]]. In other words,
with the standard treatment of the semantics of imperative languages, the relation
“is-a-slice-of” is not consistent with the semantic approximation relation.

However, there is a non-standard setting in which the hoped-for relationships do
hold. Ramalingam and Reps have defined an equational value-sequence-oriented
semantics (as opposed to a conventional state-oriented semantics) for a variant of the
program dependence graph [30] (see also [5]). Rather than treating each program
point as a state-to-state transformer, the value-sequence semantics treats each pro-
gram point as a value-sequence transformer that takes (possibly infinite) argument
sequences from dependence predecessors to a (possibly infinite) output sequence.
The latter sequence represents the sequence of values computed at that point during
program execution. Because dependence edges can bypass infinite loops, the value-
sequence semantics is more defined than a standard operational or denotational
semantics. For example, the vertex for statement y = x in program P 1 has the single-
ton sequence “[0]” rather than, for example, the uncompleted sequence “ 	�
 	 ”. (This



agrees with the sequence for y = x in program P 3, which is also “[0]”.)
With the value-sequence semantics, it is trivial to show that ���� ��� sl and ���� ��� sem are con-

sistent: A slice is the subgraph of the dependence graph found by following edges of
the dependence graph backwards from the vertex v of interest; this subgraph
corresponds exactly to the subset Sv of the equations that can affect the value-
sequence at v. Because we followed all paths backwards from v to identify Sv , the
solutions to equation system Sv and to the full equation system must be identical for
all vertices that occur in both the program and the slice. Consequently, in this frame-
work the semantics of a slice approximates the semantics of the full program.

(Other approaches to lazy semantics for program dependence graphs include [35],
[4], and [1].)

�

For readers who are uncomfortable with the “semantic anomaly” that a slice does
not preserve the termination behavior of the original program, we would like to point
out that this situation is far more acceptable than the semantic anomaly exhibited by
partial evaluation, where, due to the well-known problems with non-termination of
partial evaluators in the presence of static-infinite computations ([17, pp. 265-266],
[36, pp. 501-502], [25, pp. 337], [18, pp. 299], and [5]), partial evaluation can intro-
duce divergence. That is, the specializer itself can diverge on programs that would
not diverge on all dynamic inputs if executed in their unspecialized form.

� Partial evaluation is faithful to the termination properties of the original program
only under the assumption that the operators in the language—including the con-
ditional operator—have call-by-value semantics.

� Similarly, but with less potential for disruptive behavior, program slicing is faith-
ful to the termination properties of the original program only under the assump-
tion that the operators in the language have call-by-name semantics.

While no reasonable programming languages have call-by-value conditionals, there
do exist programming languages with call-by-name semantics.

5. A Re-Examination of Program Bifurcation
In [26], Mogensen describes a method to perform program bifurcation. Briefly stated,
bifurcation is a way to transform a program that takes partially static structures as
arguments into two programs: one in which all of the parameters are totally static, and
a second in which all of the parameters are either totally static or totally dynamic.
This section outlines how some of the steps used in program bifurcation can be
redefined in terms of program slicing.

Mogensen defines operations that split a function f into a function fS, which com-
putes the purely static part of f’s result, and a function fD, which computes the
dynamic part of f’s result. We will refer to these operations as BifS and BifD, respec-
tively. BifS identifies and removes all possibly dynamic expressions; BifD identifies
and removes static expressions whose values are not needed for the dynamic result.
In Mogensen’s formulation of them, BifS and BifD do not incorporate a true needed-
ness analysis; instead, they use binding-time information (which is computed by pro-
pagating information through the program in the forward direction) as a sort of
“pseudo-neededness” information.

Mogensen begins by performing binding-time analysis. He uses a domain of regu-
lar tree grammars that is much like the domain we use: his symbol S corresponds to
our symbol ��� � ; his D, to our ��� � ; and his atomS, to our � . The binding-time analysis
can be defined as the fixed point of a set of equations that are similar to our shape-
analysis and context-analysis equations. (We have omitted this reformulation for rea-
sons of space.) The binding-time analysis produces, for pertinent expressions in the
program, a regular tree grammar describing “how static” each expression is
guaranteed to be. Specifically, when interpreted as a prefix-closed set of strings, the
regular-tree-grammar production associated with a subexpression n describes (a sub-



set of) the set of all access paths that are guaranteed not to lead to data that is
dynamic in any value returned by n. (This is not to say that all access paths described
by the grammar rule for n necessarily exist in each of n’s possible return values.) The
final step of bifurcation is to apply BifS and BifD to each function of the program.

BifS and BifD are similar to, but not precisely, Type II slices. This motivates us to
formulate revised bifurcation operations, called BifS′ and BifD′, that are based on
program slicing (and hence do perform a true neededness analysis). Some of the
advantages of using a “true” over a “pseudo” neededness analysis are as follows:

� For BifS′, static expressions whose values are not needed for the static result can
now be identified and removed.

� For BifD′, dead dynamic code can now be identified and removed.
Below, we will only illustrate bifurcation procedure BifS′. (Because BifD′ uses

BifS′ as a subroutine, some, but not all, of the differences between BifD′ and BifD are
inherited from the differences between BifS′ and BifS.) The BifS′ procedure is as
follows:
(i) Binding-time analysis is performed, using the given (possibly partially static)

binding times for main’s variables.
(ii) A “meet-normalization” procedure is applied to the resulting regular tree gram-

mar. (The grammars used in Mogensen’s binding-time analysis are of a kind
that is dual to the kind we use, and hence the results of binding-time analysis
must be normalized by a process dual to the join-normalization operation defined
in Section 3.3. This converts the productions of the grammar obtained from
binding-time analysis to ones in which each branch of each right-hand-side pair
is a singleton set. The normalized grammar can then be interpreted as a gram-
mar of the kind we are using for slicing.)

(iii) The nonterminals in the normalized grammar are systematically renamed to
remove all uses of the names of the program’s functions, formal parameters, and
subexpressions.

(iv) A Type II slice of the program is then performed, using the (renamed) binding-
time descriptor for function main as the slicing criterion πmain.

Example. Consider the program

(DEFINE (main a b c d) (IF c (CONS a b) (CONS a d)))

with the following binding times for the inputs: a:S, b:S, c:S, d:D.3 The value of πmain
generated by the binding-time analysis is 〈S.D〉. The program generated by BifS is

(DEFINE (main a b c d) (IF c (CALL π〈S.D〉 (CONS a b)) (CONS a ′?))),

whereas BifS′ yields

(DEFINE (main a b c d) (IF c (CONS a ′?) (CONS a ′?)))).

The expression b is retained by BifS because it is static, whereas BifS′ classifies the
expression as unneeded ( �

�
� ) and prunes it from the sliced program.

�

While the differences between what the two versions of BifS produce are not
earthshaking, they provide another viewpoint for understanding the results presented
in this paper:

� The essence of the rewriting step used in program bifurcation is the analogue for
functional programs of program slicing (which had been defined earlier for
imperative programs).

� �������������������������������������������������������
3In this example, we are using binding times in which none of the parameters are partially static. This is
done merely to give the simplest possible example of the differences between BifS and BifS′.



� Slicing of functional programs is a program-specialization operation of interest in
its own right and can be isolated from the rest of the machinery that is part of
bifurcation.

6. Relation to Previous Work
In the slicing community, slicing has long been recognized as a way to specialize pro-
grams. Many of the proposed applications of slicing are based on its properties as a
specialization operation. For example,

� Weiser proposed using slicing to decompose programs into separate threads that
can be run in parallel [42]. Each thread computes a portion of what is computed
by the original program.

� Horwitz, Reps, and Prins proposed an algorithm for merging two variants A and B
of a program Base [12]. The algorithm breaks down Base, A, and B into their
constituent slices and chooses among them to create the merged program. By
selecting appropriate slices, the algorithm guarantees that the merged program
exhibits all changed behavior of A with respect to Base, all changed behavior of B
with respect to Base, and all behavior that is common to all three [31].

� Bates and Horwitz proposed to use slicing to avoid redoing the part of a test suite
that is unaffected by a change to a program [2].

� Andersen Consulting’s interactive Cobol System Renovation Environment
(Cobol/SRE) is a system for re-engineering legacy systems written in Cobol [27].
It uses slicing as the fundamental operation that users employ to select program
fragments of interest. Operations are provided for combining slices (i.e., union,
intersection, and difference). These fragments are then used to reorganize the
program by extracting the code fragments and repackaging them into independent
modules.

Most work on slicing has concerned imperative programming languages. In the
context of functional languages, a slicing-like operation is used by Liu and Teitel-
baum as a cleanup step in their transformational methodology for deriving incremen-
tal versions of functional programs from non-incremental functional programs [21].
In their work, slices can be taken only with respect to projection functions that
express finite-depth access patterns in a tree. A similar technique also appears in
Romanenko’s work on “arity raising” [34] (a method for handling partially static
structures in a partial evaluator). In contrast, the slicing method we have presented
uses regular-tree grammars to express projection functions that have arbitrary-depth
(but regular) access patterns.

This paper concerns the complementary relationship between slicing and partial
evaluation when backward slicing is considered as a specialization operation.
Another kind of relationship between slicing and partial evaluation has been esta-
blished by Das, Reps, and Van Hentenryck who showed how three variants of for-
ward slicing can be used to carry out binding-time analysis for imperative programs
[5].

This paper has been greatly influenced by the literature on partial evaluation and
related operations, particularly by Mogensen’s paper on program bifurcation [26]. In
particular, the variant of regular tree grammars that we have used is based on
Mogensen’s work (as opposed to the version of regular tree grammars used by Jones
and Muchnick [16] and the normalized set equations used by Reynolds [33]).

The context analysis that we have used to define the slicing algorithm is related to
the “neededness” analysis defined by Hughes [15] and also to the “strictness analysis”
of Wadler and Hughes, which is also capable of identifying whether the value of a
subexpression is ignored [39, pp. 392]. Our analysis is somewhat different from these
two and, in general, incomparable to them. For instance, the latter analyses are both
formulated in terms of a fixed, finite set of projection functions for characterizing



“neededness patterns” of list-manipulation programs. The use of a fixed set of pro-
jection functions makes the analysis efficient, but it also introduces some limitations
on the class of neededness patterns that can be identified. (This is not to say that only
uninteresting neededness information can be discovered. On the contrary, Hughes’s
analysis is able to determine that in the length function the spine of the argument list
is needed, but the elements of the list are not needed.) Because our work is based on
regular tree grammars, our analysis is capable of handling a broader class of needed-
ness patterns: The advantage of the regular-tree grammar approach is that it “adapts”
to the patterns that are used in a particular program.

Another issue concerns the monovariant versus polyvariant treatment of functions.
In the work of Hughes, Wadler and Hughes, and Liu and Teitelbaum, the context ana-
lyses that are used create projection-function transformers for each source-program
function, which are then employed at each call site to determine how the call site’s
local context is transformed. This is only feasible when the domain of projection
functions is small (e.g. Wadler and Hughes work with a 10-point domain of projec-
tion functions). Because our domain of projection functions—regular-tree
grammars—is large, our work follows Mogensen and uses a monovariant analysis
(i.e., the contexts of all calls to a function f are combined to determine the context of
f’s body). This monovariant analysis loses precision, but the alternative polyvariant
analysis would involve tabulating a collection of functions of type “regular-tree-
grammar → regular-tree-grammar”.

7. Concluding Remarks
This paper has shown how program slicing can be used to carry out a certain kind of
program-specialization operation. Because the paper extends existing slicing tech-
niques by making use of techniques that are closely related to ones that have been
used in both partial evaluation and program bifurcation, the paper serves to bridge the
gap between two communities—the partial-evaluation community and the program-
slicing community—that are both working on semantics-based program manipulation
but that (to date) have had relatively limited contact. For these two communities, the
salient connections to the material presented in the paper are as follows:

� Our results should be of interest to the partial-evaluation community because we
have demonstrated a new way of specializing programs that is different from the
specialization operations carried out by partial evaluation, supercompilation,
bifurcation, and deforestation. In addition, the slicing-based specialization opera-
tion has another characteristic that sets it apart from partial evaluation (and other
forwards-oriented specialization operations): Slicing-based specialization permits
programs to be specialized in ways that do not have to be anticipated by the
author of the original program (in the sense that specialization is not linked to the
parameters to functions and procedures provided in the original program).

� Our results should also be of interest to the program-slicing community.
Although several previous papers have studied the impact of dependences carried
through heap-allocated data structures [11,29,7,22,41,24,32], our work sheds new
light on the problem of creating non-trivial slices of programs that make use of
heap-allocated data structures.

Acknowledgements
This work was supported by the National Science Foundation under grant CCR-
9100424 and by the Advanced Research Projects Agency under ARPA Order 8856
(monitored by the Office of Naval Research under contract N00014-92-J-1937).



References
1. Ballance, R.A., Maccabe, A.B., and Ottenstein, K.J., “The program dependence web: A

representation supporting control-, data-, and demand-driven interpretation of imperative
languages,” Proceedings of the ACM SIGPLAN 90 Conference on Programming
Language Design and Implementation, (White Plains, NY, June 20-22, 1990), ACM SIG-
PLAN Notices 25(6) pp. 257-271 (June 1990).

2. Bates, S. and Horwitz, S., “Incremental program testing using program dependence
graphs,” pp. 384-396 in Conference Record of the Twentieth ACM Symposium on Princi-
ples of Programming Languages, (Charleston, SC, January 10-13, 1993), ACM, New
York, NY (1993).

3. Binkley, D., “Using semantic differencing to reduce the cost of regression testing,”
Proceedings of the 1992 Conference on Software Maintenance (Orlando, FL, November
9-12, 1992), pp. 41-50 (1992).

4. Cartwright, R. and Felleisen, M., “The semantics of program dependence,” Proceedings of
the ACM SIGPLAN 89 Conference on Programming Language Design and Implementa-
tion, (Portland, OR, June 21-23, 1989), ACM SIGPLAN Notices 24(7) pp. 13-27 (July
1989).

5. Das, M., Reps, T., and Van Hentenryck, P., “Semantic foundations of binding-time
analysis for imperative programs,” pp. 100-110 in Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation (PEPM
95), (La Jolla, California, June 21-23, 1995), ACM, New York, NY (1995).

6. Ferrante, J., Ottenstein, K., and Warren, J., “The program dependence graph and its use in
optimization,” ACM Trans. Program. Lang. Syst. 9(3) pp. 319-349 (July 1987).

7. Field, J., “A simple rewriting semantics for realistic imperative programs and its applica-
tion to program analysis,” Proceedings of the SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, (San Francisco, CA, June 1992), Technical
Report YALEU/DCS/RR-909, Department of Computer Science, Yale University, New
Haven, CT (1992).

8. Futamura, Y. and Nogi, K., “Generalized partial computation,” pp. 133-152 in Partial
Evaluation and Mixed Computation: Proceedings of the IFIP TC2 Workshop on Partial
Evaluation and Mixed Computation, (Gammel Avernaes, Denmark, October 18-24, 1987),
ed. D. Bjo| rner, A.P. Ershov, and N.D. Jones,North-Holland, New York, NY (1988).

9. Gallagher, K.B., “Using program slicing in software maintenance,” Ph.D. dissertation and
Tech. Rep. CS-90-05, Computer Science Department, University of Maryland, Baltimore
Campus, Baltimore, MD (January 1990).

10. Gallagher, K.B. and Lyle, J.R., “Using program slicing in software maintenance,” IEEE
Transactions on Software Engineering SE-17(8) pp. 751-761 (August 1991).

11. Horwitz, S., Pfeiffer, P., and Reps, T., “Dependence analysis for pointer variables,”
Proceedings of the ACM SIGPLAN 89 Conference on Programming Language Design and
Implementation, (Portland, OR, June 21-23, 1989), ACM SIGPLAN Notices 24(7) pp.
28-40 (July 1989).

12. Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,”
ACM Trans. Program. Lang. Syst. 11(3) pp. 345-387 (July 1989).

13. Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,”
ACM Trans. Program. Lang. Syst. 12(1) pp. 26-60 (January 1990).

14. Horwitz, S., “Identifying the semantic and textual differences between two versions of a
program,” Proceedings of the ACM SIGPLAN 90 Conference on Programming Language
Design and Implementation, (White Plains, NY, June 20-22, 1990), ACM SIGPLAN
Notices 25(6) pp. 234-245 (June 1990).

15. Hughes, J., “Backwards analysis of functional programs,” pp. 187-208 in Partial Evalua-
tion and Mixed Computation: Proceedings of the IFIP TC2 Workshop on Partial Evalua-
tion and Mixed Computation, (Gammel Avernaes, Denmark, October 18-24, 1987), ed. D.
Bjo| rner, A.P. Ershov, and N.D. Jones,North-Holland, New York, NY (1988).

16. Jones, N.D. and Muchnick, S.S., “Flow analysis and optimization of Lisp-like structures,”
pp. 102-131 in Program Flow Analysis: Theory and Applications, ed. S.S. Muchnick and
N.D. Jones,Prentice-Hall, Englewood Cliffs, NJ (1981).

17. Jones, N.D., “Automatic program specialization: A reexamination from basic principles,”
pp. 225-282 in Partial Evaluation and Mixed Computation: Proceedings of the IFIP TC2
Workshop on Partial Evaluation and Mixed Computation, (Gammel Avernaes, Denmark,
October 18-24, 1987), ed. D. Bjo| rner, A.P. Ershov, and N.D. Jones,North-Holland, New



York, NY (1988).
18. Jones, N.D., Gomard, C.K., and Sestoft, P., Partial Evaluation and Automatic Program

Generation, Prentice-Hall International, Englewood Cliffs, NJ (1993).
19. Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence graphs

and compiler optimizations,” pp. 207-218 in Conference Record of the Eighth ACM Sym-
posium on Principles of Programming Languages, (Williamsburg, VA, January 26-28,
1981), ACM, New York, NY (1981).

20. Launchbury, J., Projection Factorizations in Partial Evaluation, Cambridge University
Press, Cambridge, UK (1991).

21. Liu, Y.A. and Teitelbaum, T., “Caching intermediate results for program improvement,”
in Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM 95), (La Jolla, California, June 21-23, 1995), ACM,
New York, NY (1995).

22. Livadas, P.E. and Rosenstein, A., “Slicing in the presence of pointer variables,” Technical
Report SERC-TR-74-F, Software Engineering Research Center, University of Florida,
Gainesville, FL (June 1994).

23. Lyle, J. and Weiser, M., “Experiments on slicing-based debugging tools,” in Proceedings
of the First Conference on Empirical Studies of Programming, (June 1986), Ablex Pub-
lishing Co. (1986).

24. Lyle, J.R., Wallace, D.R., Graham, J.R., Gallagher, K.B., Poole, J.P., and Binkley, D.W.,
“Unravel: A CASE tool to assist evaluation of high integrity software,” Report NISTIR
5691, National Institute for Standards and Technology, Gaithersburg, MD (August
1995).

25. Mogensen, T., “Partially static structures in a self-applicable partial evaluator,” pp.
325-347 in Partial Evaluation and Mixed Computation: Proceedings of the IFIP TC2
Workshop on Partial Evaluation and Mixed Computation, (Gammel Avernaes, Denmark,
October 18-24, 1987), ed. D. Bjo| rner, A.P. Ershov, and N.D. Jones,North-Holland, New
York, NY (1988).

26. Mogensen, T., “Separating binding times in language specifications,” pp. 12-25 in Fourth
International Conference on Functional Programming and Computer Architecture, (Lon-
don, UK, Sept. 11-13, 1989), ACM Press, New York, NY (1989).

27. Ning, J.Q., Engberts, A., and Kozaczynski, W., “Automated support for legacy code
understanding,” Commun. of the ACM 37(5) pp. 50-57 (May 1994).

28. Ottenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software
development environment,” Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, (Pittsburgh,
PA, Apr. 23-25, 1984), ACM SIGPLAN Notices 19(5) pp. 177-184 (May 1984).

29. Pfeiffer, P. and Selke, R.P, “On the adequacy of dependence-based representations for
programs with heaps,” in Proceedings of the International Conference on Theoretical
Aspects of Computer Software (TACS ′91), (Sendai, Japan, September 1991), Lecture
Notes in Computer Science, Vol. 526, ed. T. Ito and A.R. Meyer,Springer-Verlag, New
York, NY (1991).

30. Ramalingam, G. and Reps, T., “Semantics of program representation graphs,” TR-900,
Computer Sciences Department, University of Wisconsin, Madison, WI (December
1989).

31. Reps, T. and Yang, W., “The semantics of program slicing and program integration,” pp.
360-374 in Proceedings of the Colloquium on Current Issues in Programming Languages,
(Barcelona, Spain, March 13-17, 1989), Lecture Notes in Computer Science, Vol. 352,
Springer-Verlag, New York, NY (1989).

32. Reps, T., “Shape analysis as a generalized path problem,” pp. 1-11 in Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Mani-
pulation (PEPM 95), (La Jolla, California, June 21-23, 1995), ACM, New York, NY
(1995).

33. Reynolds, J.C., “Automatic computation of data set definitions,” pp. 456-461 in Informa-
tion Processing 68: Proceedings of the IFIP Congress 68, North-Holland, New York, NY
(1968).

34. Romanenko, S., “Arity raiser and its use in program specialization,” pp. 341-360 in
Proceedings of the Third European Symposium on Programming, (Copenhagen, Denmark,
May 15-18, 1990), Lecture Notes in Computer Science, Vol. 432, ed. N. Jones,Springer-
Verlag, New York, NY (1990).



35. Selke, R.P, “A rewriting semantics for program dependence graphs,” pp. 12-24 in Confer-
ence Record of the Sixteenth ACM Symposium on Principles of Programming Languages,
(Austin, TX, Jan. 11-13, 1989), ACM, New York, NY (1989).

36. Sestoft, P., “Automatic call unfolding in a partial evaluator,” pp. 485-506 in Partial
Evaluation and Mixed Computation: Proceedings of the IFIP TC2 Workshop on Partial
Evaluation and Mixed Computation, (Gammel Avernaes, Denmark, October 18-24, 1987),
ed. D. Bjo| rner, A.P. Ershov, and N.D. Jones,North-Holland, New York, NY (1988).

37. Tip, F., “A survey of program slicing techniques,” Journal of Programming Languages
3 pp. 121-181 (1995).

38. Turchin, V.F., “The concept of a supercompiler,” ACM Trans. Program. Lang. Syst.
8(3) pp. 292-325 (July 1986).

39. Wadler, P. and Hughes, R.J.M., “Projections for strictness analysis,” pp. 385-407 in Third
Conference on Functional Programming and Computer Architecture, (Portland, OR, Sept.
14-16, 1987), Lecture Notes in Computer Science, Vol. 274, ed. G. Kahn,Springer-Verlag,
New York, NY (1987).

40. Wadler, P., “Deforestation: Transforming programs to eliminate trees,” Theoretical Com-
puter Science 73 pp. 231-248 (1990).

41. Weise, D., Crew, R.F., Ernst, M., and Steensgaard, B., “Value dependence graphs:
Representation without taxation,” pp. 297-310 in Conference Record of the Twenty-First
ACM Symposium on Principles of Programming Languages, (Portland, OR, Jan. 16-19,
1994), ACM, New York, NY (1994).

42. Weiser, M., “Reconstructing sequential behavior from parallel behavior projections,”
Information Processing Letters 17 pp. 129-135 (October 1983).

43. Weiser, M., “Program slicing,” IEEE Transactions on Software Engineering SE-10(4) pp.
352-357 (July 1984).


