
DIFC Programs by Automatic Instrumentation ∗

William R. Harris
Univ. of Wisconsin, Madison
Dept. of Computer Sciences
wrharris@cs.wisc.edu

Somesh Jha
Univ. of Wisconsin, Madison
Dept. of Computer Sciences

jha@cs.wisc.edu

Thomas Reps †
Univ. of Wisconsin, Madison
Dept. of Computer Sciences

reps@cs.wisc.edu

ABSTRACT
Decentralized information flow control (DIFC) operating sys-
tems provide applications with mechanisms for enforcing
information-flow policies for their data. However, signifi-
cant obstacles keep such operating systems from achieving
widespread adoption. One key obstacle is that DIFC operat-
ing systems provide only low-level mechanisms for allowing
application programmers to enforce their desired policies. It
can be difficult for the programmer to ensure that their use
of these mechanisms enforces their high-level policies, while
at the same time not breaking the underlying functionality
of the application. These are issues both for programmers
who would develop new applications for a DIFC operating
system and for programmers who would port existing appli-
cations to a DIFC operating system.

Our work significantly eases these tasks. We present an
automatic technique that takes as input a program with no
DIFC code, and two policies: one that specifies prohibited
information flows and one that specifies flows that must be
allowed. Our technique then produces a new version of the
input program that satisfies the two policies. To evaluate
our technique, we created an automatic tool, called Swim
(for Secure What I Mean), that implements the technique,
and applied it to a set of real-world programs and policies.
The results of our evaluation demonstrate that the technique
is sufficiently expressive to generate code for real-world poli-
cies, and that it can generate such code efficiently. It thus
represents a significant contribution towards developing sys-
tems with strong end-to-end information-flow guarantees.

†Also affiliated with GrammaTech, Inc.
∗Supported by NSF under grants CCF-0540955, CCF-
0810053, and CCF-0904371, by ONR under grant N00014-
09-1-0510, by ARL under grant W911NF-09-1-0413, and by
AFRL under grant FA9550-09-1-0279. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of NSF, ONR, ARL, and AFRL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

Categories and Subject Descriptors
D.2.4 [Software / Program Verification]: Formal meth-
ods; D.4.6 [Security and Protection]: Information flow
controls

General Terms
Languages, Security

1. INTRODUCTION
Decentralized information flow control (DIFC) operating

systems are a recent innovation aimed at providing applica-
tions with mechanisms for ensuring the secrecy and integrity
of their data [15, 24, 26]. To achieve this goal, a DIFC OS
associates with each process a label drawn from a partially-
ordered set. A process may send data to another process
only if the processes’ labels satisfy a certain ordering, i.e.,
label(sender) ⊆ label(receiver). A process may change its
own labels, subject to certain restrictions enforced by the
DIFC OS. Thus, processes express how they intend their in-
formation to be shared by attaching labels to OS objects,
and the DIFC OS respects these intentions by enforcing a
semantics of labels.

Previous work has concerned how to implement DIFC sys-
tems, in some cases atop standard operating systems. Fur-
thermore, some systems have formal proofs that if an appli-
cation running on the system correctly manipulates labels to
implement a policy, then the system will enforce the policy
[14]. However, for a user to have end-to-end assurance that
their application implements a high-level information-flow
policy, they must have assurance that the application in-
deed correctly manipulates labels. The label manipulations
allowed by DIFC systems are expressive but low-level, so
a high-level policy is semantically distant from a program’s
label manipulations.

For the remainder of this paper, we narrow our discus-
sion from general DIFC systems to Flume [15]. In principle,
our approach can be applied to arbitrary DIFC operating
systems. However, targeting Flume yields both theoretical
and practical benefits. From a theoretical standpoint, Flume
defines the semantics of manipulating labels in terms of set
operations, a well-understood formalism. From a practical
standpoint, Flume runs on Linux, giving our approach wide
applicability. The work in [15] gives a comprehensive de-
scription of the Flume system.

Flume’s label-manipulation primitives provide a low-level
“assembly language” for enforcing security policies. To il-
lustrate the gap between low-level label manipulations and

void ap_mpm_run()

A1: while (*)

A2: Conn c = get_request_connection();

A3: Conn c’ = c; c = fresh_connection();

A4: tag_t t = create_tag();

A5: spawn(’proxy’, [c, c’] , {t}, {t}, {t});

A6: spawn(’proxy’, [c’, c] , {t}, {t}, {t});

A7: spawn(‘worker’, [c], {t}, {t}, {});

void proxy(Conn c, Conn c’,

Label lab, Label pos_cap, Label neg_cap)

P1: while (*)

P2: expand_label(pos_cap);

P3: Buffer b = read(c);

P4: clear_label(neg_cap);

P5: write(c’, b);

Figure 1: An example derived from the Apache
multi-process module. Key: Typewriter typeface:
original code; underlined code: code for proxy
processes to mediate interprocess communication,
added manually; shaded code : label-manipulation
code, added automatically by Swim.

high-level policies, consider the problem of isolating Worker
processes in the server program shown in Fig. 1. Fig. 1 gives
a simplified excerpt from an Apache multi-process module
(MPM) [1]. For this discussion, suppose that the program
consists of all the non-shaded code (in particular, it includes
the underlined code). In this program, an MPM process ex-
ecutes the function ap_mpm_run, iterating through the loop
indefinitely (lines A1–A7). On each iteration of the loop,
the MPM waits for a new connection c that communicates
information for a service request (line A2). When the MPM
receives a connection, it spawns a Worker process to han-
dle the request sent over the connection (line A7). Along
with the Worker, the MPM process spawns two processes to
serve as proxies for when the Worker sends information to
the Requester (line A5) and receives information from the
Requester (line A6).

Now consider the high-level policy that the Worker pro-
cesses should be isolated from each other: no Worker process
should be able leak information to another Worker process
through a storage channel,1 even if both processes are com-
promised and acting in collusion. It is difficult to design a
server that upholds such a property: a Worker process may
be compromised through any of a multitude of vulnerabil-
ities, such as a stack-smashing attack. Once processes are
compromised, they can communicate through any of several
channels on the system, such as the file system.

However, the server can isolate Worker processes when ex-
ecuted on Flume. In particular, suppose that the server in
Fig. 1 is rewritten to include the shaded code, which makes
use of Flume label-manipulation operations. The label ma-
nipulations ensure process isolation as follows. As before, an
MPM process spawns a Worker process and two Proxy pro-
cesses for each request. In addition, at line A4, the MPM
process creates a fresh tag, and then initializes the label of
the next Worker process with the tag, but does not give the

1DIFC systems do not address timing channels.

Worker the capability to add or remove the tag from its la-
bel (line A7). The restriction on removing the tag is the key
to isolating each Worker process. It implies that the label
of each Worker now contains a distinct tag that the Worker
cannot remove. Because the Flume reference monitor in-
tercepts all communications between processes, and only al-
lows a communication to succeed if the label of the sending
process is a subset of the label of the receiving process, no
Worker can send data successfully to another Worker. Flume
associates other system objects, such as files, with tags as
well, so the processes cannot communicate through files ei-
ther.

However, while the label mechanisms provided by Flume
are powerful, their power can lead to unintended side effects.
In Fig. 1, the MPM process may not be able to alter the la-
bel of a process that issues service requests. If the MPM
gave each Worker a unique tag and manipulated labels in no
other way, then the label of each Worker would contain a
tag t, while the label of the process that issued the request
would not contain t. Consequently, the label of the Worker
would not be a subset of the label of the receiver, and the
Worker could not send information to the Requester. To re-
solve this, along with each Worker, the MPM process spawns
two processes to serve as proxies for when the Worker sends
information to (line A5) and receives information from (line
A6) the Requester. Let ProxyS be the process spawned in
line A5 to forward information from its associated Worker to
the service requester. The MPM gives to ProxyS the capa-
bility to add and remove from its label the tag t. To receive
data from the Worker, ProxyS expands its label to include
t; to forward the data to the requester, it clears its label to
be empty. Overall, the untrusted Worker is isolated, while
the small and trusted Proxy can communicate information
between Worker and Requester.

This example illustrates that labels are a powerful mech-
anism for enabling application programmers to enforce
information-flow policies. However, the example also illus-
trates that there is a significant gap between the high-level
policies of programmers, e.g., that no Worker should be able
to send information to another Worker, and the manipu-
lations of labels required to implement such a policy. It
also illustrates that these manipulations may be quite sub-
tle when balancing desired security goals with the required
functionality of an application. Currently, if programmers
are to develop applications for DIFC systems, they must re-
solve these issues manually. If they wish to instrument exist-
ing applications to run on DIFC systems, they must ensure
that their instrumentation implements their policy while not
breaking the functionality requirements of an existing, and
potentially large and complex, program. If their instrumen-
tations do break functionality, it can be extremely difficult
to discover this through testing: when a DIFC system blocks
a communication, it may not report the failure, because such
a report can leak information [15]. Label-manipulation code
could thus introduce a new class of security and functionality
bugs that could prove extremely difficult even to observe.

We have addressed this problem by creating an automatic
DIFC instrumenter, which produces programs that, by con-
struction, satisfy a high-level DIFC policy. Our DIFC in-
strumenter, called Swim (for Secure What I Mean), takes
as input a program with no DIFC code, and two high-level
declarative policies: one that specifies prohibited informa-
tion flows (e.g., “Workers should not communicate with each

Figure 2: Workflow of the DIFC instrumenter, Swim.

other.”), and one that specifies flows that must be allowed
(e.g., “A Worker should be able to communicate to a proxy.”).
When successful, Swim rewrites the input program with
label-manipulation code so that it enforces the input policy.
When unsuccessful, Swim produces a minimal subprogram
of the original program and a minimal subset of policies for
which it could not find an instrumentation. To do so, Swim
reduces the problem of correctly instrumenting the program
to a problem of solving a system of set constraints. It feeds
the resulting constraint system to an off-the-shelf Satisfiabil-
ity Modulo Theories (SMT) solver [7], which in our experi-
ments found solutions to the systems in seconds (see Tab. 4).
From a solution, Swim instruments the program. Thus the
programmer reasons at the policy level about information
flow, and leaves to Swim the task of correctly manipulating
labels. If the programmer provides as input to Swim the
program in Fig. 1 without the shaded code, and a formal
statement of a high-level policy similar to the one stated
above, Swim produces the entire program given in Fig. 1.

The remainder of this paper is organized as follows: §2
gives an overview of our technique by describing the steps
that it takes to instrument the example in Fig. 1. §3 formally
describes the technique. §4 reports our experience applying
the technique to real-world programs and information-flow
policies. §5 places our work in the context of other work on
DIFC systems and program synthesis. §6 concludes. Some
technical details are covered in the appendices of [10].

2. OVERVIEW
We now informally describe each step of the workflow of

Swim, using the example from Fig. 1. We first give a brief
overview of the Flume operating system. For a more com-
plete description, see [15].
Overview of Flume’s DIFC Primitives. Flume is im-
plemented as a reference monitor that runs as a user-level
process, but uses a Linux Security Module for system-call in-
terposition. Flume monitors Linux programs that have been
modified to make use of Flume’s DIFC primitives, which are
described below.

For each process, Flume maintains a secrecy label, an in-
tegrity label, and a capability set. (Swim currently only
supports secrecy labels and capability sets.)
• Tags and Labels. A tag is an atomic element created

by the monitor at the request of a process. A label is
a set of tags associated with an OS object.
• Capabilities. An OS object can only alter its label by

adding a tag t in its capability set marked as a positive
capability (t+), or by removing a tag t in its capability
set marked as a negative capability (t−).
• Channels. Processes are not allowed to create their

own file descriptors. Instead, a process asks Flume for

a new channel, and receives back a pair of endpoints.
Endpoints may be passed to other processes, but each
endpoint may be claimed by at most one process, after
which they are used like ordinary file descriptors.

The monitor forbids a process p with label lp to send data
through endpoint e with label le unless lp ⊆ le. Likewise,
the monitor forbids data from endpoint e′ to be received by
a process p′ unless le′ ⊆ lp′ . A Flume process may create
another process by invoking the spawn command. Spawn

takes as input (i) the path to the executable to be executed,
(ii) an ordered set of endpoints that the new process may
access from the beginning of execution, (iii) an initial label,
and (iv) an initial capability set, which must be a subset of
the capability set of the spawning process.

We now describe the approach employed by Swim by dis-
cussing each step of how Swim instruments the example from
Fig. 1. Swim’s workflow is depicted in Fig. 2.
Programs and Policies as Inputs. Swim takes two in-
puts: a C program and a policy. The C program does not
manipulate Flume labels. For the example in Fig. 1, Swim
receives the unshaded code (i.e., the version of the server
without the calls to create_tag(), expand_label(), and
clear_label()). Swim represents programs internally using
a dialect of Communicating Sequential Processes (CSP) [2]:
it translates the C program into a CSP program that mod-
els properties relevant to DIFC instrumentation, and then
analyzes the CSP program. We use CSP as an intermediate
representation because CSP is a natural formalism for rep-
resenting programs that involve an a priori unbounded set
of processes.

Exa. 1. The following are a representative sample of the
equations generated when Swim translates the unshaded code
from Fig. 1 to CSP:

A5 = A6 9 P1

P1 = P3

A6 = A7 9 P1

P3 = ?r → P5

init = A1 9R

A7 = A1 9W
P5 = !s→ P1

In these equations, each variable corresponds to a program
point in the C program, and each equation defines the be-
havior of the program at the corresponding point. The ex-
pressions on the right-hand sides of equations are referred
to as CSP process templates. The equation A5 = A6 9 P1

denotes that a process executing A5 can make a transition
that launches two processes, one executing A6 and the other
executing P1. The equation P3 =?r → P5 denotes that a
process executing P3 can receive a message from endpoint r
and then make a transition to P5. The definitions of other
process-template variables are similar.

The process-template variables R and W refer to Requester
and Worker processes, respectively. They are defined by other
CSP equations, which are not shown above.

Swim’s second input is a policy that specifies the desired
information flows. Policies are sets of declarative flow asser-
tions, which are of two forms. A flow assertion of the form
Secrecy(Source,Sink,Declass,Anc) specifies that any process
executing template Source must not be able to send informa-
tion to a process executing template Sink unless (i) the infor-
mation flows through a process executing template Declass,
or (ii) the Source and Sink processes were transitively cre-
ated by the same process executing template Anc. A flow
assertion of the form Prot(Source, Sink,Anc) specifies a pro-
tected flow: if a process executing template Source attempts

to send information to a process executing template Sink,
and both the Source and Sink processes were transitively
created by the same process executing template Anc, then
the send must be successful. Although policies are defined
over CSP programs, users may present policies in terms of
the original C program. The user marks key program points
with control-flow labels, and then constructs policies over
the control-flow labels instead of CSP process templates.
When Swim translates a C program to its CSP represen-
tation, for each program point marked with a control-flow
label, Swim names the template corresponding to the pro-
gram point with the text of the label. The policy originally
given for the C program is then interpreted for the resulting
CSP program.

Exa. 2. The policy for the server in Fig. 1 can be ex-
pressed as the set of flow assertions: Secrecy(W,W, {P1, P3,
P5}, A1), Prot(W,P3, A1), Prot(P5, R, init), where init is a
special process template that represents the root of the com-
putation. The assertion Secrecy(W,W, {P1, P3, P5}, A1) spec-
ifies that a Worker process, which executes template W , may
not send information to a different Worker process unless
(i) the information flows through a process that executes a
Proxy template P1, P3, or P5, or (ii) the workers are created
by the same MPM process that executed template A1. The
assertion Prot(W,P3, A1) specifies that a Worker process ex-
ecuting template W must be permitted to send information
to a process executing Proxy template P3 if the two processes
were created by the same MPM process executing template
A1. Similarly, the assertion Prot(P5, R, init) specifies that a
Proxy process executing P5 must be permitted to send data
to the Requester executing R.

In addition to flow assertions, Swim takes a set of rules
declaring which process templates denote processes that may
be compromised. For the example in Fig. 1, Swim takes
a rule declaring that any Worker process may be compro-
mised.2

From Programs and Policies to Instrumentation Con-
straints. Given a program and policy, Swim generates a
system of set constraints such that a solution to the con-
straints corresponds to an instrumentation of the program
that satisfies the policy. The constraint system must assert
that (i) the instrumented program uses the Flume API to
manipulate labels in a manner allowed by Flume, and (ii)
the instrumented program manipulates labels to satisfy all
flow assertions.

Each variable in the constraint system corresponds to a
label value for the set of all processes that execute a given
CSP template. Flume restricts how a process manipulates
its label in terms of the capabilities of the process. Swim
expresses this in the constraint system by generating, for
each CSP process template P , variables that represent the
set of tags in the label of a process executing P (labP), its
positive capability (posP), its negative capability (negP),
and the set of tags created when executing P (createsP).
2Swim does not attempt to model all possible ways in
which a process could be compromised. Instead, it gen-
erates “worst-case” constraints that assert that the process
always tries to send information with its lowest possible la-
bel, and receive information with its highest possible label.
Consequently, if a solution to the constraint system exists,
it guarantees that a compromised process acting in such
an “extremal” way will not be able to violate the desired
information-flow policy.

Some constraints in the system assert that each process’s
labels may only change in ways allowed by Flume. These
constraints assert that in each step of execution, a process’s
label may grow no larger than is allowed by its positive ca-
pability, and may shrink no smaller than is allowed by its
negative capability.

Exa. 3. To model how the label and capabilities of a pro-
cess may change in transitioning from executing template
A5 to template A6, Swim generates the following four con-
straints:

labA6 ⊆ labA5 ∪ posA6
labA6 ⊇ labA5 − negA6

posA6
⊆ posA5

∪ createsA6

negA6
⊆ negA5

∪ createsA6

Swim generates additional constraints are generated to en-
code that the instrumented program does not allow flows
that are specified by a Secrecy assertion, but allows all flows
specified in a Prot assertion.

Exa. 4. To enforce the flow assertion Secrecy(W,W, {P1,
P3, P5}, A1) for the server in Fig. 1, the constraints will
force the program to create a tag so that the undesired flows
are prohibited. (How this occurs will become clearer in Exa. 5.)
In §3, we define a set DistA1 of process templates such that
if a distinct tag is created each time a process executes the
template, then if two processes descend from distinct pro-
cesses that executed A1 and are marked with tags created at
the template, then the two processes will have distinct tags.
Swim uses this information to encode the secrecy assertion
as follows:

labW 6⊆

labW −
⋃

R∈DistA1

createsR

 ∪ ⋃
Q6∈{P1,P3,P5}

negQ.

Swim must guarantee that the flows described by the asser-
tions Prot(W,P3, A1) and Prot(P5, R, init) are permitted in
the instrumented program. In §3, we define a set ConstA1 of
process templates such that if a tag is created when the tem-
plate is executed, and two processes descend from the same
process that executed A1, and both processes are marked with
a tag created at the template, then the processes carry the
same tag. Swim uses this information to encode the two
Prot assertions as follows:

labW ⊆ labP3 ∩
⋃
Q∈ConstA1

createsQ

labP5 ⊆ labR ∩
⋃
Q∈Constinit

createsQ.

Instrumentation Constraints to DIFC Code. Solving
constraint systems created by the method described above is
an NP-complete problem. Intuitively, the complexity arises
because such a constraint system may contain both positive
and negative subset constraints and occurrences of set union.
However, we have shown that if the constraint system has
a solution, then it has a solution in which all variables have
a value with no more tags than the number of Secrecy as-
sertions in the policy [10, App. B]. Using this bound, Swim
translates the system of set constraints to a system of bit-
vector constraints such that the set-constraint system has a
solution if and only if the bit-vector system has a solution.
Bit-vector constraints can be solved efficiently in practice
by an off-the-shelf SMT solver, such as Yices [7], Z3 [17],
or STP [9]. Such solvers implement decision procedures for
decidable first-order theories, including the theory of bit vec-
tors.

If the solver determines that no solution exists for the bit-
vector constraints, then it produces an unsatisfiable core,
which is a minimal set of constraints that are unsatisfiable.
Swim determines the subprogram of the original program
and the subset of the flow assertions that contributed con-
straints to the unsatisfiable core. It reports to the user that
it may not be possible to instrument the program to satisfy
the policy, and as a programming aid, provides the subpro-
gram and policies that contributed to the unsatisfiable core.

On the other hand, if the SMT solver finds a solution to
the bit-vector constraints, then Swim translates this to a
solution for the system of set constraints. Using the solu-
tion to the set-constraint system, Swim then inserts DIFC
code into the original program so that the label values of all
processes over any execution of the program correspond to
the values in the constraint solution. By construction, the
resulting program satisfies the given information-flow policy.

Exa. 5. The policy in Exa. 2 has one Secrecy flow asser-
tion. Consequently, if the system of constraints generated for
the program in Fig. 1 and the policy in Exa. 2 has a solution,
then it has a solution over a set with one element. Swim thus
translates the system to an equisatisfiable bit-vector system
over a set with a single element, and feeds the bit-vector
system to an SMT solver. The solver determines that the
bit-vector system has a solution, which is partially displayed
below using set-values over the domain {τ}:

X labX posX negX createsX

A1 ∅ ∅ ∅ ∅
A5 ∅ {τ} {τ} {τ}
A6 ∅ {τ} {τ} ∅
A7 ∅ {τ} {τ} ∅
P1 {τ} {τ} {τ} ∅
P3 {τ} {τ} {τ} ∅
P5 ∅ {τ} {τ} ∅
W {τ} ∅ ∅ ∅
R ∅ ∅ ∅ ∅

Swim uses the solution to generate the DIFC code highlighted
in Fig. 1. In the solution, createsA5 = {τ}, so Swim in-
serts just before line A5 (i.e., at A4) a call to create a new
tag t. In the solution, labP1 = posP1

= negP1
= {τ}, so

Swim rewrites spawns of Proxy processes so that all Proxy
processes are initialized with t in their label, positive capa-
bility, and negative capability. In the solution, labP3 = {τ}
while labP5 = ∅, so Swim inserts code just before P5 (i.e., at
P4) to clear all members of the negative-capability set (i.e.,
t) from the label of the process. The final result is the full
program given in Fig. 1.

3. DIFC INSTRUMENTATION
We now discuss Swim in more detail. We first formally

describe the programs and policies that Swim takes as input,
and then describe each of the steps it takes to instrument a
program.

3.1 DIFC Programs
Swim analyzes programs in a variation of CSP that we

call CSPDIFC. Imperative programs are translated automat-
ically to CSPDIFC programs using a straightforward trans-
lation method spelled out in [10, App. I]. The syntax of

CSPDIFC is given in Fig. 3. A CSPDIFC program
−→
P is a set

Prog := PROCVAR1 = Proc1 . . .PROCVARn = Procn

Proc := SKIP

|PROCVAR

|EVENT→ PROCVAR

|PROCVAR1 2 PROCVAR2

|PROCVAR1 9 PROCVAR2

EVENT := ChangeLabel(LABEL,LABEL,LABEL)

| CREATEτ

|? PROC ID

|! PROC ID

Figure 3: CSPDIFC: a fragment of CSP used to model
the behavior of DIFC programs. Events in gray
are not contained in programs provided by the user.
They are only generated by Swim.

of equations, each of which binds a process template to a
process-template variable. Intuitively, a process template is
the “code” that a process may execute. For convenience, we

sometimes treat
−→
P as a function from template variables to

the templates to which they are bound.
The semantics of CSPDIFC follows that of standard CSP

[2], but is extended to handle labels. The state of a CSPDIFC

program is a set of processes. Processes are scheduled non-
deterministically to execute their next step of execution.
The program state binds each process to:

1. A process template, which defines the effect on the
program state of executing the next step of the process.

2. A label, positive capability, and negative capability,
which constrain how information flows to and from the
process.

3. A namespace of tags, which constrain what tags the
process may manipulate.

We give CSPDIFC a trace semantics, which associates to every

CSPDIFC program
−→
P the set of traces of events that

−→
P may

generate over its execution. Events consist of:
1. One process taking a step of execution.
2. One process spawning another process.
3. One process sending information to another.
4. One process receiving information from another.

Whenever a process p bound to template variable X takes
a step of execution, p generates an event STEP(X). p then
spawns a fresh process p′, generates an event SPAWNS(p, p′),
sets the labels of p′ to its own label values, sets the tag
namespace of p′ equal to its own, and halts. However, when−→
P (X) = ChangeLabel(L,M,N) → PROCVAR1 or

−→
P (X) =

CREATEτ → PROCVAR1, no events are generated in the
trace. This allows us to state desired properties of an instru-
mentation naturally using equality over traces (see §3.2.2).

Note that this definition of
−→
P is purely conceptual: pro-

grams produced by Swim do not generate fresh processes at
each step of execution.

When a process p takes a step of execution, it may have
further effects on the program state and event trace. These
effects are determined by the template to which p is bound.
The effects are as follows, according to the form of the tem-
plate:

• SKIP: p halts execution.
• PROCVAR: p initializes a fresh process p′ to execute

the template
−→
P (PROCVAR).

• PROCVAR12PROCVAR2: p chooses non-deterministically
to initialize p′ to execute either template PROCVAR1

or template PROCVAR2.
• PROCVAR1 9PROCVAR2: p spawns a fresh process p′,

which it initializes to execute template PROCVAR1,
and a second fresh process p′′, which it initializes to
execute template PROCVAR2.
• CREATEτ → PROCVAR1: p creates a new tag t, binds

it to the tag identifier τ in the tag namespace of p,
and adds t to both the positive and negative capabil-
ities of p′. Tag t is never bound to another identifier,
so at most one tag created at a given CREATE tem-
plate can ever be bound in the namespace of a process.
However, multiple tags created at a CREATE template
can be bound in the namespaces of multiple processes.
Furthermore, the set of tags created at such a template
over an execution may be unbounded.
• ChangeLabel(L,M,N) → PROCVAR1: L, M , and N

are sets of tag identifiers. p initializes p′ to execute
PROCVAR1, and attempts to initialize the label, posi-
tive capability, and negative capability of p′ to the tags
bound in the namespace of p to the identifiers in L, M ,
and N , respectively. Each initialization is only allowed
if it satisfies the conditions enforced by Flume: (1) the
label of p′ may be no larger (smaller) than the union
(difference) of the label of p and the positive (nega-
tive) capability of p, and (2) the positive (negative)
capability of p′ may be no larger than the union of the
positive (negative) capability of p and capabilities for
all tags created at p′.
• ! q → PROCVAR1: p attempts to send information to

process q. For simplicity, we assume that a process
may attempt to send information to any process, and
make a similar assumption for when p attempts to re-
ceive information. p generates an event p!q only if it
successfully sends information; that is, the label of p is
contained in the label of q. Process p then initializes
p′ to execute template PROCVAR1.
• ? q → PROCVAR1: p attempts to receive information

from q. p generates an event p?q only if it successfully
receives information; that is, the label of p contains
the label of q. Process p then initializes p′ to execute
template PROCVAR1.

Tr(
−→
P) denotes the set of all traces of events that program

−→
P may generate. A formal definition of Tr(

−→
P) is given in

[10, App. E].

3.2 DIFC Policies
Policies give a formal condition for when one program is

a correct instrumentation of another.

3.2.1 Syntax of DIFC Policies
A DIFC policy F = (V,S,R) contains two sets, S and
R, of flow assertions defined over a set V of template vari-
ables. S is a set of secrecy assertions, each of the form
Secrecy(Source, Sink, Declass, Anc), with Source, Sink, Anc ∈
V and Declass ⊆ V. R is a set of protection assertions, each
of the form Prot(Source, Sink, Anc), with Source, Sink,Anc ∈
V.

3.2.2 Semantics of DIFC Policies
The semantics of a policy F = (V,S,R) is defined by

a satisfaction relation
−→
P ′ |= (

−→
P ,F), which defines when a

program
−→
P ′ is a correct instrumentation of

−→
P according to

F . Program
−→
P ′ must satisfy three instrumentation condi-

tions: secrecy (
−→
P ′ |=S S), transparency (

−→
P ′ |=T (

−→
P ,R)),

and containment (
−→
P ′ |=C (

−→
P ,R)), which are defined below.

Secrecy.
If no execution of

−→
P ′ leaks information from a source to

a sink as defined by S, then we say that
−→
P ′ satisfies the

secrecy instrumentation condition induced by S. To state
this condition formally, we first define a set of formulas that
describe properties of a trace of execution T . For process
p and template P , let p ∈ P denote that p executes P in
its next step of execution. Let spawnedT (a, p) hold when
process a spawns process p over the execution of trace T :

spawnedT (a, p) ≡ ∃i. T [i] = SPAWN(a, p)

Let IsAnc(a, p, T) hold when process a is an ancestor of p
under the spawnedT relation:

IsAnc(a, p, T) ≡ TC(spawnedT)(a, p)

where TC denotes transitive closure. Let ShareAnc(p, q,Anc,
T) hold when processes p and q share an ancestor in Anc:

ShareAnc(p, q,Anc, T) ≡ ∃a ∈ Anc.

IsAnc(a, p, T) ∧ IsAnc(a, q, T)

Finally, let InfFlowD,T (p, q) hold when information is sent
and received directly from process p to process q over the
execution of trace T , where neither p or q execute a template
in D:

InfFlowD,T (p, q) ≡ ∃i < j. ((T [i] = p!q ∧ T [j] = q?p)

∨ spawnedT (p, q)) ∧ p, q 6∈ D
−→
P ′ satisfies the secrecy condition induced by Secrecy(

Source, Sink, Declass, Anc) ∈ S if for every execution of
−→
P ′,

a process p ∈ Source only sends information to a process
q ∈ Sink with the information flow avoiding all processes in
Declass if the endpoints p and q share an ancestor process

a ∈ Anc. Formally, for every trace T ∈ Tr(
−→
P ′), and every

p ∈ Source and q ∈ Sink, the following must hold:

TC(InfFlowDeclass,T)(p, q) =⇒ ShareAnc(p, q,Anc, T)

If the formula holds for every secrecy assertion in S, then−→
P ′ satisfies the secrecy instrumentation condition induced

by S, denoted by
−→
P ′ |=S S.

Transparency over protected flows.
If an execution of

−→
P performs only information flows that

are described by the set R, then this execution must be pos-

sible in
−→
P ′. We call this condition transparency. Formally,

let T ∈ Tr(
−→
P) be such that ProtTr(T,R) holds, where

ProtTr(T,R) ≡ ∀p,q.
InfFlow∅,T (p, q) =⇒
∃Prot(Source,Sink,Anc) ∈ R.
p ∈ Source ∧ q ∈ Sink
∧ShareAnc(p, q,Anc)

If for every such T , it is the case that T ∈ Tr(
−→
P ′), then

−→
P ′

satisfies the transparency condition induced by P and R,

denoted by
−→
P ′ |=T (P,R).

Trace containment for protected flows.
Finally, an instrumented program

−→
P ′ should not exhibit

any behaviors solely over flows protected by R that are not
possible in the input program P . We call this condition trace

containment. Formally, let T ∈ Tr(
−→
P ′). If ProtTr(T,R)

holds, then it must be the case that T ∈ Tr(
−→
P). If this

holds for every trace of T ∈ Tr(
−→
P ′), then

−→
P ′ satisfies the

containment condition induced by
−→
P and R, denoted by−→

P ′ |=C (
−→
P ,R).

Formal Problem Statement.
The goal of the Swim is thus to take as input a program−→

P , a DIFC policy F = (V,S,R), and produce a program
−→
P ′ such that

−→
P ′ |=S S,

−→
P ′ |=T (

−→
P ,R), and

−→
P ′ |=C (

−→
P ,R).

If
−→
P ′ satisfies all three conditions, then it is a correct instru-

mentation of
−→
P according to F , denoted by

−→
P ′ |= (

−→
P ,F).

3.3 From Programs and Policies to Instrumen-
tation Constraints

Swim takes as input a program
−→
P and policy F . To pro-

duce a program
−→
P ′ such that

−→
P ′ |= (

−→
P ,F), Swim generates

a system of set constraints such that a solution to the sys-

tem corresponds to
−→
P ′. The constraints generated ensure

two key properties of
−→
P : (1)

−→
P ′ only manipulates labels in

a manner allowed by the Flume reference monitor, and (2)

the values of labels of all processes in all executions of
−→
P ′

ensure that F is satisfied.

3.3.1 Constraint Variables and Their Domain
The constraint system is defined over a set of variables,

where each variable describes how a process should manipu-
late its label and capabilities when it executes a given tem-
plate. One natural candidate for the domain of such vari-
ables is a finite set of atomic elements, where each element
corresponds to a tag created by the program. However, if
Swim were to use such a domain, then it could not produce
a program that may create an unbounded set of tags over
its execution. Swim thus could not handle many real-world
programs and policies of interest, such as the example de-
scribed in §2. The domain of the constraint variables is thus
a finite set of atomic elements where each element corre-
sponds to a tag identifier bound at a template CREATEτ in
the instrumented program.

For each CSPDIFC template variable X in
−→
P , Swim gener-

ates four constraint variables: labX , posX , negX , createsX .
Let τ be a tag identifier. If in a constraint solution, τ ∈
createsX , then in

−→
P ′, the template P bound to X is rewrit-

ten to CREATEτ → P . If τ ∈ labX , then the label of process

p ∈ X executing
−→
P ′ contains a tag bound to τ . The anal-

ogous connection holds for variable posX and the positive
capability of p, and the variable negX and the negative ca-
pability of p.

Exa. 6. The constraint variables used by Swim are illus-
trated in Exa. 5. Consider the templates A5 and W . The
solution in Exa. 5 defines createsA5 = {τ}. Thus Swim

rewrites template A5 so that when a process executes A5, it
creates a tag and binds the tag to identifier τ . The solu-
tion defines labW = {τ}, posW = negW = ∅. Thus in the
instrumented program, the label of each Worker process con-
tains a tag bound to τ , but each Worker process cannot add
or remove such a tag from its label.

3.3.2 Generating Semantic Constraints
Swim must generate a system of constraints such that any

solution to the system results in DIFC code that performs
actions allowed by Flume. To do so, Swim constrains how a
process’s labels and capabilities may change over each step
of its execution.

For each equation that defines the CSPDIFC program, Swim
generates the set of constraints SemCtrs defined as follows:

SemCtrs(X = SKIP) = ∅
SemCtrs(X = Y) = StepCtrs(X,Y)

SemCtrs(X = EVENT→ Y) = StepCtrs(X,Y)

SemCtrs(X = Y 2 Z) = StepCtrs(X,Y)

∪ StepCtrs(X,Z)

SemCtrs(X = Y 9 Z) = StepCtrs(X,Y)

∪ StepCtrs(X,Z)

SemCtrs is defined by a function StepCtrs, which takes as
input two template variables X and Y . StepCtrs generates a
set of constraints that encode the relationship between the
labels of a process p ∈ X and the labels of process p′ ∈ Y
that p spawns in a step of execution. One set of constraints
in StepCtrs encodes that if a tag is bound to an identifier τ
and is in the label of p′, then the tag must be in the label of
p, or it must be in the positive capability of p′. Formally:

∀τ.τ ∈ labY =⇒ τ ∈ labX ∨ τ ∈ posY

Equivalently:

labY ⊆ labX ∪ posY

Additionally, if a tag is bound to τ in the label of p and is
not in the negative capability of p′, then the tag must be in
the label of p′. Formally:

∀τ.τ ∈ labX ∧ τ 6∈ negY =⇒ τ ∈ labY

Equivalently:

labY ⊇ labX − negY

The other constraints in StepCtrs encode that the capabili-
ties of p′ may only grow by the capabilities of tags that p′

creates. If p′ has a positive (negative) capability for a tag
bound to an identifier τ , then either p must have the positive
(negative) capability for the tag, or the tag must be created
and bound to τ at p′. Formally:

∀τ.τ ∈ posY =⇒ τ ∈ posX ∨ τ ∈ createsY

∧ τ ∈ negY =⇒ τ ∈ negX ∨ τ ∈ createsY

Equivalently:

posY ⊆ posX ∪ createsY

negY ⊆ negX ∪ createsY

Finally, Swim constrains that no tag identifier τ is bound at
multiple templates. Formally:

∀X,Y, τ. X 6= Y =⇒ τ 6∈ createsX ∩ createsY

Figure 4: The spawn graph of the server from Fig. 1.
The dotted and dashed paths denote process execu-
tions that invalidate init as a template to create tags
that isolate Workers.

Equivalently: ∧
X 6=Y ∈Vars(

−→
P)

createsX ∩ createsY = ∅

Swim conjoins these constraints with the constraints gener-

ated from applying SemCtrs to all equations in
−→
P to form

a system of constraints ϕSem. Any solution to ϕSem corre-
sponds to a program in which each process manipulates la-
bels as allowed by Flume.

3.3.3 Generating Policy Constraints
Swim must constrain that the instrumented program sat-

isfies the instrumentation conditions of §3.2.2. To do so,
Swim generates constraints for each flow assertion in the
policy.

First, suppose that Swim is given a secrecy assertion Secrecy(Source, Sink,Declass,Anc).
The assertion induces a secrecy instrumentation condition.
To instrument the program to respect this condition, Swim
must assert that, for processes p ∈ Source and q ∈ Sink that
do not share an ancestor in Anc, information should not flow
from p to q solely through processes that are not in Declass.

To describe how Swim asserts this, we consider exam-
ple executions that would violate the secrecy assertion. To
describe these executions, we use the spawn graph of a pro-
gram:

Def. 1. For a CSPDIFC program
−→
P , the spawn graph

of
−→
P is a graph that represents the “spawns” relation over

process templates. Formally, the spawn graph of
−→
P is G−→

P
=

(N,E), where for every template variable P , node nP ∈
N(G−→

P
), and (nP , nQ) ∈ E(G−→

P
) if and only if a process

p ∈ P may spawn process p′ ∈ Q.

The spawn graph of the program from Fig. 1 is given in
Fig. 4.

Exa. 7. Consider the server from Fig. 1 and the secrecy
assertion that no Workers executing W should be able to com-
municate information to each other unless the information
flows through a proxy: Secrecy(W,W, {P1, P3, P5}, A1). Sup-
pose that Swim generated no constraints to ensure that the
instrumented program followed this assertion. Swim might
then instrument the program to create no tags. One execu-
tion of the program could then create a Worker process p by
executing the series of templates init, A1, A2, A3, A5, A6,
A7, and W (the dotted path in Fig. 4), and create another
Worker process q by executing templates init, A1, A2, A3,
A5, A6, A7, A1, A2, A3, A5, A6, A7, and W (the dashed

path in Fig. 4). The label of p would then be a subset of the
label of q, and thus p could send information to q.

To guard against executions such as those in Exa. 7 for an as-
sertion Secrecy(Source, Sink,Declass,Anc), Swim could gen-
erate the constraint labSource 6⊆ labSink. However, this con-
straint may not allow Swim to find valid instrumentations
of the program in important cases.

Exa. 8. Suppose that for an assertion Secrecy(Source,
Sink, Declass, Anc), Swim generated the constraint labSource 6⊆
labSink. Then for the server of Fig. 1 and secrecy assertion
of Exa. 7, the resulting constraint, labW 6⊆ labW , is unsatis-
fiable, and Swim would fail to instrument the server. How-
ever, if Swim rewrote the server to create a tag each time
a process executed template A1, bind the tag to an identifier
τ , and place the tag in the label of the next Worker spawned,
then all Worker processes would be isolated.

By contrast, if Swim rewrote the server to create a tag
each time a process executed template init, bind the tag to an
identifier τ , and place the tag in the label of the next Worker
spawned, then there would be executions of the instrumented
program in which Worker processes were not isolated. For
example, the Workers described in Exa. 7 would have in their
labels the same tag bound to τ , and thus would be able to
communicate.

Thus there is a key distinction between templates A1 and
init: if p and q are distinct Worker processes, then they can-
not share the same tag created at A1. However, they can
share the same tag created at init.

Swim captures the distinction between A1 and init in Exa. 8
for a general secrecy assertion Secrecy(Source, Sink, Declass,
Anc) by constraining that there is a tag identifier τ ∈ labSource

such that τ 6∈ labSink or τ must be bound at a template in
DistAnc, where DistAnc is defined as follows:

Def. 2. Let P and Q be process templates. Q is distinct
for P , denoted by Q ∈ DistP , if and only if the following
holds. Let Q bind tags that it creates to a tag identifier τ ,
and let r, s be distinct processes with distinct ancestors in
P . If τ is bound to a tag t1 in the namespace of r and τ is
bound to a tag t2 in the namespace of s, then t1 6= t2.

To instrument a program to satisfy a secrecy assertion,
Swim could thus weaken the constraint labSource 6⊆ labSink

from above to labSource 6⊆ labSink −
⋃
Q∈DistAnc

createsQ. How-
ever, a program instrumented using such a constraint may
still allow flows from a process p ∈ Source to a process
q ∈ Sink not allowed by the assertion. The program could
do so by allowing processes not in Declass to receive infor-
mation from p, remove tags associated with the information,
and then send the information to q. To guard against this,
Swim strengthens the above constraint to:

labSource 6⊆

labSink −
⋃

Q∈DistAnc

createsQ

 ∪ ⋃
D 6∈Declass

negD

We prove in [10, App. F] that this constraint is sufficient to
ensure that the instrumented program satisfies the secrecy
assertion.

Now suppose that Swim is given a protection assertion
Prot(Source, Sink,Anc). The assertion induces transparency
and instrumentation conditions. To instrument the program
to respect these conditions, Swim must assert that whenever

a process p ∈ Source communicates data to a process q ∈
Sink where p and q share an ancestor process a ∈ Anc, then
the communication must be successful. To assert this, Swim
must ensure that every tag t in the label of p is also in the
label of q. We describe how Swim does so by considering
example executions that violate protection assertions.

Exa. 9. Consider the server from Fig. 1 and the protec-
tion assertion Prot(P5, R, init) that each Proxy executing P5

must be able to send information to the Requester executing
R. Suppose that Swim generated no constraints to ensure
that the program followed this assertion. Swim might then
instrument the program to bind a tag to an identifier τ at
template A1. One execution of the program could create a
Proxy process p by executing the series of templates init, A1,
A2, A3, A5, A6, P1, P3, and P5, and create a Requester
process q by executing the series of templates init and R.
Suppose that p had in its label the tag that was bound to τ
when its ancestor executed A1. Because no ancestor of q ex-
ecuted A1, q would not have a tag in its label bound to τ .
Thus the label of p would not be a subset of the label of q,
and p would fail to communicate to q.

Exa. 9 demonstrates that for assertion Prot(Source, Sink,
Anc), if a tag in the label of p ∈ Source is bound to an
identifier τ , then for p to send information to q ∈ Sink, there
must be a tag in the label of q that is bound to τ . This
is expressed as labSource ⊆ labSink. However, this constraint
is not sufficient to ensure that p and q communicate, as
demonstrated by the following example.

Exa. 10. Suppose that the server in Fig. 1 was instru-
mented to bind a tag to an identifier τ at A1, add this tag
to the next Proxy process, and add the tag to the label of the
Requester process executing R. Each Proxy process execut-
ing P3 would have a different ancestor that executed A1, and
thus each Proxy would have a different tag in its label. Al-
though labP3 = {τ} ⊆ {τ} = labR, because each tag bound to
τ in the label of each Proxy process executing P3 is distinct,
the label of the Requester process does not contain the label of
all processes executing P3. Thus communication from Proxy
processes to the Requester could fail.

On the other hand, suppose that the server was instru-
mented to bind a tag to τ at init, and add this tag to the label
of Proxy processes executing P3 and the Requester executing
R. Then the same tag would be in the labels of each Proxy
process and the Requester. The key distinction between A1

and init is that a Proxy and Requester may have distinct tags
created at A1, but cannot have distinct tags created at init.

Swim captures the distinction between init and A1 in Exa. 10
for a general assertion Prot(Source, Sink,Anc) by strengthen-
ing the above constraint that labSource ⊆ labSink. Swim addi-
tionally constrains that if a tag in the label of p ∈ Source
is bound to an identifier τ , then τ ∈ labSink and τ must be
bound at a template in ConstAnc, where ConstAnc is defined
as follows.

Def. 3. Let P,Q be process templates. Q is constant for
P , denoted Q ∈ ConstP , if and only if the following holds.
Let processes r and s share in common their most recent
ancestor in P , and let Q bind tags to a tag identifier τ . If τ
is bound to a tag t1 in the namespace of r, and τ is bound
to a tag t2 in the namespace of s, then t1 = t2.

For a protection assertion Prot(Source, Sink,Declass), the
conditions on each tag identifier τ are expressed formally
using ConstAnc as:

∀τ.τ ∈ labSource =⇒ τ ∈ labSink ∧ τ ∈
⋃

Q∈ConstAnc

createsQ

Equivalently:

labSource ⊆ labSink ∩
⋃

Q∈ConstAnc

createsQ

We prove in [10, App. F] that this constraint is sufficient to
ensure that the instrumented program satisfies the protec-
tion assertion.

The definitions of Dist and Const given in Defn. 2 and
Defn. 3 explain how the sets are used to instrument a pro-
gram, but they do not describe how the sets may be com-
puted. The sets are computed through a series of reachabil-
ity queries over the spawn graph of the program. For further
details, see [10, App. A].

A solution to the conjunction ϕPol of constraints gener-
ated for all flow assertions in a policy F corresponds to an
instrumentation that respects all assertions. A solution to
the conjunction of these constraints with the semantic con-
straints, ϕTot ≡ ϕSem ∧ ϕPol, thus corresponds to a program
that manipulates Flume labels legally to satisfy F .

3.4 Solving Instrumentation Constraints
After generating a system of constraints ϕTot as described

in §3.3, Swim must find a solution to ϕTot, and from the so-

lution instrument
−→
P . Unfortunately, such systems are com-

putationally difficult to solve in general; finding a solution
to ϕTot is NP-complete in the number of terms in ϕTot. We
give a proof of hardness in [10, App. G].

However, although such systems are hard to solve in gen-
eral, they can be solved efficiently in practice. Modern Sat-
isfiability Modulo Theory (SMT) solvers [7] can typically
solve large logical formulas very quickly. To apply an SMT
solver, Swim must translate ϕTot from a formula over a the-
ory of set constraints to a formula over a theory supported
by the solver, such as the theory of bit-vectors. To translate
ϕTot, Swim must derive for ϕTot a bound B such that if ϕTot

has a solution, then it has a solution in which the value of
each constraint variable contains at most B elements. Such
a bound B always exists, and is equal to the number of se-
crecy flow assertions. We prove the validity of this bound
and give the explicit rules for translating set constraints to
bit-vector constraints in [10, App. B].

Swim applies an SMT solver to the bit-vector translation
of the set-constraint system. If the SMT solver determines
that the formula is unsatisfiable, then it produces an unsat-
isfiable core of bit-vector constraints. The core is a subset
of the original constraint system that is unsatisfiable, and
does not strictly contain an unsatisfiable subset. Given such
a core, Swim computes the subprogram and flow assertions
that contributed constraints in the core, and presents these
to the user. If the SMT solver determines that the con-
straint system is satisfiable, then it produces a solution to
the system. Swim then rewrites the program so that the
label values of all processes that execute the instrumented
program correspond to the label values in the constraint so-
lution.

3.5 From Constraint Solutions to Instru-
mented Programs

For a program
−→
P and policy F , if Swim obtains a solu-

tion to the constraint system ϕTot described in §3.3.3, then

from this solution it rewrites
−→
P to a new program

−→
P ′ that

respects F . Each equation X = P in
−→
P is rewritten as

follows. If createsX contains a tag identifier τ , then Swim
rewrites P to CREATEt → P . Now, suppose that L, M ,
and N are the sets of tag identifiers in the constraint val-
ues for labX , posX , and negX . Then Swim rewrites P to
ChangeLabel(L,M,N) → P . Swim can reduce the number
of ChangeLabel templates generated by only generating such
a template when a label or capability changes from that of
a preceding P template in G−→

P
.

Swim is sound in the sense that if it produces an instru-
mented program, then the program satisfies the instrumen-
tation conditions of §3.2. However, it is not complete; e.g.,
to satisfy some programs and policies, it could be necessary
for different processes executing the same template to con-
tain tags created at different templates. This behavior is not
supported by Swim. However, our experiments, described in
§4, indicate that in practice, Swim can successfully instru-
ment real-world programs to handle real-world policies.

4. EXPERIMENTS
We evaluated the effectiveness of Swim by experiment-

ing with four programs. The experiments were designed to
determine whether, for real-world programs and policies,
• Swim is expressive: can its language of policies encode

real-world information-flow policies, and can Swim rewrite
real programs to satisfy such policies? We found that
each of the real-world policies could be encoded in the
language of Swim, and that Swim could find a correct
instrumentation of the program with minimal, if any,
manual edits of the program.
• Swim is efficient and scalable: can it instrument pro-

grams quickly enough to be used as a practical tool for
developing applications? We found that Swim could
instrument programs in seconds.

To examine these properties, we implemented Swim as an
automatic tool 3 and applied it to instrument the following
program modules:

1. The multi-process module of Apache [1].
2. The CGI and untrusted code launching modules of

FlumeWiki [15].
3. The scanner module of ClamAV [4].
4. The OpenVPN client [20].

For each program module, we chose an information-flow pol-
icy from the literature [15, 26], expressed the policy in terms
of the flow assertions described in §3.2.2, and then fed the
program and policy to the tool.

We implemented Swim using the CIL [19] program-analysis
infrastructure for C, and the Yices SMT solver [7]. The only
program annotations required by Swim are C labels (not
Flume labels) that map program points to variables used in
flow assertions. When successful, Swim outputs a C pro-
gram instrumented with calls to the Flume API such that
the program satisfies the input policy. We performed all ex-
periments using Swim on a machine with a 2.27 GHz 8-core
processor and 6 GB of memory, although Swim uses only a
single core.

3Available at http://cs.wisc.edu/∼wrharris/software/difc

We first describe our experience using Swim, and then
evaluate its performance.

Apache Multi-Process Module.
We applied Swim to the multi-process module of the Apache

web-server to automatically produce a version of Apache
that isolates Worker processes. A model of the Apache sys-
tem architecture, along with the desired policy, serves as the
example described in §2.

When we initially applied Swim, it determined that it
could not instrument the MPM to enforce the supplied pol-
icy, and produced a minimal failing sub-program and sub-
policy for diagnostic purposes. The fact that Swim could
not instrument the MPM without manual changes should
not be interpreted as a failure on the part of Swim. On
the contrary, the fact that Swim could not instrument the
program indicated that the program had to be restructured
to allow for a correct instrumentation. Moreover, while the
original MPM implementation of was approximately 15,000
lines, Swim produced a minimal failing sub-program of only
a few hundred lines. Inspecting this sub-program, it was sig-
nificantly easier to understand what manual edits that we
needed to perform to allow for an instrumentation. We man-
ually added the underlined code in Fig. 1 to spawn proxy
processes to mediate interprocess communication. We did
not add any code that manipulated Flume labels explicitly.
We then fed Swim the version of the MPM with proxies and
the original policy, and Swim instrumented it correctly.

FlumeWiki CGI and Untrusted Code Modules.
We applied Swim to FlumeWiki modules that launch pro-

cesses to service requests, producing a version of FlumeWiki
in which each process that services a request acts with ex-
actly the DIFC permissions of the user who makes the re-
quest. FlumeWiki [15] is based on the software package
MoinMoin Wiki [16], but has been extended to run on the
Flume operating system with enhanced security guarantees.
Similar to Apache, in FlumeWiki a launcher process receives
requests from users for generating CGI forms, running po-
tentially untrusted code, or interacting with the Wiki. The
launcher then spawns an untrusted Worker to service the re-
quest. However, whereas Apache should execute with no in-
formation flowing from one Worker to another, in FlumeWiki
each Worker should be able to access exactly the files that
can be accessed by the user who issued the request. To ex-
press this policy and instrument FlumeWiki to satisfy it, we
used policies defined over persistent principals (e.g. users).
The semantics of these policies and Swim’s technique for
generating code that satisfies them is analogous to how it
generates code to handle the policies of §3.2. We give further
details in [10, App. H]. We removed the existing DIFC code
from the modules of FlumeWiki that launch processes that
serve CGI forms or run untrusted code. We then applied
Swim to the uninstrumented program and policy. Swim in-
strumented the program correctly, with code that was simi-
lar to the original, manually written code.

ClamAV Virus Scanner Module.
We applied Swim to ClamAV to automatically produce a

virus scanner that is guaranteed not to leak sensitive data
over a network or other output device, even if it is compro-
mised. ClamAV is a virus-detection tool that periodically
scans the files of a user, checking for the presence of viruses

by comparing the files against a database of virus signatures.
To function correctly, ClamAV must be trusted to read the
sensitive files of a user, yet a user may want assurance that
even if a process running ClamAV is compromised, it will not
be able to send sensitive data over a network connection.

Inspired by [26], we modeled a system running ClamAV
using the “scanner” module of ClamAV, a file containing
sensitive user data, a file acting as a user TTY, a proxy
between the scanner and the TTY, a file acting as a virus
database, a file acting as a network connection, a process
acting as a daemon that updates the virus database, and
a process that spawns the scanner and update daemon and
may set the labels of all processes and files. We then wrote
a policy of nine flow assertions that specified that:
• The update daemon should always be able to read and

write to the network and virus database.
• The scanner should always be able to read the sensitive

user data and virus database.
• The scanner should never be able to send data directly

to the network or TTY device. However, it should
always be able to send data to the proxy, which should
always be able to communicate with the TTY device.

Swim automatically instrumented the model so that it sat-
isfies the policy. Although we only used Swim to instrument
one, arbitrarily chosen system configuration, because Swim
is able to instrument systems very quickly, it could easily be
used to reinstrument a system as the configuration of the
system changes.

OpenVPN.
We applied Swim to OpenVPN to automatically produce

a system that respects VPN isolation. OpenVPN is an open-
source VPN client. Because VPNs act as a bridge between
networks on both sides of a firewall, they represent a seri-
ous security risk [26]. A common desired policy for systems
running a VPN client is VPN isolation, which specifies that
information should be not able to flow from one side of a fire-
wall to the other unless it passes through the VPN client.

We modeled a system running OpenVPN using the code
of the entire OpenVPN program, files modeling networks on
opposing sides of a firewall (Network1 and Network2), and
a process (init) that launches OpenVPN and may alter the
labels of the networks. We expressed VPN isolation for this
model as a set of six flow assertions that specified that:
• Information should not flow between Network1 and

Network2 unless it flows through OpenVPN.
• OpenVPN should always be able to read to and write

from Network1 and Network2.
Swim automatically instrumented the model so that it sat-
isfies the policy. As in the case with ClamAV, we applied
Swim to one particular configuration of a system running
OpenVPN, but Swim is fast enough that it can easily be
reapplied to a system running OpenVPN as the system’s
configuration changes.

Our experience using Swim indicates that Swim is suffi-
ciently expressive to instrument real-world programs to sat-
isfy real-world policies. While the flow assertions presented
in §3.2 are simple to state, they can be combined to express
complex, realistic policies. While not all programs could be
instrumented to satisfy a desired policy without modifica-
tion, when an instrumentation does exist, Swim was able to
find it each time.

For each application, we empirically measured the perfor-

Program Name LoC Time (s) Num. Inst.

Apache (MPM) 15,409 2.302 49
FlumeWiki (CGI) 300 0.183 46
FlumeWiki (WC) 286 0.096 34
ClamAV (scanner) 10,919 1.374 117

OpenVPN 98,262 7.912 51

Table 1: Performance of Swim.

mance of Swim. Results are given in Tab. 4. Col. “LoC”
gives the number of lines of code in the program modules
given to Swim. Col. “Time (s)” gives the time in sec-
onds required for Swim to instrument the program. Col.
“Num. Inst.” gives the number of statements instrumented
by Swim. The results indicate that Swim is a practical tech-
nique: Swim is able to instrument large, real-world program
modules in seconds. Thus, it is fast enough even to be
integrated into the edit-compile-run cycle of the software-
development work cycle.

5. RELATED WORK
Multiple operating systems support DIFC, including As-

bestos [24], HiStar [26], and Flume [15]. These systems all
provide low-level mechanisms that allow an application pro-
grammer to implement an information-flow policy. Swim
complements these systems. By running program instru-
mented automatically by Swim on on top of a DIFC operat-
ing system, a user obtains greater assurance of the end-to-
end information-flow security of their application.

Our goals are shared by Efstathopoulos and Kohler [8],
who have also explored the idea of describing a policy as
declarations of allowed and prohibited information flows, for
the Asbestos DIFC system. However, their work appears to
have some significant limitations [8, Sec. 7] (emphasis ours):

. . . developers are expected to produce sensible
policy descriptions and our [instrumenter] is cur-
rently unable to identify the configurations that
are impossible to implement using IFC. We would
like to formalize the characteristics of policy de-
scriptions that cannot be mapped to valid (and
secure) label implementations so as to identify
such cases and handle them accordingly (e.g. pro-
duce helpful, diagnostic error messages).

Our work goes beyond that of Efstathopoulos and Kohler by
bringing more powerful formalisms to bear on the problem
– in particular,
• the use of a constraint solver to determine what labels

to use and where label-manipulation primitives should
be placed,
• unsatisfiability as a formal criterion for when programs

and policies are impossible to implement using only
DIFC primitives.

We apply these formalisms to yield multiple benefits. First,
from an unsatisfiable core of constraints, we can provide
help in diagnosing failures by exhibiting the subprogram of
the original program and the subset of the policy declara-
tions that contributed constraints to an unsatisfiable core.
Second, the technique of [8] relies on the “floating label” se-
mantics of Asbestos, in which communications can implicitly
change the labels of processes. The work presented in [14]
shows that a system with such a semantics enables high-

throughput leaks, while a system such as Flume, in which
labels are explicitly manipulated by each process, is provably
free of such leaks.

Harris et. al. [11] apply a model checker for safety prop-
erties of concurrent programs to determine if a fully instru-
mented DIFC application satisfies a high-level information
flow policy. The present paper describes how to instrument
DIFC code automatically, given only an uninstrumented
program and a policy. Such code is correct by construc-
tion. Krohn and Tromer [14] use CSP to reason about the
Flume OS, not applications running atop Flume.

Resin [25] is a language runtime that allows a program-
mer to specify dataflow assertions, which are checked over
the state of the associated data before the data is allowed to
be sent from one system object to another. Resin allows for
arbitrary code to be run on certain events, but it does not
attempt to provide guarantees that an application satisfies a
high-level policy. In comparison, our policy language is less
expressive, but the code generated by our approach is cor-
rect by construction. Additionally, DIFC systems provide
certain guarantees that Resin does not match [25].

Previous work describes techniques to automatically syn-
thesize programs from complete specifications of their be-
havior [6, 21, 22]. Like Swim, these techniques assume a
program skeleton and a specification of correctness, and then
use constraint solving to generate language constructs, yield-
ing a concrete implementation of the specification. How-
ever, these techniques synthesize single-process arithmetic
programs, while Swim rewrites programs that may execute
over an unbounded set of processes.

Several programming languages, such as Jif, provide type
systems based on security labels that allow the program-
mer to validate security properties of their code through
type-checking [18, 23]. Jif has been used to implement sev-
eral real-world applications with strong security guarantees
(e.g. [3, 5, 12]), but these programs are written from scratch
in Jif. Automatic techniques can partition a Jif web ap-
plication between its client and server [3]. Jif requires the
programmer to define a bounded set of principals, and anno-
tate which code objects should be able to read and write data
in terms of these principals. In contrast, Swim can reason
about policies that require an unbounded set of prinicpals
to have different access capabilities. Furthermore, Swim au-
tomatically infers the set of tags that represent principals,
along with inferring the code that manipulates these tags.

Aspect-oriented programming (AOP) breaks program logic
down into distinct parts (called concerns) [13]. AOP deals
with concerns (called crosscutting concerns) that span mul-
tiple abstractions in a program. Logging exemplifies a cross-
cutting concern because a logging strategy necessarily affects
every single logged part of the system. An aspect can alter
the behavior of the base code (the non-aspect part of a pro-
gram) by applying advice (additional behavior) at various
join points (points in a program) specified in a quantification
or query called a pointcut (that detects whether a given join
point matches). The process of adding additional behavior
to the base code is called aspect weaving.

At an abstract level, policy weaving is a special case of
aspect weaving for security. In this work, we describe tech-
niques that automate the entire process of aspect weaving for
security. Moreover, whereas conventional AOP systems use
syntactically-oriented mechanisms and allow aspect code to
be placed in a rather limited set of locations, our approach is

based on programming-language and policy semantics, and
allows policy-enforcement primitives to be placed in essen-
tially arbitrary locations. The policy-weaving techniques de-
scribed in the proposal can potentially be applied to other
crosscutting concerns, such as logging and failure handling,
to improve standard AOP.

6. CONCLUSION
Until now, the promise of DIFC operating systems has

been limited by the added burden that they place on appli-
cation programmers. We have presented a technique that
takes a DIFC-unaware application and an information-flow
policy and automatically instruments the application to sat-
isfy the policy, while respecting the functionality of the ap-
plication. Our technique thus greatly improves the appli-
cability of DIFC systems and the end-to-end reliability of
applications that run on such systems.

7. REFERENCES
[1] Apache. http://www.apache.org.

[2] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A
theory of communicating sequential processes. J.
ACM, 31(3):560–599, 1984.

[3] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. In SOSP, 2007.

[4] Clamav. http://www.clamav.net.

[5] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas:
Toward a secure voting system. SP, 2008.

[6] M. Colón. Schema-guided synthesis of imperative
programs by constraint solving. In LOPSTR, 2004.

[7] B. Dutertre and L. de Moura. The Yices SMT solver.
http://yices.csl.sri.com/tool-paper.pdf, August
2006.

[8] P. Efstathopoulos and E. Kohler. Manageable
fine-grained information flow. SIGOPS Oper. Syst.
Rev., 42(4):301–313, 2008.

[9] V. Ganesh and D. Dill. A decision procesure for
bit-vectors and arrays. In CAV, 2007.

[10] W. R. Harris, S. Jha, and T. Reps. DIFC Programs by
Automatic Instrumentation.
http://cs.wisc.edu/∼wrharris/publications/tr-
1673.pdf,
2010.

[11] W. R. Harris, N. A. Kidd, S. Chaki, S. Jha, and
T. Reps. Verifying information flow control over
unbounded processes. In FM, 2009.

[12] B. Hicks, K. Ahmadizadeh, and P. McDaniel.
Understanding practical application development in
security-typed languages. In ACSAC, 2006.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), 1997.

[14] M. Krohn and E. Tromer. Noninterference for a
practical DIFC-based operating system. In SP, 2009.

[15] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow
control for standard OS abstractions. In SOSP, 2007.

[16] MoinMoin. The MoinMoin wiki engine, Dec. 2006.

[17] L. D. Moura and N. Bjørner. Z3: An efficient SMT
solver. In In Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS),
2008.

[18] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In SOSP, 1997.

[19] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In CC,
2002.

[20] OpenVPN. http://www.openvpn.net.

[21] A. Solar-Lezama, R. Rabbah, R. Bod́ık, and
K. Ebcioğlu. Programming by sketching for
bit-streaming programs. SIGPLAN Not.,
40(6):281–294, 2005.

[22] S. Srivastava, S. Gulwani, and J. S. Foster. From
program verfication to program synthesis. In POPL,
2010.

[23] N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A
language for enforcing user-defined security policies. In
SP, 2008.

[24] S. Vandebogart, P. Efstathopoulos, E. Kohler,
M. Krohn, C. Frey, D. Ziegler, F. Kaashoek,
R. Morris, and D. Mazières. Labels and event
processes in the Asbestos operating system. ACM
Trans. Comput. Syst., 25(4):11, 2007.

[25] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow
assertions. In SOSP, 2009.

[26] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In OSDI, 2006.

