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Abstract. This paper discusses the obstacles that stand in the way
of doing a good job of machine-code analysis. Compared with analysis
of source code, the challenge is to drop all assumptions about having
certain kinds of information available (variables, control-flow graph, call-
graph, etc.) and also to address new kinds of behaviors (arithmetic on
addresses, jumps to “hidden” instructions starting at positions that are
out of registration with the instruction boundaries of a given reading of
an instruction stream, self-modifying code, etc.).
The paper describes some of the challenges that arise when analyzing

machine code, and what can be done about them. It also provides a
rationale for some of the design decisions made in the machine-code-
analysis tools that we have built over the past few years.

1 Introduction

This paper is intended to complement the papers that we have written over the
past few years on verifying safety properties of stripped executables. Elsewhere
(e.g., [9] and [3, §1]) we have argued at length the benefits of analyzing machine
code rather than source code. In brief,
– Machine code is an artifact that is closer to what actually executes on the

machine; models derived from machine code can be more accurate than mod-
els derived from source code (particularly because compilation, optimization,
and link-time transformation can change how the code behaves).

– When source code is compiled, the compiler and optimizer make certain
choices that eliminate some possible behaviors—hence there is sometimes
the opportunity to obtain more precise answers from machine-code analysis
than from source-code analysis.
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Rather than rehashing those arguments here, we take them as givens, and focus
instead on the obstacles standing in the way of doing a good job of machine-code
analysis. The paper explains some of the challenges that arise when analyzing
machine code, and what can be done about them. It thereby provides a rationale
for some of the design decisions made in the machine-code-analysis tools that we
have built over the past few years, in particular CodeSurfer/x86 [8, 3], DDA/x86
[7], and MCVETO [27]. Those three tools represent several firsts:
– CodeSurfer/x86 is the first program-slicing tool for machine code that is able

to track the flow of values through memory, and thus help with understand-
ing dependences transmitted via memory loads and stores.

– DDA/x86 is the first automatic program-verification tool that is able to
check whether a stripped executable—such as a device driver—conforms to
an API-usage rule (specified as a finite-state machine).

– MCVETO is the first automatic program-verification tool capable of verifying
(or detecting flaws in) self-modifying code.

As with any verification tool, each of these tools comes with a few caveats about
the class of programs to which it can be applied, which are due to certain design
decisions concerning the analysis techniques used.

The remainder of the paper is organized as follows: §2 describes some of the
challenges presented by machine-code analysis and verification, as well as differ-
ent aspects of the design space for analysis and verification tools. §3 discusses
one point in the design space: when the goal is to account only for behaviors
expected from a standard compilation model, but report evidence of possible
deviations from such behaviors. §4 discusses another point in the design space:
when the goal is to verify machine code, including accounting for deviant behav-
iors. §5 discusses how we have created a way to build “Yacc-like” tool generators
for machine-code analysis and verification tools (i.e., from a semantic specifica-
tion of a language L, we are able to create automatically an instantiation of a
given tool for L). §6 concerns related work. (Portions of the paper are based on
material published elsewhere, e.g., [7, 3, 21, 27].)

2 The Design Space for Machine-Code Analysis

Machine-code-analysis problems come in at least three varieties: (i) in addi-
tion to the executable, the program’s source code is also available; (ii) the
source code is unavailable, but the executable includes symbol-table/debugging
information (“unstripped executables”); (iii) the executable has no symbol-
table/debugging information (“stripped executables”). The appropriate variant
to work with depends on the intended application. Some analysis techniques
apply to multiple variants, but other techniques are severely hampered when
symbol-table/debugging information is absent. In our work, we have primarily
been concerned with the analysis of stripped executables, both because it is the
most challenging situation, and because it is what is needed in the common sit-
uation where one needs to install a device driver or commercial off-the-shelf ap-
plication delivered as stripped machine code. If an individual or company wishes
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to vet such programs for bugs, security vulnerabilities, or malicious code (e.g.,
back doors, time bombs, or logic bombs) analysis tools for stripped executables
are required.

Compared with source-code analysis, analysis of stripped executables
presents several problems. In particular, standard approaches to source-code
analysis assume that certain information is available—or at least obtainable by
separate analysis phases with limited interactions between phases, e.g.,

– a control-flow graph (CFG), or interprocedural CFG (ICFG)
– a call-graph
– a set of variables, split into disjoint sets of local and global variables
– a set of non-overlapping procedures
– type information
– points-to information or alias information

The availability of such information permits the use of techniques that can
greatly aid the analysis task. For instance, when one can assume that (i) the
program’s variables can be split into (a) global variables and (b) local variables
that are encapsulated in a conceptually protected environment, and (ii) a pro-
cedure’s return address is never corrupted, analyzers often tabulate and reuse
explicit summaries that characterize a procedure’s behavior.

Source-code-analysis tools sometimes also use questionable techniques, such
as interpreting operations in integer arithmetic, rather than bit-vector arith-
metic. They also usually make assumptions about the semantics that are not
true at the machine-code level—for instance, they usually assume that the area
of memory beyond the top-of-stack is not part of the execution state at all (i.e.,
they adopt the fiction that such memory does not exist).

In general, analysis of stripped executables presents many challenges and
difficulties, including

absence of information about variables: In stripped executables, no information
is provided about the program’s global and local variables.

a semantics based on a flat memory model: With machine code, there is no no-
tion of separate “protected” storage areas for the local variables of different
procedure invocations, nor any notion of protected fields of an activation
record. For instance, a procedure’s return address is stored on the stack; an
analyzer must prove that it is not corrupted, or discover what new values it
could have.

absence of type information: In particular, int-valued and address-valued quan-
tities are indistinguishable at runtime.

arithmetic on addresses is used extensively: Moreover, numeric and address-
dereference operations are inextricably intertwined, even during simple oper-
ations. For instance, consider the load of a local variable v, located at offset
-12 in the current activation record, into register eax: mov eax,[ebp-12].5

5 For readers who need a brief introduction to the 32-bit Intel x86 instruction set
(also called IA32), it has six 32-bit general-purpose registers (eax, ebx, ecx, edx,
esi, and edi), plus two additional registers: ebp, the frame pointer, and esp, the
stack pointer. By convention, register eax is used to pass back the return value from
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void foo() {
int arr[2], n;

void (*addr bar)() = bar;

if(MakeChoice() == 7) n = 4; // (*)

else n = 2;

for(int i = 0; i < n; i++)

arr[i] = (int)addr bar; // (**)

return; // can return to the entry of bar

}

void bar() {
ERR: return;

}

int main() {
foo();

return 0;

}

Fig. 1. A program that, on some executions, can modify the return address of foo

so that foo returns to the beginning of bar, thereby reaching ERR. (MakeChoice is a
primitive that returns a random 32-bit number.)

This instruction involves a numeric operation (ebp-12) to calculate an ad-
dress whose value is then dereferenced ([ebp-12]) to fetch the value of v,
after which the value is placed in eax.

instruction aliasing: Programs written in instruction sets with varying-length
instructions, such as x86, can have “hidden” instructions starting at positions
that are out of registration with the instruction boundaries of a given reading
of an instruction stream [22].

self-modifying code: With self-modifying code there is no fixed association be-
tween an address and the instruction at that address.

Because certain kinds of information ordinarily available during source-code
analysis (variables, control-flow graph, call-graph, etc.) are not available when
analyzing machine code, some standard techniques are precluded. For instance,
source-code analysis tools often use separate phases of (i) points-to/alias anal-
ysis (analysis of addresses) and (ii) analysis of arithmetic operations. Because
numeric and address-dereference operations are inextricably intertwined, as dis-
cussed above, only very imprecise information would result with the same orga-
nization of analysis phases.

Fig. 1 is an example that will be used to illustrate two points in the design
space of machine-code-analysis tools with respect to the question of corruption
of a procedure’s return address. When the program shown in Fig. 1 is compiled
with Visual Studio 2005, the return address is located two 4-byte words beyond
arr—in essence, at arr[3]. When MakeChoice returns 7 at line (*), n is set to
4, and thus in the loop arr[3] is set to the starting address of procedure bar.

a function call. In Intel assembly syntax, the movement of data is from right to left
(e.g., mov eax,ecx sets the value of eax to the value of ecx). Arithmetic and logi-
cal instructions are primarily two-address instructions (e.g., add eax,ecx performs
eax := eax + ecx). An operand in square brackets denotes a dereference (e.g., if
v is a local variable stored at offset -12 off the frame pointer, mov [ebp-12],ecx

performs v := ecx). Branching is carried out according to the values of condition
codes (“flags”) set by an earlier instruction. For instance, to branch to L1 when eax

and ebx are equal, one performs cmp eax,ebx, which sets ZF (the zero flag) to 1 iff
eax− ebx = 0. At a subsequent jump instruction jz L1, control is transferred to L1

if ZF = 1; otherwise, control falls through.
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Consequently, the execution of foo can modify foo’s return address so that foo
returns to the beginning of bar.

In general, tools that represent different points in the design space have
different answers to the question

What properties are checked, and what is expected of the analyzer after the
first anomalous action is detected?

First, consider the actions of a typical source-code analyzer, which would propa-
gate abstract states through an interprocedural control-flow graph (ICFG). The
call on foo in main causes it to begin analyzing foo. Once it is finished analyzing
foo, it would follow the “return-edge” in the ICFG back to the point in main

after the call on foo. However, a typical source-code analyzer does not repre-
sent the return address explicitly in the abstract state and relies on an unsound
assumption that the return address cannot be modified. The analyzer would
never analyze the path from main to foo to bar, and would thus miss one of the
program’s possible behaviors. The analyzer might report an array-out-of-bounds
error at line (**).

exit

addr_bar = bar

enter
foo exit

enter
main

return 0call foo

if M
akeC

hoice==7if 
M

ak
eC

ho
ic

e≠
7

n = 2 n = 4

i = 0

arr[i] = (int)addr_bar

if i < n

if  
i ≥

n

return

i++

exit
enter
bar

ERR:
return

Fig. 2. Conventional ICFG for the program shown in
Fig. 1. Note that the CFG for bar is disconnected from
the rest of the ICFG.

As explained in
more detail in §3, in
CodeSurfer/x86 and
DDA/x86, we were able
to make our analy-
sis problems resemble
standard source-code
analysis problems, to
a considerable degree.
One difference is that
in CodeSurfer/x86 and
DDA/x86 the return
address is represented
explicitly in the abstract
state. At a return, the
current (abstract) value
of the return address
is checked against the
expected value. If the
return address is not
guaranteed to have the
expected value, a report
is issued that the return address may have been modified. However, for reasons
explained in §3, the analyses used in CodeSurfer/x86 and DDA/x86 proceed
according to the original return address—i.e., by returning from foo to main.
Similar to source-code analyzers, they would not analyze the path from main to
foo to bar. Although they miss one of the program’s possible behaviors, they
report that there is possibly an anomalous overwrite of the return address.
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In contrast, MCVETO uses some techniques that permit it not only to detect
the presence of “deviant behaviors”, but also to explore them as well. The state-
space-exploration method used in MCVETO discovers that the execution of foo
can modify foo’s return address. It uses the modified return address to discover
that foo actually returns to the beginning of bar, and correctly reports that
ERR is reachable.

3 Accounting for Behaviors Expected from a Standard
Compilation Model

As illustrated in §2, CodeSurfer/x866 only follows behaviors expected from a
standard compilation model. It is prepared to detect and report deviations from
such behaviors, but not prepared to explore the consequences of deviant be-
havior. By a “standard compilation model”, we mean that the executable has
procedures, activation records (ARs), a global data region, and a free-storage
pool; might use virtual functions and DLLs; maintains a runtime stack; each
global variable resides at a fixed offset in memory; each local variable of a pro-
cedure f resides at a fixed offset in the ARs for f ; actual parameters of f are
pushed onto the stack by the caller so that the corresponding formal parameters
reside at fixed offsets in the ARs for f ; the program’s instructions occupy a fixed
area of memory, and are not self-modifying.

During the analyses performed by CodeSurfer/x86, these aspects of the pro-
gram are checked. When violations are detected, an error report is issued,
and the analysis proceeds. In doing so, however, we generally chose to have
CodeSurfer/x86’s analysis algorithms only explore behaviors that stay within
those of the desired execution model. For instance, as discussed in §2, if the
analysis discovers that the return address might be modified within a procedure,
CodeSurfer/x86 reports the potential violation, but proceeds without modifying
the control flow of the program. In the case of self-modifying code, either a write
into the code will be reported or a jump or call to data will be reported.

If the executable conforms to the standard compilation model,
CodeSurfer/x86 returns valid analysis results for it; if the executable does
not conform to the model, then one or more violations will be discovered, and
corresponding error reports will be issued; if the (human) analyst can determine
that the error report is indeed a false positive, then the analysis results are valid.
The advantages of this approach are three-fold: (i) it provides the ability to
analyze some aspects of programs that may deviate from the desired execution
model; (ii) it generates reports of possible deviations from the desired execution
model; (iii) it does not force the analyzer to explore all of the consequences of
each (apparent) deviation, which may be a false positive due to loss of precision
that occurs during static analysis. If a deviation is possible, then at least one
report will be a true positive: each possible first violation will be reported.

6 Henceforth, we will not refer to DDA/x86 explicitly. Essentially all of the observa-
tions made about CodeSurfer/x86 apply to DDA/x86 as well.
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Memory Model. Although in the concrete semantics of x86 machine code the
activation records for procedures, the heap, and the memory area for global data
are all part of one address space, for the purposes of analysis, CodeSurfer/x86
adopts an approach that is similar to that used in source-code analyzers: the
address space is treated as being separated into a set of disjoint areas, which
are referred to as memory-regions. Each memory-region represents a group of
locations that have similar runtime properties; in particular, the runtime loca-
tions that belong to the ARs of a given procedure belong to one memory-region.
Each (abstract) byte in a memory-region represents a set of concrete memory
locations. For a given program, there are three kinds of regions: (1) the global-
region, for memory locations that hold initialized and uninitialized global data,
(2) AR-regions, each of which contains the locations of the ARs of a particular
procedure, and (3) malloc-regions, each of which contains the locations allocated
at a particular malloc site [5].

All data objects, whether local, global, or in the heap, are treated in a fashion
similar to the way compilers arrange to access variables in local ARs, namely,
via an offset: an abstract address in a memory-region is represented by a pair:
(memory-region, offset). For an n-bit architecture, the size of each memory-
region in the abstract memory model is 2n. For each region, the range of offsets
within the memory-region is [−2n−1, 2n−1 − 1]. Offset 0 in an AR-region repre-
sents all concrete starting addresses of the ARs that the AR-region represents.
Offset 0 in a malloc-region represents all concrete starting addresses of the heap
blocks that the malloc-region represents. Offset 0 of the global-region repre-
sents the concrete address 0. Nothing is assumed about the relative positions of
memory-regions.

Analysis Algorithms. To a substantial degree, the analysis algorithms used in
CodeSurfer/x86 closely resemble standard source-code analyses, although con-
siderable work was necessary to map ideas from source-code analysis over to
machine-code analysis. One of the main themes of the work on CodeSurfer/x86
was how an analyzer can bootstrap itself from preliminary intermediate repre-
sentations (IRs) that record fairly basic information about the code of a stripped
executable to IRs on which it is possible to run analyses that resemble standard
source-code analyses. (See [3, §2.2,§4, and §5].)

The analyses used in CodeSurfer/x86 address the following problem:

Given a (possibly stripped) executable E, identify the procedures, data ob-
jects, types, and libraries that it uses, and,
– for each instruction I in E and its libraries,
– for each interprocedural calling context of I, and
– for each machine register and variable V in scope at I,

statically compute an accurate over-approximation to the set of values that
V may contain when I executes.

The work presented in our 2004 paper [4] provided a way to apply the tools of ab-
stract interpretation [12] to the problem of analyzing stripped executables (using
the memory model sketched above) to statically compute an over-approximation
at each program point to the set of values that a register or memory location
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could contain. We followed that work up with other techniques to complement
and enhance the approach [26, 19, 25, 5, 6, 2, 7]. That body of work resulted in a
method to recover a good approximation to an executable’s variables and dy-
namically allocated memory objects, and to track the flow of values through
them.
Caveats. Some of the limitations of CodeSurfer/x86 are due to the memory
model that it uses. For instance, the memory-region-based memory model inter-
feres with the ability to interpret masking operations applied to stack addresses.
Rather than having addr & MASK, one has (AR, offset) & MASK, which generally
results in > (i.e., any possible address) because nothing is known about the
possible addresses of the base of AR, and hence nothing is known about the
set of bit patterns that (AR, offset) represents. (Such masking operations are
sometimes introduced by gcc to enforce stack alignment.)

4 Verification in the Presence of Deviant Behaviors

MCVETO has pioneered some techniques that permit it to verify safety properties
of machine code, even if the program deviates from the behaviors expected from
a standard compilation model. Because the goal is to account for deviant behav-
iors, the situation is more challenging than the one discussed in §3. For instance,
in the case of self-modifying code, standard structures such as the ICFG and the
call-graph are not even well-defined. That is, as discussed in §2, standard ways
of interpreting the ICFG during analysis are not sound. One must look to other
abstractions of the program’s state space to accommodate such situations.

Our MCVETO tool addresses these issues by generalizing the source-code-
analysis technique of directed proof generation (DPG) [16]. Given a program P

and a particular control location target in P , DPG returns either an input for
which execution leads to target or a proof that target is unreachable (or DPG
does not terminate). DPG makes use of two approximations of P ’s state space:
– A set T of concrete traces, obtained by running P with specific inputs. T

underapproximates P ’s state space.
– A graph G, called the abstract graph, obtained from P via abstraction (and

abstraction refinement). G overapproximates P ’s state space.
The two abstractions are played off one another, using the basic step from di-
rected test generation [14] to determine whether it is possible to drive execution
down a new path to target:
– If G has no path from start to target, then DPG has proven that target is

unreachable, and G serves as the proof.
– If G has a path from start to target with a feasible prefix that has not been

explored before, DPG initiates a concrete execution to attempt to reach
target. Such a step augments the underapproximation T .

– If G has a path from start to target but the path has an infeasible prefix, DPG
refines the overapproximation by performing the node-splitting operation
shown in Fig. 3(a).
DPG is attractive for addressing the problem that we face, for two reasons.

First, it is able to account for a program’s deviant behaviors during the process
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Fig. 3. (a) The general refinement step used in DPG. Refinement predicate ρ ensures
that no execution can follow n

′ → m. (b) The initial abstract graph used in MCVETO.
(* is a wild-card symbol that matches all instructions.)

of building up the underapproximation of the program’s state space. Second, as
we discuss below, the overapproximation of the program’s state space can be
constructed without relying on an ICFG or call-graph being available.

What Must be Handled Differently in Machine-Code DPG? The ab-
stract graph used during DPG is an overapproximation of the program’s state
space. The versions of DPG used in SYNERGY [16], DASH [10], and SMASH [15]
all start with an ICFG, which, when working with stripped machine code, is
not only unavailable initially but may not even be well-defined. Nevertheless, for
machine code, one can still create an over-approximation of the state space, as
long as one makes a few adjustments to the basic elements of DPG.

1. The system needs to treat the value of the program counter (PC) as data so
that predicates can refer to the value of the PC.

2. The system needs to learn the over-approximation starting with a cruder
over-approximation than an ICFG. In particular, MCVETO starts from the
initial abstraction shown in Fig. 3(b), which only has two abstract states,
defined by the predicates “PC = target” and “PC 6= target”. The abstraction
is gradually refined as more of the program is exercised.

3. To handle self-modifying code, a predicate that labels an abstract state may
hold a constraint that specifies what instruction is decoded from memory,
starting at the address held by the PC.

4. In addition to refinements of the abstract graph performed by the step shown
in Fig. 3(a), the abstract graph is also refined each time a concrete execu-
tion fails to reach target. These refinements are inspired, in part, by the
trace-refinement technique of Heizmann et al. [17]. The abstract graph is
considered to be an automaton (e.g., s is a non-final state in Fig. 3(b),
whereas target t is a final state). A concrete execution trace τ that reaches
target is minimal if no proper prefix of τ reaches target. Each concrete exe-
cution trace that fails to reach target is generalized to create an automaton
(or “folded trace”) that accepts an overapproximation of the set of minimal
concrete execution traces that reach target. The automaton is intersected
with the current abstract graph to create the next version of the abstract
graph.

The approach adopted by MCVETO has a number of advantages. First, it al-
lows MCVETO to build a sound overapproximation of the program’s state space
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exit

addr_bar = bar

enter
foo exit

enter
main

return 0call foo

if MakeChoice==7

if 
M
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n = 2

i = 0

arr[i] = (int)addr_bar

if i < n

if  
i ≥

n

return

i++

TS

*

addr_bar = bar

enter
foo exit

enter
main

call foo

if M
akeC

hoice==7

if M
akeChoice≠

7

n = 4

i = 0

arr[i] = (int)addr_bar

if i < n

if  
i ≥

n

return

i++

enter
bar

ERR:
return

TS

*

(a) (b)

Fig. 4. Automata created by generalizing two execution traces. Each automaton con-
tains an accepting state, called TS (for “target surrogate”). TS is accepting because it
may represent target, as well as all non-target locations not visited by the trace.

on-the-fly, performing disassembly during state-space exploration, but never on
more than one instruction at a time and without relying on a static split be-
tween code vs. data. In particular, MCVETO does not have to be prepared to
disassemble collections of nested branches, loops, procedures, or the whole pro-
gram all at once, which is what can confuse conventional disassemblers [22].
Second, because the abstraction of the program’s state space is built entirely
on-the-fly, it allows MCVETO to analyze programs with instruction aliasing.
Third, it permits MCVETO to be able to verify (or detect flaws in) self-modifying
code. With self-modifying code there is no fixed association between an address
and the instruction at that address. However, by labeling each abstract state
with a predicate that refers to the address held by the PC, as well as a pred-
icate that specifies what instruction is decoded from memory, starting at the
address held by the PC, the abstract graph can capture relationships on an
address, the instruction at that address, and the states that can arise for that
〈address, instruction〉 combination. A sound overapproximation of the program’s
state space is created automatically by MCVETO’s two mechanisms for refining
the abstract graph. Fourth, trace generalization allows eliminating families of
infeasible traces. Compared to prior techniques that also have this ability [11,
17], the technique involves no calls on an SMT solver, and avoids the potentially
expensive step of automaton complementation (see [27, §3.1]).

Returning to the example from Figs. 1 and 2 of a procedure that can corrupt
its return address, Fig. 4(a) shows the automaton obtained via trace generaliza-
tion of the execution trace most likely to be performed during the initial execu-
tion. The directed-test-generation step then forces execution down the branch
for MakeChoice()==7. In that execution, foo returns to the beginning of bar,
from which ERR is reachable. (Fig. 4(b) shows the automaton that would be
obtained via trace generalization from the second execution trace.)
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Fig. 5 shows a program that makes use of instruction aliasing. At line (**),
when the instruction is read at the second byte (i.e., starting at L1+1), it be-
comes L1+1: push 4; call eax. ERR is unreachable because when the branch
condition if(n==1) is evaluated, n always has the value 5: 1 from the initializa-
tion in line (*) plus 4 from the value of eax added in line (***), which is the
return value from the hidden call to foo at line (**).

MCVETO builds an abstract graph based on the path

n=1; mov eax,0; L1: mov edx,0xd0ff046a; add n,eax; cmp eax,4; jz L2; mov

eax,foo; lea ebx,L1+1; jmp ebx; L1+1: push 4; call eax; return a; add

n,eax; cmp eax,4; jz L2; L2:; if(n==1); return 0

It then does a series of refinements of the abstract graph that culminate in a
version in which there is no path from the beginning of the graph to ERR.

int foo(int a) { return a; }

int main() {
int n = 1; (*)

asm {
mov eax, 0;

L1: mov edx, 0xd0ff046a; // (**)

add n, eax; // (***)

cmp eax, 4;

jz L2;

mov eax, foo;

lea ebx, L1+1;

jmp ebx;

L2: }
if(n == 1)

ERR:; // Unreachable

return 0;

}

Fig. 5. A program that illustrates in-
struction aliasing. At line (**), when the
instruction is read at the second byte, it
becomes L1+1: push 4; call eax.

Discovering Candidate Invariants.

To improve convergence, we introduced
speculative trace refinement, which en-
hances the methods that MCVETO uses
to refine the abstract graph. Speculative
trace refinement was motivated by the
observation that DPG is able to avoid
exhaustive loop unrolling if it discov-
ers the right loop invariant. It involves
first discovering invariants that hold for
nodes of folded traces; the invariants
are then incorporated into the abstract
graph via automaton intersection. The
basic idea is to apply dataflow analy-
sis to a graph obtained from a folded
trace to obtain invariants for its states.
In the broader context of the full pro-
gram, these are only candidate invari-
ants. They are introduced into the ab-
stract graph in the hope that they are
also invariants of the full program. The
recovery of invariants is similar in spirit to the computation of invariants from
traces in Daikon [13], but in MCVETO they are computed ex post facto by
dataflow analysis on a folded trace. Although the technique causes the abstract
graph to be refined speculatively, the abstract graph is a sound overapproxima-
tion of the program’s state space at all times.

We take this technique one step further for cases when proxies for program
variables are needed in an analysis (e.g., affine-relation analysis [23]). Because no
information is available about a program’s global and local variables in stripped
executables, we perform aggregate-structure identification [24] on a concrete
trace to obtain a set of inferred memory variables. Because an analysis may
not account for the full effects of indirect memory references on the inferred
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variables, to incorporate a discovered candidate invariant ϕ for node n into a
folded trace safely, we split n on ϕ and ¬ϕ.
Caveats. MCVETO actually uses nested-word automata [1] rather than finite-
state automata to represent the abstract graph and the folded traces that rep-
resent generalizations of execution traces. MCVETO makes the assumption that
each call instruction represents a procedure call, and each ret instruction rep-
resents a return from a procedure call. This decision was motivated by the desire
to have a DPG-based algorithm for verifying machine code that took advantage
of the fact that most programs are well-behaved in most execution contexts. The
consequence of this decision is that because MCVETO has some expectations on
the behaviors of the program, for it to prove that target is unreachable it must
also prove that the program cannot deviate from the set of expected behaviors
(see [27, §3.5]). If a deviant behavior is discovered, it is reported and MCVETO

terminates its search.

5 Automatic Tool Generation

Although CodeSurfer/x86 was based on analysis methods that are, in principle,
language-independent, the original implementation was tied to the x86 instruc-
tion set. That situation is fairly typical of much work on program analysis:
although the techniques described in the literature are, in principle, language-
independent, implementations are often tied to one specific language. Retar-
geting them to another language can be an expensive and error-prone process.
For machine-code analyses, having a language-dependent implementation is even
worse than for source-code analyses because of the size and complexity of instruc-
tion sets. Because of instruction-set evolution over time (and the desire to have
backward compatibility as word size increased from 8 bits to 64 bits), instruction
sets such as the x86 instruction set have several hundred kinds of instructions.
Some instruction sets also have special features not found in other instruction
sets. To address the problem of supporting multiple instruction sets, another
aspect of our work on machine-code analysis has been to develop a meta-tool,
or tool-generator, called TSL [21] (for Transformer Specification Language), to
help in the creation of tools for analyzing machine code.

A tool generator (or tool-component generator) such as YACC [18] takes a
declarative description of some desired behavior and automatically generates an
implementation of a component that behaves in the desired way. Often the gen-
erated component consists of generated tables and code, plus some unchanging
driver code that is used in each generated tool component. The advantage of a
tool generator is that it creates correct-by-construction implementations.

For machine-code analysis, the desired components each consist of a suitable
abstract interpretation of the instruction set, together with some kind of anal-
ysis driver (a solver for finding the fixed-point of a set of dataflow equations,
a symbolic evaluator for performing symbolic execution, etc.). TSL is a system
that takes a description of the concrete semantics of an instruction set, a descrip-
tion of an abstract interpretation, and creates an implementation of an abstract
interpreter for the given instruction set.
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TSL : concrete semantics × abstract domain → abstract semantics.

In that sense, TSL is a tool generator that, for a fixed instruction-set semantics,
automatically creates different abstract interpreters for the instruction set.

An instruction set’s concrete semantics is specified in TSL’s input language,
which is a strongly typed, first-order functional language with a datatype-
definition mechanism for defining recursive datatypes, plus deconstruction by
means of pattern matching. Writing a TSL specification for an instruction set is
similar to writing an interpreter in first-order ML. For instance, the specification
of an instruction set’s concrete semantics is written as a TSL function

state interpInstr(instruction I, state S) {...};

where instruction and state are user-defined datatypes that represent the in-
structions and the semantic states, respectively.

TSL’s input language provides a fixed set of base-types; a fixed set of arith-
metic, bitwise, relational, and logical operators; and a facility for defining map-
types. The meanings of the input-language constructs can be redefined by sup-
plying alternative interpretations of them. When semantic reinterpretation is
performed in this way—namely, on the operations of the input-language—it
is independent of any given instruction set. Consequently, once a reinterpreta-
tion has been defined that reinterprets TSL in a manner appropriate for some
state-space-exploration method, the same reinterpretation can be applied to each
instruction set whose semantics has been specified in TSL.

The reinterpretation mechanism allows TSL to be used to implement tool-
component generators and tool generators. Each implementation of an analysis
component’s driver (e.g., fixed-point-finding solver, symbolic executor) serves as
the unchanging driver for use in different instantiations of the analysis compo-
nent for different instruction sets. The TSL language becomes the specification
language for retargeting that analysis component for different instruction sets:

analyzer generator = abstract-semantics generator + analysis driver.

For tools like CodeSurfer/x86 and MCVETO, which incorporate multiple analysis
components, we thereby obtain YACC-like tool generators for such tools:

concrete semantics of L → Tool/L.

Moreover, because all analysis components are generated from a single specifica-
tion of the instruction set’s concrete semantics, the generated implementations
of the analysis components are guaranteed to be mutually consistent (and also to
be consistent with an instruction-set emulator that is generated from the same
specification of the concrete semantics).

As an example of the kind of leverage that TSL provides, the most recent
incarnation of CodeSurfer/x86—a revised version whose analysis components
are implemented via TSL—uses eight separate reinterpretations generated from
the TSL specification of the x86 instruction set. The x86 version of MCVETO uses
three additional reinterpretations [20] generated from the same TSL specification.
Discussion. MCVETO does not model all aspects of a machine-code program.
For instance, it does not model timing-related behavior, the hardware caches, the
Interrupt Descriptor Table (necessary for modeling interrupt-handler dispatch),
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etc. However, the use of TSL allows additional aspects to be added to the concrete
operational semantics, independently from MCVETO’s DPG algorithms. For ex-
ample, although our current TSL description of the x86 instruction set does not
model the Interrupt Descriptor Table, that is only a shortcoming of the current
description and not of MCVETO’s DPG algorithms. If the TSL description of
the x86 instruction set were augmented to incorporate the Interrupt Descriptor
Table in the semantics, the YACC-like tool-generation capabilities would allow
easy regeneration of augmented versions of the emulator and symbolic-analysis
components used in MCVETO’s DPG algorithm.

Moreover, the use of TSL aids the process of augmenting a system like
MCVETO with non-standard semantic instrumentation that allows checking for
policy violations. For instance, MCVETO currently uses a non-standard instru-
mented semantics in which the standard instruction-set semantics is augmented
with an auxiliary stack [27, §3.5]. Initially, the auxiliary stack is empty; at each
call instruction, a copy of the return address pushed on the processor stack is
also pushed on the auxiliary stack; at each ret instruction, the auxiliary stack
is checked to make sure that it is non-empty and that the address popped from
the processor stack matches the address popped from the auxiliary stack.

6 Related Work

Machine-code analysis has been gaining increased attention, and by now there
is a considerable literature on static, dynamic, and symbolic analysis of machine
code. It includes such topics as platforms and infrastructure for performing anal-
ysis, improved methods to create CFGs, suitable abstract domains for dataflow
analysis of machine code, applications in software engineering and program un-
derstanding, verification of safety properties, testing (including discovery of se-
curity vulnerabilities), malware analysis, type inference, analysis of cache behav-
ior, proof-carrying code, relating source code to the resulting compiled code, and
low-level models of the semantics of high-level code. Space limitations preclude
a detailed discussion of related work in this paper. An in-depth discussion of
work related to CodeSurfer/x86 can be found in [3].
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