
Low-Level Library Analysis and Summarization⋆

Denis Gopan1 and Thomas Reps1,2

1 University of Wisconsin
2 GrammaTech, Inc.

{gopan,reps}@cs.wisc.edu

Abstract. Programs typically make extensive use of libraries, including dynamically linked
libraries, which are often not available in source-code form, and hence not analyzable by
tools that work at source level (i.e., that analyze intermediate representations created from
source code). A common approach is to writelibrary modelsby hand. A library model is a
collection of function stubs and variable declarations that capture some aspect of the library
code’s behavior. Because these are hand-crafted, they are likely to contain errors, which
may cause an analysis to return incorrect results.

This paper presents a method to construct summary information for a library function
automatically by analyzing its low-level implementation (i.e., the library’s binary).

1 Introduction

Static program analysis works best when it operates on an entire program. In practice,
however, this is rarely possible. For the sake of maintainability and quicker development
times, software is kept modular with large parts of the program hidden in libraries.
Often, commercial off-the-shelf (COTS) modules are used. The source code for COTS
components and libraries (such as the Windows dynamically linked libraries) is not
usually available.

In practice, the following techniques are used to deal with library functions:

– stop at library calls: this approach reduces analysis coverage and leads to incom-
plete error detection;

– treat library calls as identity transformers: this approach is generally unsound;
furthermore, this approach is imprecise because the analysis models a semantics
that is different from that of the program;

– define transformers for selected library calls:this approach is not extensible:
new transformers must be hardcoded into the analyzer to handle additional calls;

– use hand-written source-code stubs that emulate some aspects of library code:
while this approach is both sound and extensible, the process of crafting stubs is
usually time-consuming and error-prone.

In this paper, we describe a static-analysis tool that automatically constructs sum-
maries for library functions by analyzing their low-level implementation (i.e., binary
code). A library function’s summary consists of a set oferror triggersand a set ofsum-
mary transformers. Error triggers are assertions over the program state that,if satisfied
at the call site of the function, indicate a possibility of program failure during the func-
tion’s invocation. Summary transformers specify how the program state is affected by
the function call: they are expressed astransfer relations, i.e., the relations that hold
among the values of global variables and function parametersbeforeandafter the call.

⋆ Supported by ONR under grant N00014-01-1-0796 and by NSF under grants CCF-0540955
and CCF-0524051.

To use the function summaries, a client analysis must approximate the set of pro-
gram states that reach the call site of a library function. The analysis should report an
error if the approximation contains states that satisfy an assertion that corresponds to
some error trigger. Summary transformers are applied as follows: the “before” values of
global variables and function parameters are restricted tothose that reach the call site;
the restricted transfer relation is projected onto the “after” values to yield an approxi-
mation for the set of program states at the function’s returnpoint.

Our work makes the following contributions:
– It provides a way to create library summaries automatically, which frees tool devel-

opers from having to create models for standard libraries byhand.
– The library summaries obtained have applications in both verification tools and

bug-finding/security-vulnerability-detection tools, and thus help in both kinds of
code-quality endeavors.

– The library summaries obtained by our tool could be used in client analysis tools
that work on either source code or low-level code (i.e., assembly code, object code,
or binary executable code). In particular, they satisfy theneeds of many source-code
bug-finding analyses, which propagate symbolic information through the program,
including the amount of memory allocated for a buffer, the offset of a pointer into
a corresponding buffer, the length of a string, etc. [25, 10].

– In some cases, the tool might allow static analysis to be carried out more efficiently.
That is, the application/library division provides a natural modularity border that
could be exploited for program-analysis purposes: typically, many applications link
against the same library; summarizing the functions in thatlibrary obviates the need
to reanalyze the library code for each application, which could improve analysis
efficiency. (See§5 for a discussion of other work that has had the same motivation.)
During development, application code is changed more frequently than library code.

Because an application can be analyzed repeatedly against the same set of library sum-
maries, it is possible to recoup the cost of applying more sophisticated analyses, such
as polyhedral analysis [8], for library summarization.

Some may argue against our choice of analyzing the low-levelimplementation of
library functions: programs link against any possible implementation of the library, pos-
sibly across different platforms. Thus, it would be desirable to verify programs against
more abstract function summaries derived, for instance, from library specifications. Be-
low, we list some of the reasons why we believe that constructing library functions from
low-level implementations deserves attention.

– Formal library specifications are hard to get hold of, while alow-level implemen-
tation for each supported platform is readily available.

– Even if formal specification is available, there is no easy way to verify that a par-
ticular library implementation conforms to the specification.

– The analysis of an actual library implementation may uncover bugs and undesirable
features in the library itself. For instance, while summarizing memory-management
functions, we discovered that thelibc implementation that came with Microsoft
Developer Studio 6 assumes that the direction flag, the x86 flag that specifies the
direction for string operations, is set tofalseon entry to the library. This can be a
security vulnerability if an adversary could control the value of the direction flag
prior to a subsequent call tomemcpy.

2

The remainder of the paper is organized as follows:§2 provides an overview of our
goals, methods, and results obtained.§3 discusses the individual steps used to gener-
ate summary information for a library function.§4 summarizes two case studies.§5
discusses related work.

2 Overview

We use the functionmemset as the running example for this paper. The function is
declared as follows:

void * memset (void * ptr, int value, size t num);

Its invocation sets the firstnumbytes of the block of memory pointed to byptr to the
specified value (interpreted as an unsigned char). The valueof ptr is returned.

In this paper, we address two types of memory-safety errors:buffer overruns and
buffer underruns. Typically, analyses that target these types of errors propagate alloca-
tion bounds for each pointer. There are many ways in which this can be done. We use the
following model. Two auxiliary integer variables are associated with each pointer vari-
able:allocf is the number of bytes that can be safely accessed “ahead” of the address
stored in the pointer variable,allocb is the number of bytes that can be safely accessed
“behind” the address stored in the pointer variable. We believe that this scheme can
be easily interfaced with other choices for representing allocation bounds. We use dot
notation to refer to allocation bounds of a pointer variable, e.g.,ptr.allocf .

Analysis goals.The function summary specifies how to transform the program state at
the call site of the function to the program state at its return site. Also, it specifies condi-
tions that, if satisfied at the call site, indicate that a run-time error is possible during the
function call. Intuitively, we expect the summary transformer for thememset function
to look like this (for the moment, we defer dealing with memory locations overwritten
by memsetto §3.2):

ret = ptr ∧ ret.allocf = ptr.allocf ∧ ret.allocb = ptr.allocb, (1)

whereret denotes the value that is returned by the function. We expectthe sufficient
condition for the buffer overflow to look like this:

num ≥ 1 ∧ ptr.allocf ≤ num− 1. (2)

The goal of our analysis is to construct such summaries automatically.

Analysis overview.Fig. 1 shows the disassembly ofmemset from the C library that
is bundled with Visual C++.3 Observe that there are no explicit variables in the code;
instead, offsets from the stack register (esp) are used to access parameter values. Also,
there is no type information, and thus it is not obvious whichregisters hold memory
addresses and which do not. Logical instructions and shifts, which are hard to model
numerically, are used extensively. Rather than addressingall these challenges at once,
the analysis constructs the summary of a function in severalphases.

3 We used Microsoft Visual Studio 6.0, Professional Edition,Releasebuild.

3

00401070 mov edx, dword ptr [esp + 12] edx← count

00401074 mov ecx, dword ptr [esp + 4] ecx← ptr

00401078 test edx, edx
0040107A jz 004010C3 if(edx = 0) goto004010C3
0040107C xor eax, eax eax← 0
0040107E mov al, byte ptr [esp + 8] al← (char)value

00401082 push edi
00401083 mov edi, ecx edi← ecx

00401085 cmp edx, 4
00401088 jb 004010B7 if(edx < 4) goto004010B7
0040108A neg ecx ecx← −ecx

0040108C and ecx, 3 ecx← ecx & 3
0040108F jz 00401099 if(ecx = 0) goto 00401099
00401091 sub edx, ecx edx← edx− ecx

00401093 mov byte ptr [edi], al ∗edi← al

00401095 inc edi edi← edi + 1
00401096 dec ecx ecx← ecx− 1
00401097 jnz 00401093 if(ecx 6= 0) goto 00401093
00401099 mov ecx, eax ecx← eax

0040109B shl eax, 8 eax← eax << 8
0040109E add eax, ecx eax← eax + ecx

004010A0 mov ecx, eax ecx← eax

004010A2 shl eax, 10h eax← eax << 16
004010A5 add eax, ecx eax← eax + ecx

004010A7 mov ecx, edx ecx← edx

004010A9 and edx, 3 edx← edx & 3
004010AC shr ecx, 2 ecx← ecx >> 2
004010AF jz 004010B7 if(ecx = 0) goto 004010B7
004010B1 rep stosd while(ecx 6= 0) { ∗edi← eax; edi++; ecx--; }
004010B3 test edx, edx
004010B5 jz 004010BD if(edx = 0) goto004010BD
004010B7 mov byte ptr [edi], al ∗edi← al

004010B9 inc edi edi← edi + 1
004010BA dec edx edx← edx− 1
004010BB jnz 004010B7 if(edx 6= 0) goto004010B7
004010BD mov eax, dword ptr [esp + 8] eax← ptr

004010C1 pop edi
004010C2 retn return
004010C3 mov eax, dword ptr [esp + 4] eax← ptr

004010C7 retn return

Fig. 1.The disassembly ofmemset. The rightmost column shows the semantics of each instruc-
tion using a C-like notation.

Intermediate Representation (IR) recovery.First,value-set analysis (VSA)[1, 2] is per-
formed on the disassembled code to discover low-level information: variables that are
accessed by each instruction, parameter-passing details,and, for each program point,
an overapproximation of the values held in the registers, flags, and memory locations at
that point. Also, VSA resolves the targets of indirect control transfers.

In x86 executables, parameters are typically passed via thestack. The registeresp
points to the top of the stack and is implicitly updated by thepush and thepop instruc-
tions. VSA identifies numeric properties of the values stored in esp and maps offsets
fromesp to the corresponding parameters. To see that this process isnot trivial, observe
that different offsets map to the same parameter at addresses 0x4010BDand0x4010C3:
at 0x4010BDan extra 4 bytes are used to account for the push ofedi at0x401082.

Numeric Program Generation.VSA results are used to generate a numeric program that
captures the behavior of the library function. The primary challenge that is addressed

4

in this phase is to translate non-numeric instructions, such as bitwise operations and
shifts, into a program that numeric analysis is able to analyze. Bitwise operations are
used extensively in practice to perform certain computations because they are typically
more efficient in terms of CPU cycles than corresponding numeric instructions. The
ubiquitous example is the use ofxor instruction to initialize a register to zero. In Fig. 1,
thexor at 0x40107Cis used in this way.

The generation phase also introduces the auxiliary variables that store allocation
bounds for pointer variables. A simple type analysis is performed to identify variables
and registers that may hold addresses. For each instructionthat performs address arith-
metic, additional statements that update corresponding allocation bounds are generated.
Also, for each instruction that dereferences an address, a set of numeric assertions are
generated to ensure that memory safety is not violated by theoperation. The assertions
divert program control to a set oferror program points.

Numeric Analysis and Summary Construction.The generated numeric program is fed
into an off-the-shelf numeric analyzer. We use a numeric analysis that, instead of ap-
proximating sets of reachable program states, approximates program transfer functions.
That is, for each program point, the analysis computes a function that maps an approx-
imation for the set of initial states at the entry of the program to an approximation for
the set of states that arise at that program point. The numeric-analysis results are used
to generate a set of error triggers and a set of summary transformers for the library
function. The transfer functions computed for program points corresponding to the re-
turn instructions form a set of summary transformers for thefunction. Error triggers
are constructed by projecting transfer functions computedfor the set of error program
points onto their domains.

The summary obtained formemset. Memset uses two loops and a “rep stosd”
instruction, which invokes a hardware-supported loop. The“rep stosd” instruction
at 0x4010B1is the workhorse; it performs the bulk of the work by copying the value in
eax (which is initialized in lines0x40107C–0x40107Eand0x401099–0x4010A5to con-
tain four copies of the low byte ofmemset’s value parameter) into successive 4-byte-
aligned memory locations. The loops at0x401093–0x401097and 0x4010B7–0x4010BB
handle any non-4-byte-aligned prefix and suffix. If the totalnumber of bytes to be ini-
tialized is less than 4, control is transfered directly to the loop at0x4010B7.

The application of our technique to the code in Fig. 1 yields exactly the summary
transformer we conjectured in Eqn. (1). The situation with error triggers is slightly
more complicated. First, observe that there are three places in the code where the buffer
is accessed: at addresses0x401093, 0x4010B1, and0x4010B7. Each access produces a
separate error trigger:

0x401093: num ≥ 4 ∧ ptr.allocf ≤ 2
0x4010B1: num ≥ 4 ∧ ptr.allocf ≤ num− 1
0x4010B7: num ≥ 1 ∧ ptr.allocf ≤ num− 1

Note that the first trigger is stronger than the one conjectured in Eqn. (2): it gives a
constant bound onallocf ; furthermore, the bound is less than3, which is the smallest
bound implied by the conjectured trigger. The issue is that the instruction at0x401093
accesses at most three bytes. In caseptr.allocf is equal to3, memset will generate a

5

memset(ptr, value, num)
00401070 edx← count;
00401074 ecx← ptr; ecx.allocf ← ptr.allocf ; ecx.allocb ← ptr.allocb;
00401078-7A if(edx = 0) gotoL5;
0040107C-82 ...
00401083 edi← ecx; edi.allocf ← ecx.allocf ; edi.allocb ← ecx.allocb;
00401088 if(edx < 4) gotoL3;
0040108A ecx← −ecx;
0040108C ecx←?; assume(0 ≤ ecx ≤ 3);
0040108F if(ecx = 0) gotoL2;
00401091 edx← edx− ecx;
00401093 L1: assert(edi.allocf >= 1); assert(edi.allocb >= 0);
00401095 edi← edi + 1; edi.allocf ← edi.allocf − 1; edi.allocb ← edi.allocb + 1;
00401096 ecx← ecx− 1;
00401097 if(ecx 6= 0) gotoL1;
00401099-A5 L2: ...
004010A7 edx.rem4 =?; edx.quot4 =?;

assume(0 ≤ edx.rem4 ≤ 3); assume(edx = 4× edx.quot4 + edx.rem4);
ecx← edx; ecx.quot4 ← edx.quot4; ecx.rem4 = edx.rem4;

004010A9 edx← edx.rem4;
004010AC ecx← ecx.quot4;
004010AF if(ecx = 0) gotoL3;
004010B1 assert(edi.allocf >= 4× ecx); assert(edi.allocb >= 0);

edi← edi + 4× ecx;
edi.allocf ← edi.allocf − 4× ecx; edi.allocb ← edi.allocb + 4× ecx;

004010B3-B5 if(edx = 0) gotoL4;
004010B7 L3: assert(edi.allocf >= 1); assert(edi.allocb >= 0);
004010B9 edi← edi + 1; edi.allocf ← edi.allocf − 1; edi.allocb ← edi.allocb + 1;
004010BA edx← edx− 1
004010BB if(edx 6= 0) gotoL3;
004010BD L4: eax← ptr; eax.allocf = ptr.allocf ; eax.allocb ← ptr.allocb;
004010C2 return eax, eax.allocf , eax.allocb;
004010C3 L5: eax← ptr; eax.allocf = ptr.allocf ; eax.allocb ← ptr.allocb;
004010C7 return eax, eax.allocf , eax.allocb;

Fig. 2. The numeric program generated for the code in Fig. 1; parts ofthe program that are not
relevant for the summary construction are omitted.

buffer overrun at one of the other memory accesses. The othertwo triggers are similar
to the trigger conjectured in Eqn. (2) and differ only in the value ofnum.

3 Library Code Analysis

3.1 Intermediate Representation Recovery

The IR-recovery phase recovers intermediate representations from the library’s binary
that are similar to those that would be available had one started from source code. For
this phase, we use the CodeSurfer/x86 analyzer that was developed jointly by Wiscon-
sin and GrammaTech, Inc. This tool recovers IRs that represent: control-flow graphs
(CFGs), with indirect jumps resolved; a call graph, with indirect calls resolved; infor-
mation about the program’s variables; possible values of pointer variables; sets of used,
killed, and possibly-killed variables for each CFG node; and data dependences. The
techniques employed by CodeSurfer/x86 do not rely on debugging information being

6

present, but can use available debugging information (e.g., Windows .pdb files) if di-
rected to do so.

The analyses used in CodeSurfer/x86 (see [1, 2]) are a great deal more ambitious
than even relatively sophisticated disassemblers, such asIDAPro [15]. At the technical
level, they address the following problem:Given a (possibly stripped) executableE
(i.e., with all debugging information removed), identify the procedures, data objects,
types, and libraries that it uses, and, for each instructionI in E and its libraries, for
each interprocedural calling context ofI, and for each machine register and variable
V , statically compute an accurate over-approximation to theset of values thatV may
contain whenI executes.
Variable and Type Discovery. One of the major stumbling blocks in analyzing exe-
cutables is the difficulty of recovering information about variables and types, especially
for aggregates (i.e., structures and arrays).

When debugging information is absent, an executable’s dataobjects are not easily
identifiable. Consider, for instance, a data dependence from statementa to statementb
that is transmitted by write/read accesses on some variablex. When performing source-
code analysis, the programmer-defined variables provide uswith convenient compart-
ments for tracking such data manipulations. A dependence analyzer must show that
a definesx, b usesx, and there is anx-def-free path froma to b. However, in exe-
cutables, memory is accessed either directly—by specifying an absolute address—or
indirectly—through an address expression of the form “[base + index× scale + off-
set]”, where baseand indexare registers andscaleandoffsetare integer constants. It
is not clear from such expressions what the natural compartments are that should be
used for analysis. Because, executables do not haveintrinsic entities that can be used
for analysis (analogous to source-level variables), a crucial step in IR recovery is to
identify variable-like entities.

The variable and type-discovery phase of CodeSurfer/x86 [2], recovers information
about variables that are allocated globally, locally (i.e., on the run-time stack), and dy-
namically (i.e., from the heap). An iterative strategy is used; with each round of the
analysis—consisting of aggregate structure identification (ASI) [19, 2] and value-set
analysis (VSA) [1, 2]—the notion of the program’s variablesand types is refined. The
net result is that CodeSurfer/x86 recovers a set of proxies for variables, calleda-locs(for
“abstract locations”). The a-locs are the basic variables used in the method described
below.

3.2 Key Concepts of Numeric Program Generation

The generation of a numeric program is the central piece of our work. We strive as much
as possible to generate a sound representation of the binarycode.4 The target language
is very simple: it supports assignments, assumes, asserts,if-statements, and gotos. The
expression “?” selects a value non-deterministically. Thecondition “*” transfers control
non-deterministically.
Translating x86 instructions. Due to space constraints, we only describe several trans-
lation issues that are particularly challenging. The numeric instructions, such asmov,
add, sub, lea, etc., are directly translated into the corresponding numeric statements:

4 Currently, we assume that numeric values are not bounded. Inthe future, we hope to add
support for bounded arithmetic.

7

e.g., the instruction “sub edx,ecx” at 0x401091in Fig. 1 is translated into numeric
statementedx← edx− ecx.

The bitwise operations and shifts typically cannot be precisely converted into a sin-
gle numeric statement, and thus pose a greater challenge. Several numeric statements,
including ifs and assumes, may be required to translate eachof these instructions. At
first we were tempted to design universal translations that would work equally well
for all possible contexts in which the instruction occurs. In the end, however, we no-
ticed that these instructions, when used for numeric computations, are only used in
a few very specific ways. For instance, bitwise-and is often used to compute the re-
mainder from dividing a variable by a power of two. The instruction “and ecx,3” at
0x40108Cin Fig. 1 is used to computeecx mod 4. The translation treats these special
cases with precision; other cases are treated imprecisely,but soundly. The instruction
“and op1, op2” is translated into “op1 ← ?; assume(0 ≤ op1 ≤ op2);” if op2 is an
immediate operand that has a positive value; otherwise, it is translated into “op1 ← ?;”.
Recovering conditions from the branch instructions. An important part of numeric
program generation is the recovery of conditional expressions. In the x86 architecture,
several instructions must be executed in sequence to perform a conditional control trans-
fer. The execution of most x86 instructions affects the set of flags maintained by the
processor. The flags include thezero flag, which is set if the result of the currently
executing instruction is zero, thesign flag, which is set if the result is negative, and
many others. Also, the x86 architecture provides a number ofcontrol-transfer instruc-
tions each of which performs a jump if the flags are set in a specific way. Technically,
the flag-setting instruction and the corresponding jump instructions do not have to be
adjacent and can, in fact, be separated by a set of instructions that do not affect the flags
(such asmov instruction.

We symbolically propagate the expressions that affect flagsto the jump instructions
that use them. Consider the following sequences of instructions and their translation:

cmp eax,ebx
mov ecx,edx ecx← edx;
jz label if(eax− ebx = 0) goto label;

We derive a flag-setting expressioneax − ebx from thecmp instruction; themov in-
struction does not affect any flags; thejz instruction transfers control tolabel if the
zero flag is set, which can only happen if the expressioneax − ebx is equal to zero.
Note, however, that if the intervening move affects one of the operands in the flag-
setting expression, that expression is no longer availableat the jump instruction. This
can be circumvented with the use of a temporary variable:

cmp eax,ebx
mov eax,edx temp← eax− ebx; eax← edx;
jz label if(temp = 0) goto label;

Allocation bounds. As we mentioned above, each variablevar that may contain a
memory address is associated with two auxiliary variables that specify allocation bounds
for that address. The auxiliary variablevar.allocf specifies the number of bytes follow-
ing the address that can be safely accessed; the auxiliary variablevar.allocb specifies
the number of bytes preceding the address that can be safely accessed. These auxiliary
variables are central to our technique: the purpose of numeric analysis is to find con-

8

straints on the auxiliary variables that are associated with the function’s parameters and
return value. These constraints form the bulk of the function summaries.

The updates for the auxiliary variables are generated in a straightforward way. That
is, the translation of themov instruction contains assignments for the corresponding
allocation bounds. The instructionsadd, sub, inc, dec, andlea, as well as the x86
string-manipulation instructions, are translated into affine transformations on variables
and their associated allocation bounds.

The auxiliary variables are used to generate memory-safetychecks: checks for
buffer overflows and checks for buffer underflows. We generate these checks for each
indirect memory access that does not access the current stack frame. As mentioned in
§3.1, general indirect memory accesses in x86 instructions have the form “[base + in-
dex× scale + offset]”, whose base and index are registers and scale and offsets are
constants. Letsizedenote the number of bytes to be read or written. The following
checks are generated:

– Buffer-overflow check:assert(base.allocf ≥ index ∗ scale + offset+ size)
– Buffer-underflow check:assert(base.allocb + index ∗ scale + offset≥ 0)

The checks generated for the x86 string-manipulation instructions, such asstos and
movs are only slightly more complicated and are omitted for brevity.
Type Analysis.Maintaining allocation bounds for all variables is unnecessarily expen-
sive. For this reason, we only associate allocation bounds with variables that can hold
memory addresses. To identify this set of variables, we construct anaffine-dependence
graph (ADG): a graph in which the nodes correspond to program variables and the edges
indicate that the value of the destination variable is computed as an affine transforma-
tion of the value of the source variable. The construction ofthe ADG is straight-forward:
e.g., instruction “mov foo, bar” generates an edge from the node that corresponds
to variablebar to the node that corresponds tofoo, etc. To determine the set of pointer
variables, we start with nodes that correspond to variablesthat are used asbase pointers
in memory-safety checks and mark as pointers all the variables whose corresponding
nodes are reached by a backward traversal through the graph.

Note that the precision of the ADG does not affect the soundness of the overall anal-
ysis: if some dependences are not present in the graph, then some allocation bounds will
not be tracked and the overall analysis will be less precise.If some non-existing depen-
dences are present in the graph, then some useless allocation bounds will be tracked
and the analysis will be slowed down.

In contrast to variables, which keep the same type throughout their lifetime, registers
are reused in different contexts, and can have a different type in each context. Limiting
each register to a single node in the ADG generates many “spurious” dependences be-
cause all of the contexts in which the register is used are collapsed together. Thus, when
constructing the ADG, we create a separate node for each register’s live-range.
Handling integer division and remainders. Memory functions, such asmemset,
rely heavily on integer division and remainder computations to improve the efficiency
of memory operations. In low-level code, the quotient and remainder from dividing
by a power of two are typically computed with a shift-right (shr) instruction and a
bitwise-and (and) instruction, respectively. In Fig. 1, the two consecutiveinstructions
at0x4010A9establish the property:edx0 = 4×ecx+edx, whereedx0 denotes the value
contained inedx before the instructions are executed. This property is essential for in-

9

ferring precise error triggers for memory accesses at0x4010B1and0x4010B7. However,
polyhedral analysis is not able to handle integer division with sufficient precision.

We overcome this problem by introducing additional auxiliary variables: each vari-
ablevar that may hold a value for which both a quotient and remainder from division
by k are computed is associated with two auxiliary variablesvar.quotk andvar.remk,
which denote the quotient and the remainder, respectively.To identify such variables,
we use the ADG: we look for the nodes that are reachable by backward traversals from
both the quotient and remainder computations. The auxiliary variables are associated
with all of the nodes that are visited by the traversals up to the first shared node. For
the above example, the starting point for the “quotient” traversal is the use ofecx
at 0x4010AC, and the staring point for the “remainder” traversal is the use ofedx at
0x4010A9: at these points, we generate assignments that directly usethe corresponding
auxiliary variables. The first shared node is the use ofedx at 0x4010A7: at that point,
we generate numeric instructions that impose semantic constraints on the values of
auxiliary variables (see Fig. 2). The intermediate updatesfor the auxiliary variables are
generated in a straightforward way. Polyhedral analysis ofthe resulting program yields
precise error triggers for both memory accesses.
Modeling the environment. The goal of our technique is to synthesize the summary
of a library function by looking at its code in isolation. However, library functions
operate in a larger context: they may access memory of the client program that was
specified via their parameters, or they may access global structures that are internal
to the library. The IR-recovery phase has no knowledge of either the contents or the
structure of that memory: they are specific to the client application. As an example, from
the IR-recovery perspective,memset parameterptr may contain any memory address.
Thus, from the point of view of numeric-program generation,a write into∗ptr may
potentially overwrite any memory location: local and global variables, a return address
on the stack, or even the code of the function. As the result, the generated numeric
program, as well as the function summary derived from it, will be overly conservative
(causing the client analysis to lose precision).

We attempt to generate more meaningful function summaries by using symbolic
constantsto model memory that cannot be confined to a specific a-loc by the IR-
recovery phase. A unique symbolic constant is created for each unresolved memory
access. From numeric-analysis perspective, a symbolic constant is simply a global vari-
able that has a special auxiliary variableaddr associated with it. This auxiliary variable
represents the address of a memory location that the symbolic constant models. If the
memory location may hold an address, the corresponding symbolic constant has allo-
cation bounds associated with it. We illustrate this technique in§4.

3.3 Numeric Analysis and Summary Generation

Our numeric analyzer is based on the Parma Polyhedral Library (PPL) and the WPDS++
library for weighted pushdown systems (WPDSs) and supportsprograms with multiple
procedures, recursion, global and local variables, and parameter passing. The analysis
of a WPDS yields, for each program point, aweight, or abstract state transformer, that
describes how the program state is transformed on all the paths from the entry of the
program to that program point. Linear-relation analysis [8] is encoded using weights
that maintain two sets of variables: thedomaindescribes the program state at the entry

10

point; therangedescribes the program state at the destination point. The relationships
between the variables are captured with linear inequalities. Given a weight computed
for some program point, its projection onto the range variables approximates the set of
states that are reachable at that program point. Similarly,its projection onto the set of
domain variables approximates the precondition for reaching that program state.

Function summaries are generated from the numeric-analysis results. Summary
transformers are constructed from the weights computed forthe program points corre-
sponding to procedure returns. Error triggers are constructed by back-projecting weights
computed for the set of error program points.

4 Case Studies
We used our technique to generate summaries for library functionsmemset and lseek.
The IR-recovery and numeric-program generation was done on1.83GHz Intel Core
Duo T2400 with 1.5Gb of memory. The numeric analysis was doneon 2.4GHz Intel
Pentium 4 with 4Gb of memory.
The summary obtained for memset. The detailed description ofmemset, as well
as the analysis results, were given in§2 and§3. It took 70 seconds to both execute the
IR-recovery phase and generate a numeric program formemset. The resulting numeric
program has one procedure with 8 global variables and 11 local variables. The numeric
analysis took 1 second.
The summary obtained for lseek. the function lseek moves a file pointer to a
specified position within the file. It is declared as follows:

off t lseek(int fd, off t offset, int origin);

fd is a file descriptor;offsetspecifies the new position of the pointer relative to either its
current position, the beginning of the file, or the end of the file, based onorigin.

A recurring memory-access pattern inlseek is to read a pointer from a global
table and then dereference it. Fig. 3 shows a portion oflseek that contains a pair
of such memory accesses: the firstmov instruction reads the table entry, the second
dereferences it. The registersecx andedx hold the valuesfd/32 andfd mod 32, re-
spectively. The global variableuNumbergives the upper bound for the possible values
of fd. Symbolic constantsmc1 andmc2 model the memory locations accessed by the
first and secondmov instructions, respectively. Our technique synthesizes the following
buffer-overrun trigger for the secondmov instruction:

0x424DE0≤ mc1.addr ≤ 0x424DE0+ (uNumber− 1)/8 ∧ mc1.allocf <= 251

The above trigger can be interpreted as follows:if any of the addresses stored in the
table at 0x424DE0point to a buffer of length that is less than 252 bytes, there is a
possibility of a buffer-overrun error. The error trigger is sufficient for a client analysis
to implement sound error reporting: if the client analysis does not know the allocation
bounds for pointers in the table at0x424DE0, it should emit an error report for this
trigger at the call site tolseek. However, we hope that the summary generated by our
technique for the library-initialization code will capture the proper allocation bounds
for the pointers in the table at0x424DE0. Thus, the analysis will not emit spurious error
reports. The error triggers for other memory accesses look similar to this one.

The analysis took about 70 seconds to recover intermediate representation and gen-
erate a numeric program. The generated program has 41 globalvariables (22 of which

11

mov eax, dword ptr [4×ecx + 0424DE0h]
assume(mc1.addr = 0x424DE0+ 4 ∗ ecx);
eax← mc1; eax.allocf = mc1.allocf ; eax.allocb = mc1.allocb;

movsx ecx, byte ptr [eax + 8×edx + 4]
assert(eax.allocf ≤ 8 ∗ edx + 5); assert(eax.allocb + 8 ∗ edx + 4 ≥ 0);
assume(mc2.addr = eax.allocb + 8 ∗ edx + 4 ≥ 0); ecx← mc2;

Fig. 3. Symbolic memory modeling: the symbolic constantsmc1 andmc2 model the
memory location accessed bymov andmovsx instructions, repsectively.

are used for symbolic memory modeling) and contains three procedures with 21, 8, and
2 local variables, respectively. The numeric analysis of the program took 117 seconds.

5 Related Work

Summary functions have a long history, which goes back to theseminal work by Cousot
and Halbwachs on linear-relation analysis [8] and the papers on interprocedural analysis
of Cousot and Cousot [7] and Sharir and Pnueli [24]. Other work on analyses based on
summary functions includes [16, 20, 3], as well as methods for pushdown systems [11,
4, 5, 21], where summary functions arise as one by-product ofan analysis.

A substantial amount of work has been done to create summary functions for alias
analysis or points-to analysis [18, 26, 14, 6, 22], or for other simple analyses, such as
lock state [27]. Those algorithms are specialized for particular problems; more compre-
hensive approaches include the work on analysis of program fragments [23], compo-
nential set-based analysis [12], and use of SAT procedures [27].

Some of the work cited above explicitly mentions separatelycompiled libraries as
one of the motivations for the work. Although the techniquesdescribed in the afore-
mentioned papers are language-independent, all of the implementations described are
for source-code analysis.

Guo et al. [13] developed a system for performing pointer analysis on a low-level
intermediate representation. The algorithm is only partially flow-sensitive: it tracks reg-
isters in a flow-sensitive manner, but treats memory locations in a flow-insensitive man-
ner. The algorithm uses partial transfer functions [26] to achieve context-sensitivity,
where the transfer functions are parameterized by “unknowninitial values”.

Kruegel et al. [17] developed a system for automating mimicry attacks. Their tool
uses symbolic-execution techniques on x86 binaries to discover attacks that can give
up and regain execution control by modifying the contents ofthe data, heap, or stack
so that the application is forced to return control to injected attack code at some point
after a system call has been performed. Cova et al. [9] used this platform to apply static
analysis to the problem of detecting security vulnerabilities in x86 executables. In both
of these systems, alias information is not available.

In our work, we make use of a-locs (variable proxies), alias information, and other
IRs that have been recovered by the algorithms used in CodeSurfer/x86 [1, 2]. The
recovered IRs are used as a platform on which we implemented arelational analysis
that synthesizes summary functions for procedures.

Acknowledgements.We thank D. Vitek for sharing with us his insights on the problem
of creating function summaries.

12

References
1. G. Balakrishnan and T. Reps. Analyzing memory accesses inx86 executables. InCC, 2004.
2. G. Balakrishnan and T. Reps. DIVINE: DIscovering Variables IN Executables. InVMCAI,

2007.
3. T. Ball and S.K. Rajamani. Bebop: A path-sensitive interprocedural dataflow engine. In

PASTE, 2001.
4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-

cation to model checking. InCONCUR, 1997.
5. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concurrent

programs with procedures. InPOPL, 2003.
6. R. Chatterjee, B.G. Ryder, and W. Landi. Relevant contextinference. InPOPL, 1999.
7. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures.

In Formal Descriptions of Programming Concepts. North-Holland, 1978.
8. P. Cousot and N. Halbwachs. Automatic discovery of linearconstraints among variables of

a program. InPOPL, 1978.
9. M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection of vulnerabilities in x86

executables. InACSAC, 2006.
10. N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically detecting all

buffer overflows in C. InPLDI, 2003.
11. A. Finkel, B.Willems, and P. Wolper. A direct symbolic approach to model checking push-

down systems.Elec. Notes in Theor. Comp. Sci., 9, 1997.
12. C. Flanagan and M. Felleisen. Componential set-based analysis. InPLDI, 1997.
13. B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D.I. August. Practical and

accurate low-level pointer analysis. In3nd Int. Symp. on Code Gen. and Opt., 2005.
14. M.J. Harrold and G. Rothermel. Separate computation of alias information for reuse.TSE,

22(7), 1996.
15. IDAPro disassembler, http://www.datarescue.com/idabase/.
16. J. Knoop and B. Steffen. The interprocedural coincidence theorem. InCC, 1992.
17. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.Automating mimicry attacks

using static binary analysis. InUSENIX Sec. Symp., 2005.
18. W. Landi and B.G. Ryder. A safe approximate algorithm forinterprocedural pointer aliasing.

In PLDI, 1992.
19. G. Ramalingam, J. Field, and F. Tip. Aggregate structureidentification and its application to

program analysis. InPOPL, 1999.
20. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph

reachability. InPOPL, 1995.
21. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their applica-

tion to interprocedural dataflow analysis.Sci. of Comp. Prog., 58(1–2), 2005.
22. A. Rountev and B.G. Ryder. Points-to and side-effect analyses for programs built with pre-

compiled libraries. InCC, 2001.
23. A. Rountev, B.G. Ryder, and W. Landi. Data-flow analysis of program fragments. InFSE,

1999.
24. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. InProgram

Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1981.
25. D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection of

buffer overrun vulnerabilities. InNDSS, 2000.
26. R.P. Wilson and M.S. Lam. Efficient context-sensitive pointer analysis for C programs. In

PLDI, 1995.
27. Y. Xie and A. Aiken. Scalable error detection using Boolean satisfiability. InPOPL, 2005.

13

