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Abstract. Programs typically make extensive use of libraries, inicigdlynamically linked
libraries, which are often not available in source-codenfoand hence not analyzable by
tools that work at source level (i.e., that analyze interiatedrepresentations created from
source code). A common approach is to wiibeary modelsby hand. A library model is a
collection of function stubs and variable declarations ta@ture some aspect of the library
code’s behavior. Because these are hand-crafted, theykahg to contain errors, which
may cause an analysis to return incorrect results.

This paper presents a method to construct summary infooméir a library function
automatically by analyzing its low-level implementatiare(, the library’s binary).

1 Introduction

Static program analysis works best when it operates on aregmbgram. In practice,
however, this is rarely possible. For the sake of maintalityabnd quicker development
times, software is kept modular with large parts of the paogthidden in libraries.
Often, commercial off-the-shelf (COTS) modules are usérk Jource code for COTS
components and libraries (such as the Windows dynamicalkedl libraries) is not
usually available.

In practice, the following techniques are used to deal vifittaty functions:

— stop at library calls: this approach reduces analysis coverage and leads to incom-
plete error detection;

— treat library calls as identity transformers: this approach is generally unsound;
furthermore, this approach is imprecise because the asatysdels a semantics
that is different from that of the program;

— define transformers for selected library calls:this approach is not extensible:
new transformers must be hardcoded into the analyzer tdéadditional calls;

— use hand-written source-code stubs that emulate some agpeof library code:
while this approach is both sound and extensible, the psooksrafting stubs is
usually time-consuming and error-prone.

In this paper, we describe a static-analysis tool that aatwally constructs sum-
maries for library functions by analyzing their low-levehplementation (i.e., binary
code). A library function’s summary consists of a seegbr triggersand a set ofum-
mary transformersError triggers are assertions over the program stateiflsatisfied
at the call site of the function, indicate a possibility obgram failure during the func-
tion’s invocation. Summary transformers specify how thegoam state is affected by
the function call: they are expressedteansfer relationsi.e., the relations that hold
among the values of global variables and function pararmbtforeandafterthe call.

* Supported by ONR under grant NO0014-01-1-0796 and by NSErugnts CCF-0540955
and CCF-0524051.



To use the function summaries, a client analysis must ajypeadr the set of pro-
gram states that reach the call site of a library functiore &halysis should report an
error if the approximation contains states that satisfy ssedion that corresponds to
some error trigger. Summary transformers are applied Esfei the “before” values of
global variables and function parameters are restricteddse that reach the call site;
the restricted transfer relation is projected onto theetdftalues to yield an approxi-
mation for the set of program states at the function’s repuaint.

Our work makes the following contributions:

— It provides a way to create library summaries automaticaihich frees tool devel-
opers from having to create models for standard librarielsamgd.

— The library summaries obtained have applications in botifigation tools and
bug-finding/security-vulnerability-detection tools,dathus help in both kinds of
code-quality endeavors.

— The library summaries obtained by our tool could be usedigntlnalysis tools
that work on either source code or low-level code (i.e., @& code, object code,
or binary executable code). In particular, they satisfytbeds of many source-code
bug-finding analyses, which propagate symbolic infornratiwough the program,
including the amount of memory allocated for a buffer, this@tfof a pointer into
a corresponding buffer, the length of a string, etc. [25, 10]

— In some cases, the tool might allow static analysis to bészhaut more efficiently.
That is, the application/library division provides a naumodularity border that
could be exploited for program-analysis purposes: typicalany applications link
against the same library; summarizing the functions inlthedry obviates the need
to reanalyze the library code for each application, whichldamprove analysis
efficiency. (Seé5 for a discussion of other work that has had the same maiivati

During development, application code is changed more #atjythan library code.
Because an application can be analyzed repeatedly agaénstine set of library sum-
maries, it is possible to recoup the cost of applying morénstigated analyses, such
as polyhedral analysis [8], for library summarization.

Some may argue against our choice of analyzing the low-levglementation of
library functions: programs link against any possible iempéntation of the library, pos-
sibly across different platforms. Thus, it would be dediab verify programs against
more abstract function summaries derived, for instanoey fibrary specifications. Be-
low, we list some of the reasons why we believe that constrg&ibrary functions from
low-level implementations deserves attention.

— Formal library specifications are hard to get hold of, whilew-level implemen-
tation for each supported platform is readily available.

— Even if formal specification is available, there is no easy teaverify that a par-
ticular library implementation conforms to the specifioati

— The analysis of an actual library implementation may uncbugs and undesirable
features in the library itself. For instance, while summiaigg memory-management
functions, we discovered that thi&c implementation that came with Microsoft
Developer Studio 6 assumes that the direction flag, the x8@lilat specifies the
direction for string operations, is setftalseon entry to the library. This can be a
security vulnerability if an adversary could control thdueaof the direction flag
prior to a subsequent call tentpy.



The remainder of the paper is organized as folldy2sprovides an overview of our
goals, methods, and results obtainggidiscusses the individual steps used to gener-
ate summary information for a library functiofd summarizes two case studigs.
discusses related work.

2 Overview

We use the functiomenset as the running example for this paper. The function is
declared as follows:

void » nmenset ( void * ptr, int value, sizet num);

Its invocation sets the firstumbytes of the block of memory pointed to Ipyr to the
specified value (interpreted as an unsigned char). The @éloie is returned.

In this paper, we address two types of memory-safety ertmffer overruns and
buffer underruns. Typically, analyses that target thepegyof errors propagate alloca-
tion bounds for each pointer. There are many ways in whichdéin be done. We use the
following model. Two auxiliary integer variables are asated with each pointer vari-
able:allocy is the number of bytes that can be safely accessed “ahealié @iddress
stored in the pointer variablelloc;, is the number of bytes that can be safely accessed
“behind” the address stored in the pointer variable. Weebelithat this scheme can
be easily interfaced with other choices for representitmcation bounds. We use dot
notation to refer to allocation bounds of a pointer variablg.,ptr.allocy.

Analysis goals.The function summary specifies how to transform the progtane st
the call site of the function to the program state at its resite. Also, it specifies condi-
tions that, if satisfied at the call site, indicate that a tinme error is possible during the
function call. Intuitively, we expect the summary transfier for themenset function
to look like this (for the moment, we defer dealing with memtwrcations overwritten
by memseto §3.2):

ret = ptr A ret.allocy = ptr.allocy A ret.allocy, = ptr.allocy, Q)

whereret denotes the value that is returned by the function. We exhecsufficient
condition for the buffer overflow to look like this:

num > 1 A ptr.allocy < num — 1. (2)

The goal of our analysis is to construct such summaries aatioatly.

Analysis overview.Fig. 1 shows the disassembly wénset from the C library that

is bundled with Visual C++.0bserve that there are no explicit variables in the code;
instead, offsets from the stack registesp) are used to access parameter values. Also,
there is no type information, and thus it is not obvious whiebisters hold memory
addresses and which do not. Logical instructions and shiftich are hard to model
numerically, are used extensively. Rather than addresdingese challenges at once,
the analysis constructs the summary of a function in seypdrases.

3 We used Microsoft Visual Studio 6.0, Professional Editieejeaséuild.



00401070 nov  edx, dword ptr [esp + 12] edz < count

00401074 nov  ecx, dword ptr [esp + 4] ecx < pir

00401078 test edx, edx

0040107A — — —jz 004010C3 if (edz = 0) goto 004010C3
0040107C ! Xor eax, eax eaz «— 0

0040107E ! nov al, byte ptr [esp + 8] al «— (char)value
00401082 : push edi

00401083 | mov edi, ecx edi «— ecx

00401085 | cnmp edx, 4

00401088 | == jib 004010B7 if (edz < 4) goto 004010B7
0040108A | | neg ecx ecr «— —ecx

0040108C | I and ecx, 3 ecx «— ecx & 3

0040108F | | r—jz 00401099 if (ecz = 0) goto 00401099
00401091 | || sub edx, ecx edx «— edx — ecx
00401093 ! | | » mov byte ptr [edi], al xedi — al

00401095 | | 11 inc edi edi — edi+ 1

00401096 ' I 1! dec ecx ect — ecx — 1

00401097 : 11 jnz 00401003 if (ecx # 0) goto 00401093
00401099 | I'l> nmov  ecx, eax ecr «+— eax

0040109B I | shl eax, 8 ear «— ear << 8
0040109E | : add eax, ecx ear < ear + ecx
004010A0 | | nmv  ecx, eax ecr «— eax

004010A2 | | shl eax, 10h eaxr «— eaxr << 16
004010A5 | | add eax, ecx ear «— eax + ecr
004010A7 | mov  ecx, edx ecr — edx

004010A9 | | and edx, 3 edr — edx & 3

004010AC | | shr ecx, 2 ecxr — ecx >> 2
004010AF ! | ~jz 004010B7 if (ecz = 0) goto 004010B7
004010B1 : I | rep stosd while(ecz # 0) { *edi — eax; edi++; ecx--; }
004010B3 | I | test edx, edx

00401085 | | - Ljz  004010BD if (edz = 0) goto 004010BD
00401087 | |+ Z mov byte ptr [edi], al xedi — al

004010B9 | | | inc edi edi — edi+ 1

004010BA | | | dec edx edr «— edr — 1

004010BB | | —jnz 004010B7 if (edz # 0) goto 004010B7
004010BD | | mov eax, dword ptr [esp + 8] eax « ptr

004010C1 | pop edi

004010C2 | retn return

004010C3 ' — —> mov  eax, dword ptr [esp + 4] eax < ptr

004010C7 retn return

Fig. 1. The disassembly afenset . The rightmost column shows the semantics of each instruc-
tion using a C-like notation.

Intermediate Representation (IR) recoveRrst, value-set analysis (VSA), 2] is per-
formed on the disassembled code to discover low-level in&tion: variables that are
accessed by each instruction, parameter-passing detads for each program point,
an overapproximation of the values held in the registergsfland memory locations at
that point. Also, VSA resolves the targets of indirect cohtiransfers.

In x86 executables, parameters are typically passed vistéio&. The registexsp
points to the top of the stack and is implicitly updated byglis h and thepop instruc-
tions. VSA identifies numeric properties of the values stareesp and maps offsets
fromesp to the corresponding parameters. To see that this proceststisvial, observe
that different offsets map to the same parameter at addres$@10BDand0x4010C3
at0x4010BDan extra 4 bytes are used to account for the pusidofat 0x401082

Numeric Program GeneratiorWSA results are used to generate a numeric program that
captures the behavior of the library function. The primamglienge that is addressed



in this phase is to translate non-numeric instructionsh aag bitwise operations and
shifts, into a program that numeric analysis is able to arealBitwise operations are
used extensively in practice to perform certain computatizecause they are typically
more efficient in terms of CPU cycles than corresponding migniestructions. The
ubiquitous example is the usexdr instruction to initialize a register to zero. In Fig. 1,
thexor at0x40107Cis used in this way.

The generation phase also introduces the auxiliary vasathiat store allocation
bounds for pointer variables. A simple type analysis isqrened to identify variables
and registers that may hold addresses. For each instrubbperforms address arith-
metic, additional statements that update correspondiogeadion bounds are generated.
Also, for each instruction that dereferences an addres, af sumeric assertions are
generated to ensure that memory safety is not violated bgpkeation. The assertions
divert program control to a set efror program points

Numeric Analysis and Summary Constructidrne generated numeric program is fed
into an off-the-shelf numeric analyzer. We use a numeridyaigthat, instead of ap-
proximating sets of reachable program states, approxspatgram transfer functions.
That is, for each program point, the analysis computes aifumthat maps an approx-
imation for the set of initial states at the entry of the peogrto an approximation for
the set of states that arise at that program point. The neraealysis results are used
to generate a set of error triggers and a set of summary tnansfs for the library
function. The transfer functions computed for program poaorresponding to the re-
turn instructions form a set of summary transformers forftirection. Error triggers
are constructed by projecting transfer functions comptaethe set of error program
points onto their domains.

The summary obtained for mrenset . Memset uses two loops and aép st osd”
instruction, which invokes a hardware-supported loop. Ttep st osd” instruction
at 0x4010B1is the workhorse; it performs the bulk of the work by copyihg value in
eax (which is initialized in lines0x40107G0x40107Eand 0x401099-0x4010A5t0 con-
tain four copies of the low byte afenset 's value parameter) into successive 4-byte-
aligned memory locations. The loops @t401093-0x401097and 0x4010B70x4010BB
handle any non-4-byte-aligned prefix and suffix. If the totamber of bytes to be ini-
tialized is less than 4, control is transfered directly t® lihop atox4010B7

The application of our technique to the code in Fig. 1 yielkizscly the summary
transformer we conjectured in Egn. (1). The situation witfoetriggers is slightly
more complicated. First, observe that there are three pladbe code where the buffer
is accessed: at addresse=g01093 0x4010B1 and 0x4010B7 Each access produces a
separate error trigger:

0x401093 num > 4 A ptr.allocy < 2
0x4010B1 num > 4 A ptr.allocy < num —1
0x4010B7 num > 1 A ptr.allocy < num —1

Note that the first trigger is stronger than the one conjectun Eqgn. (2): it gives a
constant bound onllocy; furthermore, the bound is less thanwhich is the smallest
bound implied by the conjectured trigger. The issue is thatihstruction abx401093

accesses at most three bytes. In gaseullocy is equal to3, menset will generate a



memsdiptr, value, num)
00401070 edx «— count,;
00401074 ecx «— ptr;ecz.allocy < ptr.allocy; ecx.alloc, < ptr.allocy;
00401078-7A if (edz = 0) goto L5;
0040107C-82 .
00401083 edi — ecx;edi.allocy «— ecx.allocy; edi.allocy, «— ecx.allocy;

00401088 if (edz < 4) goto L3;

0040108A ecr «— —ecx;

0040108C ecx «—7; assumé0 < ecz < 3);

0040108F if (ecx = 0) goto L2;

00401091 edxr «— edx — ecr;

00401093 L1: asser(edi.allocy >=1); asser{edi.alloc, >= 0);
00401095 edi «— edi + 1; edi.allocy «— edi.allocy — 1; edi.allocy, — edi.allocy + 1;
00401096 ecx «— ecx — 1;

00401097 if (ecx # 0) goto L1;

00401099-A5 L2: ...

004010A7 edx.remq =7; edzr.quoty =7;

assumé0 < edz.rems < 3); assuméedz = 4 X edx.quots + edx.remy);
ecr «— edr; ecx.quots +— edx.quots; ecx.remas = edr.rema;

004010A9 edr «— edr.remy;

004010AC ecr «— ecr.quoty;

004010AF if (ecx = 0) goto L3;

004010B1 asser{edi.allocy >= 4 x ecx); asser(edi.alloc, >= 0);

edi «+— edi+ 4 X ecx;

edi.allocy «— edi.allocy — 4 x ecx; edi.allocy, — edi.allocy, + 4 X ecx;
004010B3-B5 if (edr = 0) goto L4;
004010B7  L3: asser(edi.alloc; >= 1); asser{edi.allocy >= 0);

004010B9 edi « edi + 1; edi.allocy « edi.allocy — 1; edi.allocy, + edi.allocy + 1;
004010BA edr «— edr — 1

004010BB if (edr # 0) goto L3;

004010BD L4: eax «— ptr; eax.allocy = ptr.allocy; eax.allocy, «— ptr.allocy;
004010C2 return eax, eax.allocy, eax.allocy;

004010C3 L5: eax « ptr; eax.allocy = ptr.allocy; eax.alloc, < ptr.allocy;
004010C7 return eax, eax.allocy, eax.allocy;

Fig. 2. The numeric program generated for the code in Fig. 1; parteeoprogram that are not
relevant for the summary construction are omitted.

buffer overrun at one of the other memory accesses. The ttloeriggers are similar
to the trigger conjectured in Eqn. (2) and differ only in tledue ofnum.

3 Library Code Analysis

3.1 Intermediate Representation Recovery

The IR-recovery phase recovers intermediate represensafiiom the library’s binary
that are similar to those that would be available had onéestdrom source code. For
this phase, we use the CodeSurfer/x86 analyzer that wasogedsointly by Wiscon-
sin and GrammaTech, Inc. This tool recovers IRs that reptesentrol-flow graphs
(CFGs), with indirect jumps resolved; a call graph, withiredt calls resolved; infor-
mation about the program’s variables; possible values witpovariables; sets of used,
killed, and possibly-killed variables for each CFG noded alata dependences. The
techniques employed by CodeSurfer/x86 do not rely on debgggformation being



present, but can use available debugging information,(@/mdows .pdb files) if di-
rected to do so.

The analyses used in CodeSurfer/x86 (see [1, 2]) are a geaantbre ambitious
than even relatively sophisticated disassemblers, suti/d3ro [15]. At the technical
level, they address the following proble@iven a (possibly stripped) executalfie
(i.e., with all debugging information removed), identifietprocedures, data objects,
types, and libraries that it uses, and, for each instructioim £ and its libraries, for
each interprocedural calling context @f and for each machine register and variable
V, statically compute an accurate over-approximation togheof values that” may
contain wher/ executes.

Variable and Type Discovery. One of the major stumbling blocks in analyzing exe-
cutables is the difficulty of recovering information aboatiables and types, especially
for aggregates (i.e., structures and arrays).

When debugging information is absent, an executable’'sagtects are not easily
identifiable. Consider, for instance, a data dependence $tatemena to statemenb
that is transmitted by write/read accesses on some variablhen performing source-
code analysis, the programmer-defined variables providethsconvenient compart-
ments for tracking such data manipulations. A dependenab/zer must show that
a definesx, b usesx, and there is ax-def-free path froma to b. However, in exe-
cutables, memory is accessed either directly—by specjfgim absolute address—or
indirectly—through an address expression of the forbm4e + indexx scale + off-
sel”, where baseandindexare registers andcaleandoffsetare integer constants. It
is not clear from such expressions what the natural competsrare that should be
used for analysis. Because, executables do not imdrnasic entities that can be used
for analysis (analogous to source-level variables), aiatstep in IR recovery is to
identify variable-like entities.

The variable and type-discovery phase of CodeSurfer/xBéd2overs information
about variables that are allocated globally, locally (io& the run-time stack), and dy-
namically (i.e., from the heap). An iterative strategy igdiswith each round of the
analysis—consisting of aggregate structure identifica(i®SI) [19, 2] and value-set
analysis (VSA) [1, 2]—the notion of the program’s variabée®l types is refined. The
netresultis that CodeSurfer/x86 recovers a set of progiesiriables, called-locs(for
“abstract locations”). The a-locs are the basic variabkedun the method described
below.

3.2 Key Concepts of Numeric Program Generation

The generation of a numeric program is the central piece ioivotk. We strive as much

as possible to generate a sound representation of the liodef The target language

is very simple: it supports assignments, assumes, asgetistements, and gotos. The
expression “?” selects a value non-deterministically. @tredition “*” transfers control
non-deterministically.

Translating x86 instructions. Due to space constraints, we only describe several trans-
lation issues that are particularly challenging. The numiestructions, such asov,

add, sub, | ea, etc., are directly translated into the corresponding mms¢atements:

4 Currently, we assume that numeric values are not boundethelriuture, we hope to add
support for bounded arithmetic.



e.g., the instructionsub edx, ecx” at 0x401091in Fig. 1 is translated into numeric
statemenedr — edx — ecx.

The bitwise operations and shifts typically cannot be fm&lgiconverted into a sin-
gle numeric statement, and thus pose a greater challengerabaumeric statements,
including ifs and assumes, may be required to translate eftttese instructions. At
first we were tempted to design universal translations thatldvwork equally well
for all possible contexts in which the instruction occursthie end, however, we no-
ticed that these instructions, when used for numeric coatjmuts, are only used in
a few very specific ways. For instance, bitwise-and is ofteeduto compute the re-
mainder from dividing a variable by a power of two. The instion “and ecx, 3” at
0x40108Cin Fig. 1 is used to computecx mod 4. The translation treats these special
cases with precision; other cases are treated imprectagigoundly. The instruction
“and op1, ope”is translated into ép; < 7; assumé0 < op; < opz);” if opy is an
immediate operand that has a positive value; otherwisgfianslated intodp; « 7;".
Recovering conditions from the branch instructions. An important part of numeric
program generation is the recovery of conditional expoessiln the x86 architecture,
several instructions must be executed in sequence to pegfopnditional control trans-
fer. The execution of most x86 instructions affects the $dlags maintained by the
processor. The flags include tlzero flag which is set if the result of the currently
executing instruction is zero, thegn flag which is set if the result is negative, and
many others. Also, the x86 architecture provides a numbeonfrol-transfer instruc-
tions each of which performs a jump if the flags are set in aiipaeay. Technically,
the flag-setting instruction and the corresponding jumgrircsions do not have to be
adjacent and can, in fact, be separated by a set of instnsdtiat do not affect the flags
(such asrov instruction.

We symbolically propagate the expressions that affect fagse jump instructions
that use them. Consider the following sequences of instmgtnd their translation:

cnp eax, ebx
nov ecx, edx ecx «— edx;
jz | abel if (eax — ebx = 0) goto label;

We derive a flag-setting expressiear — ebx from thecnp instruction; themov in-
struction does not affect any flags; the instruction transfers control toabel if the
zero flag is set, which can only happen if the expression— ebx is equal to zero.
Note, however, that if the intervening move affects one ef dperands in the flag-
setting expression, that expression is no longer availabiee jump instruction. This
can be circumvented with the use of a temporary variable:

cnp eax, ebx
nov eax, edx temp «— eax — ebx; eax «— edx;
jz | abel if (temp = 0) goto label;

Allocation bounds. As we mentioned above, each variabler that may contain a
memory address is associated with two auxiliary variatlasdpecify allocation bounds
for that address. The auxiliary variabler.alloc; specifies the number of bytes follow-
ing the address that can be safely accessed; the auxiliaablewar.alloc, specifies
the number of bytes preceding the address that can be safedgsed. These auxiliary
variables are central to our technique: the purpose of nigraealysis is to find con-



straints on the auxiliary variables that are associateld thvit function’s parameters and
return value. These constraints form the bulk of the fumcsiommaries.

The updates for the auxiliary variables are generated ire@btforward way. That
is, the translation of theov instruction contains assignments for the corresponding
allocation bounds. The instructioasld, sub, i nc, dec, andl ea, as well as the x86
string-manipulation instructions, are translated infmaftransformations on variables
and their associated allocation bounds.

The auxiliary variables are used to generate memory-satetgks: checks for
buffer overflows and checks for buffer underflows. We gemetta¢se checks for each
indirect memory access that does not access the currehktfsé@ee. As mentioned in
§3.1, general indirect memory accesses in x86 instructiame khe form “pase + in-
dex x scale + offséf, whose base and index are registers and scale and offisets a
constants. Lesizedenote the number of bytes to be read or written. The follgwin
checks are generated:

— Buffer-overflow checkassertbase.allocy > index * scale + offset+ size)

— Buffer-underflow checkasser{base.allocy, + index * scale + offset> 0)
The checks generated for the x86 string-manipulationuestins, such ast os and
nmovs are only slightly more complicated and are omitted for kixevi
Type Analysis.Maintaining allocation bounds for all variables is unneszey expen-
sive. For this reason, we only associate allocation bountfswariables that can hold
memory addresses. To identify this set of variables, wetcatisanaffine-dependence
graph (ADG) a graph in which the nodes correspond to program variabkbte edges
indicate that the value of the destination variable is coegas an affine transforma-
tion of the value of the source variable. The constructiahefADG is straight-forward:
e.g., instructiontfrov f oo, bar” generates an edge from the node that corresponds
to variablebar to the node that correspond<too, etc. To determine the set of pointer
variables, we start with nodes that correspond to varidhbgsare used dsase pointers
in memory-safety checks and mark as pointers all the vasalvhose corresponding
nodes are reached by a backward traversal through the graph.

Note that the precision of the ADG does not affect the sousslnéthe overall anal-
ysis: if some dependences are not present in the graph,dhenalocation bounds will
not be tracked and the overall analysis will be less pretiseme non-existing depen-
dences are present in the graph, then some useless aliobatimds will be tracked
and the analysis will be slowed down.

In contrast to variables, which keep the same type througheir lifetime, registers
are reused in different contexts, and can have a differ@etity each context. Limiting
each register to a single node in the ADG generates manyitsmirdependences be-
cause all of the contexts in which the register is used atems#d together. Thus, when
constructing the ADG, we create a separate node for eactte€gilive-range.
Handling integer division and remainders. Memory functions, such asenset ,
rely heavily on integer division and remainder computatitmimprove the efficiency
of memory operations. In low-level code, the quotient andaimder from dividing
by a power of two are typically computed with a shift-riglsth¢ ) instruction and a
bitwise-and &nd) instruction, respectively. In Fig. 1, the two consecutiviructions
atOx4010A%establish the propertydxy = 4 x ecx+edx, whereedzy denotes the value
contained iredx before the instructions are executed. This property isngisddor in-



ferring precise error triggers for memory accessex4010B1and0x4010B7 However,
polyhedral analysis is not able to handle integer divisidth sufficient precision.

We overcome this problem by introducing additional auryli@ariables: each vari-
ablevar that may hold a value for which both a quotient and remaindenfdivision
by k are computed is associated with two auxiliary variablesquot, andvar.remy,
which denote the quotient and the remainder, respectiVelydentify such variables,
we use the ADG: we look for the nodes that are reachable bywrrckiraversals from
both the quotient and remainder computations. The auxiliariables are associated
with all of the nodes that are visited by the traversals ughtofirst shared node. For
the above example, the starting point for the “quotientVéraal is the use oécx
at 0x4010AC and the staring point for the “remainder” traversal is tlse ofedx at
0x4010A9 at these points, we generate assignments that directl{hesmrresponding
auxiliary variables. The first shared node is the usedf at 0x4010A7 at that point,
we generate numeric instructions that impose semantictreints on the values of
auxiliary variables (see Fig. 2). The intermediate upditethe auxiliary variables are
generated in a straightforward way. Polyhedral analyste®fesulting program yields
precise error triggers for both memory accesses.

Modeling the environment. The goal of our technique is to synthesize the summary
of a library function by looking at its code in isolation. Hewer, library functions
operate in a larger context: they may access memory of teatdlirogram that was
specified via their parameters, or they may access glohadtates that are internal
to the library. The IR-recovery phase has no knowledge dieeithe contents or the
structure of that memory: they are specific to the clientigpibn. As an example, from
the IR-recovery perspectiveenset parametepir may contain any memory address.
Thus, from the point of view of humeric-program generatiarnyrite into xptr may
potentially overwrite any memory location: local and glbbariables, a return address
on the stack, or even the code of the function. As the redt,generated numeric
program, as well as the function summary derived from it| &l overly conservative
(causing the client analysis to lose precision).

We attempt to generate more meaningful function summanessing symbolic
constantsto model memory that cannot be confined to a specific a-loc byl
recovery phase. A unique symbolic constant is created fon earesolved memory
access. From numeric-analysis perspective, a symbolgtantis simply a global vari-
able that has a special auxiliary variabl&lr associated with it. This auxiliary variable
represents the address of a memory location that the syentmitistant models. If the
memory location may hold an address, the corresponding aljentonstant has allo-
cation bounds associated with it. We illustrate this teghaiing4.

3.3 Numeric Analysis and Summary Generation

Our numeric analyzer is based on the Parma Polyhedral lyifip&L) and the WPDS++
library for weighted pushdown systems (WPDSs) and suppooigrams with multiple
procedures, recursion, global and local variables, andrpeter passing. The analysis
of a WPDS yields, for each program pointwvaight or abstract state transformer, that
describes how the program state is transformed on all thesgedm the entry of the
program to that program point. Linear-relation analysisi$8encoded using weights
that maintain two sets of variables: tHemaindescribes the program state at the entry
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point; therangedescribes the program state at the destination point. Thgamships
between the variables are captured with linear inequslitBiven a weight computed
for some program point, its projection onto the range vdembpproximates the set of
states that are reachable at that program point. Similisslprojection onto the set of
domain variables approximates the precondition for rearttiat program state.

Function summaries are generated from the numeric-asatgsults. Summary
transformers are constructed from the weights computethéprogram points corre-
sponding to procedure returns. Error triggers are con&dliy back-projecting weights
computed for the set of error program points.

4 Case Studies

We used our technique to generate summaries for libraryifumarens et and_| seek.
The IR-recovery and numeric-program generation was don&.88GHz Intel Core
Duo T2400 with 1.5Gb of memory. The numeric analysis was dom@.4GHz Intel
Pentium 4 with 4Gb of memory.
The summary obtained formenset . The detailed description afenset , as well
as the analysis results, were givergihand§3. It took 70 seconds to both execute the
IR-recovery phase and generate a numeric programgos et . The resulting numeric
program has one procedure with 8 global variables and 11Vaciables. The numeric
analysis took 1 second.
The summary obtained for _| seek. the function_| seek moves a file pointer to a
specified position within the file. It is declared as follows:

off t _Iseek(int fd, off_t offset, int origin);
fd is a file descriptoroffsetspecifies the new position of the pointer relative to eitter i
current position, the beginning of the file, or the end of thes Hhased omrigin.

A recurring memory-access pattern_inseek is to read a pointer from a global
table and then dereference it. Fig. 3 shows a portiod ekek that contains a pair
of such memory accesses: the fingtv instruction reads the table entry, the second
dereferences it. The registesx andedx hold the value$d/32 andfd mod 32, re-
spectively. The global variabl@Numbemgives the upper bound for the possible values
of fd. Symbolic constantsic; andmec, model the memory locations accessed by the
first and secondov instructions, respectively. Our technique synthesize$dtowing
buffer-overrun trigger for the secomabv instruction:

0x424DEO< mcy.addr < 0x424DEO+ (UNumber—1)/8 A me;.allocy <= 251

The above trigger can be interpreted as folloifiginy of the addresses stored in the
table at0x424DEOpoint to a buffer of length that is less than 252 bytes, thera i
possibility of a buffer-overrun errofThe error trigger is sufficient for a client analysis
to implement sound error reporting: if the client analysies not know the allocation
bounds for pointers in the table 8x424DEQ it should emit an error report for this
trigger at the call site td seek. However, we hope that the summary generated by our
technique for the library-initialization code will captithe proper allocation bounds
for the pointers in the table ak424DEO Thus, the analysis will not emit spurious error
reports. The error triggers for other memory accesses lioolkas to this one.

The analysis took about 70 seconds to recover intermediptesentation and gen-
erate a numeric program. The generated program has 41 glatiables (22 of which
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nmov eax, dword ptr [4xecx + 0424DEOh]
assumémeci .addr = 0x424DEO+ 4 * ecx);
eax < mci; eax.allocy = mei.allocy; eax.alloc, = mey.allocy;
nmovsx ecx, byte ptr [eax + 8xedx + 4]
asser(eaz.allocy < 8 x edx + 5); asser(eax.allocy, + 8 * edx + 4 > 0);
assumémecz.addr = eaz.allocy, + 8 * edx + 4 > 0); ecx «— mcs;
Fig. 3. Symbolic memory modeling: the symbolic constants; andmc, model the
memory location accessed bpv andnovsx instructions, repsectively.

are used for symbolic memory modeling) and contains threequtures with 21, 8, and
2 local variables, respectively. The numeric analysis effifogram took 117 seconds.

5 Related Work

Summary functions have a long history, which goes back tséneinal work by Cousot

and Halbwachs on linear-relation analysis [8] and the papeinterprocedural analysis
of Cousot and Cousot [7] and Sharir and Pnueli [24]. Othelkweoranalyses based on
summary functions includes [16, 20, 3], as well as methodpdshdown systems [11,
4,5,21], where summary functions arise as one by-produs @halysis.

A substantial amount of work has been done to create summacyibns for alias
analysis or points-to analysis [18, 26, 14, 6, 22], or foreothimple analyses, such as
lock state [27]. Those algorithms are specialized for paldir problems; more compre-
hensive approaches include the work on analysis of progragnfents [23], compo-
nential set-based analysis [12], and use of SAT proced@ms [

Some of the work cited above explicitly mentions separateiypiled libraries as
one of the motivations for the work. Although the technigdescribed in the afore-
mentioned papers are language-independent, all of theemggitations described are
for source-code analysis.

Guo et al. [13] developed a system for performing pointeheigon a low-level
intermediate representation. The algorithm is only plytibow-sensitive: it tracks reg-
isters in a flow-sensitive manner, but treats memory loaatio a flow-insensitive man-
ner. The algorithm uses partial transfer functions [26] ¢biave context-sensitivity,
where the transfer functions are parameterized by “unkrioitial values”.

Kruegel et al. [17] developed a system for automating miynattacks. Their tool
uses symbolic-execution techniques on x86 binaries todescattacks that can give
up and regain execution control by modifying the contentthefdata, heap, or stack
so that the application is forced to return control to ingecattack code at some point
after a system call has been performed. Cova et al. [9] usegldtform to apply static
analysis to the problem of detecting security vulnerabsitn x86 executables. In both
of these systems, alias information is not available.

In our work, we make use of a-locs (variable proxies), alidsrimation, and other
IRs that have been recovered by the algorithms used in CofdeS86 [1,2]. The
recovered IRs are used as a platform on which we implementethtional analysis
that synthesizes summary functions for procedures.

Acknowledgements.We thank D. Vitek for sharing with us his insights on the peshl
of creating function summaries.
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