Comparison Under Abstraction
for Verifying Linearizability

Daphna Amit!*, Noam Rinetzky!**, Thomas Reps®***, Mooly Sagiv?,
and Eran Yahav?

1 Tel Aviv University
{amitdaph,maon,msagiv}@tau.ac.il
2 University of Wisconsin
reps@Qcs.wisc.edu
3 IBM T.J. Watson Research Center

eyahavQus.ibm.com

Abstract. Linearizability is one of the main correctness criteria for
implementations of concurrent data structures. A data structure is
linearizable if its operations appear to execute atomically. Verifying lin-
earizability of concurrent unbounded linked data structures is a challeng-
ing problem because it requires correlating executions that manipulate
(unbounded-size) memory states. We present a static analysis for verify-
ing linearizability of concurrent unbounded linked data structures. The
novel aspect of our approach is the ability to prove that two (unbounded-
size) memory layouts of two programs are isomorphic in the presence of
abstraction. A prototype implementation of the analysis verified the lin-
earizability of several published concurrent data structures implemented
by singly-linked lists.

1 Introduction

Linearizability [I] is one of the main correctness criteria for implementations of
concurrent data structures (a.k.a. concurrent objects). Intuitively, linearizability
provides the illusion that any operation performed on a concurrent object takes
effect instantaneously at some point between its invocation and its response. One
of the benefits of linearizability is that it simplifies reasoning about concurrent
programs. If a concurrent object is linearizable, then it is possible to reason
about its behavior in a concurrent program by reasoning about its behavior in
a (simpler) sequential setting.

Informally, a concurrent object o is linearizable if each concurrent execution of
operations on o is equivalent to some permitted sequential execution, in which the
global order between non-overlapping operations is preserved. The equivalence

* Supported by a grant from the Israeli Academy of Science.
** Supported in part by the German-Israeli Foundation for Scientific Research and
Development (G.I.F.), and in part by a grant from the Israeli Academy of Science.
*** Supported by ONR under grant N00014-01-1-0796 and by NSF under grants CCF-
0540955 and CCF-0524051.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 482-[95] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Comparison Under Abstraction for Verifying Linearizability 483

is based on comparing the arguments and results of operations (responses). The
permitted behavior of the concurrent object is defined in terms of a specification
of the desired behavior of the object in a sequential setting.

Linearizability is a widely-used concept, and there are numerous non-automatic
proofs of linearizability for concurrent objects (See Sec.[d]). Proving linearizability
is challenging because it requires correlating any concurrent execution with a cor-
responding permitted sequential execution. Proving linearizability for concurrent
objects that are implemented by dynamically allocated linked data-structures is
particularly challenging, because it requires correlating executions that may ma-
nipulate memory states of unbounded size.

In this paper, we present a novel technique for automatically verifying the
linearizability of concurrent objects implemented by linked data structures. Tech-
nically, we verify that a concurrent object is linearizable by simultaneously ana-
lyzing the concurrent implementation with an executable sequential specification
(i.e., a sequential implementation). The two implementations manipulate two
disjoint instances of the data structure. The analysis maintains a partial iso-
morphism between the memory layouts of the two instances. The abstraction is
precise enough to maintain isomorphism when the difference between the mem-
ory layouts is of bounded size. Note that the memory states themselves can be
of unbounded size.

Implementation. We have implemented a prototype of our approach, and used
it to automatically verify the linearizability of several concurrent algorithms,
including the queue algorithms of [2] and the stack algorithm of [3]. As far as we
know, our approach is the first fully automatic proof of linearizability for these
algorithms.

Limitations. Our analysis has several limitations: (i) Every concurrent operation
has a (specified) fized linearization point, a statement at which the operation
appears to take effect. (This restriction can be relaxed to several statements,
possibly with conditions.) (ii) We verify linearizability for a fixed but arbitrary
number of threads. (iii) We assume a garbage collected environment. Sec. Ml
discusses the role of these limitations. We note that the analysis is always sound,
even if the specification of linearization points is wrong (see [4]).

Main Results. The contributions of this paper can be summarized as follows:
— We present the first fully automatic algorithm for verifying linearizability of
concurrent objects implemented by unbounded linked data structures.
— We introduce a novel heap abstraction that allows an isomorphism between
mutable linked data structures to be maintained under abstraction.
— We implemented our analysis and used it to verify linearizability of several
unbounded linked data structures.

Due to space reasons, we concentrate on providing an extended overview of our
work by applying it to verify the linearizability of a concurrent-stack algorithm
due to Treiber [3]. Formal details can be found in [4].

484 D. Amit et al.

[10] #define EMPTY -1 r20) void push(Stack *S, data_type v){

(111 typedef int data_type; [21] Node *x = alloc(sizeof (Node));

(121 typedef struct node_t { [22] x=>d = v;

1131 data_type d; 231 do {

[14] struct node_t *n [24] Node *t = S->Top;

(151 } Node; [25] x->n = t;

(161 typedef struct stack-t { [26] } while (!CAS(&S->Top,t,x)); // @1
[171 struct node_t *Top; er1 }

18] } Stack;

(a) Stack and Node type definitions [30) data_type pop(Stack *S){

11 do {
f40] void client(Stack #*st) { [32] Node *t = S->Top; // @2
a1 do { [33] if (t == NULL)
[421 if (7) [34] return EMPTY;
[43] push(st, rand()); [35] Node *s = t->n;
[44] else 3] } while (!CAS(&S->Top,t,s)); // @3
[45] pop(st); (377 data_type r = t->d;
6]} while (1); (s8] return r;
wun } ts9] }
¢) The most general client of Stack (b) Concurrent stack procedures

Fig.1. A concurrent stack: (a) its type, (b) implementation, and (c) most general
client

2 Verification Challenge

Fig.[D(a) and (b) show C-like pseudo code for a concurrent stack that maintains
its data items in a singly-linked list of nodes, held by the stack’s Top-field. Stacks
can be (directly) manipulated only by the shown procedures push and pop, which
have their standard meaning.

The procedures push and pop attempt to update the stack, but avoid the
update and retry the operation when they observe that another thread changed
Top concurrently. Technically, this is done by repeatedly executing the following
code: At the beginning of every iteration, they read a local copy of the Top-field
into a local variable t. At the end of every iteration, they attempt to update the
stack’s Top-field using the Compare-and-Swap (CAS) synchronization primitive.
CAS (&S->Top, t,x) atomically compares the value of S->Top with the value of t
and, if the two match, the CAS succeeds: it stores the value of x in S->Top, and
evaluates to 1. Otherwise, the CAS fails: the value of S->Top remains unchanged
and the CAS evaluates to 0. If the CAS fails, i.e., Top was modified concurrently,
push and pop restart their respective loops.

Specification. The linearization point of push is the CAS statement in line [26]
(marked with @1). This linearization point is conditional: Only a successful CAS
is considered to be a linearization point. Procedure pop has two (conditional)
linearization points: Reading the local copy of Top in line [32] (marked with @2)
is a linearization point, if it finds that Top has a NULL-value. The CAS in line
[36] (marked with @3) is a linearization point, if it succeeds.

Goal. We verify that the stack algorithm is linearizable with the specified
linearization points for 2 threads, using its own code as a sequential
specification.

Comparison Under Abstraction for Verifying Linearizability 485
3 Our Approach

We use abstract interpretation of a non-standard concrete semantics, the corre-
lating semantics, abstracted by a novel delta heap abstraction to conservatively
verify that every execution of any program that manipulates a stack using 2
threads is linearizable. Technically, we simulate the executions of all such pro-
grams using a single program that has two threads running the stack’s most-
general-client and using a shared stack. (The stack’s most general client, shown
in Fig.[dl(c), is a procedure that invokes an arbitrary nondeterministic sequence
of operations on the stack.)

3.1 The Correlating Semantics

The correlating semantics “checks at runtime” that an execution is lineariz-
able. It simultaneously manipulates two memory states: the candidate state and
the reference state. The candidate state is manipulated according to the inter-
leaved execution. Whenever a thread reaches a linearization point in a given
procedure, e.g., executes a successful CAS while pushing data value 4, the cor-
relating semantics invokes the same procedure with the same arguments, e.g.,
invokes push with 4 as its value argument, on the reference state. The inter-
leaved execution is not allowed to proceed until the execution over the reference
state terminates. The reference response (return value) is saved, and compared
to the response of the corresponding candidate operation when it terminates.
This allows to directly test the linearizability of the interleaved execution by
constructing a (serial) witness execution for every interleaved execution. In the
example, we need to show that corresponding pops return identical results.

Ezample 1. Fig.[2(a) shows a part of a candidate execution and the corresponding
fragment of the reference execution (the witness) as constructed by the corre-
lating semantics. Fig. 2(b) shows some of the correlated states that occur in the
example execution. Every correlated state consists of two states: the candidate
state (shown with a clear background), and the reference state (shown with a
shaded background).

The execution fragment begins in the correlated state o,,. The candidate (resp.
reference) state contains a list with two nodes, pointed to by the Top-field of the
candidate (resp. reference) stack. To avoid clutter, we do not draw the Stack
object itself. In the reference state we add an r-superscript to the names of fields
and variables. (We subscript variable names with the id of the thread they belong
to.) For now, please ignore the edges crossing the boundary between the states.

In the example execution, thread B pushes 7 into the stack, concurrently
with A pushing 4. The execution begins with thread B allocating a node and
linking it to the list. At this point, oy, thread A’s invocation starts. Although
B’s invocation precedes A’s invocation, thread A reaches a linearization point
before B. Thus, after thread A executes a successful CAS on state o, resulting in
state o4, the correlating semantics freezes the execution in the candidate state
and starts A executing push(4) uninterruptedly in the reference state. When

486 D. Amit et al.

the reference execution terminates, in o4, the candidate execution resumes. In
this state, thread B has in tp an old copy of the value of the stack’s Top. Thus,
its CAS fails. B retries: it reads the candidate’s Top again and executes another
(this time successful) CAS in state o;. Again, the correlating semantics freezes
the candidate execution, and makes B execute push(7) on the reference state
starting from o;. In 0,,, both push operations end.

Thread A invokes a pop operation on the stack in state o,,,. Thread A executes
a successful CAS on state o,,, and the reference execution starts at o,. When
the latter terminates, the correlating semantics saves the return value, 7, in
the special variable ret”y. When the candidate pop ends in o, the correlating
semantics stores the return value, 7, in ret4, and compares the two, checking
that the results match.

Up to this point, we described one aspect of the correlating semantics: checking
that an interleaved execution is linearizable by comparing it against a (con-
structed) serial witness. We now show how our algorithm uses abstraction to
conservatively represent unbounded states and utilizes (delta) abstraction to
determine that corresponding operations have equal return values.

Comparison of Unbounded States. Our goal is to statically verify linearizability.
The main challenge we face is devising a bounded abstraction of the correlating
semantics that allows establishing that every candidate pop operation, in every
execution, returns the same result as its corresponding reference pop operation.
Clearly, using separated bounded abstractions of the candidate and the reference
stack will not do: Even if both stacks have the same abstract value, it does not
necessarily imply that they have equal contents.

Our abstraction allows one to establish that corresponding operations return
equal values by using the similarity between the candidate and reference states
(as can be observed in Fig. 2l(b)). In particular, it maintains a mapping between
the isomorphic parts of the two states (an isomorphism function). Establishing
an isomorphism function—and maintaining it under mutations—is challenging.
Our approach, therefore, is to incrementally construct a specific isomorphism
during execution: The correlating semantics tracks pairs of nodes allocated by
corresponding operations using a correlation relation. We say that two correlated
nodes are similar if their n-successors are correlated (or both are NULL). The
maintained isomorphism is the correlation relation between similar nodes.

Ezample 2. The edges crossing the boundary between the candidate and the ref-
erence component of the correlated states shown in Fig. [2(b) depict the correla-
tion relation. In state o,, each node is similar to its correlated node. In states o3
and o., threads B and A have allocated nodes with data values 7 and 4, re-
spectively, and linked them to the list. When thread A’s corresponding reference
operation allocates a reference node, it becomes correlated in o, with the can-
didate node that A allocated. When the reference node is linked to the list, in
o, the two become similar. (The node allocated by B undergoes an analogous
sequence of events in oy and o;).

Comparing Return Values. The analysis needs to verify that returned values of
corresponding pops match. Actually, it establishes a stronger property: the re-
turned values of corresponding pops come from correlated nodes, i.e., nodes that

Comparison Under Abstraction for Verifying Linearizability 487

were allocated by corresponding pushs. Note that a node’s data value, once ini-
tialized, is immutable. To simplify the presentation, and the analysis, we consider
correlated nodes to also have equal data values. Our analysis tracks the nodes
from which the return values are read (if this is the case) and verifies that these
nodes are correlated. Sec. [discusses the comparison of actual data values.

Ezample 3. Thread A executes a pop and gets the reference return value by
reading the data field of the node pointed to by t”, in 0,. The corresponding
candidate pop gets the return value by reading the data field of the node pointed
to by t4, resulting in o4, with 7 being r 4’s value. Our analysis verifies that these
nodes are indeed correlated. Furthermore, consider an incorrect implementation
of (concurrent) push in which the loop is removed and the CAS in line [26]
is replaced by the standard pointer-update statement S->Top=x. Running our
example execution with this implementation, we find that thread B manages to
update Top in state o4 (instead of failing to do so with a CAS). As a result, the
candidate Top is redirected to the node that B allocated, and the current node
at the top of the candidate stack (pushed by A) is lost. However, the node that
A pushed onto the reference stack is still (eventually) in the reference stack. As
a result, when it is popped from the stack, it will not be correlated with the
node popped from the candidate stack. Our analysis will find this out and emit
a warning.

3.2 Delta Heap Abstraction

Our abstraction summarizes an unbounded number of nodes while maintaining
a partial-isomorphism between the reference state and the candidate state. The
main idea is to abstract together the isomorphic parts of the states (comprised of
pairs of correlated nodes) and to explicitly record the differences that distinguish
between the states. Technically, this is performed in two abstraction steps: In
the first step, we apply delta abstraction, which merges the representations of
the candidate and reference states by fusing correlated nodes, losing their actual
addresses. In the second step, we bound the resulting delta memory state into
an abstract delta memory state using canonical abstraction [0, losing the exact
layout of the isomorphic subgraphs while maintaining a bounded amount of
information on their distinguishing differences. This abstraction works well in
cases where the differences are bounded, and loses precision otherwise.

Delta Abstraction. We abstract a correlated memory state into a delta state
by sharing the representation of the correlated parts. Pictorially, the delta ab-
straction superimposes the reference state over the candidate state. Each pair of
correlated nodes is fused into a duo-object. The abstraction preserves the layout
of the reference memory state by maintaining a double set of fields, candidate-
fields and reference-fields, in every duo-object. Recall that a pair of correlated
nodes is similar if their n-successors are correlated (or both are NULL). In the
delta representation, the candidate-field and the reference-field of a duo-object
representing similar nodes are equal. Thus, we refer to a duo-object representing
a pair of similar nodes as a uniform duo-object.

488 D. Amit et al.

Ezample 4. Fig.[2lc) depicts the delta states pertaining to some of the correlated
states shown in Fig. Bi(b). The delta state o, represents o,,. Each node in oy,
is correlated, and similar to its correlated node. A duo-object is depicted as
a rectangle around a pair of correlated nodes. All the duo-objects in ¢®, are
uniform. (This is visually indicated by the ~ sign inside the rectangle.) The
n-edge of every uniform duo-object implicitly represents the (equal) value of its
n"-edge. This is indicated graphically, by drawing the n-edge in the middle of
the uniform duo-object. For example, the n-edge leaving the uniform duo-object
with value 1, implicitly records the n"-edge from the reference node with value 1
to the reference node with value 3. Note that the candidate Top and the reference
Top, that point to correlated nodes in o,,, point to the same duo-object in o2, .

The delta state ol represents oj. The duo-object with data-value 7 in ¢? is
nonuniform; it represents the pair of nodes allocated by thread B before it links
the reference node to the list. (Nonuniform duo-objects are graphically depicted
without a ~ sign inside the rectangle.) Note that the n-edge of this nonuniform
duo-object is drawn on its left-side. The lack of a n"-edge on the right-side
indicates that the n"-field is NULL.

The delta state 0¥ represents o;. The non-correlated node with data-value 7
is represented as a “regular” node.

Bounded Delta Abstraction. We abstract a delta state into a bounded-size
abstract delta state. The main idea is to represent only a bounded number of
objects in the delta state as separate (non-summary) objects in the abstract
delta state, and summarize all the rest. More specifically, each uniform duo-
object, nonuniform duo-object, and node which is pointed to by a variable or
by a Top-field, is represented by a unique abstract uniform duo-object, abstract
nonuniform duo-object, and abstract node, respectively. We represent all other
uniform duo-objects, nonuniform duo-objects, and nodes, by one uniform sum-
mary duo-object, one nonuniform summary duo-object, and one summary node,
respectively. We conservatively record the values of pointer fields, and abstract
away values of data fields. (Note, however, that by our simplifying assumption,
every duo-object represents nodes with equal data values.)

Ezample 5. Fig. [(d) depicts the abstract delta states pertaining to the delta
states shown in Fig. [2(c). The abstract state o? represents Uf . The duo-objects
with data values 1 and 3 in of are represented by the summary duo-object,
depicted with a double frame. The duo-object u with data value 4 in crf is

represented by its own abstract duo-object in Uf (and not by the summary duo-

object) because u is pointed to by (both) Top-fields. The non-correlated node w
with data-value 7 in Uf is pointed to by xp. It is represented by its own abstract
node pointed to by xp. The n-field between the candidate node w and the duo-
object u in Uf is represented in the abstract state by the solid n-labeled edge.
The absence of an n-labeled edge between abstract nodes or abstract duo-objects
represents the absence of pointer fields. Finally, the dotted edges represent loss
of information in the abstraction, i.e., pointer fields which may or may not exist.

Note that the summary duo-object in o is uniform. This information is key to

i

Comparison Under Abstraction for Verifying Linearizability 489

our analysis: it records the fact that the candidate and reference states have
(potentially unbounded-sized) isomorphic subgraphs.

The abstract delta state ol’i represents Ug. The nonuniform duo-object v in Ug

is represented by an abstract nonuniform duo-object in ol’i. Note that the ab-
straction maintains the information that the duo-object pointed to by v’s can-
didate n-field, is also pointed to by the reference Top. This allows to establish
that once thread B links the reference node to the list, the abstract nonuniform
duo-object v is turned into a uniform duo-object.

Recap. The delta representation of the memory states, enabled by the novel use
of similarity and duo-objects, essentially records isomorphism of subgraphs in a
local way. Also, it helps simplify other elements of the abstraction: the essence of
our bounded abstraction is to keep distinct (i.e., not to represent by a summary
node or a summary duo-object) nodes and pairs of correlated nodes which are
pointed-to by variables or by a Top-field. Furthermore, by representing the refer-
ence edges of similar nodes by the candidate edges and the similarity information
recorded in (uniform) duo-objects, the bounded abstraction can maintain only
a single set of edges for these nodes. Specifically, if there is a bounded num-
ber of differences between the memories, the bounded abstraction is, essentially,
abstracting a singly-linked list of duo-objects, with a bounded number of ad-
ditional edges. In addition, to represent precisely the differences between the
states using this abstraction, these differences have to be bounded, i.e., every
non-similar or uncorrelated node has to be pointed to by a variable or by a
Top-field.

Ezample 6. The information maintained by the abstract delta state suffices to
establish the linearizability of the stack algorithm. Consider key points in our
example trace:

— When thread B performs a CAS on oy, its abstraction Ug carries enough
information to show that it fails, and when B tries to reperform the CAS on
o;, its abstraction crf-i can establish that the CAS definitely succeeds.

— When linking the reference node to the list in state o. and later in oy, the
abstracted states can show that newly correlated nodes become similar.

— Ufn, the abstraction of o,,, which occurs when no thread manipulates the
stack, indicates that the candidate and the reference stacks are isomorphic.

— Finally, 05, the abstraction of o4, indicates that the return value of the
reference pop was read from a node correlated to the one from which r4’s
value was read (indicated by ret’, pointing into the correlated node). This

allows our analysis to verify that the return values of both pops agree.

Our analysis is able to verify the linearizability of the stack. Note that the
abstraction does not record any particular properties of the list, e.g., reach-
ability from variables, cyclicly, sharing, etc. Thus, the summary duo-object
might represent a cyclic list, a shared list, or even multiple unreachable lists
of duo-objects. Nevertheless, we know that the uniform summary duo-object
represents an (unbounded-size) isomorphic part of the candidate and reference
states.

D. Amit et al.

490

bo pue ‘o Ao Lo ‘1o ‘O soqe)s-poy

(40)

(¢9)

15501 2=

(%9)

oy doy

bo pue ‘o Ao Lo o B s

(40)

"90RI) UOIINIOXS Paje[alIod o[dwrexs uy °g *Stq

(40

doy.

o1oRISE-RY[

x

¥
U
o
T c)
tod y (2)
5
(¢2)
p="n
=5

idoy doy vy oy
¥

(+0)

£="301 =01

020
.:&ﬁ

(*0)

1=Ya01 =4

wonooxe o[duwexe o3 SuLnp BuLL

(%0)

(°0)

doy.

MO0 S91B}S-PAIR[AIIOD Pa}IR[OS

(+0)

p=¥n
=

sdoy doy vy

P=Yn
=

doy v o

oy 596

SoruRwWes PaYe[eI0d By} JO uoKNoexe ajdwexs uy ()
L : ()dod sau|[o
1 uxnjex [sel|| bo
P<3=I L€
2 ()dod sex
I uinjex [sg] dg
P<-a=1 [€]
dog<-g=1 le€]
()dod Aur
(" r)SyD log]
Uc-3=8
() 3T
dog<-g=1 le€]
()dod aut||“o
(2)ysnd sax
(2)ysnd sax
10
10
A=p<-X [zz]
()ooTTe=X [1e]
(L)usnd Auy 10 ‘o
(" 7)svo ozl o
=X [c2]
(7)ysnd sax
dol<«g=2 [vz]
(" *)svo 92l 5o
(v)ysnd soa
(" r)syo loz] Jo
J=UX
dor<-g=3 [re] 20
A=p<-X
()ooTTe=X [12]
(v)ysnd Aug
[QRRDES) 4]
1=UeX
dog<-8=1
A=P<-X [l
()o0TTe=X [12]
(v)ysnd aui|f 0
4=U<-X [6T
do<-g=1 [va]
A=p<-X [z7]
()ooTTe=X [1g]
(2)ysnd Aut vo
da v a v X
90UL19J9Y ajepipue)

Comparison Under Abstraction for Verifying Linearizability 491

4 Discussion

In this section, we shortly discuss some key issues in our analysis.

Soundness. The soundness of the analysis requires that every operation of
the executable sequential specification is fault-free and always terminates. This
ensures that triggering a reference operation never prevents the analysis from
further exploring its candidate execution path. Our analysis conservatively ver-
ifies the first requirement in situ. The second requirement can be proved using
termination analysis, e.g., [6]. Once the above requirements are established, the
soundness of the abstract interpretation follows from the soundness of [5]’s frame-
work for program analysis, in which our analysis is encoded. We note that for
many of our benchmarks, showing termination is rather immediate because the
procedures perform a loop until a CAS statement succeeds; in a serial setting, a
CAS always succeeds.

Correlating Function. We used the same correlation function in all of our bench-
marks: nodes allocated by corresponding operations are correlated. (In all our
benchmarks, every operation allocates at most one object. More complicated al-
gorithms might require more sophistication.) We note that our analysis is sound
with any correlation function.

Comparison of Return Values. We simplified the example by not tracking actual
data values. We now show how return values can be tracked by the analysis.
The flow of data values within corresponding operations can be tracked from
the pushed value parameter to the data fields of the allocated nodes (recall that
corresponding operations are invoked with the same parameters). We then can
record data-similarity, in addition to successor-similarity, and verify that data-
fields remain immutable. This allows to automatically detect that return values
(read from correlated nodes) are equal. Such an analysis can be carried out using,
e.g., the methods of [7].

Precision. As far as we know, we present the first shape analysis capable
of maintaining isomorphism between (unbounded-size) memory states. We at-
tribute the success of the analysis to the fact that in the programs we analyze the
memory layouts we compare only “differ a little”. The analysis tolerates local per-
turbations (introduced, e.g., by interleaved operations) by maintaining a precise
account of the difference (delta) between the memory states. In particular, dur-
ing our analysis, it is always the case that every abstract object is pointed to by a
variable or a field of the concurrent object, except, possibly, uniform duo-objects.
Thus, we do not actually expect to summarize nonuniform duo-objects or regu-
lar nodes. In case the analysis fails to verify the linearizability of the concurrent
implementation, its precision may be improved by refining the abstraction.

Operational Specification. We can verify the concurrent implementation
against a simple sequential specification instead of its own code. For example, in
the operational specification of push and pop, we can remove the loop and replace
the CAS statement with a (more natural) pointer-update statement. Verifying a
code against a specification, and not against itself, can improve performance.

492 D. Amit et al.

For example, we were not able to verify a sorted-set example using its own code
as a specification (due to state explosion), but we were able to verify it using a
simpler specification. Also, it should be much easier to prove fault-freedom and
termination for a simplified specification.

Parametric Shape Abstraction. We match the shape abstraction to the way
the operations of the concurrent objects traverse the heap: When the traversal
is limited to a bounded number of links from the fields of the concurrent object,
e.g., stacks and queues, we base the abstraction on the values of variables. When
the traversal is potentially unbounded, e.g., a sorted set, we also record sharing
and reachability.

Automation. In the stack example, we used a very simple abstraction. In
other cases, we had to refine the abstraction. For example, when analyzing the
nonblocking-queue [2], we found it necessary to also record explicitly the suc-
cessor of the tail. Currently, we refine the abstraction manually. However, it is
possible to automate this process using the methods of [8]. We define the abstract
transformers by only specifying the concrete (delta) semantics. The abstract ef-
fect of statements on the additional information, e.g., reachability, is derived
automatically using the methods of [9]. The latter can also be used to derive the
delta operational semantics from the correlating operational semantics.

Limitations. We now shortly discuss the reasons for the imposed limitations.

Fized Linearization Points. Specifying the linearization points of a procedure
using its own statements simplifies the triggering of reference operations when
linearization points are reached. In addition, it ensures that there is only one
(prefix of a) sequential execution corresponding to every (prefix of a) concur-
rent execution. This allows us to represent only one reference data structure.
Extending our approach to handle more complex specification of linearization
points, e.g., when the linearization point occurs in the body of another method,
is a matter of future investigation.

Bounded Number of Threads. The current analysis verifies linearizability for a
fixed (but arbitrary) number k of threads. However, our goal is not to develop
a parametric analysis, but to lift our analysis to analyze an unbounded number
of threads using the techniques of Yahav [10].

No Explicit Memory Deallocation. We do not handle the problem of using (dan-
gling) references to reclaimed memory locations, and assume that memory is
automatically reclaimed (garbage collected). Dangling references can cause sub-
tle linearizability errors because of the ABA problemﬂ Our model is simplified
by forbidding explicit memory deallocation. This simplifying assumption guar-

! The ABA problem occurs when a thread reads a value v from a shared location
(e.g., Top) and then other threads change the location to a different value, say wu,
and then back to v again. Later, when the original thread checks the location, e.g.,
using read or CAS, the comparison succeeds, and the thread erroneously proceeds
under the assumption that the location has not changed since the thread read it
earlier [IT].

Comparison Under Abstraction for Verifying Linearizability 493

Table 1. Experimental results. Time is measured in seconds. Experiments performed
on a machine with a 3.8 Ghz Xeon processor and 4 Gb memory running version 4 of
the RedHat Linux operating system with Java 5.0, using a 1.5 Gb heap.

|Client type I (a) General client [[(b) Producers / Consumers|
|Data Structure ||Threads| Time|# States||Threads|Time| 7# States|
Stack [3] 3 555\ 64,618|] 2/2 |1,432 82,497
Nonblocking queue [2] 2 1,874| 116,902|| 1/1 15 2,518
Nonblocking queue [15] 2 340| 34,611 1/1 12 1,440
Two-lock queue [2] 4 1,296| 115,456|| 3/3 4,596 178,180
Pessimistic set [16] 2 14,153| 229,380 1/1 2,981 51,755

antees that the ABA problem does not occur, and hence need not be treated in
the model. We believe that our approach can be extended to support explicit
memory deallocation, as done, e.g., in [12]. In our analysis, we do not model the
garbage collector, and never reclaim garbage.

5 Implementation and Experimental Results

We have implemented a prototype of our analysis using the TVLA /3VMC [13[10]
framework. Tab. [[] summarizes the verified data structures, the running times,
and the number of configurations. Our system does not support automatic
partial-order reductions (see, e.g., [14]). For efficiency, we manually combined
sequences of thread-local statements into atomic blocks.

The stack benchmark is our running example. We analyze two variants of
the well-known nonblocking queue algorithm of Michael and Scott: the original
algorithm [2], and a slightly optimized version [15]. The two-lock queue [2] uses
two locks: one for the head-pointer and one for the tail-pointer. The limited
concurrency makes it our most scalable benchmark. The pessimistic set [16] is
implemented as a sorted linked list. It uses fine-grained locking: Every node has
its own lock. Locks are acquired and released in a “hand-over-hand” order; the
next lock in the sequence is acquired before the previous one is released.

We performed our experiments in two settings: (a) every thread executes the
most general client and (b) every thread is either a producer, repeatedly adding
elements into the data structure, or a consumer, repeatedly removing elements.
(The second setting is suitable when verifying linearizability for applications
which can be shown to use the concurrent object in this restricted way.) Our
analysis verified that the data structures shown in Tab. [I]are linearizable, for the
number of threads listed (e.g., for the stack, we were able to verify linearizability
for 4 threads: 2 producer threads and 2 consumer threads, and for 3 threads
running general clients).

We also performed some mutation experiments, in which we slightly mutated
the data-structure code, e.g., replacing the stack’s CAS with standard pointer-
field assignment, and specified the wrong linearization point. In all of these cases,
our analysis reported that the data structure may not be linearizable. (See [4].)

494 D. Amit et al.

6 Related Work

This section reviews some closely related work. For additional discussion, see [4].

Conjoined Exploration. Our approach for conjoining an interleaved execution
with a sequential execution is inspired by Flanagan’s algorithm for verifying
commit-atomicity of concurrent objects in bounded-state systems [I7]. His al-
gorithm explicitly represents the candidate and the reference memory state. It
verifies that at quiescent points of the run, i.e., points that do not lie between the
invocation and the response of any thread, the two memory states completely
match. Our algorithm, on the other hand, utilizes abstraction to conservatively
represent an unbounded number of states (of unbounded size) and utilizes (delta)
abstraction to determine that corresponding operations have equal return values.

Automatic Verification. Wang and Stoller [I8] present a static analysis that
verifies linearizability (for an unbounded number of threads) using a two-step
approach: first show that the concurrent implementation executed sequentially
satisfies the sequential specification, and then show that procedures are atomic.
Their analysis establishes atomicity based primarily on the way synchroniza-
tion primitives are used, e.g., compare-and-swap, and on a specific coding style.
(It also uses a preliminary analysis to determine thread-unique references.) If a
program does not follow their conventions, it has to be rewritten. (The lineariz-
ability of the original program is manually proven using the linearizability of the
modified program.) It was used to derive manually the linearizability of several
algorithms including the nonblocking queue of [2], which had to be rewritten.
We automatically verify linearizability for a bounded number of threads. Yahav
and Sagiv [I2] automatically verify certain safety properties listed in [2] of the
nonblocking queue and the two-lock queue given there. These properties do not
imply linearizability. We provide a direct proof of linearizability.

Semi- Automatic Verification. In [I5[19)20], the PVS theorem prover is used for
a semi-automatic verification of linearizability.

Manual Verification. Vafeiadis et. al. [I6] manually verify linearizability of list al-
gorithms using rely-guarantee reasoning. Herlihy and Wing [I] present a method-
ology for verifying linearizability by defining a function that maps every state
of the concurrent object to the set of all possible abstract values representing
it. (The state can be instrumented with properties of the execution trace). Both
techniques do not require fixed linearization points.

Acknowledgments. We are grateful for the comments of A. Gotsman, T. Lev-
Ami, A. Loginov, R. Manevich, M. Parkinson, V. Vafeiadis, and M. Vechev.

References

1. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. Trans. on Prog. Lang. and Syst. 12(3) (1990)

2. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: PODC. (1996)

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

Comparison Under Abstraction for Verifying Linearizability 495

Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center (1986)

Amit, D.: Comparison under abstraction for verifying linearizability. Master’s the-
sis, Tel Aviv University (2007) Available at “http://www.cs.tav.ac.il/~amitdaph”.
Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
Trans. on Prog. Lang. and Syst. (2002)

Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs
for programs with shape-shifting heaps. In: CAV. (2006)

Gopan, D., DiMaio, F., Dor, N., Reps, T.W., Sagiv, S.: Numeric domains with
summarized dimensions. In: TACAS. (2004)

Loginov, A., Reps, T.W., Sagiv, M.: Abstraction refinement via inductive learning.
In: CAV. (2005)

Reps, T., Sagiv, M., Loginov, A.: Finite differencing of logical formulas for static
analysis. In: ESOP. (2003)

Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued
logic. In: POPL. (2001)

Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6) (2004)

Yahav, E., Sagiv, M.: Automatically verifying concurrent queue algorithms. In:
Electronic Notes in Theoretical Computer Science. Volume 89., Elsevier (2003)
Lev-Ami, T., Sagiv, M.: TVLA: A framework for Kleene based static analysis. In:
SAS. (2000)

E. M. Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cam-
bridge, MA, USA (1999)

Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: FORTE. (2004)

Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: PPoPP. (2006)

Flanagan, C.: Verifying commit-atomicity using model-checking. In: SPIN. (2004)
Wang, L., Stoller, S.D.: Static analysis of atomicity for programs with non-blocking
synchronization. In: PPOPP. (2005)

Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy
concurrent list-based set algorithm. In: CAV. (2006)

Gao, H., Hesselink, W.H.: A formal reduction for lock-free parallel algorithms. In:
CAV. (2004)

	Introduction
	Verification Challenge
	Our Approach
	The Correlating Semantics
	Delta Heap Abstraction

	Discussion
	Implementation and Experimental Results
	Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

