
Improving Pushdown System Model Checking⋆

Akash Lal1 and Thomas Reps1,2

1 University of Wisconsin.
2 GrammaTech, Inc.

{akash, reps}@cs.wisc.edu

Abstract. In this paper, we reduce pushdown system (PDS) model checking to a graph-
theoretic problem, and apply a fast graph algorithm to improve the running time for model
checking. Several other PDS questions and techniques can becarried out in the new setting,
including witness tracing and incremental analysis, each of which benefits from the fast
graph-based algorithm.

1 Introduction
Pushdown systems (PDSs) have served as an important formalism for program analysis
and verification because of their ability to concisely capture interprocedural control flow
in a program. Various tools [6, 18, 12, 10, 4] use pushdown systems as an abstract model
of a program and use reachability analysis on these models toverify program properties.
Using PDSs provides an infinite-state abstraction for the control state of the program.
Some of these tools [6, 18, 4], however, can only verify properties that have a finite-
state data abstraction. Other tools [10, 12] are based on themore generalized setting of
weighted pushdown systems (WPDSs) [16] and are capable of verifying infinite-state
data abstractions as well.

At the heart of all these tools is a PDS reachability-analysis algorithm that uses a
chaotic-iteration strategy to explore all reachable states [2, 7, 17]. Even though there
has been work to address the worst-case running time of this algorithm [5], to our
knowledge, no one has addressed the issue of giving direction to the chaotic-iteration
scheme to improve the running time of the algorithm in practice. In this paper, we try to
improve the worst-case running time, as well as the running-time observed in practice.
To provide a common setting to discuss most PDS model checkers, we use WPDSs to
describe our improvements to PDS reachability.

An interprocedural control flow graph (ICFG) is a set of graphs, one per procedure,
connected via special call and return edges [14]. A WPDS witha given initial query
can also be decomposed into a set of graphs whose structure issimilar. (When the un-
derlying PDS is obtained by the standard encoding of an ICFG as a PDS for use in
program analysis, these decompositions coincide.) Next, we use a fast graph algorithm,
namely the Tarjan path-expression algorithm [19] to represent each graph as a regular
expression. WPDS reachability can then be reduced to solving a set of regular equa-
tions. When the underlying PDS is obtained from a structured(reducible) control flow
graph, the regular expressions can be found and solved very efficiently. Even when the
control flow is not structured, the regular expressions provide a fast iteration strategy
that improves over the standard chaotic-iteration strategy.

Our work is inspired by previous work on dataflow analysis of single-procedure
programs [20]. There it was shown that a certain class of dataflow analysis problems
⋆ Supported by ONR (N00014-01-1-{0708,0796}) and NSF (CCR-9986308 and CCF-

0524051).

can take advantage of the fact that a (single-procedure) CFGcan be represented using a
regular expression. We generalize this observation to multiple-procedure programs, as
well as to WPDSs. The contributions of this paper can be summarized as follows:

– We present a new reachability algorithm for WPDSs that improves on previously
known algorithms for PDS reachability. The algorithm is asymptotically faster
when the PDS isregular (decomposes into a single graph), and offers substantial
improvement in the general case as well.

– The algorithm is completely demand-driven, and computes only that information
needed for answering a particular user query. It has an implicit slicing stage where
it disregards parts of the program not needed for answering the user query.

– We show that several other PDS analysis questions and techniques, including wit-
ness tracing and incremental analysis, carry over to the newapproach.

The rest of the paper is organized as follows:§2 provides background on PDSs and
WPDSs.§3 presents the previously known algorithm and our new algorithm for solving
reachability queries on WPDSs. In§4, we describe algorithms for witness tracing and
incremental analysis.§5 presents experimental results.§6 describes related work.

2 PDS Model Checking

Definition 1. A pushdown systemis a triple P = (P, Γ, ∆) whereP is the set of
states or control locations,Γ is the set of stack symbols, and∆ ⊆ P × Γ × P × Γ ∗

is the set of pushdown rules. Aconfiguration of P is a pair 〈p, u〉 wherep ∈ P and
u ∈ Γ ∗. A rule r ∈ ∆ is written as〈p, γ〉 →֒ 〈p′, u〉 wherep, p′ ∈ P , γ ∈ Γ and
u ∈ Γ ∗. These rules define a transition relation⇒ on configurations ofP as follows: If
r = 〈p, γ〉 →֒ 〈p′, u〉 then〈p, γu′〉 ⇒ 〈p′, uu′〉 for all u′ ∈ Γ ∗. The reflexive transitive
closure of⇒ is denoted by⇒∗.

Without loss of generality, we restrict PDS rules to have at most two stack symbols
on the right-hand side. The standard approach for modeling program control flow is as
follows: Let(N , E) be an ICFG where eachcall node is split into two nodes: one has an
interprocedural edge going to the entry node of the procedure being called; the second
has an incoming edge from the exit node of the procedure.N is the set of nodes in this
graph andE is the set of control-flow edges. Fig. 1(a) shows an example ofan ICFG,
Fig. 1(b) shows the pushdown system that models it. The PDS has a single statep, one
stack symbol for each node inN , and one rule for each edge inE . We use rules with
one stack symbol on the right-hand side to model intraprocedural edges, rules with two
stack symbols on the right-hand side (pushrules) forcall edges, and rules with no stack
symbols on the right-hand side (poprules) forreturnedges. It is easy to see that a valid
path in the program corresponds to a path in the pushdown system’s transition system,
and vice versa. Thus, PDSs can encode ordinary control flow graphs, but they also
provide a convenient mechanism for modeling certain kinds of non-local control flow,
such as setjmp/longjmp in C. At a setjmp, we push a special symbol on the stack, and
at a longjmp with the same environment variable (identified using some preprocessing)
we pop the stack until that symbol is reached. The longjmp value can be passed using
the state of the PDS.

Because the number of configurations of a pushdown system is unbounded, it is
useful to use finite automata to describe certain infinite sets of configurations.

2

emain

p = NULL

loc1 = false

flag = false

call foo

ret. foo

exitmain

n1

n2

n3

n4

n5

efoo

i = 100

loc2 = true

if(!flag)

if(i > 0)

i = i – 1

*p = i

loc2 = false

exitfoo

t f

t f

n6

n7

n8

n9

n10

n11

n12

(1) 〈p, n1〉 →֒ 〈p, n2〉
(2) 〈p, n2〉 →֒ 〈p, n3〉
(3) 〈p, n3〉 →֒ 〈p, n6 n4〉
(4) 〈p, n4〉 →֒ 〈p, n5〉
(5) 〈p, n5〉 →֒ 〈p, ε〉
(6) 〈p, n6〉 →֒ 〈p, n7〉
(7) 〈p, n7〉 →֒ 〈p, n8〉
(8) 〈p, n8〉 →֒ 〈p, n9〉
(9) 〈p, n8〉 →֒ 〈p, n12〉
(10) 〈p, n9〉 →֒ 〈p, n10〉
(11) 〈p, n9〉 →֒ 〈p, n11〉
(12) 〈p, n10〉 →֒ 〈p, n9〉
(13) 〈p, n11〉 →֒ 〈p, n12〉
(14) 〈p, n12〉 →֒ 〈p, ε〉

(a) (b)

Fig. 1. (a) An ICFG. Thee and exit nodes represent entry and exit points of proce-
dures, respectively.flag is a global variable,loc1 andloc2 are local variables of
main andfoo, respectively. Dashed edges represent interprocedural control flow. (b)
A pushdown system that models the control flow of the graph shown in (a).

Definition 2. If P = (P, Γ, ∆) is a pushdown system, then aP-automaton is a finite
automaton(Q, Γ,→, P, F) whereQ ⊇ P is a finite set of states,→⊆ Q × Γ × Q is
the transition relation,P is the set of initial states, andF is the set of final states of
the automaton. We say that a configuration〈p, u〉 is accepted by aP-automaton if the
automaton can acceptu when it is started in the statep (written asp u−→∗ q, where
q ∈ F). A set of configurations is calledregular if someP-automaton accepts it.

A weighted pushdown system is obtained by supplementing a pushdown system
with a weight domain that is a bounded idempotent semiring [16, 3]. Such semirings
are powerful enough to encode finite-state data abstractions such as the one required
for Boolean program verification, as well as infinite-state data abstractions, such as
copy-constant propagation and affine-relation analysis [12].

Definition 3. A bounded idempotent semiringis a quintuple(D,⊕,⊗, 0, 1), where
D is a set whose elements are calledweights, 0 and1 are elements ofD, and⊕ (the
combine operation) and⊗ (the extend operation) are binary operators onD such that

1. (D,⊕) is a commutative monoid with0 as its neutral element, and where⊕ is
idempotent.(D,⊗) is a monoid with the neutral element1.

2. ⊗ distributes over⊕, i.e., for alla, b, c ∈ D we have
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

3. 0 is an annihilator with respect to⊗, i.e., for alla ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
4. In the partial order⊑ defined by∀a, b ∈ D, a ⊑ b iff a ⊕ b = a, there are no

infinite descending chains.

Definition 4. A weighted pushdown systemis a triple W = (P ,S, f) whereP =
(P, Γ, ∆) is a pushdown system,S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring
andf : ∆ → D is a map that assigns a weight to each pushdown rule.

Let σ ∈ ∆∗ be a sequence of rules. Usingf , we can associate a value toσ, i.e., if
σ = [r1, . . . , rk], then we definev(σ)

def
= f(r1) ⊗ . . . ⊗ f(rk). Moreover, for any two

3

configurationsc andc′ of P , we usepath(c, c′) to denote the set of all rule sequences
[r1, . . . , rk] that transformc into c′. Reachability problems on pushdown systems are
generalized to weighted pushdown systems as follows.

Definition 5. LetW = (P ,S, f) be a weighted pushdown system, whereP = (P, Γ, ∆),
and letC ⊆ P × Γ ∗ be a regular set of configurations. Thegeneralized pushdown
predecessor (GPP) problem is to find for eachc ∈ P × Γ ∗:

δ(c)
def
=

⊕
{ v(σ) | σ ∈ path(c, c′), c′ ∈ C }

Thegeneralized pushdown successor (GPS) problem is to find for eachc ∈ P × Γ ∗:
δ(c)

def
=

⊕
{ v(σ) | σ ∈ path(c′, c), c′ ∈ C }

To illustrate the above definitions, let us encode Boolean programs as a WPDS. Con-
sider the program shown in Fig. 1. It has one global variableflag. We ignore local vari-
ables for now, and details regarding their treatment can be found in [11]. LetG be the
set of all valuations of global variables. In our case,G = {0, 1} because we only have
one global variable. Each ICFG edge can be associated with a transformer, which is a
binary relation onG, and describes the effect of executing that edge on the global vari-
ables, e.g., the edge(n2, n3) will be associated with the relation{(0, 0), (1, 0)} because
flag is set to0 (orfalse). Therefore, we use the weight domain(2G×G,∪, ◦, ∅, id),
and for a PDS rule, we associate it with the transformer of thecorresponding ICFG
edge. Assertion checking in the program can be performed by seeing if a configuration
c (or a set of configurations) can be reached with non-zero weight, i.e,δ(c) 6= 0.

Boolean programs can also be encoded using PDSs by using the states of the PDS to
encode valuations of global variables. However, WPDSs provide a more efficient rep-
resentation of Boolean programs because the weights can symbolically encode trans-
formers, for example, by using BDDs [17]. Moreover, WPDSs are strictly more power-
ful than PDSs because they can be used withinfinite-widthabstract domains to perform
copy-constant propagation and affine relation analysis [12]. More details on the uses of
PDSs for model checking, and their encoding as WPDSs can be found in [11].

3 Solving Reachability Problems
In this section, we review the existing algorithm for solving generalized reachability
problems on WPDSs [16], which is based on chaotic iteration,and present our new
algorithm, which uses Tarjan’s path-expression algorithm[19]. We limit our discussion
to GPP; GPS is similar but slightly more complicated.

3.1 Solving GPP using Chaotic Iteration
Let W = (P ,S, f) be a WPDS whereP = (P, Γ, ∆) is a pushdown system and
S = (D,⊕,⊗, 0, 1) is the weight domain. LetC be a regular set of configurations that
is recognized byP-automatonA = (Q, Γ,→0, P, F). GPP is solved by saturating this
automaton with new weighted transitions (each transitiont has a weight labell(t)), to
create automatonApre∗ , such thatδ(c) can be read-off efficiently fromApre∗ : δ(〈p, u〉)
is the combine of weights of all accepting paths foru starting fromp, where the weight
of a path is the extend of the weight-labels of the transitions in the path in order. We
present the algorithm for buildingApre∗ based on its abstract grammar problem.

Definition 6. [16] Let (S,⊓) be a meet semilattice. Anabstract grammar over(S,⊓)
is a collection of context-free grammar productions, whereeach productionθ has the

4

form X0 → gθ(X1, . . . , Xk). Parentheses, commas, andgθ (whereθ is a production)
are terminal symbols. Every productionθ is associated with a functiongθ : Sk → S.
Thus, every stringα of terminal symbols derived in this grammar denotes a composi-
tion of functions, and corresponds to a unique value inS, which we callvalG(α). Let
LG(X) denote the strings of terminals derivable from a nonterminal X . Theabstract
grammar problem is to compute, for each nonterminalX , the valueMODG(X) =

α∈LG(X) valG(α). This value is called themeet-over-all-derivationsvalue forX .

We define abstract grammars over the meet semilattice(D,⊕), whereD is the set
of weights as given above. An example is shown in Fig. 2. The non-terminalt3 can
derive the stringα = g4(g3(g1)) andval (α) = w4 ⊗ w3 ⊗ w1.
(1) t1 → g1(ǫ) g1 = w1

(2) t1 → g2(t2) g2 = λx.w2 ⊗ x
(3) t2 → g3(t1) g3 = λx.w3 ⊗ x
(4) t3 → g4(t2) g4 = λx.w4 ⊗ x

Fig. 2.A simple abstract grammar with four productions.

Production for each
(1) PopSeq(q,γ,q′) → g1(ǫ) (q, γ, q′) ∈ →0

g1 = 1
(2) PopSeq(p,γ,p′) → g2(ǫ) r = 〈p, γ〉 →֒ 〈p′, ε〉 ∈ ∆

g2 = f(r)
(3) PopSeq(p,γ,q) → g3(PopSeq(p′,γ′,q)) r = 〈p, γ〉 →֒ 〈p′, γ′〉 ∈ ∆, q ∈ Q

g3 = λx.f(r) ⊗ x
(4) PopSeq(p,γ,q) → g4(PopSeq(p′,γ′,q′), PopSeq(q′,γ′′,q))

g4 = λx.λy.f(r) ⊗ x ⊗ y r = 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 ∈ ∆, q, q′ ∈ Q

Fig. 3.An abstract grammar problem for solving GPP.

The abstract grammar for solving GPP is shown in Fig. 3. The grammar has one
non-terminalPopSeqt for each possible transitiont ∈ Q × Γ × Q of Apre∗ . The pro-
ductions describe how the weights on those transitions are computed. Letl(t) be the
weight label on transitiont. Then we wantl(t) = MOD(PopSeqt). The meet-over-
all-derivation value is obtained as follows [16]: Initialize l(t) = 0 for all transitions
t. If PopSeqt → g(PopSeqt1 , PopSeqt2) is a production of the grammar (with possi-
bly fewer non-terminals on the right-hand side) then updatethe weight label ont to
l(t) ⊕ g(l(t1), l(t2)). The existing algorithm for solving GPP is a worklist-basedalgo-
rithm that uses chaotic iteration to choose(i) a transition in the worklist and(ii) all
productions that have this transition on the right side, andupdates the weight on the
transitions on the left-hand side of the productions as described earlier. If the weight on
a transition changes then it is added to the worklist. Defn. 3(4) guarantees convergence.

Such a chaotic-iteration scheme is not very efficient. Consider the abstract grammar
in Fig. 2. The most efficient way of saturating weights on transitions would be to start
with the first production and then keep alternating between the next two productions
until l(t1) andl(t2) converge before choosing the last production. Any other strategy
would have to choose the last production multiple times. Thus, it is important to identify
such “loops” between transitions and to stay within a loop before exiting it.

3.2 Solving GPP using Path Expressions

To find a better iteration scheme for GPP, we convert GPP into ahypergraph problem.

5

Definition 7. A (directed)hypergraph is a generalization of a directed graph in which
generalized edges, calledhyperedges, can have multiple sources, i.e., the source of
an edge is an ordered set of vertices. Atransition dependence graph (TDG)for a
grammarG is a hypergraph whose vertices are the non-terminals ofG. There is a
hyperedge from(t1, · · · , tn) to t if G has a production witht on the left-hand side and
t1 · · · tn are the non-terminals that appear (in order) on the right-hand side.

(p, n1, p)

(p, n2, p)

(p, n3, p)

(p, n4, p)

(p, n5, p)

(p, n6, p)

(p, n7, p)

(p, n8, p)

(p, n9, p)

(p, n10, p)

(p, n11, p)

(p, n12, p)ts1

ts2

w1

w2

w4

w5

w6

w7

w8

w10w12

w13

w14

w11

w9

w3⊗t6

Fig. 4. TDG for the PDS shown in
Fig. 1. A WPDS is obtained from the
PDS by supplementing rule numberi

with weight wi. Let tj stand for the
node(p, nj , p). The thick bold arrows
form a hyperedge. Nodests1 and ts2

are source nodes, and the dashed arrow
is a summary edge. These, along with
edge labels, are explained later in§3.2.

If we construct the TDG of the grammar
shown in Fig. 3 when the underlying PDS is ob-
tained from an ICFG, and the initial set of con-
figurations is{〈p, ε〉 | p ∈ P} (or →0= ∅), then
the TDG is identical to the ICFG (with edges re-
versed). Fig. 4 shows an example. This can be ob-
served from the fact that except for the PDS states
in Fig. 3, the transition dependences are almost
identical to the dependences encoded in the push-
down rules, which in turn come from ICFG edges;
e.g., the ICFG edge(n1, n2) corresponds to the
transition dependence((t2), t1) in Fig. 4, and the
call-return pair(n3, n6) and(n12, n4) in the ICFG
corresponds to the hyperedge((t4, t6), t3).

For such pushdown systems, constructing
TDGs might seem unnecessary but it allows us
to choose an initial set of configurations, which
defines a region of interest in the program. More-
over, PDSs can encode much stronger properties
than an ICFG, such as setjmp/longjmp in C pro-
grams. However, it is still convenient to think of a
TDG as an ICFG. In the rest of this paper, we il-
lustrate the issues using the TDG of the grammar
in Fig. 3. We reduce the meet-over-all-derivation
problem on the grammar to a meet-over-all-paths problem on its TDG.

Intraprocedural Iteration. We first consider TDGs of a special form: consider the
intraprocedural case, i.e., there are no hyperedges in the TDG (and correspondingly no
push rules in the PDS). As an example, assume that the TDG in Fig. 4 has only the part
corresponding to procedurefoo() without any hyperedges. In such a TDG, if an edge
((t1), t) was inserted because of the productiont → g(t1) for g = λx.x ⊗ w for some
weightw, then label this edge withw. Next, insert a special nodets into the TDG and
for each production of the formt → g(ǫ) with g = w, insert the edge((ts), t) and label
it with weightw. ts is called a source node. This gives us a graph with weights on each
edge. Define the weight of a path in this graph in the standard (but reversed) way: the
weight of a path is the extend of weights on its constituent edges in the reverse order.
It is easy to see that MOD(t) =

⊕
{v(η) | η ∈ path(ts, t)}, wherepath(ts, t) is the

set of all paths fromts to t in the TDG andv(η) is the weight of the pathη. To solve
for MOD, we could still use chaotic iteration, but instead wewill make use of Tarjan’s
path-expression algorithm [19].

6

Problem 1.Given a directed graphG and a fixed vertexs, thesingle-source path ex-
pression(SSPE) problem is to compute a regular expression that representspath(s, v)
for all verticesv in the graph. The syntax of regular expressions is as follows: r ::= ∅ |
ε | e | r1 ∪ r2 | r1.r2 | r∗, wheree stands for an edge inG.

We can use the SSPE algorithm to compute regular expressionsfor path(ts, t),
which gives us a compact description of the set of paths we need to consider. Also,
the Kleene-star operator identifies loops in the TDG. Let⊗c be the reverse of⊗,
i.e., w1 ⊗c w2 = w2 ⊗ w1. To compute MOD(t), we take the regular expression for
path(ts, t) and replace each edgee with its weight,∅ with 0, ε with 1, ∪ with ⊕, . with
⊗c, and solve the expression. The weightw∗ is computed as1⊕w⊕ (w⊗w)⊕· · · ; be-
cause of the bounded-height property of the semiring, this iteration converges. The two
main advantages of using regular expressions to compute MOD(t) are: First, loops are
identified in the expression, and the evaluation strategy saturates a loop before exiting
it. Second, we can computew∗ faster than normal iteration could. For this, observe that

(1 ⊕ w)n = 1 ⊕ w ⊕ w2 ⊕ · · · ⊕ wn

where exponentiation is defined using⊗, i.e.,w0 = 1 andwi = w ⊗ w(i−1). Thenw∗

can be computed by repeatedly squaring(1 ⊕ w) until it converges. Ifw∗ = 1 ⊕ w ⊕
· · · ⊕ wn then it can be computed inO(log n) operations. A chaotic-iteration strategy
would takeO(n) steps to compute the same value. In other words, having a closed
representation of loops provides an exponential speedup.3

Tarjan’s algorithm usesdominatorsto construct the regular expressions for SSPE.
This has the effect of computing the weight on the dominatorsof a node before comput-
ing the weight on the node itself. This avoids unnecessary propagation of partial weights
to the node (which is the case when you exit a loop too early). Given a graph withm
edges (orm grammar productions in our case) andn nodes (or non-terminals), regular
expressions forpath(ts, t) can be computed for all nodest in timeO(m log n) when the
graph isreducible. Evaluating these expressions will take an additionalO(m log n logh)
semiring operations, whereh is the height of the semiring.4 Because most high-level
languages are well-structured, their ICFGs are mostly reducible. When the graph is not
reducible, the running time degrades toO((m log n + k) log h) semiring operations,
wherek is the sum of the cubes of the sizes ofdominator-strong componentsof the
graph. In the worst case,k can beO(n3). In our experiments, we seldom found irre-
ducibility to be a problem:k/n was a small constant. A pure chaotic-iteration strategy
would takeO(m h) semiring operations in the worst case. Comparing these complex-
ities, we can expect the algorithm that uses path expressions to be much faster than
chaotic iteration, and the benefit will be greater as the height of the semiring increases.

Interprocedural Iteration. We now generalize our algorithm to any TDG. For each
hyperedge((t1, t2), t), delete it from the graph and replace it with the edge((t1), t).

3 This assumes that each semiring operation takes the same amount of time. In the absence of any
assumption on the semiring being used, we aim to decrease thenumber of semiring operations.
In some cases, e.g., BDD-based weight domains, repeated squaring may not reduce the overall
running time. However, the user can supply a procedure for computingw

∗ whenever there is
a more efficient way of computing it than by using simple iteration [13].

4 The combined sizes of the regular expressions are bounded bythe running time of the SSPE
algorithm.

7

This new edge is called asummary edge, and nodet2 is called anout-node. For example,
in Fig. 4 we would delete the hyperedge((t4, t6), t3) and replace it with((t4), t3). The
new edge is called a summary edge because it crosses a call-site (from a return node
to a call node) and will be used to summarize the effect of a procedure call. Nodet6
is an out-node and will supply the procedure summary weight.The resultant TDG is a
collection of connected graphs, with each graph roughly corresponding to a procedure.
In Fig. 4, the transitions that correspond to proceduresmain andfoo get split. Each
connected graph is called anintragraph. For each intragraph, we introduce a source
node as before and add edges from the source node to all nodes that haveǫ-productions.
The weight labels are also added as before. For a summary edge((t1), t) obtained from
a hyperedge((t1, t2), t) with associated production functiong = λx.λy.w ⊗ x ⊗ y,
label it withw ⊗ t2, or t2 ⊗c w.

This gives us a collection of intragraphs with edges labeledwith either a weight
or a simple expression with an out-node. To solve for the MOD value, we construct a
set ofregular equations, which we call as out-node equations. For an intragraphG, let
tG be its unique source node. Then, for each out-nodeto in G, construct the regular
expression for all paths inG from tG to to, i.e., for path(tG, to). In this expression,
replace each edge with its corresponding label. If the resulting expression isr and it
contains out-nodest1 to tn, add the equationto = r(t1, · · · , tn) to the set of out-
node equations. Repeat this for all intragraphs. The resulting set of out-node equations
describe all hyperpaths in the TDG to an out-node from the collection of all source
nodes. The MOD value of the out-nodes is the greatest fix-point of these equations
(with respect to⊑ of Defn. 3(4)). For example, for the TDG shown in Fig. 4, assuming
thatt1 is also an out-node, we would obtain the following out-node equations.5

t6 = w14.(w9 ⊕ w13.w11.(w12.w10)
∗.w8).w7.w6

t1 = w5.w4.(t6.w3).w2.w1

Here we have used. as a shorthand for⊗c. One way to solve these equations is by
using chaotic iteration: start by initializing each out-node with0 (the greatest element
in the semiring) and update the values of out-nodes by repeatedly solving the equations
until they converge. We can give direction to this iterationby constructing a dependence
graph of these equation, where an equationto = r(t1, · · · , tn) gives rise to dependences
ti → to, 1 ≤ i ≤ n. We take astrongly connected component(SCC) decomposition of
this graph and solve all equations in one component before moving to equations in next
component (in a topological order). We could also use regular expressions to define an
evaluation order on these equations (details are given in [11]), but we chose a simpler
implementation because SCCs in this dependence graph, which correspond to mutually
recursive procedures, tend to be quite small in practice.

Each regular expression in the out-node equations summarizes all paths in an in-
tragraph and can be quite large. Therefore, we want to avoid evaluating them repeat-
edly while solving the equations. To this end, we incrementally evaluate the regular
expressions: only that part of an expression is reevaluatedthat contains a modified
out-node. (In the algorithm given in Fig. 5, the entire expression may be traversed,
but reevaluations are performed selectively.) A regular expression is represented us-

5 The equations might be different depending on how the SSPE algorithm was implemented, but
all such equations would have the same solution.

8

ing its abstract-syntax tree, where leaves are weights or out-nodes, and internal nodes
correspond to⊕, ⊗, or ∗. As a further optimization, all regular expressions share com-
mon subtrees, and are represented as DAGs instead of trees. The incremental algorithm
we use takes care of this sharing and also identifies modified out-nodes in an expres-
sion automatically. At each DAG node we maintain two integers,last change and
last seen, as well as the weightweight of the subdag rooted at the node. We as-
sume that all regular expressions share the same leaves for out-nodes. We keep a global
counterupdate count that is incremented each time the weight of some out-node
is updated. For a node, the counterlast change records the last update count at
which the weight of its subdag changed, and the counterlast seen records the up-
date count at which the subdag was reevaluated. The evaluation algorithm is shown in
Fig. 5. When the weight of an out-node is changed, its corresponding leaf node is up-
dated with that weight,update count is incremented, and the out-node’s counters
are set toupdate count.

1 procedureevaluate(r)
2 begin
3 if r.last seen == update count then return
4 caser = w, r = to return
5 caser = op(r1,r2)
6 evaluate(r1), evaluate(r2)
7 m = max{r1.last change, r2.last change}
8 if m > r.last seen then
9 w = op(r1.weight, r2.weight)

10 if r.weight 6= w then
11 r.last change = m
12 r.weight = w
13 r.last seen = update count
14 end

Fig. 5. Incremental evaluation algorithm for regular expressions. Hereop is the prefix version of
⊗, ⊕, or ∗. Whenop is ∗, r2 can be ignored.

Once we solve for the values of the out-nodes, we can change the out-node labels
on summary edges in the intragraphs and replace them with their corresponding weight.
Then the MOD values for other nodes in the TDG can be obtained as in the intraproce-
dural version by considering each intragraph in isolation.

The time required for solving this system of equations depends on reducibility of
the intragraphs. LetSG be the time required to solve SSPE on intragraphG, i.e.,SG =
O(m log n + k) wherek is O(n3) in the worst-case, but is ignorable in practice. If the
equations do not have any mutual dependences (corresponding to no recursion) then
the running time is

∑
G SG log h, where the sum ranges over all intragraphs, because

each equation has to be solved exactly once. In the presence of recursion, we use the
observation that the weight of each subdag in a regular expression can change at mosth
times while the equations are being solved because it can only decrease monotonically.
Because the size of a regular expression obtained from an intragraphG is bounded
by SG, the worst-case time for solving the equations is

∑
G SG h. This bound is very

pessimistic and is actually worse than that of chaotic iteration. Here we did not make
use of the fact that incrementally computing regular expressions is much faster than
reevaluating them. For a regular expression with one modified out-node, we only need

9

to perform semiring operations for each node from the out-node leaf to the root of the
expression. For a nearly balanced regular expression tree,this path to the root can be
as small aslog SG. Empirically, we found that incrementally computing the expression
required many fewer operations than recomputing the expression.

Unlike the chaotic-iteration scheme, where the weights of all TDG nodes are com-
puted, we only need to compute the weights on out-nodes. The weights for the rest of
the nodes can be computed lazily by evaluating their corresponding regular expression
only when needed. For applications that just require the weight for a few TDG nodes,
this gives us additional savings. We also limit the computation of weights of out-nodes
to only those intragraphs that contain a TDG node whose weight is required. This cor-
responds to slicing the out-node equations with respect to the user query, which rules
out computation in procedures that are irrelevant to the query.

Handling Local Variables. WPDSs were recently extended to Extended-WPDSs to
provide a more convenient mechanism for handling local variables [12]. Reachability
problems in EWPDS are also based on abstract grammars similar to the ones for a
WPDS. Thus, we can easily adapt our algorithm to EWPDSs as well. Details are given
in [11]. We use EWPDSs in our experiments.

4 Solving other PDS Problems
In this section, we give algorithms for some important PDS problems: witness tracing
and incremental analysis. Our technical report [11] also gives an algorithm for differen-
tial weight propagation. Of these three, only witness tracing and differential propagation
have been discussed before for WPDSs [16].

4.1 Witness Tracing
For program-analysis tools, if a program does not satisfy a property, it is often useful
to provide a justification of why the property was not satisfied. In terms of WPDSs, it
amounts to reporting a set of paths, or rule sequences, that together justify the reported
weight for a configuration. Formally, using the notation of Defn. 5, the witness tracing
problem for GPP is to find, for each configurationc, a setω(c) ⊆

⋃

c′∈C

path(c, c′)

such that
⊕

σ∈ω(c)

v(σ) = δ(c). This definition of witness tracing does not impose any

restrictions on the size of the reported witness set becauseany compact representation
of the set suffices for most applications. The algorithm for witness tracing for GPP
[16] requiresO(|Q|2 |Γ | h) memory. Our algorithm only requiresO(|ON | h) memory,
where|ON | is the number of out-nodes, which is expected to be much smaller than|Γ |.

In our new GPP algorithm, we already have a head start becausewe have regular
expressions that describe all paths in an intragraph. In theintragraphs, we label each
edge with not just a weight, but also the rule that justifies the edge. Push rules will be
associated with summary edges and pop rules with edges that originate from a source
node. Edges from the source node that were inserted because of production(1) in Fig. 3
are not associated with any rule (or with an empty rule sequence). After solving SSPE
on the intragraphs, we can replace each edge with the corresponding rule label. This
gives us, for each out-node, a regular expression in terms ofother out-nodes that cap-
tures the set of all rule sequences that can reach that out-node. Next, while solving the
regular equations, we record the weights on out-nodes; i.e., when we solve the equa-

10

tion to = r(t1, · · · , tn), we record the weights ont1, · · · , tn — sayw1, · · · , wn —
whenever the weight onto changes to, say,wo. Then the set of rule sequences to create
transitionto with weightwo is given by the expressionr (where we replace TDG edges
with their rule labels) by replacing each out-nodeti with the regular expression for all
rule sequences used to createti with weightwi (obtained recursively). This gives a reg-
ular expression for the witness set of each out-node. Witness sets for other transitions
can be obtained by solving SSPE on the intragraphs by replacing out-node labels with
their witness-set expression.

Here we only requireO(|ON | h) space for recording witnesses because we just
have to remember the history of weights on out-nodes. For PDSs obtained from ICFGs
and empty initial automaton,|ON | is the number of procedures in the ICFG, which is
very small compared to|Γ |.

4.2 Incremental Analysis
The first incremental algorithm for verifying finite-state properties on ICFGs was given
by Conway et al. [4]. We can use the methods presented in this paper to generalize their
algorithm to WPDSs. An incremental approach to model checking has the advantage of
amortizing the verification time across program development or debugging time.

We consider two cases: addition of new rules and deletion of existing ones. In each
case we work at the granularity of intragraphs. When a new rule is added, the fix-point
solution of the out-node equations monotonically decreases and we can reuse all of the
existing computation. We first identify the intragraphs that changed (have more edges)
because of the new rule. Next, we recompute the regular expressions for out-nodes in
those intragraphs and add them to the set of out-node equations.6 Then we solve the
equations as before, but set the initial weights of out-nodes to be their existing value. If
new out-nodes were added, then set their initial value to0.

Deletion of a rule requires more work. Again, we identify thechanged intragraphs
and recompute the out-node equations for them. We call out-nodes in these intragraphs
asmodifiedout-nodes. Next, we look at the dependence graph of the out-node equations
as constructed in§3.2. We perform an SCC decomposition of this graph and topologi-
cally sort the SCCs. Then the weights for all out-nodes that appear before the first SCC
that has a modified out-node need not be changed. We recomputethe solution for other
out-nodes in topological order, and stop as soon as the new values agree with previ-
ous values. We start with out-nodes in the first SCC that has a modified out-node and
solve for their weights. If the new weight of an out-node is different from its previously
computed weight, all out-nodes in later SCCs that are dependent on it are marked as
modified. We repeat this procedure until there are no more modified out-nodes.

The advantage of doing incremental analysis in our framework is that very little
information has to be stored between analysis runs: We only need to store weights on
out-nodes.

5 Experiments
We are aware of two implementations of WPDSs: WPDS++ [8] and one used by nMoped
[9]. We call the implementation of our algorithm as FWPDS (F stands for “fast”). It can

6 There are incremental algorithms for SSPE as well, but we have not used them because solving
SSPE for a single intragraph is usually very fast.

11

be plugged-in as a back-end for each of the WPDS libraries. WPDS++ also supports an
optimized iteration strategy where the user can supply a priority-ordering on stack sym-
bols, which is used by chaotic iteration to choose the transition with least priority first.
We refer to this version as BFS-WPDS++ and supply it with a breadth-first ordering
on the ICFG obtained by treating it as a graph. BFS-WPDS++ almost always performs
better than WPDS++.

To measure end-to-end performance, FWPDS only computes theweight on transi-
tions required by the application. We also report the time taken to compute the weight
on all transitions and refer to this as FWPDS-Full. A comparison with FWPDS-Full will
give an indication of “application-independent” improvement provided by our approach
because it computes the same amount of information as the previous WPDS algorithms.
However, we measure speedups using FWPDS running times to show the potential of
using lazy-evaluation in real settings. FWPDS-Full uses a left-associative evaluation or-
der for computing weights of regular expressions. It is alsoworth noting that repeated
squaring for computingw∗ did not cause any appreciable difference compared with
using a simple iterative method.

We tested FWPDS on three applications that use WPDSs. In each, we perform GPS
on the WPDS with the entry point of the program as the initial configuration. The first
application performs affine-relation analysis (ARA) on x86programs [12]. An x86 pro-
gram is translated into a WPDS to find affine relationships between machine registers.
The application only requires affine relationships at certain branch points [1]. Some
of the results are shown in Table 1. Over all the experiments we performed, FWPDS
provided an average speedup of1.6 times (i.e., reduced running time by38%) over
BFS-WPDS++.

Time (s) Speedup
Prog InstsProcsWPDS++BFS-WPDS++FWPDS-FullFWPDS
print 75539 697 1.23 1.02 0.77 0.41 2.48
finger 96123 893 11.14 7.94 7.13 4.44 1.79
winhlp321576346491 25.51 19.61 17.32 11.00 1.78
regsvr32 2258579625 58.70 38.83 37.15 24.65 1.57
cmd 2304812317 69.19 46.33 52.38 34.87 1.33
notepad 2394082911 54.08 40.8 41.85 26.50 1.54

Table 1.Comparison of ARA results. The last column show the speedup (ratio of run-
ning times) of FWPDS versus BFS-WPDS++. The programs are common Windows
executables, and the experiments were run on3.2 Ghz P4 machine with4GB RAM.

The second application, BTRACE, is for debugging [10]. It performs path optimiza-
tion on C programs: given a set of ICFG nodes, called criticalnodes, it tries to find a
shortest ICFG path that touches the maximum number of these nodes. The path starts at
the entry point of the program and stops at a given failure point in the program. FWPDS
only computes the weight at the failure point. As shown in Table 2, FWPDS performs
much better than BFS-WPDS++ for this application, and the overall speedup was4.3
times. Some experimental results on incremental analysis for BTRACE are presented
in [11]: We observed a roughly10-fold improvement by incrementally computing the
solution after a deleted procedure was reinserted in the program.

The third application is nMoped [9], which is a model checkerfor Boolean pro-
grams. It uses a WPDS library for performing reachability queries. Weights are binary

12

Time (s) Speedup
Prog ICFG nodesProcsBFS-WPDS++FWPDS-FullFWPDS
make 40667 204 15.1 7.7 5.8 2.58
indent 28155 104 19.6 28.2 15.9 1.24
less 33006 359 22.4 8.6 5.3 4.19
patch 27389 133 70.2 23.2 17.1 4.09
gawk 86617 401 72.7 64.5 45.1 1.61
wget 44575 399 318.4 58.9 27.0 11.77

Table 2. Comparison of BTRACE results. The last column shows speedup of FWPDS
over BFS-WPDS++. The critical nodes were chosen at random from ICFG nodes and
the failure site was set as the exit point of the program. The programs are common Unix
utilities, and the experiments were run on2.4 GHz P4 machine with4GB RAM.

relations on valuations of Boolean variables, and are represented using BDDs. We mea-
sure the performance of FWPDS against this library using a set of programs (and an
error configuration for each program) supplied by S. Schwoon. We compute the set of
all variable valuations that can hold at the error configuration by computing its meet-
over-all-paths weight. As shown in Table 3, FWPDS is2 to 5 times faster than nMoped.
Our technical report [11] gives some other set of experiments, but they were on much
smaller programs and led to inconclusive results.

nMoped can also be asked to stop as soon as it finds out that the error configuration
is reachable (instead of exploring all paths leading to the error configuration). In that
case, when the error configuration was reachable, nMoped performed much better than
FWPDS, often completing in less than a second. This is expected because the evalua-
tion strategy used by FWPDS is oriented towards finding the complete weight (MOD
value) on a transition. For example, it might be better to avoid saturating a loop com-
pletely and propagate partially computed weights in the hope of finding out if the error
configuration is reachable. However, when the error configuration is unreachable, or
when the abstraction-refinement mode in nMoped is turned on,it explores all paths in
the program and computes the MOD value of all transitions. Insuch situations, it may
be better to use FWPDS.

Prog nMopedFWPDS-FullFWPDSSpeedup
bugs5 13.11 13.03 7.25 1.81
slam-fixed 32.67 19.23 13.3 2.46
slam 6.32 5.21 3.27 1.93
unified-serial 37.10 19.65 12.46 2.98
iscsi1 29.15 27.12 14.08 2.07
iscsi10 178.22 59.63 31.29 5.70

Table 3. nMoped results. The last column shows speedup of FWPDS over nMoped.
The programs were provided by S. Schwoon, and are not yet publically available.

6 Related Work

The basic strategy of using a regular expression to describea set of paths has been used
previously for dataflow analysis [20] of single-procedure programs. The only work that
we are aware of that uses this technique for multi-procedureprograms is by Rama-
lingam [15]. However, he used regular expressions for a particular analysis (execution

13

frequency analysis) and the technique was motivated by the special requirements of ex-
ecution frequency analysis when creating procedure summaries, rather than efficiency.
We have generalized the approach to apply to a much broader set of problems, namely
anything that can be encoded as a WPDS, and showed how variousenhancements (in-
cremental recomputation of regular expressions, computing lazily, etc.) contribute to
creating a faster analysis.

There has been a host of previous work on incremental programanalysis as well as
on interprocedural automaton-based analysis [4]. The incremental algorithm we have
presented is similar to the algorithm in [4], but generalizes it to WPDSs and is thus
applicable in domains other than finite-state property verification. A key difference with
their algorithm is that they explore the property automatonon-the-fly as the program is
explored. Our encoding into a WPDS requires the whole automaton before the program
is explored. This difference can be significant when the automaton is large but only a
small part of the automaton needs to be generated.

References
1. G. Balakrishnan and T. Reps. Analyzing memory accesses inx86 executables. InCC, 2004.
2. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-

cation to model checking. InConcurrency Theory (CONCUR), pages 135–150, 1997.
3. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concurrent

programs with procedures. InPOPL, pages 62–73, 2003.
4. C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards. Incremental algorithms for

inter-procedural analysis of safety properties. InCAV, pages 449–461, 2005.
5. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-

ing pushdown systems. InCAV, pages 232–247, 2000.
6. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs. InCAV,

pages 324–336, 2001.
7. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking push-

down systems.Electronic Notes in Theoretical Computer Science, 9, 1997.
8. N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ library for weighted pushdown

systems, 2005. http://www.cs.wisc.edu/wpis/wpds++.
9. S. Kiefer, S. Schwoon, and D. Suwimonteerabuth. nMoped, 2005.

http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/nmoped/.
10. A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path optimization in programs and its applica-

tion to debugging. InEuropean Symposium On Programming, pages 246–263, 2006.
11. A. Lal and T. Reps. Improving pushdown system model checking. Technical Report 1552,

University of Wisconsin-Madison, Jan. 2006.
12. A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. InCAV, pages

434–448, 2005.
13. Y. Matsunaga, P. C. McGeer, and R. K. Brayton. On computing the transitive closure of a

state transition relation. InDesign Automation Conference (DAC), pages 260–265, 1993.
14. E. W. Myers. A precise interprocedural data flow algorithm. InPOPL, pages 219–230, 1981.
15. G. Ramalingam. Data flow frequency analysis. InPLDI, pages 267–277, 1996.
16. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their applica-

tion to interprocedural dataflow analysis.Science of Computer Programming, 2005.
17. S. Schwoon.Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of Munich,

Munich, Germany, July 2002.
18. S. Schwoon. Moped, 2002. http://www.fmi.uni-stuttgart.de/szs/tools/moped/.
19. R. E. Tarjan. Fast algorithms for solving path problems.J. ACM, 28(3):594–614, 1981.
20. R. E. Tarjan. A unified approach to path problems.J. ACM, 28(3):577–593, 1981.

14

