Abstraction Refinement via Inductive Learning

Alexey Loginov, Thomas Reps and Mooly Sagi¥

! Comp. Sci. Dept., University of Wisconsifialexey,reps@cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; msagiv@ post.tc.il

Abstract. This paper concerns how to automatically create abstrafmr program anal-
ysis. We show that inductive learning, the goal of which iglentify general rules from a
set of observed instances, provides new leverage on théeprolAn advantage of an ap-
proach based on inductive learning is that it does not redbi use of a theorem prover.

1 Introduction

We present an approach to automatically creating absirector use in program anal-
ysis. As in some previous work [12, 4,13, 18, 5, 2, 8], the apph involves the succes-
sive refinement of the abstraction in use. Unlike previougkwihie work presented in
this paper is aimed at programs that manipulate pointerfiaag-allocated data struc-
tures. However, while we demonstrate our approach on shaglysis problems, the
approach is applicable in any program-analysis settinguses first-order logic.

The paper presents an abstraction-refinement method far sdic analyses based
on 3-valued logic [21], where the semantics of statements aadjtiery of interest are
expressed using logical formulas. In this setting, a menoorfiguration is modeled
by alogical structure an individual of the structure’s universe either modeldra s
gle memory element or, in the case obBammary individualit models a collection
of memory elements. Summary individuals are used to enbatebstract descriptors
have ana priori bounded size, which guarantees that a fixed-point is alwegshed.
However, the constraint of working with limited-size deptors implies a loss of in-
formation about the store. Intuitively, certain propestod concrete individuals are lost
due to abstraction, which groups together multiple indieild into summary individu-
als: a property can be true for some concrete individualse§toup, but false for other
individuals. The TVLA system is a tool for creating such asak [1].

With the method proposed in this paper, refinement is pedrby introducing new
instrumentation relationgdefined via logical formulas over core relations, which-cap
ture the basic properties of memory configurations). Imséutation relations record
auxiliary information in a logical structure, thus providia mechanism to fine-tune an
abstraction: an instrumentation relation captures a ptppleat an individual memory
cell may or may not possess. In general, the introductiordditimnal instrumentation
relations refines an abstraction into one that is prepargedd& finer distinctions among
stores. The choice of instrumentation relations is cruoigthe precision, as well as the
cost, of the analysis. Until now, TVLA users have been facét e task of identi-
fying an instrumentation-relation set that gives them anitefanswer to the query, but
does not make the cost prohibitive. This was arguably ther&maining challenge in
the TVLA user-model. The contributions of this work can benstarized as follows:

— It establishes a new connection between program analydisiachine learning by
showing thatnductive logic programmin{LP) [19, 17, 14] is relevant to the prob-
lem of creating abstractions. We use ILP for learning newrimsentation relations
that preserve information that would otherwise be lost duegiistraction.

— The method has been implemented as an extension of TVLA.idnsistem, all
of the user-level obligations for which TVLA has been ciitgd in the past have
been addressed. The input required to specify a progralgsasiabnsists of: (i) a
transition system, (ii) a query (a formula that identifiesemtable outputs), and
(iii) a characterization of the program’s valid inputs.

— We present experimental evidence of the value of the approafe tested the
method on sortedness, stability, and antistability gqe€ioe a set of programs that
perform destructive list manipulation, as well as on pad@rectness queries for
two binary-search-tree programs. The method succeedkdasals tested.

Inductive learning concerns identifying general rulesrfr@ set of observed instances—
in our case, from relationships observed in a logical stmgctAn advantage of an ap-
proach based on inductive learning is that it does not redhé& use of a theorem prover.
This is particularly beneficial in our setting because ogidaes undecidable.

The paper is organized as follow§2 introduces termi- n n
nology and notation. Readers familiar with TVLA can ski
t0§2.2, which briefly summarizes ILE3 illustrates our goals Fig. 1.A possible store for
on the problem of verifying the partial correctness of a-sof linked list.
ing routine.§4 describes the techniques used for learning abstrac{iBagher details
can be found in [16].)§5 presents experimental resuli§.discusses related work.

2 Background
2.1 Stores as Logical Structures and their Abstractions

Relation | Intended Meaning

eq(v1,v2) | Dow; andv, denote the same memory cell?

q(v) Does pointer variablg point to memory celb?

n(vy,v2) | Does then field of v, pointtov,?

dle(vi,v2) | Is thedat a field of v, less than or equal to that 0 ?
@ (b)

Table 1.(a) Declaration of a linked-list datatype in C. (b) Core tiglas used for representing the

stores manipulated by programs that use typst .

typedef struct node {
struct node *n;
i nt data;

} *List;

Our work extends the

program-analysis framework tp.dle

of [21]. In that approach,
concrete memory configura- = dle =7 dle =
. L t.dle t,dle t.dle
tions (i.e.,storeg are encoded

[2]rn e [en] [n [ua [ua]us] [tn Jua [us[us] [dle[us [us [us]
wr|1l| 1 [O||ur|O| 1[0 |ur| 1|11 |ur|1|1]1
uz |0 1 [0 ||lu2| 0|0 |1 ||luz|O|1|1]||uz|0]1]0
uz|0| 1 [0 ||luz|O0|0|O0||lug| 0|0 |1]||lus|O0]1]|1

as logical structures in terms|
of a fixed collection ofcore
relations C. Core relations

are part of the underlying = -
semantics of the language tdzlg.Z.AIoglcaI structureS, that represents the store shown

be analyzed. For instance|nFig.1ingraphica|andtabularforms.

Tab. 1 gives the definition of a C linked-list datatype, astklihe relations that would
be used to represent the stores manipulated by programaséaypeli st , such as
the store in Fig. 1. 2-valued logical structures then regmememory configurations:
the individuals are the set of memory cells; in this exampigry relations represent
pointer variables and binary relation represents tha-field of a Li st cell. The
dat a field is modeled indirectly, via the binary relatialte (which stands for dat a

less-than-or-equal-to”) listed in Tab. 1. Fig. 2 sho@vsalued structureSs, which
represents the store of Fig. 1 (relatiansr, ,, andc,, will be explained below).

LetR = {eqps,...,p,} be afinite vocabulary of relation symbols, wh&g de-
notes the set of relation symbols of aritfandeq e R-). A 2-valued logical structure
S overR is a set oindividualsU*, along with arinterpretationthat maps each relation
symbolyp of arity & to a truth-valued functiorp®: (U%)* — {0, 1}, whereeq’ is the
equality relation on individuals. The set ®#valued structures is denoted 8y[R].

In 3-valued logic, a third truth value4/2—is introduced to denote uncertainty.
Forly,ls € {0,1/2,1}, theinformation orderis defined as followsl; C I5 iff 1; = o
orly = 1/2. A 3-valued logical structures' is defined like &2-valued logical struc-
ture, except that the values in relations can{bel/2,1}. An individual for which
eq’(u,u) = 1/2 is called asummary individual A summary individual abstracts one
or more fragments of a data structure, and can representtirammene concrete mem-
ory cell. The set oB-valued structures is denoted 5y[R].

Concrete and Abstract Semantics A concrete operational semantics is defined by
specifying a structure transformer for each kind of ed¢feat can appear in a transition
system. A structure transformer is specified by providilgtion-update formulagor
the core relationd These formulas define how the core relations @falued logical
structureS that arises at the sourceoére transformed by to create 2-valued logical
structureS’ at the target oé. Edgee may optionally have precondition formulawhich
filters out structures that should not follow the transitadonge.

However, sets oR-valued structures do not yield a suitable abstract donfamn;
instance, when the language being modeled supports allodabm the heap, the set
of individuals that may appear in a structure is unbounded thus there is no a priori
upper bound on the number 2fvalued structures that may arise during the analysis.

To ensure termination, we abstract set@-@flued structures usirgyvalued struc-
tures. A set of stores is then represented by a (finite) sétvafued logical structures.
The abstraction is defined using an equivalence relatiomdriduals: each individ-
ual of a2-valued logical structure (representing a concrete meroely is mapped to
an individual of a3-valued logical structure according to the vector of valthed the
concrete individual has for a user-chosen collection ofyahstraction relations:

Definition (Canonical Abstraction). Let S € S,, and let4 C R, be some chosen
subset of the unary relation symbols. The relationd imre calledabstraction relations
they define the following equivalence relation, on U*:

up ~ 4 up <= forallp € A p°(ur) = p°(uz),

and the surjective functiofiy : U — U/ ~4, such thatf4(u) = [u]~,, Which
maps an individual to its equivalence class. THamonical abstractiorof S with re-
spect tad (denoted byf 4(.S)) performs the join (in the information order) of predicate
values, thereby introducingy/2’s. O

If all unary relations are abstraction relations £ R 1), the canonical abstraction of
2-valued logical structurés is Ss, shown in Fig. 3, withf 4 (u1) = u; and f 4 (ug) =

3 Formulas are first-order formulas with transitive closaréormulaover the vocabularR is
defined as follows (wherg" (v1, v2) stands for the reflexive transitive closurepdi, v2)):

pPER, @ u=0]1]p(vi,...,vx) | (mep1) | (v1=22)
¢ € Formulas | (L1 Ap2) | (01 Vp2) | (1 = p2) | (1 < @2)
v € Variables | (Fv: 1) | (Vo: 1) | p*(v1,v2)

3

falus) = uas. S3 represents all lists with two or more elements, in which thet fi
element'dat a value is lower than thdat a values in the rest of the list. The following
graphical notation is used for depictiBgyvalued logical structures:

— Individuals are represented by circles containing thainesiand (nort) values for
unary relations. Summary individuals are represented bipldccircles.

— A unary relationp corresponding to a pointer-valued program variable iseepr
sented by a solid arrow from to the individualu for which p(u) = 1, and by
the absence of a-arrow to each nodea’ for which p(u’) = 0. (If p = 0 for all
individuals, the relation nameis not shown.)

— A binary relationg is represented by a solid arrow labelgdetween each pair of
individualsu; andw; for which ¢(u;,u;) = 1, and by the absence of@arrow
between pairs; andw’; for which g(u;,u);) = 0.

— Relations with valud /2 are represented by dotted arrows.

Canonical abstraction ensures

that each3-valued structure is
n S
ty,dle n,t,dle

no larger than some fixed size,
known a priori. Moreover, the
meaning of a given formula in
the concrete domainp(Sz)) is
consistent with its meaning in
the abstract domainASs)), al- Fig.3._ A 3-valued structureSs that is the canonical ab-
though the formula’s value in anStraction of structures.
abstract structuré 4 (S) may be less precise than its value in the concrete strusture
Abstract interpretation collects a set®talued structures at each program point. It
can be implemented as an iterative procedure that finds éiséfiged point of a certain
collection of equations on variables that take their valogs(Ss) [21].

[#lrelen) [T a) [Jon) (@[]
Ul 1 1 0 Ul 0 1/2 (5% 1 1 Ul 1 1
w230 1 |0 |u2s| 0 1/2 w23 | 0 1/2 u23| 0 1/2

P lIntendedMeaning [wp

tn(v1,v2) |Is ve reachable fromv, alongn fields?n*(v1, v2)

rn,z(v) |Isv reachable from pointer variable |3 v1: z(v1) A tn(v1,v)
alongn fields?
cn(v) Isv on a directed cycle af fields? |3 v1: n(vi,v) Atn(v,v1)

Table 2. Defining formulas of some commonly used instrumentaticati@hs. There is a separate
reachability relationr,, . for every program variable.

Instrumentation Relations The abstraction function on which an analysis is based,
and hence the precision of the analysis defined, can be tunéjidhoosing to equip
structures with additionahstrumentation relationso record derived properties, and
(i) varying which of the unary core and unary instrumerdatrelations are used as
the set of abstraction relations. The set of instrumematidations is denoted hy.
Each relation symbal € 7;, C R, is defined by ainstrumentation-relation definition
formula,(vy, ..., vx). Instrumentation relation symbols may appear in the deginin
formulas of other instrumentation relations as long asthee no circular dependences.
The introduction of unary instrumentation relations that ased as abstraction re-
lations provides a way to control which concrete individuate merged together, and
thereby control the amount of information lost by abst@ttiTab. 2 lists some instru-
mentation relations that are important for the analysisrofjams that use tygs st .

2.2 Inductive Logic Programming (ILP)

Given a logical structure, the goal of an ILP algorithm is éarh a logical relation
(defined in terms of the logical structure’s other relatjahsit agrees with the classi-
fication of input examples. ILP algorithms produce the answéhe form of a logic
program. (Non-recursive) logic programs correspond tdssetof first-order logié¢.A
logic program can be thought of as a disjunction over thengamogules, with each rule
corresponding to a conjunction of literals. Variables mearing in the head of a rule
are implicitly existentially quantified.

Definition (ILP). Given a set of positive example tuplés", a set of negative ex-
ample tuples—, and a logical structure, the goal of ILP is to find a formyla such
that alle € E* are satisfied (ocovered by)z and noe € E~ is satisfied byy. O
u For example, consider learning a unary formula that

E\u% u, U holds for linked-list elements that are pointed to by tthe
Uy fields of more than one element (as used in [11, 3]). We
Fig.4. A linked list with
shared elements.

let E* = {uz,us} and E~ = {uy,uq} in the 2-valued
structure of Fig. 4. The formuléisshared) & v, vy :
n(vy,v) An(ve,v) A —eq(vy, v2) meets the objective, as
it covers all positive and no negative example tuples.

Fig. 5 presents the ILP
algorithm used by systems "PUt:
such as FOIL [19], modi-
fied to construct the answet

Target relation E(vi,...,vx),
Structure S € S3[R],
Set of tuples Pos,
Y =0

while(Pos # ()

Set of tuples Neg

1]
as a first-order logic for-[g}
mula in disjunctive normal | 4]
form. This algorithm is ca- [5]
pable of learning the for-[%
mula wisSharec(U) (by per- [8]
forming one iteration of the[9]
outer loop and three iter-! 10l

. . 11]
ations of the inner loop|iy

NewDisjunct := 1
NewNeg := Neg
while(NewNeg # ()
Cand := candi date literals using R
Best:= L € Cand Wi th max Gain(L, NewDisjunct)
NewDisjunct := NewDisjunct \ L
NewNeg := subset of NewNeg satisfying L
3-quantify NewDisjunct variabl es ¢ {vi,..., v}
Vg =YV NewDisjunct
Pos:=subset of Pos not satisfying NewDisjunct

to successively choose lit-
eralsn(vy,v), n(ve,v), and
—eq(v1, v2)). Itis a sequential covering algorithm parameterized IeyftimctionGain,
which characterizes the usefulness of adding a particitenal (generally, in some
heuristic fashion). The algorithm creates a new disjundbag as there are positive
examples that are not covered by existing disjuncts. Therdisis extended by con-
joining a new literal until it covers no negative exampleack literal uses a relation
symbol from the vocabulary of structufg valid arguments to a literal are the variables
of target relation, as well as new variables, as long as at least one of the argame
is a variable already used in the current disjunct. In FOhe 6teral is chosen using a
heuristic value based on the information gain (see line FQ)IL uses information gain
to find the literal that differentiates best between positind negative examples.

Fig. 5. Pseudo-code for FOIL.

3 Example: Verifying Sortedness

4|LP algorithms are capable of producing recursive programmch correspond to first-order
logic plus a least-fixpoint operator (which is more gendnahttransitive closure).

Given the static-analysis algorithm definedti1, [1] void Insert Sort(List x){
to demonstrate the partial correctness of a procg List r, pr, rn, I, pl;
dure, the user must supply the following prograr{rﬁ] r==x
specific information: [4] pr = NULL;
[5] while (r '= NULL) {
— The procedure’s control-flow graph. 6 | = x:
— A data-structure constructo(DSC): a code[7] rn = r->n:
fragment that non-deterministically construgt8] pl = NULL;
all valid inputs. [9] while (I '=7r) {
— A query; i.e., a formula that identifies the |r{ 10] if (1->data > r->data){
tended outputs. 11] fr ;;n_:l rm
The analysis algorithm is run on the DSC conca¥q3 it (pl o NULL) x =
nated with the procedure’s control-flow graph; theas) else pl ->n = r;
query is then evaluated on the structures that atre] r = pr;
generated at exit. [16] break;
Consider the problem of establishing thb#7] }
I nsert Sort shown in Fig. 6 is partially correct 18} F' _‘I '_’>n.
This is an assertion that compares the state fzg } - ’
store at the end of a procedure with its state at mq] pro=r;
start. In particular, a correct sorting routine must2] r
perform a permutation of the input list, i.e. all ligt23] }
elements reachable from variableat the start of [241}
the routine must be reachable fronat the end. We Fig. 6. A stable version of insertion

can express the permutation property as follows:sort.
Yo : T'SJ(U) - 1 (V), Q)

wherer? . denotes the reachability relation forat the beginning of nsert Sor t . If
Formula (1) holds, then the elements reachable fkafterl nsert Sort executes are
exactly the same as those reachable at the beginning, asdaqumently the procedure
performs a permutation of list. In general, for each relatign we have such history
relation p°.

Fig. 7 shows the three structures that characterize the iveduts tol nser t Sor t
(they represent the set of stores in which program varialgeints to an acyclic linked
list). To verify thatl nsert Sort produces aortedpermutation of the input list, we
would check to see whether, for all of the structures thateaait the procedure’s exit
node, the following formula evaluates to 1.

Yyt 7y (v1) = (Vg : n(v1,v2) — dle(vr, v2)). 2

If it does, then the nodes reachable frarmust be in non-decreasing order.

Abstract interpretation collects 3-valued struct$geshown in Fig. 3 at line [24].
Note that Formula (2) evaluates 1@2 on S5. While the first list element is guaranteed
to be in correct order with respect to the remaining elemehtre is no guarantee
that all list nodes represented by the summary node are rectasrder. In particular,
becauses; represents,, shown in Fig. 2, the analysis admits the possibility that th
(correct) implementation of insertion sort of Fig. 6 candwoe the store shown in
Fig. 1. Thus, the abstraction that we used was not fine-gitaéneugh to establish the
partial correctness dfnsert Sort . In fact, the abstraction is not fine-grained enough
to separate the set of sorted lists from the lists not in dastder.

In [15], Lev-Ami et al. used TVLA to establish the partial cectness of
InsertSort. The key step was the introduction of instrumentation retat
inOrderge,, (v), which holds for nodes whoskat a-components are less than or equal
to those of thein-successorsnOrdery, , (v) was defined by:

inOrdefyie,, (v) I n(v,v1) — dle(v, vy). 3
The sortedness property was then stated as follows (cf. iHar(8)):
Vv i 1y (V) — INOrderge, , (v). 4
After the introduction of relation [empty lis{I-element lisflists with 2 or more elemenits
inOrderye, », the 3-valued structures that dle
i i N
are collected by abstract interpretation g @ :
the end ofl nsert Sort describe all t.dle t,dle " n,t dle

stores in which variabl points to an U _ —
acyclic, sortedlinked list. In all of these Fig. 7. The structures that describe possible in-
structures, Formulas (4) and (1) evaluafd'ts tol nsert Sort.

to 1. Consequently,nsert Sort is guaranteed to work correctly on all valid inputs.

4 Learning an Abstraction

In [15], instrumentation relatiomOrderye,, Was defined explicitly (by the TVLA
user). Heretofore, there have really been two burdens glacehe TVLA user:

(i) he must have insight into the behavior of the program, and

(i) he must translate this insight into appropriate instantation relations.

The goal of this paper is to auto-| nput: a transition system

mate the identification of appropri- a data-structure constructor,
ate instrumentation relations, such a query ¢ (a closed fornul a)
asinOrderye,. Forl nsert Sort, [1] Construct abstract input

the goal is to obtain definite answerd 2] do _ _
when evaluating Formula (2) on the[3 Perform abstract interpretation

. [4] Let Si,...,Sr be the set of
structures collected by abstract in- 3-val ued structures at exit

terpretation at line [24] of Fig. 6. [5] it for all S, []5([])+#1/2 break

Fig. 8 gives pseudo-code for our|g) Find formulas tp,,...,1¥,, for new
method, the steps of which can be instrumentation rels pi,...,px
explained as follows: [7] Refine the actions that define
— (Line [1]; [16, §4.3]) Use the transition system
a data-structure constructor tol 8] Refine the abstract input

compute the abstractinputstrucl 9~ While(true)

tures that represent all valid in-Fig. 8. Pseudo-code for iterative abstraction refine-
puts to the program. ment.

— Perform an abstract interpretation to collect a set of #iires at each program
point, and evaluate the query on the structures at exit.éfiaite answer is obtained
on all structures, terminate. Otherwise, perform abstragefinement.

— (Line [6]; §4.1 and§4.2) Find defining formulas for new instrumentation relasio

— (Line [7]) Replace all occurrences of these formulas in therg and in the def-
initions of other instrumentation relations with the usetttd corresponding new
instrumentation relation symbols, and apply finite diffesiag [20] to generate re-
fined relation-update formulas for the transition system.

— (Line [8]; [16, §4.3]) Obtain the most precise possible values for the nemthpi
duced instrumentation relations in abstract structurasdefine the valid inputs to
the program. This is achieved by “reconstructing” the vatiguts by performing
abstract interpretation of the data-structure constructo

A first attempt at abstraction refinement could be the intctida of the query itself as

a new instrumentation relation. However, this usually dosdead to a definite answer.
For instance, with nsert Sor t , introducing the query as a new instrumentation re-
lation is ineffective because no statement of the prograsrthaeffect of changing the
value of such an instrumentation relation frap® to 1.

In contrast, when unary instrumentation relatio@rdery,,, is present, there are
several statements of the program where abstract intatfimetresults in new definite
entries forinOrderye . FOr instance, because of the comparison in line [10] of &jg.
the insertion in lines [12]-[14] of the node pointed to bysayu) before the node
pointed to byl results in a new definite entigOrderye,,, (u).

An algorithm to generate new instrumentation relationsuhtake into account the
sources of imprecisiorf4.1 describes subformula-based refinemeg#;2 describes
ILP-based refinement. At present, we employ subformuladasfinement first, be-
cause the cost of this strategy is reasonable{Spand the strategy is often successful.
When subformula-based refinement can no longer refine thieatisn, we turn to ILP.

Because a query has finitely many subformulas and we cuyrémit ourselves to
one round of ILP-based refinement, the number of abstractifimement steps is finite.
Because, additionally, each run of the analysis exploresuadied number df-valued
structures, the algorithm is guaranteed to terminate.

4.1 Subformula-Based Refinement

When the query evaluates td /2 on a structurés collected at the exit node, we invoke
functioninstrum a recursive-descent procedure to generate defining fasvial new
instrumentation relations based on the subformulasresponsible for the imprecision.
The details of functiomnstrumare given in [1634.1].

Example. As we saw in§3, abstract interpretation collects 3-valued structtise
of Fig. 3 at the exit node dfnsert Sort . The sortedness query (Formula (2)) eval-
uates tol /2 on Ss, triggering a call tanstrumwith Formula (2) and structur§s, as
arguments. Column 2 of Tab. 3 shows the instrumentatiotioakthat are created as
aresult of the call. Note thabrteds is defined exactly amOrderye, », which was the
key insight for the results of [15[1

D v, (after call toinstrum) ¥p (final version)
sorted () Vi :rpg(v1) = (Vo2 : n(v,v2) — dle(vi,v2)) [V o1 : sorteds(v1)
sorteda(v1) |Tn,e(v1) — (Vo2 : n(vi,v2) — dle(v1, v2)) Tn,z(v1) — sorteds(vi)
sorteds(v1) |V w2 :n(vi,vs) — dle(vi,vs2) Y vg : sorteds(vi,v2)
sorted(v1,v2)|n(vi,ve) — dle(vr, v2) n(v1,ve) — dle(vy, va)

Table 3.Instrumentation relations created by subformula-baskuement.

The actions that define the program’s transition relaticedrte be modified to gain
precision improvements from storing and maintaining the mestrumentation rela-
tions. To accomplish this, refinement of the program’s adtifline [7] in Fig. 8) re-
places all occurrences of the defining formulas for the nestrimentation relations in

the query and in the definitions of other instrumentatioatiehs with the use of the
corresponding new instrumentation-relation symbols.

Example.Forl nsert Sort, the use of Formula (2) in the query is replaced with
the use of the stored valugrted; (). Then the definitions of all instrumentation re-
lations are scanned for occurrencesyQf, ted,; - - - » Ysorted,- 1NESE OCCUrrences are
replaced with the names of the four relations. In this casly, the new relations’ defi-
nitions are changed, yielding the definitions given in Cahrof Tab. 3.

In all of the structures collected at the exit nodé aker t Sort by the second run
of abstract interpretatiosorted; () = 1. The permutation property also holds on all of
the structures. These two facts establish the partial coress of nsert Sort . This
process required one iteration of abstraction refinemeset the basic version of the
specification (the vocabulary consisted of the relation$adifs. 1 and 2, together with
the corresponding history relations), and needed no usawention.O

4.2 ILP-Based Refinement

Shortcomings of Subformula-Based Refinement To illustrate a weakness in
subformula-based refinement, we introduce the stabilibperty. The stability prop-

erty usually arises in the context of sorting procedures,auotually applies to list-

manipulating programs in general: the stability query (Rala (5)) asserts that the
relative order of elements with equét a-components remains the safe.

Yy, vs : (dle(vy, va) Adle(v, v1) A0 (v1,v2)) — tn(v1,v2) (5)

Procedurd nsert Sort consists of two nested loops (see Fig. 6). The outer loop
traverses the list, setting pointer variabléo point to list nodes. For each iteration of
the outer loop, the inner loop finds the correct place to inssrtarget, by traversing
the list from the start using pointer variallle r ’s target is inserted before’s target
whenl - >dat a > r->dat a. Becausd nsert Sort satisfies the invariant that all
list nodes that appear in the list befars target are already in the correct order, the
dat a-component of ’s target is less than theat a-component ofll nodes ahead of
whichr 's targetis moved. Thusnsert Sort preserves the original order of elements
with equaldat a-components, antnsert Sort is a stable routine.

However, subformula-based refinement is not capable obkstiang the stability
of I nsert Sort . By considering only subformulas of the query (in this cdse-
mula (5)) as candidate instrumentation relations, theesiyais unable to introduce
instrumentation relations that maintain information attbetransitivesuccessors with
which a list node has the correct relative order.

Learning Instrumentation Relations Fig. 9 shows the structur®,, which arises dur-
ing abstract interpretation just before line [6] of Fig. 6géther with a tabular version
of relationst,, anddle. (We omit reachability relations from the figure for clarjbif-
ter the assignment = Xx;, nodesus andus have identical vectors of values for the
unary abstraction relations. The subsequent applicatiarawonical abstraction pro-
duces structuré,y, shown in Fig. 10. Bold entries of tables in Fig. 9 indicatéirdee

5 A related property, antistability, asserts that the ordérelements with equalat a-
components is reversedy vy, ve : (dle(vy, v2) Adle(vz, v1) At (v1,v2)) — tn(v2,v1)
Our test suite also includes programser t Sor t _AS, which is identical td nsert Sor t
except that it uses instead of> in line [10] of Fig. 6 (i.e., when looking for the correct p&ac
to insert the current node). This implementation of insergort is antistable.

values that are transformed int@2 in Sy¢. StructureS, satisfies the sortedness invari-
ant discussed above: every node among.., u4 has thallerelationship with all nodes
appearing later in the list, exceps target,us. However, a piece of this information is
lost in structureS;o: dle(uqs, ueg) = 1/2, indicating that some nodes represented by
summary nodeisz might not be in sorted order with respect to their succesaes
will refer to such abstraction steps iasormation-loss points

An abstract structure transformer
may temporarily create a structufg
that is not in the image of canonical
abstraction [21]. The subsequent appli-
cation of canonical abstraction trans:
forms.S; into structureS, by grouping (dle] s Juz [us [ua [us] [tn [ur [uz]usualus]
a setl/; of two or more individuals of u 1}2 i i } 5; u (1) SRS
S into a single summary individual of us| 0| 0| 1| 1]1/2|[us|0
So. The loss of precision is due to one ug| 0| 0 |1/2] 1 |1/2|[ua|0
or both of the following circumstances:| [us[1/2[1/2[1/2]1/2] 1 ||us| 0

— One of the individuals irU/; pos- Fig.9. Structure Ss, which arises just before
sesses a property that another indiine [6] of Fig. 6. Unlabeled edges between nodes
vidual does not possess; thus, theepresent thele relation.

property for the summary individual is/2.

— Individuals inU; have a property in common, which cannot be recomputed pre-

cisely inSs.

In both cases, the solution lies in the introducr
tion of new instrumentation relations. In the for-
mer case, itis necessary to introduce a unary ap-
straction relation to keep the individuals & | [9/e[u [ues[ua [us |[fn Jur|uas [us]us]
that possess the property from being groupedt -ttt it 2w L] 11111

) NS uas|1/2[1/2] 1 [1/2|[ues| 0 [1/2] 1] 1
with those that do not. In the latter case, it iS [w, [0 [1/2] T [1/2|[ws|0] 0 |11
sufficient to introduce a non-abstraction relation [us [1/2[1/2[1/2] 1 |[us[0] 0 [0]1
of appropriate arity that captures the comma#fig. 10. StructureS;, corresponding to
property of individuals irU/;. The algorithm de- the transformation af, by the statement
scribed in§2.2 can be used to learn formulas fosn line [6] of Fig. 6. Unlabeled edges be-
the following three kinds of relatiorfs: tween nodes represent thke relation.
Type I: Unary relationr; with E+ = {u} for oneu € Uy, andE~ = U; — {u}.
Type II: Unary relationr, with E+ = U;.
Type Ill: Binary relationrs with E* = Uy x U;.

Type | relations are intended to prevent the grouping ofviiddials with different
properties, while Types Il and Il are intended to capture tommon properties of
individuals inU; . (Type Il relations can be generalized to higher-arityatieins.)

For the logical structure that serves as input to ILP, we fasstructureS; iden-
tified at an information-loss point. We restrict the algamit to use only non-history

e e

1
0
0
0

1|1
1|1
01
00

5 These are what are needed for our analysis framework, wisieh abstractions that generalize
predicate-abstraction domains. A fourth use of ILP prosidenew technique for predicate
abstraction itself: ILP can be used to identify nullary tielas that differentiate a positive-
example structuré from the other structures arising at a program point. Thessté ILP go
beyond merely forming Boolean combinations of existingtiehs; they involve the creation
of new relations by introducing quantifiers during the Iéagrprocess.

10

relations of the structure that lose definite entries asualtrebabstraction (e.gt,, and
dlein the above example). Definite entries of those relatioagteen used to learn for-
mulas that evaluate tbfor every positive example and écfor every negative example.

We modified the algorithm 0§2.2 to learn multiple formulas in one invocation
of the algorithm. Our motivation is not to find a single insirentation relation that
explains something about the structure, but rather to fihthstrumentation relations
that help the analysis establish the property of interedieféver we find multiple
literals of the same quality (see line [7] of Fig. 5), we extatistinct copies of the
current disjunct using each of the literals, and then wergkidistinct copies of the
current formula using the resulting disjuncts.

This variant of ILP is able to learn a useful binary formulangsstructureSy of
Fig. 9. The set of individuals oy that are grouped by the abstractiois= {us, us},
so the input set of positive examples{i@:a, us), (u2, us), (us, us), (us, us)}. The set
of relations that lose definite values due to abstractiofudes¢,, anddle. Literal
dle(vy,v9) covers three of the four examples because it holds for bisdiny , v4) —
(ug,uz), (v1,v2) — (u2,us), and (v, ve) — (us, us). The algorithm picks that literal
and, because there are no negative examgle@;; , vo) becomes the first disjunct. Lit-
eral —t,,(v1,v2) covers the remaining positive examples, uz), and the algorithm
returns the formula

Vs (v1,v2) = dle(v1,va) V =t (v1,v2), (6)

which can be re-written as, (v, v2) — dle(vy, vs).

Relationrs allows the abstraction to maintain information about tlaasitive suc-
cessors with which a list node has the correct relative ofdeparticular, although
dle(uss, uas) is1/21in Sho, r3(ues, uas) is 1, which allows establishing the fact that all
list nodes appearing prior tOs target are in sorted order.

Other formulas, such adle(vy, v2) V t,(va, v1), are also learned using ILP (cf.
Fig. 12). Not all of them are useful to the verification pragdsut introducing extra
instrumentation relations cannot harm the analysis, deitie increasing its cost.

5 Experimental Evaluation

We extended TVLA to perform iterative abstraction refinetnand applied it to three
queries and five programs (see Fig. 11). Besldeser t Sor t , the test programs in-
cluded sorting procedurddubbl eSort andl nsert Sort _AS, list-merging proce-
dureMer ge, andin-situ list-reversal procedurBever se.

At present, we employ subformula-based refinement firstirigueach iteration
of subformula-based refinement, we save logical structatr@sformation-loss points.
Upon the failure of subformula-based refinement, we invdiee ILP algorithm de-
scribed in§4.2. To lower the cost of the analysis we prune the returnécfséor-
mulas. For example, we currently remove formulas definedrims of a single relation
symbol; such formulas are usually tautologies (elg(vy, v2) V dle(ve, v1)). We then
define new instrumentation relations, and use these retatorefine the abstraction by
performing the steps of lines [7] and [8] of Fig. 8. Our impkmation can learn rela-
tions of all types described ig4.2: unary, binary, as well as nullary. However, due to
the present cost of maintaining many unary instrumentattations in TVLA, in the
experiments reported here we only learn binary formulas, @f Type 1ll). Moreover,
we define new instrumentation relations using only leareghiilas of a simple form

11

(currently, those with two atomic subformulas). We are ia pinocess of extending our

techniques for pruning useless instrumentation relatibhs should make it practical

for us to use all types of relations that can be learned by tirtPeffining the abstraction.
Example When attempting to verify the stability dfnsert Sort, ILP creates

nine formulas including Formula (6). The subsequent rurhefanalysis successfully

verifies the stability of nsert Sort.O

Fig. 11 shows that the method was able to gen-

Test P s j S . .

Biztm;;ir:nﬂ goqted|8tible|am;‘7;ble erate the right instrumentation relations for TVLA

InsertSort I I 172 to establish all properties that we expect to hold.
InsertSortAS|| 1 | 1/2 1 Namely, TVLA succeeds in demonstrating that
Merge /2] 1 1/2 all three sorting routines produce sorted lists, that
Reverse 21121 1 Bubbl eSort, I nsert Sort, and Mer ge are

Fig. 11. Results from applying itera- stable routines, and thdtnsert Sort _AS and
tive abstraction refinement to the veriRever se are antistable routines.

fication of properties of programs that |ndefinite answers are indicated hy?2 en-
manipulate linked lists. tries. It is important to understand that all of the
occurrences ol /2 in Fig. 11 are the most precise correct answefsr instance, the
result of applyingRever se to an unsorted list is usually an unsorted list; however, in
the case that the input list happens to be in non-increasatey,&ever se produces a
sorted list. Consequently, the most precise answer to teeydsil/2, not0.

Fig. 12 shows the numbers of instru-

sorted stable antistable . . .
Test Progran)|# instrum rel$# instrum rel$# instrum rel _ment_atlon relations _used qurlng the last
total/ILP | totalILP | total/ILP iteration of abstraction refinement. The
Fubbt'ZSOtrt i;?g ié?g iyg number of ILP-learned relations used by
nsertsor K 3/ . . .
nsertSorAS| 390 373 070 the analy3|_s is small re_latlve to_the total
Merge 30/3 28/0 31/3 number of instrumentation relations.
Reverse 26/3 27/3 24/0 Fig. 13 gives execution times that

Fig.12. The numbers of instrumentation relawere collected on a 3GHz Linux PC. The
tions (total and learned by ILP) used during theongest-running analysis, which verifies
last iteration of abstraction refinement. that | nsert Sort is stable, takes 8.5
minutes. Seven of the analyses take under a minute. Thealestbetween 70 sec-
onds and 6 minutes. The total time for the 15 tests is 35 méndteese numbers are
very close to how long it takes to verify the sortedness gserihen the user carefully
chooses the right instrumentation relations [19]ne maximum amount of memory
used by the analyses varied from just under 2 MB to 32VB.

The cost of the invocations of the ILP algorithm when atténmgpto verify the
antistability ofBubbl eSort was 25 seconds (total, for 133 information-loss points).
For all other benchmarks, the ILP cost was less than ten decon

Three additional experiments tested the applicabilitywsfraethod to other queries
and data structures. In the first experiment, subformutetaefinement successfully
verified that thein-situ list-reversal procedurever se indeed produces a list that
is the reversal of the input list. The query that expressesgtoperty isV vy, v :
n(vi,ve) < n’(ve,v1). This experiment took only 5 seconds and used less than 2
MB of memory. The second and third experiments involved tvagpams that manipu-

" Sortedness is the only query in our set to which TVLA has begied before this work.
8 TVLA is written in Java. Here we report the maximum of totalmay minus free memory,
as returned by Runtime.

12

late binary-search treelsnser t BST inserts a new node into a binary-search tree, and
Del et eBST deletes a node from a binary-search tree. For both progsarb&rmula-
based refinement successfully verified the query that thesiofithe tree pointed to by
variablet remain in sorted order at the end of the programs:

Vuy: re(v1) — (Vg (left(vy, ve) —dle(va, v1)) A(right(vy, va) —dle(vy, v2))) (7)

The initial specifications for the analyses included onlgéhstandard instrumentation
relations, similar to those listed in Tab. 2. Relatigfw;) from Formula (7), for exam-
ple, distinguishes nodes in the (sub)tree pointed tb.b¥hel nser t BST experiment
took 30 seconds and used less than 3 MB of memory, whil®giet eBST experi-
ment took approximately 10 minutes and used 37 MB of memory.

6 Related Work 514

350 -

Post-ILP iteration
Pre-ILP iterations
[sorted
stable
mm antistable

The work reported here is similar in spirit to 300 1
counterexample-guided abstraction refinement ., |
[12,4,13,18,5,2,8,6]. A key difference be-z
tween this work and prior work in the model-
checking community is the abstract domain:
prior work has used abstract domains that are 1
fixed, finite, Cartesian products of Boolean val- 501
ues (i.e., predicate-abstraction domains), and o £

hence the only relations introduced are nullary 5% gt Jieer Meroe Reverse
relations. Our work applies to a richefjg 13 Execution times. For each pro-
class of abstractions3-valued structures— gram, the three bars represent the
that generalize predicate-abstraction domainsrted, stable, and antistable queries.
The abstraction-refinement algorithm described cases where subformula-based refine-
in this paper can introduce unary, binarypent failed, the upper portion of the bars
ternary, etc. relations, in addition to nullary reshows the cost of the last iteration of the
lations. While we demonstrated our approacalysis (on both the DSC and the pro-
using shape-analysis queries, this approachdf@m) together with the ILP cost.
applicable in any setting in which first-order logic is usediescribe program states.

A second distinguishing feature of our work is that the mdtisalriven not by coun-
terexample traces, but instead by imprecise results ofiatiah a query (in the case of
subformula-based refinement) and by loss of informatiorinduabstraction steps (in
the case of ILP-based refinement). There do not currentist éxeorem provers for
first-order logic extended with transitive closure capaiflelentifying infeasible error
traces [9]; hence we needed to develop techniques difftn@mtthose used in SLAM,
BLAST, etc. SLAM identifies the shortest prefix of a spuriowsiaterexample trace
that cannot be extended to a feasible path; in general, Fawtbe first information-loss
point occurs before the end of the prefix. Information-lgagded refinement can iden-
tify the earliest points at which information is lost due tusraction, as well as what
new instrumentation relations need to be added to the akisinat those points. A po-
tential advantage of counterexample-guided refinement iofermation-loss-guided
refinement is that the former is goal-driven. Informatiosd-guided refinement can
discover many relationships that do not help in establghie query. To alleviate this
problem, we restricted the ILP algorithm to only use relagithat occur in the query.

¢seconds
N
o
o

[

a

o
L

13

Abstraction-refinement techniques from the abstractmnéation community are
capable of refining domains that are not based on predicateaation. In [10], for
example, a polyhedra-based domain is dynamically refined.vark is based on a
different abstract domain, and led us to develop some newwoappes to abstraction
refinement, based on machine learning.

In the abstract-interpretation community, a strong (albgén unattainable) form of
abstraction refinement has been identified in which the gdalinake abstract interpre-
tation complete (a.k.a. “optimal”) [7]. In our case, the bigao extend the abstraction
just enough to be able to answer the query, rather than to thalabstraction optimal.

References

1. TVLA system. http://www.cs.tau.ac.il/ tvla/.

2. T.Ball and S. Rajamani. Automatically validating temgdasafety properties of interfaces.
In SPIN pages 103-122, 2001.

3. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of poi@tedsstructures. IRLDI, pages
296-310, 1990.

4. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Cemtample-guided abstraction
refinement. INCAV, pages 154-169, 2000.

5. S. Das and D. Dill. Counter-example based predicate dsgan predicate abstraction. In
FMCAD, pages 19-32, 2002.

6. C.Flanagan. Software model checking via iterative abtitin refinement of constraint logic
queries. INCP+CV, 2004.

7. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making atismgerpretations completed.
ACM, 47(2):361-416, 2000.

8. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstions from proofs. If?OPL,
pages 232-244, 2004.

9. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yor3ie boundary between
decidability and undecidability for transitive closurgics. InCSL, pages 160-174, 2004.

10. B. Jeannet, N. Halbwachs, and P. Raymond. Dynamicipaitig in analyses of numerical
properties. IrSAS pages 39-50, 1999.

11. N. Jones and S. Muchnick. Flow analysis and optimizasfdrisp-like structures. IfPro-
gram Flow Analysis: Theory and Applicationsages 102—-131. Prentice-Hall, 1981.

12. R. Kurshan.Computer-aided Verification of Coordinating ProcessBsinceton University
Press, 1994.

13. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Ineméhverification by abstraction.
In TACAS pages 98-112, 2001.

14. N. Lavr& and S. Geroski. Inductive Logic Programming: Techniques and Applications
Ellis Horwood, 1994.

15. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Puttingt&tanalysis to work for verifica-
tion: A case study. IlNSSTA pages 26—38, 2000.

16. A. Loginov, T. Reps, and M. Sagiv. Learning abstractifmnserifying data-structure prop-
erties. report TR-1519, Comp. Sci. Dept., Univ. of Wiscondianuary 2005. Available at
“http://www.cs.wisc.edu/wpis/papers/tr1519.ps”.

17. S. Muggleton. Inductive logic programmingew Generation Comp3(4):295-317, 1991.

18. C. Pasareanu, M. Dwyer, and W. Visser. Finding feasiblenter-examples when model
checking Java programs. TACAS pages 284—-298, 2001.

19. J.R. Quinlan. Learning logical definitions from relasioMach. Learn, 5:239-266, 1990.

20. T.Reps, M. Sagiv, and A. Loginov. Finite differencindagical formulas with applications
to program analysis. IESOP pages 380-398, 2003.

21. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape aisalya 3-valued logicTOPLAS
24(3):217-298, 2002.

14

