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create multiple specialized copies of p. In creating specialized procedures, the algorithm must

decide for which patterns of formal parameters a given procedure should be specialized, and
which program elements should be included in each specialized procedure.

We formalize the specialization-slicing problem as a partitioning problem on the elements of the
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algorithm makes use of automata-theoretic techniques originally developed in the model-checking

community. The algorithm returns a finite answer that is optimal. In particular, (i) each element
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among all possible answers with property (i), there is no smaller one).

The specialization-slicing algorithm provides a new way to create executable slices. Moreover,
by combining specialization slicing with forward slicing, we obtain a method for removing un-

wanted features from a program. While it was previously known how to solve the feature-removal
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1. INTRODUCTION

Program slicing [Weiser 1984] provides a useful tool for many semantics-based
program-manipulation operations. In particular, slicing produces semantically
meaningful static decompositions of programs [Giacobazzi and Mastroeni 2003],
consisting of elements—typically statements and conditions—that are not textu-
ally contiguous. Slicing is a fundamental operation that can aid in solving many
software-engineering problems, including program understanding, maintenance, de-
bugging, testing, differencing, specialization, and merging. (See §9 for references.)
The term “program slicing” has been used to describe a number of different but re-
lated operations, but for purposes of introducing the specialization-slicing problem,
we can start with the original definition due to Weiser [1984]: the (static backward)
slice of a program P from element q with respect to a set of variables V to be any
(executable) program P ′ such that

—P ′ can be obtained from P by deleting zero or more statements.

—Whenever P halts on input I, P ′ also halts on input I, and the two programs
produce the same sequences of values for all variables in set V at element q if it
is in the slice, and otherwise at the nearest successor to q that is in the slice.

The pair (q, V ) is called the slicing criterion.
Most research on slicing adopts from Weiser the idea that slices should retain

a close syntactic connection to the original program—roughly, algorithms for such
approaches remove all program elements that cannot affect the slicing criterion.
Such algorithms are called syntax-preserving [Harman and Danicic 1997].

In this paper, we investigate the opportunities to be gained from broadening
the definition of slicing and abandoning the restriction to syntax-preserving algo-
rithms. A major inspiration for our work comes from the field of partial evaluation
[Jones et al. 1993], in which a wide repertoire of techniques have been developed
for specializing programs.

While slicing can also be harnessed for specializing programs [Reps and Turnidge
1996], due to the emphasis on syntax-preserving algorithms, the kind of specializa-
tion obtainable via slicing has heretofore been quite restricted, compared to the kind
of specialization allowed in partial evaluation. In particular, a syntax-preserving
slicing algorithm corresponds to what the partial-evaluation community calls a
monovariant algorithm: each program element of the original program generates
at most one element in the answer. In contrast, partial-evaluation algorithms can
be polyvariant, i.e., one program element in the original program may correspond
to more than one element in the specialized program [Jones et al. 1993, p. 370].

In this paper, we investigate polyvariant program slicing—which we call spe-
cialization slicing—and present an algorithm that solves the specialization-slicing
problem. For a given procedure p, a specialization-slicing algorithm may create
multiple specialized copies of p. For example, as shown in Fig. 1, when a special-
ization slice is performed on the program in Fig. 1(a) with respect to the actual
parameters of the call to printf on line (17), the calls to p on lines (14) and (16)
of Fig. 1(a) are converted in Fig. 1(b) into calls to the one-parameter procedure
p 1, while the call to p on line (15) is converted into a call to the two-parameter
procedure p 2.
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(a) Backward closure slice w.r.t. (b) Specialized slice
printf’s params. on line (17) with two versions of p

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

int g1, g2, g3;

void p(int a, int b) {
g1 = a;
g2 = b;

g3 = g2;
}

int main() {
g2 = 100;
p(g2, 2);
p(g2, 3);
p(4, g1+g2);
printf("%d", g2);

}

int g1, g2;

void p_1(int b) {
g2 = b;
}

void p_2(int a, int b) {
g1 = a;
g2 = b;
}

int main() {

p_1(2);
p_2(g2, 3);
p_1(g1+g2);
printf("%d", g2);
}

Fig. 1. (a) Example program and the backward closure slice with respect to the actual parameters

of the call to printf on line (17). (b) Specialization slice with respect to the same slicing criterion.

Note that procedure p is specialized into two variants: p 1 and p 2.

The specialization-slicing algorithm still has the main characteristics of a slicing
algorithm—that is, the elements of the output slice are all elements from the input
program: no evaluation or simplification is performed. Stated another way, our
work adopts just one feature from the partial-evaluation literature—polyvariance—
and studies how that extension changes the slicing problem.

The specialization-slicing algorithm can be thought of as starting with informa-
tion similar to what is obtained from what has been called “closure slicing”, and
then modifying the closure-slice result. Closure slicing and other relevant back-
ground material will be reviewed in §2.1. For the purposes of the discussion here,
the relevant issue is that a closure slice can have multiple calls to the same proce-
dure, with different subsets of actual parameters at different call-sites. However, the
slice contains the union of the corresponding formal-parameter sets, which causes a
mismatch between the actual parameters at a call-site and the procedure’s formal
parameters [Horwitz et al. 1990, §1]. For instance, in lines (14) and (16) of Fig. 1(a),
the second actual parameter is in the closure slice, but the first actual parameter
is not; in line (15), both actual parameters are in the closure slice; and in line
(3), both formal parameters are in the closure slice. Thus, there are mismatches
between lines (14) and (3), and between lines (16) and (3).

Specialization slicing represents a new point in the “design space” of slicing prob-
lems: (i) the specialization-slicing algorithm is not syntax-preserving because a slice
can contain multiple versions of a procedure; however, (ii) the specialization-slicing
algorithm never introduces program elements that are not also in the closure slice
(albeit the specialization slice may contain multiple copies of such elements).

In creating specialized procedures, a specialization-slicing algorithm must decide
for which patterns of formals a given procedure should be specialized, and which
program elements should be included in each specialized procedure. As we show
in §2.3 and §4.3, there can be cascade effects: when a specialized copy of p is
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(a) Recursive program (b) Specialization slice
(1) int g1, g2; int g1, g2;
(2)
(3) void s(int a, void s_1(int b) {
(4) int b){ g1 = b;
(5) }
(6) g1 = b; void s_2(int a) {
(7) g2 = a; g2 = a;
(8) } }
(9)

(10) void r_1(int k) {
(11) if (k > 0) {
(12) int r(int k) { s_2(g1);
(13) r_2(k-1);
(14) if (k > 0) { s_1(g2);
(15) s(g1, g2); }
(16) r(k-1); }
(17) s(g1, g2); void r_2(int k) {
(18) } if (k > 0) {
(19) s_1(g2);
(20) } r_1(k-1);
(21) s_2(g1);
(22) }
(23) }
(24) int main() {
(25) g1 = 1; int main() {
(26) g2 = 2; g1 = 1;
(27) r(3); r_1(3);
(28) printf("%d\n", g1); printf("%d\n", g1);
(29) } }

Fig. 2. (a) A program with recursive procedure r. All elements of the program are in the closure

slice with respect to line (28). (b) The specialization slice of the program with respect to line

(28).

created, it may be necessary to create specialized copies of procedures called by
p and so on. The process cannot go on forever, because there are only a finite
number of combinations of actuals that are possible; however, the cascade effect
can be exponential in the worst case (§4.3).

Exponential explosion would be a deal-breaker. However, our experiments indi-
cate that exponential explosion does not arise in practice: no procedure had more
than six specialized versions, and the vast majority of procedures (90.6%) had just
a single version (see §8). Moreover, the experiments showed that the overall size
increase is also modest. Normalized to “|closure slice| = 100”, on average (com-
puted as the geometric mean) specialization slices are 109.4. That is, 9.4% worth
of closure-slice elements are replicated. However, there is a sense in which our
specialization-slicing algorithm returns an answer that is optimal: (i) the result is
minimal in a sense defined precisely in §2.2, and (ii) each element replicated by
the specialization-slicing algorithm is necessary for the slice to capture one of the
program’s specialized patterns of parameter passing.

Fig. 1 is an example of specialization slicing applied to a non-recursive program.
To see the outcome of specialization slicing on a recursive program, consider the
program shown in Fig. 2(a) and the specialization slice with respect to line (28),
shown in Fig. 2(b). This example shows what happens when some program ele-
ments are relevant in one recursive invocation, but not relevant in another recursive
invocation of the same function. There are two kinds of effects:

(1) Procedure s is specialized into two versions (s 1 with parameter b and s 2 with
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parameter a).

(2) Procedure r, which has a single parameter in the original program and still
has a single parameter in the output slice, is also specialized into two versions,
which have two different patterns of actions in their bodies:

—r 1 makes the calls “s 2(g1); r 2(k-1); s 1(g2);”

—r 2 makes the calls “s 1(g2); r 1(k-1); s 2(g1);”.

As a consequence of item (2), the pattern of recursion in the specialization slice
shown in Fig. 2(b) is different from the pattern of recursion in Fig. 2(a). The pro-
gram in Fig. 2(a) uses direct recursion: r calls r calls . . . In contrast, in Fig. 2(b),
r 1 and r 2 are mutually recursive. That is, specialization slicing caused a use
of direct recursion to be converted into mutual recursion. As we will show, the
specialization-slicing algorithm that we give in §3 automatically identifies the cor-
rect procedure variant to call, even when specialization slicing introduces mutual
recursion among specialized procedures.

A Flawed Specialization-Slicing Method. One approach to specialization slicing
might be to create the specialized version of a callee by removing vertices that are
in the forward slice [Horwitz et al. 1990, §4.5] from “extra” formal parameters in
the closure slice. That is, to specialize procedure p for call-sites like the ones on
lines (14) and (16) of Fig. 1(a), where the second actual parameter is in the closure
slice but the first actual parameter is not, the proposed algorithm would

—make a copy of the closure slice of p, and

—remove from the copy of p all vertices in the forward slice with respect to the
first formal-parameter.

It would be necessary to iterate this process until there are no further parameter
mismatches; however, tabulation can be used to avoid re-analyzing a method that
has already been specialized.

Unfortunately, the following non-recursive example shows that this approach can
leave in unneeded program elements in some cases. (In the left-hand column, the
boxed items are the elements of the closure slice.)
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(a) Program and a closure slice (b) Candidate specialization slice

int g1, g2;

void p(int a, int b) {
g1 = a;

int z = 3;

g2 = b + z;

}

int main() {
p(11,4); // g2 = 4 + 3;
p(g2,2); // g1 = g2;
printf("%d",g1); // slice pt.
}

int g1, g2;

void p_1(int a) {
g1 = a;

int z = 3; // EXTRA!

}

void p_2(int b) {
int z = 3; // OK

g2 = b + z;

}

int main() {
p_2(4); // g2 = 4 + 3;

p_1(g2); // g1 = g2;

printf("%d",g1);

}

In specialized procedure p 2, the assignment z = 3; is needed because variable z is
used in the very next statement, g2 = b + z. In contrast, in specialized procedure
p 1, the assignment z = 3; is an extra statement; in compiler parlance, z is a dead
variable there, and z = 3; is a useless assignment.

The statement z = 3; is retained in p 1 by the flawed algorithm because z = 3;

is in the closure slice, but is not in the forward slice from the unneeded formal-in
b (which corresponds to the unneeded actual-in 2 in the call p(g2,2) in main).

At the beginning of our work on specialization slicing, we considered numerous
candidate algorithms, such as the flawed method discussed above. The flaws in
such ad hoc attempts motivated us to back up and reconsider the problem from
first principles. The ideas that we came up with are presented in §2 at a semi-formal
level, and used to define the goals of a specialization-slicing algorithm in terms of
soundness, completeness, and minimality conditions. We then give an algorithm
that is sound and complete, and returns a minimal specialization slice (§3).

Contributions. This paper defines specialization slicing, describes an elegant al-
gorithm for solving the problem, and present results from studying specialization
slicing from a number of angles.

—We formalize the problem of specialization slicing as a partitioning problem on
the elements of the (possibly infinite) unrolled program (§2.2). We give definitions
of soundness, completeness, and minimality for specialization slicing (§2.2).

—To solve the partitioning problem, we bring techniques to bear that are quite
different from what have been used in other work on program slicing. In partic-
ular, to represent finitely the infinite sets of objects that we need to manipulate
to solve the partitioning problem, we make use of symbolic techniques originally
developed in the model-checking community [Bouajjani et al. 1997; Finkel et al.
1997]. Using this machinery, we give an algorithm in §3 that with just a few
simple automata-theoretic operations identifies

—the minimal set of specialized procedures, as well as
—the minimal set of program elements required in each specialized procedure.
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—We prove that our specialization-slicing algorithm is sound and complete, and
returns a minimal specialization slice (§3.5 and Appendix A); consequently, the
algorithm always creates an optimal output slice (§4.1).

—We characterize the running time and space used by the algorithm (§4).

—We present a family of examples for which the running time and space of the
specialization-slicing algorithm can be exponential in certain parameters of the
input program (§4.3).

—Our experience to date has been that neither such examples, nor the worst-
case exponential behavior of operations like automaton determinization, arise
in practice (see below). Hence, we believe it is fair to say that, for the observed
cost, both the running time and space of the algorithm are bounded by the
sum of two terms: one is polynomial in the size of the input program; the other
is linear in the size of the output slice.

—The specialization-slicing algorithm provides a new way to create executable
slices—in particular, it creates polyvariant executable slices (§5).

—We describe how to extend the specialization-slicing algorithm to handle pro-
grams that (i) make calls to library procedures, and (ii) use calls via pointers to
procedures (§6).

—We describe a method for removing unwanted program features (§7). The method
uses specialization slicing in conjunction with forward slicing. While it was pre-
viously known how to solve the feature-removal problem for single-procedure
programs, no algorithm was known for multi-procedure programs.

—In §8, we present the results of experiments using C programs to evaluate (i)
our specialization-slicing algorithm (for polyvariant executable slicing), and (ii)
an algorithm for monovariant executable slicing [Binkley 1993]. To the best of
our knowledge—confirmed by Binkley [2012]—these results represent the first
published data on the performance of the monovariant algorithm for executable
slicing.

§9 discusses related work. §10 concludes. Proofs are given in Appendix A.

2. MOTIVATING EXAMPLES AND PROBLEM STATEMENT

This section illustrates the issues involved in performing specialization slicing. In
§2.1, we provide a brief review of system dependence graphs, a data structure that
has been used in previous work on interprocedural slicing, and closure slicing. In
§2.2, we use a non-recursive program to motivate the definition of specialization slic-
ing. In §2.3, we doublecheck our problem definition by considering a specialization
slice of a recursive program.

2.1 Background

2.1.1 System Dependence Graphs. In some slicing algorithms, a slicing criterion
(q, V ) is restricted so that V can only include variables used at q. Ottenstein and
Ottenstein [1984] observed that with such slicing criteria, slicing can be performed
efficiently using program dependence graphs. Our specialization-slicing algorithm
adopts this restriction on slicing criteria. (In the remainder of the paper, we also
assume that slices are with respect to all variables used at q. However, the slicing
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criteria that we consider can consist of sets of program elements, not just a single
element q.)

Horwitz et al. [1990] presented a context-sensitive algorithm for interprocedural
slicing that uses a data structure they defined, called a system dependence graph
(SDG). An SDG is a graph used to represent multi-procedure programs (“systems”).
The system dependence graph is similar to other dependence-graph representations
of programs (e.g., [Kuck et al. 1981; Ottenstein and Ottenstein 1984]), but repre-
sents collections of procedures rather than just monolithic programs.

A program’s SDG is a collection of procedure dependence graphs (PDGs), one
for each procedure. Each PDG has an entry vertex, plus vertices that represent
the procedure’s statements and conditions [Ottenstein and Ottenstein 1984]. A
call statement is represented by a call vertex and a collection of actual-in and
actual-out vertices. There is an actual-in vertex for each actual parameter as well
as for the non-local locations—e.g., global variables and locations accessible via
pointers—in the procedure’s MayRef and (MayMod – MustMod) sets [Cooper and
Kennedy 1988]. There is an actual-out vertex for the return value and for each
non-local location in the procedure’s MayMod set. Similarly, in the PDG of a
called procedure, the parameter-passing actions in the procedure’s prologue and
epilogue are represented by a collection of formal-in and formal-out vertices. A
PDG’s edges represent the control and flow dependences among the procedure’s
statements and conditions.1 The PDGs are connected together to form the SDG
by call edges (which represent procedure calls, and run from a call vertex to an entry
vertex) and by parameter-in and parameter-out edges (which run from an actual-in
vertex to the corresponding formal-in vertex, and from a formal-out vertex to all
corresponding actual-out vertices, respectively).2

Example 2.1. Fig. 3 shows the SDG for the program given in Fig. 1(a). Each
PDG vertex in the SDG is labeled (e.g., m1), and each call-site has an additional
label of the form C1, C2, etc. We later refer to the vertices and call-sites using
those labels.

Because the call to printf is a library call, the SDG shown in Fig. 3 does not
include the PDG for printf. We discuss how we handle library calls in §6.1. 2

2.1.2 Closure Slicing. Horwitz et al. [1990] presented a context-sensitive algo-
rithm for interprocedural slicing that produces more precise (smaller) slices than
Weiser’s algorithm. However, while Weiser’s slices are executable, the algorithm
given by Horwitz et al. produces a closure slice: the slice of a program from cri-
terion (q, {x}) consists of all statements and conditions of the program that might
affect the value of x at element q.

1As defined by Horwitz et al. [1990], PDGs include four kinds of dependence edges: control,
loop-independent flow, loop-carried flow, and def-order. However, for the purposes of this paper
the distinction between loop-independent and loop-carried flow edges is irrelevant, and def-order

edges are not used. Therefore, in this paper we assume that PDGs include only control-dependence
edges and a single kind of flow-dependence edge.
2The SDGs defined by Horwitz et al. [1990] also include summary edges, which run from actual-in
to actual-out vertices. However, summary edges are not necessary for our specialization-slicing
algorithm.
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Example 2.2. The elements of Fig. 3 shown with bold font and darker borders,
lines, and dashed lines are the ones identified by the context-sensitive, interproce-
dural closure-slice algorithm of Horwitz et al. [1990] when the SDG is sliced with
respect to {m22,m23}. This example corresponds to slicing Fig. 1(a) with respect
to the actual parameters of the call to printf on line (17). 2

A closure slice can have multiple calls to the same procedure, with different
subsets of actual parameters at different call-sites. However, the slice contains
the union of the corresponding formal-parameter sets, which causes a mismatch
between the actual parameters at a call-site and the procedure’s formal parameters
[Horwitz et al. 1990, §1] (e.g., compare the boxes on lines (14) and (16) of Fig. 1(a)
with the box on line (3)).

Example 2.3. The parameter-mismatch problem is illustrated in Fig. 3 by the
mismatch between actual-ins m4 and m16 from call-sites C1 and C3, respectively,
which are not in the slice, and formal-in p2, which is in the slice. 2

For most programming languages, a program with a parameter mismatch would
trigger a compile-time error, or at least a warning. (The main use of closure slicing
per se is in tools for code understanding, such as CodeSurfer R© [Anderson et al. 2003],
which lets the user navigate along the dependence edges in the closure slice.) In
contrast, slices produced by our specialization-slicing algorithm never exhibit such
parameter mismatches, and thus specialization slices are executable.

We will have more to say about the parameter-mismatch problem in §6.2 and
executable slicing in §5.

2.2 Problem Statement and Key Insights

As we explored the concept of specialization slicing, we considered numerous can-
didate algorithms, such as the one discussed in §1. The flaws in such attempts
motivated us to find foundational principles that we could use to define the objec-
tive that specialization slicing should achieve. This section presents such principles
at a semi-formal level, and uses them to define the goal of a specialization-slicing
algorithm (Eqn. (3) and Defns. 2.9 and 2.10).

Concepts that are presented at an intuitive level in this section are formulated
more precisely in §3.

Insight 1: Symbolic Techniques for Infinite Graphs. We formalize the
specialization-slicing problem in terms of the (conceptual) unrolled SDG, which for
recursive programs has an infinite number of vertices and edges. Roughly, the un-
rolled SDG corresponds to the SDG of the program that is obtained by repeatedly—
and possibly infinitely—performing in-line expansion in procedure main.3

In an unrolled SDG, each call-site invokes a unique instance of the called PDG.
Consequently, each vertex c in an unrolled SDG is associated with a unique sequence
of call-sites in the SDG, and thus c can be labeled uniquely with a pair (v, w), where
v is a PDG vertex, and w is a sequence of call-sites. In a minor abuse of terminology,
we do not distinguish between c and its label (v, w), and say that c = (v, w) is a
configuration . The calling context (or stack configuration) w represents the

3The unrolled SDG is defined formally in Defn. 3.4.
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C2C2C2C2

(p2, C1)

C1C1C1C1

(m2, ε)

(m4, ε) (m6, ε) (m8, ε)

(p7, C1) (p9, C1)

(p6, C1)

(p4, C1)

(m12, ε)

(p7, C2)

(p6, C2)

(p1, C2)(p1, C2)(p1, C2)(p1, C2)

(m13, (m13, (m13, (m13, εεεε)))) (m14, (m14, (m14, (m14, εεεε))))

(p3, C2)(p3, C2)(p3, C2)(p3, C2) (p8, C2)(p8, C2)(p8, C2)(p8, C2)(p2, C2)(p2, C2)(p2, C2)(p2, C2) (p9, C2)(p9, C2)(p9, C2)(p9, C2)

(p5, C2)(p5, C2)(p5, C2)(p5, C2)

(p4, C2)(p4, C2)(p4, C2)(p4, C2)

C3C3C3C3

(m16, ε) (m18, ε) (m20, ε)

(p7, C3)(p2, C3) (p9, C3)

(p6, C3)

(p4, C3)

(m15, (m15, (m15, (m15, εεεε))))

(m3, (m3, (m3, (m3, εεεε))))

(m5, (m5, (m5, (m5, εεεε)))) (m7, (m7, (m7, (m7, εεεε))))

(p1, (p1, (p1, (p1, C1)C1)C1)C1)

(p3, C1)(p3, C1)(p3, C1)(p3, C1) (p8, C1)(p8, C1)(p8, C1)(p8, C1)

(p5, C1)(p5, C1)(p5, C1)(p5, C1)

(m1, (m1, (m1, (m1, εεεε))))

(m9, (m9, (m9, (m9, εεεε))))

(m10, (m10, (m10, (m10, εεεε)))) (m11, (m11, (m11, (m11, εεεε))))

(m21, (m21, (m21, (m21, εεεε))))

(m23, (m23, (m23, (m23, εεεε))))(m22, (m22, (m22, (m22, εεεε))))

(m17, (m17, (m17, (m17, εεεε)))) (m19, (m19, (m19, (m19, εεεε))))

(p1, (p1, (p1, (p1, C3)C3)C3)C3)

(p3, C3)(p3, C3)(p3, C3)(p3, C3) (p8, C3)(p8, C3)(p8, C3)(p8, C3)

(p5, C3)(p5, C3)(p5, C3)(p5, C3)

Fig. 4. Unrolled SDG of the program shown in Fig. 1(a). Each vertex is labeled with a configura-
tion of the form (PDG-vertex, call-stack). The closure slice of the unrolled SDG from configuration

set {(m22, ε), (m23, ε)} is shown with bold font and darker borders, lines, and dashed lines, and

corresponds to the boxed elements in Fig. 1(a).

stack of calls that are pending in configuration c. Given a set of configurations C,
Elems(C) denotes the set of PDG vertices {v | (v, w) ∈ C}, and Stacks(C) denotes
the set of stack configurations {w | (v, w) ∈ C}.

Example 2.4. Fig. 4 shows the unrolled SDG that corresponds to the program
shown in Fig. 1(a). Each vertex in Fig. 4 is labeled with a configuration of the form
(PDG-vertex, call-stack). Because Fig. 1(a) is not recursive, the set of configura-
tions in the unrolled SDG is a finite set, namely,

(m1, ε) (m13, ε) (p1, C1) (p1, C2) (p1, C3)
(m2, ε) (m14, ε) (p2, C1) (p2, C2) (p2, C3)
(m3, ε) (m15, ε) (p3, C1) (p3, C2) (p3, C3)
(m4, ε) (m16, ε) (p4, C1) (p4, C2) (p4, C3)
(m5, ε) (m17, ε) (p5, C1) (p5, C2) (p5, C3)
(m6, ε) (m18, ε) (p6, C1) (p6, C2) (p6, C3)
(m7, ε) (m19, ε) (p7, C1) (p7, C2) (p7, C3)
(m8, ε) (m20, ε) (p8, C1) (p8, C2) (p8, C3)
(m9, ε) (m21, ε) (p9, C1) (p9, C2) (p9, C3)

(m10, ε) (m22, ε)
(m11, ε) (m23, ε)
(m12, ε)



(1)

2

To represent finitely the possibly infinite sets of objects that we will use to solve
the specialization-slicing problem, we adopt symbolic techniques that were orig-
inally developed in the model-checking community. We use a pushdown system
(PDS) [Bouajjani et al. 1997; Finkel et al. 1997] to encode the unrolled SDG (see
§3.1). This approach immediately provides us with an algorithm to perform a gen-
eralized kind of program slicing: the pre∗ operation [Bouajjani et al. 1997; Finkel
et al. 1997] on a PDS performs a closure slice on the unrolled SDG. We call this
operation stack-configuration slicing to distinguish it from the other kinds of
slicing operations that were mentioned earlier.
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Example 2.5. The stack-configuration slice of the program shown in Fig. 1(a)
from line (17) corresponds to the closure slice of the unrolled SDG shown in Fig. 4
from configuration set {(m22, ε), (m23, ε)}. The elements of the slice are shown in
Fig. 4 with bold font and darker borders, lines, and dashed lines. In this case, the
set of configurations in the slice is the finite set

(m1, ε) (m13, ε) (p1, C1) (p1, C2) (p1, C3)
(m3, ε) (m14, ε) (p3, C1) (p2, C2) (p3, C3)
(m5, ε) (m15, ε) (p5, C1) (p3, C2) (p5, C3)
(m7, ε) (m17, ε) (p8, C1) (p4, C2) (p8, C3)
(m9, ε) (m19, ε) (p5, C2)

(m10, ε) (m21, ε) (p8, C2)
(m11, ε) (m22, ε) (p9, C2)

(m23, ε)


(2)

2

Stack-configuration slicing finds all (PDG-vertex, call-stack) configurations on
which a given language of (PDG-vertex, call-stack) configurations depend. As is
well-known in the literature on PDSs, for PDSs of recursive programs, the answer
to such a query can be an infinite set. Nevertheless, an answer can be computed
and stored in a finite amount of memory by using a finite-state automaton (FSA)
to represent an answer set symbolically [Bouajjani et al. 1997; Finkel et al. 1997].
(This material will be reviewed in §3.2.)

Definition 2.6. The unrolled SDG may contain many instances of a procedure
P ; each instance of procedure P is a set Cw of configurations of the form (v, w),

where all the w are the same—i.e., Cw
def
= {(v, w) ∈ unrolled SDG | v ∈ P}. If

Cw is an instance of procedure P , and T is the set of configurations of a stack-
configuration slice, then Pw = Cw ∩ T is the w-variant of P in T .

A specialization of P with respect to T is the set of PDG vertices Elems(Pw) (for
some w-variant Pw in the slice). Because Elems(Pw) drops all stack-configuration
components from w-variant Pw, multiple variants Pw1

and Pw2
can result in the

same specialization, consisting of Elems(Pw1) = Elems(Pw2). 2

Example 2.7. In Fig. 4 and Eqn. (1), there are three instances of procedure p,
consisting of the configurations

(1) CC1 = {(p1, C1), (p2, C1), (p3, C1), . . . , (p8, C1), (p9, C1)}
(2) CC2 = {(p1, C2), (p2, C2), (p3, C2), . . . , (p8, C2), (p9, C2)}
(3) CC3 = {(p1, C3), (p2, C3), (p3, C3), . . . , (p8, C3), (p9, C3)}

In the slice shown in Fig. 4, there are three variants of procedure p:

(1) pC1 = {(p1, C1), (p3, C1), (p5, C1), (p8, C1)}

(2) pC2 =

{
(p1, C2), (p2, C2), (p3, C2), (p4, C2), (p5, C2),
(p8, C2), (p9, C2)

}
(3) pC3 = {(p1, C3), (p3, C3), (p5, C3), (p8, C3)}

However, because the C1-variant and the C3-variant have the same Elems com-
ponents, there are only two specializations of p—namely, those for vertex sets
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C2C2C2C2

C1C1C1C1

C3C3C3C3

p8p8p8p8

m21m21m21m21

m23m23m23m23m22m22m22m22

m17m17m17m17

m9m9m9m9

p1p1p1p1

p4p4p4p4

p5p5p5p5

p5p5p5p5

p3p3p3p3

m3,m3,m3,m3,

m1m1m1m1

p1p1p1p1

m7m7m7m7

m15m15m15m15

m5m5m5m5

m13m13m13m13 m14m14m14m14

p3p3p3p3 p8p8p8p8p2p2p2p2 p9p9p9p9

m10m10m10m10 m11m11m11m11 m19m19m19m19

Fig. 5. The specialized SDG for the closure slice shown in Fig. 4.

{p1, p3, p5, p8} and {p1, p2, p3, p4, p5, p8, p9}. Consequently, Fig. 1(b) has two spe-
cialized versions of p (named p 1 and p 2). 2

Problem Statement (Part I): Definition of Specialization Slicing. With these con-
cepts, we can formulate the problem of specialization slicing as follows. The core
problem is to identify, for each procedure P , each of the different sets of program
elements that make up the variants of P . These sets can be characterized as follows:

Specializations(P ) = (3)

{Elems(V ) | V a variant of P in the stack-configuration slice}.

For instance, in Fig. 4, Specializations(p) is

{{p1, p3, p5, p8}, {p1, p2, p3, p4, p5, p8, p9}}.

In general, in a closure slice of the unrolled SDG for a recursive program, the
number of variants V of a procedure P can be infinite. However, because stack-
configuration components are ignored in Elems(V ), there are only a finite number
of different Elems(V ) sets. Therefore, Specializations(P ) is a finite set, each of
whose members is a finite set of program elements.

To create the SDG for the answer program, a specialized version of procedure
P ’s PDG is instantiated for each different Elems(V ) set in Specializations(P ). The
specialized PDGs are connected together to form the specialized SDG.

Example 2.8. Fig. 5 shows the specialized SDG that corresponds to the closure
slice shown in Fig. 4. The two specialized PDGs for p in Fig. 5 correspond to the
two specializations of p discussed in Ex. 2.7. The SDG in Fig. 5 corresponds to the
program shown in Fig. 1(b). 2

The final step is to pretty-print source-code text from the specialized SDG. (This
step is straightforward, but lies outside the scope of the paper.)

Problem Statement (Part II): Soundness and Completeness. Suppose that for
SDG S and slicing criterion C, the resulting SDG is R. Ideally, the unrolling of R
should be identical to the closure slice with respect to C of the unrolling of S; that
is, the unrolling of R should have two properties:
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(1) It should contain only elements that are in the closure slice with respect to C
of the unrolling of S (soundness).

(2) It should contain all of the elements in the closure slice with respect to C of
the unrolling of S (completeness).

However, because the vertices and call-site labels in S and R are different, the
properties as stated above are not achievable. The naming differences create a
problem because the vertices and call-site labels are alphabet symbols in the con-
figurations of the unrollings of R and S. Consequently, the notions of soundness
and completeness cannot based on pure equality; instead, they must account for
the changes in the alphabet symbols. Fortunately, it is easy to identify each vertex
or call-site in R as the specialization of some vertex or call-site in S. This infor-
mation can be used to define a mapping MC that maps SDG vertices and call-sites
in R one-to-one into the alphabet of S. Using MC , we can restate the concepts of
soundness and completeness as follows:

Definition 2.9. Let A be a specialization-slicing algorithm, and consider an
input pair S and C, and the corresponding outputs R and MC (as described above)
computed by A. Let GR be the unrolling of R.

(1 ) R is sound if each MC(GR) contains only elements that are in the closure
slice with respect to C of the unrolling of S.

(2 ) R is complete if each MC(GR) contains all of the elements in the closure slice
with respect to C of the unrolling of S.

Algorithm A is sound (respectively, complete) if, for all slicing problems, A com-
putes a sound (respectively, complete) slice. 2

The algorithm presented in this paper is both sound and complete (see
Thm. 3.18). In contrast, both Weiser’s algorithm [Weiser 1984] and the candidate
algorithm discussed in §1 are complete, but can include extra program elements,
and hence are not sound. Binkley’s algorithm for monovariant executable slicing
[Binkley 1993], discussed in §5, is also complete but not sound.
Remark. Our terminology is inspired by the use of the terms in logic:

—A proof system S is sound when its set of inference rules prove only valid formulas
with respect to its semantics. (However, S may not have a proof for every valid
formula.)

—A proof system T is complete when every valid formula has a proof in T . (How-
ever, T ’s set of inference rules may also allow “proofs” to be given for formulas
that are not valid.)

The analogy adopted in Defn. 2.9 is that (i) the specialization-slicing algorithm is
playing the role of the set of inference rules, and (ii) elements that are in the closure
slice with respect to C of the unrolling of S are playing the role of valid formulas.

Thus, the reader should be aware that our terminology is the opposite of common
parlance in the program-analysis community, which generally uses “sound” to mean
“a conservative over-approximation”. With the latter definition of soundness, one
would say that Weiser’s and Binkley’s algorithms generate a sound slice, but not
necessarily a most-precise one. 2
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Insight 3: Formulation as a Partitioning Problem. Because an unrolled SDG
can be infinite—and even when not infinite, can be exponentially larger than the
original program—the search for the sets Specializations(P ), which make up the
different PDGs of the answer SDG, must be carried out symbolically. We formulate
this search as the partitioning problem defined below in Defn. 2.10. (To avoid
ambiguity, we use the term “partition” for a collection of non-overlapping sets that
subdivide a given set, and use “partition-element” for an individual set that is part
of the partition.)

The intuition behind Defn. 2.10 is as follows:

—For each configuration (v, w) in the stack-configuration slice of the program,
there needs to be some specialized procedure that can be called with the stack-
configuration w. Each partition-element corresponds to a specialization of some
procedure.

—The partition-elements should only include configurations that are in the stack-
configuration slice.

—We can find the PDGs of the specialization slice given in Fig. 1(b) and Fig. 5 by
partitioning the set given as Eqn. (2) as follows:



(m1, ε) (m13, ε)
(m3, ε) (m14, ε)
(m5, ε) (m15, ε)
(m7, ε) (m17, ε)
(m9, ε) (m19, ε)

(m10, ε) (m21, ε)
(m11, ε) (m22, ε)

(m23, ε)


,



(p1, C1)
(p3, C1)
(p5, C1)
(p8, C1)
(p1, C3)
(p3, C3)
(p5, C3)
(p8, C3)


,



(p1, C2)
(p2, C2)
(p3, C2)
(p4, C2)
(p5, C2)
(p8, C2)
(p9, C2)




(4)

The configurations in the first partition-element correspond to the PDG for main
in the specialized SDG. The configurations in the second partition-element consist
of those from variants pC1 and pC3 of procedure p; they form a single partition-
element that corresponds to the specialized version of p named p 1 in Fig. 1(b).
The configurations in the third partition-element consist of those in variant pC2,
and correspond to the second specialized version of p, named p 2 in Fig. 1(b).

—Configurations that are not in the stack-configuration slice, such as (m8, ε), are
not part of any variant, and hence do not contribute vertices to the specialized
SDG.

—Some elements of the original program, e.g., p5, occur in more than one partition-
element. Hence p5 is specialized into two program elements, one in procedure
p 1 and one in p 2.

Definition 2.10. (Configuration-Partitioning Problem) Given a stack-
configuration slice, the configuration-partitioning problem is to find a finite
partition of the slice’s configurations such that

(1 ) For each variant V of some procedure P , all configurations in V are in the
same partition-element.

(2 ) For each pair of procedures P and Q, P 6= Q, no partition-element contains
configurations from a variant of P and a variant of Q.
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(3 ) Let P be a procedure and A and B be a pair of different variants of P . Let
E be the partition-element that contains the configurations in A (i.e., A ⊆ E).
Then B ⊆ E iff Elems(A) = Elems(B).

Note that the partition is finite, although each partition-element may consist of
configurations from an infinite number of variants. 2

Returning to Eqn. (4), the configurations in the second partition-element—
consisting of those from variants pC1 and pC3—satisfy rules (1) and (3) of
Defn. 2.10, and so form a single partition-element.

Defn. 2.10 implicitly defines a minimality condition for specialization slic-
ing. As stated, because of the “iff” in item (3), Defn. 2.10 defines a unique par-
tition. An alternative would have been to state item (3) as “. . . B ⊆ E implies
Elems(A) = Elems(B).” In that case, we would want the coarsest partition among
all candidates, so that the specialized program consisted of as few specialized pro-
cedures as possible. By stating item (3) as “. . . B ⊆ E iff Elems(A) = Elems(B),”
the unique partition specified by Defn. 2.10 is the coarsest of the (hypothetical)
candidates.

Definition 2.11. A specialization slice is optimal if it is sound, complete, and
minimal. A specialization-slicing algorithm A is optimal if for all slicing problems,
A computes an optimal slice. 2

Defn. 2.10 is a declarative specification of the partitioning problem, but does
not provide a method to construct the desired finite partition. In §3, we show
how to identify the desired partition by performing just a few simple automata-
theoretic operations. After these steps, the answer is available in the form of an
automaton, from which we are able to read off the SDG of the desired specialized
program. As shown in Cor. 3.19, the SDG obtained via our algorithm avoids the
parameter-mismatch problem.

Discussion. In the partition given in Eqn. (4), the set of languages defined by
{Stacks(E) | E a partition-element} partitions the set of stack-configurations as
follows: {{ε}, {C1, C3}, {C2}}. These correspond to a partition of the variants ac-
cording to their stack-configurations, namely, {{mainε}, {pC1, pC3}, {pC2}}. More
generally, we have

Observation 2.12. Each partition-element E in the partition defined in
Defn. 2.10 is associated with a language of stack-configurations: Stacks(E). The
collection of such languages is pairwise disjoint—i.e., the set of languages
{Stacks(E)} partitions the set of stack-configurations in the stack-configuration
slice. 2

Thus, an alternative formulation of the search for the sets Specializations(P )
could have been given as a (different) partitioning problem on the variants in the
stack-configuration slice (or on their stack-configurations). However, the technique
used in §3 to identify the partition manipulates descriptions of sets of configurations,
not variants; consequently, Defn. 2.10 more closely matches the concepts needed to
understand our presentation of the algorithm.
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m1: main

m4: call r m10: call printf

m5: g1 m6: g2 m8: g2

r1: r

r3: g2 r4: k r22: g2

m12: g1

C1
m2: g1=1

m7: 3 m9: g1

r2: g1 r23: g1r5: k > 0

m11: “%d\n”

m3: g2=2

r11: call r

r12: g1 r13: g2 r15: g2r14: k-1 r16: g1

r6:  call s

r7: g1 r9: g2 r10: g1

s1:  s

s2: a s3: b s6: g2 s7: g1

s5: g1=bs4: g2=a

C2 C3

r8: g2

r17:  call s

r18: g1 r20: g2 r21: g1

C4

r19: g2

Fig. 6. The SDG of the recursive program shown in Fig. 2(a).

2.3 A Recursive Example

The partitioning problem in the example discussed in §2.2 is quite simple, because
the program from Fig. 1(a) is non-recursive, and thus the unrolled SDG in Fig. 4 is
finite. In contrast, for a program that uses recursion, the unrolled SDG is infinite.
Moreover, for some slicing criteria of the unrolled SDG, the set of configurations
that we need to partition can be of infinite cardinality. Fortunately, as illustrated
by the example shown in Fig. 2, the partition that satisfies Defn. 2.10 is still finite.

As already mentioned in §1, one issue that can arise with recursion is that the
pattern of recursion can change. For instance, as illustrated in Fig. 2, if the pro-
gram uses direct recursion (r calls r calls . . .), a specialization slice of the program
may need mutual recursion (r 1 calls r 2 calls r 1 calls . . .). Fortunately, the
specialization-slicing algorithm that we give in §3 automatically identifies the cor-
rect procedure variant to call, even when specialization slicing introduces mutual
recursion among specialized procedures.

Consider the recursive program shown in Fig. 2(a) and the slice of the program
with respect to line (28). The SDG of the program is shown in Fig. 6. The slicing
criterion that corresponds to line (28) of Fig. 2(a) is {m10,m11,m12}.

Fig. 7 shows the structure of the unrolled SDG with vertices only for procedure-
entry, call-sites, actual parameters, and formal parameters. Entry and call-site
vertices are enclosed in rectangles, while parameter vertices are enclosed in ovals.
As in Fig. 4, bold font and darker borders, lines, and dashed lines are used to
indicate the vertices that are in the stack-configuration slice; however, to reduce
clutter, only some of the edges of the unrolled SDG and the stack-configuration
slice are shown.
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Fig. 7. The structure of the unrolled SDG of the recursive program shown in Fig. 2(a). Only some

of the edges in the slice are shown.

Fig. 7 includes three variants of procedure r, whose configurations have stack-
configurations (C1), (C3 C1), and (C3 C3 C1), respectively. The first and third
variants of r correspond to the same specialized version of r, because they have
the same Elems components in the stack-configuration slice. (The complete set of
PDG vertices in the (C1) and (C3 C3 C1) variants, not all of which are shown
in Fig. 7, is {r1, r2, r4, r5, r6, r7, r9, r11, r13, r14, r15, r17, r19, r21, r23}.)
In fact, the infinite set of variants of r whose configurations have call-stacks of
the form (C3 C3)∗ C1—i.e., an even number of recursive calls via call-site C3—all
correspond to that same specialized version. Therefore, those configurations make
up one partition-element, which gives rise to one specialized version of r, namely
r 1 in Fig. 2(b).

Similarly, all variants of r whose configurations have call-stacks of the form
(C3 C3)∗ C3 C1—i.e., an odd number of recursive calls on C3—make up another
partition-element, and give rise to a second specialized version of r, namely r 2 in
Fig. 2(b). Note that specialized procedures r 1 and r 2 are mutually recursive.

The use of the regular languages (C3 C3)∗ C1 and (C3 C3)∗ C3 C1 in the
discussion above provides a clue as to how the specialization-slicing algorithm can
represent finitely the infinite sets of configurations that it needs to manipulate to
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solve the partitioning problem. As described in §3, the algorithm actually makes
use of automata, rather than regular expressions, to represent such languages.

3. AN AUTOMATON-BASED ALGORITHM FOR SPECIALIZATION SLICING

The specialization conditions given in Eqn. (3) and Defn. 2.10 are not constructive;
they provide a specification of the desired sets of SDG configurations and the desired
SDG, but cannot be used directly as an algorithm. In this section, we describe an
algorithm for performing specialization slicing.

Because the unrolled SDG can be an infinite graph, we encode the SDG as a
pushdown system (PDS). As discussed below, this approach allows us to bring
to bear the repertoire of symbolic techniques that have already been developed
for PDSs in the model-checking community [Bouajjani et al. 1997; Finkel et al.
1997]. In particular, the approach allows us to represent finitely the infinite sets of
configurations that are part of Defn. 2.10. Moreover, with this powerful machinery
at our disposal, we can obtain the desired answer by performing just a few simple
automata-theoretic operations.

The algorithm for specialization slicing involves the following five steps:

(1) encode the program’s SDG as a PDS (§3.1),

(2) perform stack-configuration slicing by applying the PDS Prestar algorithm
(§3.2),

(3) carry out several transformations of the result of Prestar to construct an au-
tomaton of a special form (§3.3),

(4) create the specialized SDG from the automaton created in the previous step
(§3.4), and

(5) pretty-print the specialized SDG as source-code text.

This section presents the details of items (1)–(4). As mentioned earlier, item (5) is
straightforward, but lies outside the scope of the paper.

The theorems that demonstrate the correctness of the algorithm are stated in
§3.5. The proofs are given in Appendix A. Bounds on the time and space used
during the steps of the algorithm are presented in §4.

3.1 Pushdown Systems, SDGs, and Unrolled SDGs

This section defines the infinite graphs that we use—namely, the transition relations
of pushdown systems (PDSs) [Bouajjani et al. 1997; Finkel et al. 1997].

Definition 3.1. A pushdown system (PDS) is a triple P = (P,Γ,∆), where
P is a finite set of control locations; Γ is a finite set of stack symbols; and
∆ ⊆ P × Γ × P × Γ∗ is a finite set of rules. A P-configuration is a pair (p, u)
where p ∈ P and u ∈ Γ∗. A rule r ∈ ∆ is written as 〈p, γ〉 ↪→ 〈p′, u〉, where p, p′ ∈
P, γ ∈ Γ, and u ∈ Γ∗. The set of rules defines a transition relation ⇒ on P-
configurations as follows: If r = 〈p, γ〉 ↪→ 〈p′, u′〉, then(p, γu)⇒ (p′, u′u)for all u ∈
Γ∗.

The reflexive transitive closure of ⇒ is denoted by ⇒∗. For a set of P-
configurations C, we define pre*(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post*(C) =
{c′ | ∃c ∈ C : c ⇒∗ c′}, which are just backward and forward reachability under
transition relation ⇒. 2
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Rule Dependence edge modeled

〈p, u〉 ↪→ 〈p, v〉 Flow- or control-dependence edge u→ v

〈p, c〉 ↪→ 〈p, e C〉 Call edge from call vertex c to entry vertex

e at call-site C

〈p, ai〉 ↪→ 〈p,fi C〉 Parameter-in edge from actual-in vertex
ai to formal-in vertex fi at call-site C

〈p, fo〉 ↪→ 〈pfo, ε〉 Parameter-out edge from formal-out vertex
〈pfo, C〉 ↪→ 〈p, ao〉 fo to actual-out vertex ao at call-site C

Fig. 8. A schema for encoding an SDG’s edges using PDS rules.

Without loss of generality, we restrict a PDS’s rules to have at most two stack
symbols on the right-hand side. A rule r = 〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ∗, is called a pop
rule if |u| = 0, an internal rule if |u| = 1, and a push rule if |u| = 2.

Because the size of the stack component of a P-configuration is not bounded,
in general, the number of P-configurations of a PDS—and hence its transition
relation—is infinite.

Definition 3.2. We encode an SDG as a PDS using the schema given in
Fig. 8. The five kinds of edges that occur in SDGs are each encoded using one
or two PDS rules:

—a flow-dependence or control-dependence edge is encoded with an internal rule

—a call edge or parameter-in edge is encoded with a push rule

—a parameter-out edge is encoded with a pop rule and an internal rule.

2

Example 3.3. Consider again the SDG from Fig. 3 and program from Fig. 1(a).
The three call-sites on procedure p are labeled with C1, C2, and C3. Tab. I shows
the PDS rules that encode the SDG from Fig. 3. 2

Using the schema given in Fig. 8, a common control location p is used in all of
the PDS rules, except in the rules that encode parameter-out edges. Reading the
rules in the forward direction,

—the next-to-last rule of Fig. 8, the pop rule 〈p, fo〉 ↪→ 〈pfo, ε〉, uses control location
pfo to record that formal-out vertex fo was popped from the stack, so that fo is
available when call-site symbol C is exposed at the top of the stack.

—the last rule of Fig. 8, the internal rule 〈pfo, C〉 ↪→ 〈p, ao〉, replaces C on the stack
with the actual-out vertex ao that matches fo at call-site C.

In Tab. I, rules 59 and 60 encode parameter-out edge p9 → m8 of call-site C1,
whereas rules 59 and 61 encode parameter-out edge p9→ m14 of call-site C2, and
rules 59 and 62 encode parameter-out edge p9→ m20 of call-site C3.

Definition 3.4. Given SDG G, the unrolling of G is the transition relation of
the PDS that encodes G via Fig. 8. 2
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Control-dependence and flow-dependence edges in main

1. 〈p,m1〉 ↪→ 〈p,m2〉 2. 〈p,m1〉 ↪→ 〈p,m3〉
3. 〈p,m1〉 ↪→ 〈p,m9〉 4. 〈p,m1〉 ↪→ 〈p,m15〉
5. 〈p,m1〉 ↪→ 〈p,m21〉 6. 〈p,m2〉 ↪→ 〈p,m4〉

. . . 18 rules omitted . . .

25. 〈p,m19〉 ↪→ 〈p,m23〉 26. 〈p,m21〉 ↪→ 〈p,m22〉
27. 〈p,m21〉 ↪→ 〈p,m23〉

Control-dependence and flow-dependence edges in p

28. 〈p, p1〉 ↪→ 〈p, p2〉 29. 〈p, p1〉 ↪→ 〈p, p3〉
30. 〈p, p1〉 ↪→ 〈p, p4〉 31. 〈p, p1〉 ↪→ 〈p, p5〉

. . . 8 rules omitted . . .
40. 〈p, p5〉 ↪→ 〈p, p8〉 41. 〈p, p6〉 ↪→ 〈p, p7〉

Call edges
42. 〈p,m3〉 ↪→ 〈p, p1 C1〉 43. 〈p,m9〉 ↪→ 〈p, p1 C2〉
44. 〈p,m15〉 ↪→ 〈p, p1 C3〉

Parameter-in edges
45. 〈p,m4〉 ↪→ 〈p, p2 C1〉 46. 〈p,m5〉 ↪→ 〈p, p3 C1〉
47. 〈p,m10〉 ↪→ 〈p, p2 C2〉 48. 〈p,m11〉 ↪→ 〈p, p3 C2〉
49. 〈p,m16〉 ↪→ 〈p, p2 C3〉 50. 〈p,m17〉 ↪→ 〈p, p3 C3〉

Parameter-out edges

51. 〈p, p7〉 ↪→ 〈pp7, ε〉 52. 〈pp7, C1〉 ↪→ 〈p,m6〉
53. 〈pp7, C2〉 ↪→ 〈p,m12〉 54. 〈pp7, C3〉 ↪→ 〈p,m18〉
55. 〈p, p8〉 ↪→ 〈pp8, ε〉 56. 〈pp8, C1〉 ↪→ 〈p,m7〉
57. 〈pp8, C2〉 ↪→ 〈p,m13〉 58. 〈pp8, C3〉 ↪→ 〈p,m19〉
59. 〈p, p9〉 ↪→ 〈pp9, ε〉 60. 〈pp9, C1〉 ↪→ 〈p,m8〉
61. 〈pp9, C2〉 ↪→ 〈p,m14〉 62. 〈pp9, C3〉 ↪→ 〈p,m20〉

Table I. The encoding of the SDG shown in Fig. 3 as a PDS using the schema given in Fig. 8.

3.2 Symbolic Stack-Configuration Slicing

This section reviews the symbolic techniques for working with PDSs upon which
our specialization-slicing algorithm is based.

When an SDG G is encoded as a PDS P, a pre∗ operation on P is, by definition,
equivalent to performing a closure slice on the unrolling of G—what we called stack-
configuration slicing in §2.2. Moreover, the symbolic method [Bouajjani et al. 1997;
Finkel et al. 1997] for finding the answer to a pre∗ query immediately provides an
algorithm for stack-configuration slicing. Because each control location can be
associated with an infinite number of stack-components, the symbolic method is
based on using finite automata to describe regular sets of configurations.

Definition 3.5. If P = (P,Γ,∆) is a PDS, a P-automaton is a finite au-
tomaton (Q,Γ,→, P, F ), where Q ⊇ P is a finite set of states, →⊆ Q × Γ × Q is
the transition relation, P is the set of initial states, and F is the set of final states.

The → relation is extended to a word u ∈ Γ∗ in the natural way, denoted by
u−→∗.

(I.e.,
u−→∗⊆ Q× Γ∗ ×Q.) A P-configuration (p, u) is accepted by a P-automaton

if the automaton can accept u when it is started in the state p (i.e., p
u−→∗ q, where

q ∈ F ). A set of P-configurations is regular if it is accepted by some P-automaton.
2

For a regular set of P-configurations C, both post∗(C) and pre∗(C) (the for-
ward and backward reachable sets of configurations, respectively) are also regular
sets of P-configurations [Bouajjani et al. 1997; Finkel et al. 1997]. The algorithms
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for computing post∗ and pre∗, called Poststar and Prestar, respectively, take a
P-automaton A as input, and if C is the set of P-configurations accepted by A,
they produce P-automata Apost∗ and Apre∗ that accept the sets of P-configurations
post∗(C) and pre∗(C), respectively. Both Poststar and Prestar can be implemented
as saturation procedures; i.e., transitions are added to A according to an augmen-
tation rule until no more can be added. The saturation procedure for Prestar can
be stated as follows:

Definition 3.6. (Algorithm Prestar) Apre∗ is constructed by augmenting A ac-
cording to the following rules, until A is saturated:

p
γ−→ q ∈ A

p
γ−→ q ∈ Apre∗

Pre1
(5)

〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆ p′
w−→∗ q ∈ Apre∗

p
γ−→ q ∈ Apre∗

Pre2
(6)

Esparza et al. [2000] present an efficient implementation of Prestar, which uses
O(|Q|2|∆|) time and O(|Q| |∆|+ |→C |) space. 2

The saturation procedure for Poststar can be stated as follows:

Definition 3.7. (Algorithm Poststar) Apost∗ is constructed from A by perform-
ing Phase I, and then saturating via the rules given in Phase II:

—Phase I. For each pair (p′, γ′) such that P contains at least one rule of the form
〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, add a new state p′γ′ .

—Phase II (saturation phase). (The symbol
γ
; denotes the relation (

ε→)?
γ→ (

ε→)?.)

p
γ−→ q ∈ A

p
γ−→ q ∈ Apost∗

Post1

〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ p
γ
; q ∈ Apost∗

p′
ε−→ q ∈ Apost∗

Post2

〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ p
γ
; q ∈ Apost∗

p′
γ′−→ q ∈ Apost∗

Post3

〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ p
γ
; q ∈ Apost∗

p′
γ′−→ p′γ′ ∈ Apost∗ p′γ′

γ′′−→ q ∈ Apost∗

Post4

Apost∗ can be constructed in time and space O(nPn∆(n1 + n2) + nPn0), where
nP = |P |, n∆ = |∆|, nQ = |Q|, n0 = |→0|, n1 = |Q− P |, and n2 is the number of
different pairs (p′, γ′) such that there is a rule of the form 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 in ∆
[Schwoon 2002]. 2

Example 3.8. Consider how the Prestar algorithm from Defn. 3.6 identifies the
configurations in the stack-configuration slice shown in Fig. 4. The SDG from Fig. 3



Specialization Slicing · 23

p m
m22, m23

Fig. 9. The query automaton, which accepts the configurations (p,m22) and (p,m23).

(a) p m

p1, p2, 

p4, p9

pp8

pp9

p1, p3,

p5, p8 C1, C2, C3

C2

m1, m3, m5, m7, m9, m10, m11, m13, 

m14, m15, m17, m19, m21, m22, m23

(b) p 3

p1, p2, 

p3, p4, 

p5, p8, p9

1

2

p1, p3,

p5, p8 C1, C3

C2

m1, m3, m5, m7, m9, m10, m11, m13, 

m14, m15, m17, m19, m21, m22, m23

Fig. 10. (a) An automaton that accepts the configurations of the stack-configuration slice of
Fig. 1(a) with respect to line (17). (b) A minimal reverse-deterministic (MRD) automaton for

the same language. As discussed in Ex. 3.10, one can immediately read off the answer to the

configuration-partitioning problem (Defn. 2.10)—and hence to the specialization-slicing problem—
from the MRD automaton: the outgoing transitions from initial state p capture exactly the desired

partition—see Eqn. (4).

is encoded as the PDS whose rules are given in Tab. I. The query automaton A
that specifies the slicing criterion has transitions from initial state p to final state
m on the symbols m22 and m23—see Fig. 9.

Technically, a P-automaton has an initial state for each control location of PDS P
(Defn. 3.5). In our application, the control locations of the form pfo are introduced
solely for technical reasons. For stack-configuration slicing, we are only interested in
P-configurations in which the control location is p, and hence the query automaton
that we use has just one initial state, labeled p (see Fig. 9). (Also, because P-
automata have just the one initial state p, we will typically ignore p in the accepted
words, and concentrate on the (SDG) configuration that a P-configuration mod-
els. For instance, technically A in Fig. 9 accepts the language of P-configurations
{(p,m22), (p,m23)}, which model the following configurations of the unrolled SDG:
{(m22, ε), (m23, ε)}.)

Prestar produces the automaton A′ shown in Fig. 10(a). For instance, according
to Eqn. (6), the transition (p,m19,m) can be added to A′ using PDS rule 25 and
transition (p,m23,m); the transition (pp8, C3,m) can be added using PDS rule
58 and transition (p,m19,m); and so on. Each new state pfo added to A′ during
Prestar—in this example, pp8 and pp9—corresponds to a formal-out vertex fo of
some variant V that is in the slice. Transitions from the initial state p to pfo are
labeled by program elements in V in the backward slice from fo.
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p m

pr23

pr22

C3

ps7

ps6

m1, m2, m4, m5, m7, 

m9, m10, m11, m12

C1

C4

C4

C2

C2

C3

Fig. 11. An automaton that accepts the configurations of the stack-configuration slice of Fig. 2(a)

from line (28).

The significance of last two rule-schemas in Fig. 8, 〈p, fo〉 ↪→ 〈pfo, ε〉 and
〈pfo, C〉 ↪→ 〈p, ao〉, is that if (i) the SDG has a parameter-out edge from fo to
actual-out vertex ao at call-site C, and (ii) A′ has a transition (p, ao, γ), then A′
will have the transitions (p, fo, pfo) and (pfo, C, γ). For instance, in our example,
let fo be p8, ao be m19, and γ be m. Because (i) the SDG has a parameter-out
edge p8 → m19 at call-site C3, and (ii) Fig. 10(a) has a transition (p,m19,m),
Fig. 10(a) also has the transitions (p, p8, pp8) and (pp8, C3,m).

After saturation has quiesced, the fact that, e.g., configuration (p5, C1) is ac-
cepted by A′ means that (p5, C1) is in the stack-configuration slice with respect to
the set of configurations {(m22, ε), (m23, ε)}. 2

Let us now consider stack-configuration slicing for a program with a recursive
procedure.

Example 3.9. Consider the example discussed in §2.3, where we want to create
a specialization slice with respect to line (28) of the program shown in Fig. 2.
We first encode the program’s SDG (Fig. 6) as a PDS similar to the previous
example. We then construct a query automaton Ar that accepts the language of
configurations {(m10, ε), (m11, ε), (m12, ε)}. Ar is provided as an input to the
Prestar algorithm. The automaton created by the Prestar algorithm is shown in
Fig. 11.

The transitions (pr22, C3, pr23) and (pr23, C3, pr22) cover the recursive nature of
the procedure call at call-site C3. Because of these transitions, the output automa-
ton from Prestar (Fig. 11) accepts configurations for program element r23 that
have the form of (r23, (C3 C3)∗ C1). This language defines an infinite language of
configurations in which the stack has an even number of C3 symbols, followed by
a single C1 at the bottom.

Note the order of symbols in such words: call-site C1 in main appears last. 2
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3.3 An Automaton-Based Solution to Partitioning

We now describe how to identify the desired finite partitioning by performing just
a few simple automata-theoretic operations on the saturated automaton A′. Each
such operation manipulates indirectly the possibly infinite sets of configurations
that are part of Defn. 2.10.

Example 3.10. As discussed in Ex. 3.8, given Tab. I and Fig. 9 as input, the
Prestar saturation technique given in Defn. 3.6 constructs Fig. 10(a), which accepts
exactly the configurations in the stack-configuration slice shown in Fig. 4. However,
Fig. 10(a) does not immediately provide a solution to the configuration-partitioning
problem (Defn. 2.10) in the sense that the three sets of the partition given in
Eqn. (4) are not immediately apparent from Fig. 10(a).

Fortunately, Fig. 10(a) is not the only automaton that accepts the language of
configurations in the stack-configuration slice. In particular, the automaton shown
in Fig. 10(b) also accepts the language of configurations in the stack-configuration
slice. Moreover, from Fig. 10(b) we can immediately read off the main aspects of
the desired specialization-slice answer.

—The label sets on the three transitions emanating from the initial state p represent
the three sets of the partition given in Eqn. (4), and thus correspond to the
program elements of the specialized procedures p 1, p 2, and main of Fig. 1(b).

—The non-initial states (1, 2, and 3) that are the targets of the three transitions
emanating from state p represent, respectively, procedures p 1, p 2, and main of
Fig. 1(b).

—The transitions (1, C1, 3), (1, C3, 3) and (2, C2, 3) represent the two calls on p 1

and the call on p 2, respectively, in the specialized version of main. (That is,
these edges correspond to the call multi-graph of the specialized program.)

2

We now seek

(1) a condition that characterizes the essential property of Fig. 10(b), and

(2) an algorithm that lets us construct Fig. 10(b) from Fig. 10(a).

Observation 3.11. The property possessed by Fig. 10(b) is that it is minimal
reverse-deterministic (MRD)—i.e., it is a minimal deterministic FSA when con-
sidered as an automaton that accepts reversed strings via a backwards traversal along
transitions, starting from the accepting state. 2

Because we are interested in partitioning the language of represented configu-
rations, we will exploit the fact that each state of an FSA can be thought of as
defining two languages. For instance, consider the FSA A depicted in Fig. 12(a).
Each state q defines (i) the prefix language P (q) of strings accepted by considering
q as the (only) final state, and (ii) the suffix language L(q) of strings accepted by
considering q as the initial state.

To see why the MRD property is the one we seek, suppose that A in Fig. 12(a)
is deterministic. In this case, the set of languages {P (q) | q a state of A} partition
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(a) s accq L(q)P(q)

(b) accs qPR(q) LR(q)

Fig. 12. (a) Depiction of the prefix and suffix languages associated with state q in automaton
A. (b) Reversal of (a) (denoted by R(A)). PR(q) and LR(q) denote the respective languages of

reversed strings.

the prefix closure L←(A) of L(A).4 That is, for each string s ∈ L←(A), there is
exactly one state q for which there is an s-path from the initial state to q.

As pointed out in Obs. 2.12, each specialized procedure is associated with a
partition-element of a partition of the stack-configurations. Recall that in a config-
uration (v, w), w represents the stack of pending calls. If we determinized Fig. 10(a),
the resulting P (q) languages, where q is a state, would not be satisfactory: each
word in one of the P (q) languages starts with the symbol v for a PDG vertex,
whereas the partition needed to identify specialized procedures should be based on
the w part of a configuration. Moreover, because Fig. 10(a) recognizes a stack-
configuration from top-of-stack to bottom-of-stack (i.e., main), its P (q) languages
recognize (PDG-vertex,partial-stack) pairs, where a “partial-stack” runs from top-
of-stack to middle-of-stack. Such partial-stacks do not correspond to the languages
of calling contexts for specialized procedures.

We are able to use determinization as a partitioning tool by observing that when
we reverse an automaton A—see Fig. 12(b)—a prefix-language PR(A)(q) in the re-
versed automaton R(A) is the reversal of the suffix-language L(q) of the original
automaton; i.e., PR(A)(q) = LR(q). Consequently, by determinizing the reversed
automaton, the prefix languages identify a partition on stack-configurations. More-
over, the PR(A)(q) languages recognize a different kind of partial-stack: for a re-
versed automaton, a partial-stack runs from bottom-of-stack (main) to middle-of-
stack. Such partial-stacks capture the languages of calling contexts for specialized
procedures.

By minimizing the determinized reversed automaton (and then reversing the au-
tomaton that results), we find the desired MRD automaton. As shown in Thm. 3.17,
the automaton obtained in this manner solves the configuration-partitioning prob-
lem (Defn. 2.10).

Example 3.12. Consider again the recursive example discussed in §2.3. Fig. 11
shows an MRD automaton for the stack-configuration slice of Fig. 6 from
{m10,m11,m12}. A comparison of Fig. 11 with Fig. 2(b) shows that the sets
that label the five transitions that emanate from initial state p correspond to the
five procedures of Fig. 2(b), namely, s 1, s 2, r 1, r 2, and main.

In particular, procedure s is specialized into two versions (s 1 with parameter
a and s 2 with parameter b). Procedure r, which has a single parameter in the

4If L is a language, the prefix closure L← is {a | ∃b such that ab ∈ L}.
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Input: SDG S and slicing criterion C
Output: An SDG R for the specialization slice of S with respect to C

// Create A6, a minimal reverse-deterministic automaton for the stack-configuration slice
// of S with respect to C

1 PS = the PDS for S, encoded according to Defn. 3.2
2 A0 = a PS-automaton that accepts C
3 A1 = Prestar[PS ](A0)
4 A2 = reverse(A1)
5 A3 = determinize(A2)
6 A4 = minimize(A3)
7 A5 = reverse(A4)
8 A6 = removeEpsilonTransitions(A5)

// Read out SDG R from A6 -------------------------------------------------
9 R = the empty SDG

10 q0 = InitialState(A6)
11 StateToPDGMap = empty map

// Identify PDGs ------------------------------------------------------------
12 foreach q ∈ (States(A6)− {q0}) do
13 V = {v | (q0, v, q) ∈ Transitions(A6)}
14 Gorig = the PDG of S that contains the vertices in V
15 GV = a new PDG consisting of copies of V , plus copies of the edges from Gorig induced by V
16 Add PDG GV to SDG R
17 StateToPDGMap = StateToPDGMap[q 7→ GV ]

18 end
// Connect PDGs -------------------------------------------------------------

19 foreach transition (q1, C, q2) ∈ Transitions(A6) such that C is a call-site label do
20 Let C′ be the call-site of PDG StateToPDGMap(q2) that corresponds to C

21 Add to R a call edge from the call vertex at C′ to the entry vertex of StateToPDGMap(q1)

22 Add to R a parameter-in edge from each actual-in vertex at C′ to the corresponding formal-in
vertex of StateToPDGMap(q1)

23 Add to R a parameter-out edge from each formal-out vertex of StateToPDGMap(q1) to the

corresponding actual-out vertex at C′

24 end
25 return R

Algorithm 1: The algorithm to create an SDG R for the specialization slice of S
with respect to C.

original program and still has a single parameter in the output slice, is also special-
ized into two versions. These specializations are read off of the automaton shown
in Fig. 11 as follows:

—transitions of the form (p, ∗, ps7) correspond to elements of procedure s 1

—transitions of the form (p, ∗, ps6) correspond to elements of procedure s 2

—transitions of the form (p, ∗, pr23) correspond to elements of procedure r 1

—transitions of the form (p, ∗, pr22) correspond to elements of procedure r 2

The transitions among states m, pr23, pr22, ps7, and ps6 correspond to the call graph
of Fig. 2(b). In particular, the languages L(m), L(pr23), L(pr22), L(ps7), and L(ps6)
in the automaton shown in Fig. 11 are exactly the stack-configuration languages for
the different configuration partitions; i.e., each language equals Stacks(E), where E
is one of the five partitions in the solution to the configuration-partitioning problem
(Defn. 2.10) for the stack-configuration slice of Fig. 6 from {m10,m11,m12}.

Because of these properties, the specialization-slicing algorithm automatically
identifies the correct procedure variant to call, even when specialization slicing
introduces mutual recursion among specialized procedures. 2
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3.4 The Algorithm for Specialization Slicing

The SDG for the specialization slice is created by the method given in Alg. 1.
Automaton A1 created in line 3 accepts the language of configurations of the stack-
configuration slice (i.e., the configurations of the closure slice of the unrolled SDG).
In lines 4–8, Alg. 1 applies automaton operations to A1—reverse, determinize,
minimize, reverse, and removeEpsilonTransitions—to obtain A6, from which the
algorithm reads out the required specialized procedures and their program elements
(lines 9–24).

Note that from the perspective of the languages accepted by A1 and A6, the
five operations have no net effect : the operations determinize and minimize do not
change the language that an automaton accepts, and thus the two calls to reverse
in lines 4 and 7 cancel. That is, L(A6) = L(A1), and so A6 accepts exactly the
language of configurations of the stack-configuration slice. The sole purpose of the
five operations is to transform A6 into the minimal reverse-deterministic FSA for
the language L(A1).

Constructing the Specialized SDG. Lines 9–24 read out SDG R from automaton
A6. The basic idea is to find an appropriate set of vertices, and then include the
edges induced by the vertex set.

Line 15 uses the edge-induction operation defined as follows:

Definition 3.13. Given a graph G = (V,E) and a vertex set V ′ ⊆ V , the set of
edges induced by V ′ is the set of edges of the subgraph of G with vertices restricted
to V ′:

{e ∈ E | e = s→ t ∧ s ∈ V ′ ∧ t ∈ V ′}.
2

The read-out method to construct the specialized SDG relies on the special nature
of automaton A6.

—Words in L(A6) all have the form (vertex-symbol call-site∗).

—A6 is a minimal reverse-deterministic (MRD) automaton.

—Each non-initial state q represents a set of variants of some PDG Gorig (for some
procedure P ). More precisely, q represents the set of all w-variants for which
w ∈ L(q). Consequently, each non-initial state q in A6 represents a special-
ized PDG, and the transitions between non-initial states of A6 tell us about the
interprocedural edges in the answer SDG.

—Let V be the set of vertex symbols on transitions from the initial state of A6
to q. For each variant W associated with q, Elems(W ) = V . Consequently, the
transitions from the initial state to q say what vertices populate the specialized
PDG for q.

Lines 12–18 construct the specialized PDGs as follows: in line 13, the set V—
a set of vertex symbols on transitions from the initial state to a given non-initial
state—identifies the set of vertices in a specialized PDG; the edges in the specialized
PDG are copies of the edges induced by V in the original PDG (line 15). Lines 12–
18 create one PDG for each non-initial state q. StateToPDGMap records, for each
such q, which specialized PDG corresponds to q.
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Lines 19–24 introduce call, parameter-in, and parameter-out edges to connect the
specialized PDGs together. In essence, these steps put in induced interprocedural
edges between the specialized PDGs for non-initial state q1 and non-initial state
q2. Note that the alphabet symbol C on each transition (q1, C, q2) is a call-site
label. Sequences of such transitions in A6 spell out, from top-of-stack to bottom-
of-stack, the stack-configurations that are in the stack-configuration slice. Because
each stack-configuration word is recognized from top-of-stack to bottom-of-stack,
in line 19 q2 represents the caller and q1 represents the callee.

Example 3.14. Consider how Alg. 1 works when S is the SDG shown in Fig. 3
and C = {(m22, ε), (m23, ε)}. The rules of PDS PS are given in Tab. I. Au-
tomaton A0, which accepts the language C, is shown in Fig. 9. Automaton
A1 = Prestar[PS ](A0) is shown in Fig. 10(a). Automaton A6 is shown in Fig. 10(b);
note that A6 is MRD.

In Fig. 10(b), each of the non-initial states 1, 2, and 3 represents a specialized
PDG. For instance, the vertices of the specialized PDG for procedure p that cor-
responds to state 1 are the labels on transitions from p to 1: {v | (p, v, 1) ∈
Transitions(A6)} = {p1, p3, p5, p8}. The edges of the specialized PDG are those
induced by {p1, p3, p5, p8} in the original PDG for procedure p.
A6 has a transition (1, C1, 3), where states 1 and 3 correspond to procedures

p 1 and main, respectively. The stack symbol C1 corresponds to the call-site on p

at line (14) of Fig. 1(a). Hence, lines 20–23 of Alg. 1 introduce a call edge, plus
parameter-in and parameter-out edges to connect the specialized PDG for main to
the specialized PDG for p 1. (In Fig. 1(b), the corresponding call site is the call to
procedure p 1 on line (14) of main.)

The SDG formed from the resulting specialized PDGs is the one shown in Fig. 5.
2

Example 3.15. Consider the example in §2.3, where we want to create a spe-
cialization slice with respect to line (28) of the recursive program shown in Fig. 2.
Automaton A6 is shown in Fig. 11.5 The PDG vertices in the five specialized PDGs
are the respective label sets on the five transitions emanating from initial-state p.
The edges of the five specialized PDGs are the edges induced from the original
PDGs by the specialized sets of PDG vertices.

To complete the specialized SDG, Alg. 1 introduces call edges, parameter-in
edges, and parameter-out edges among the specialized PDGs according to the tran-

5For this example, Fig. 11 represents both A1 and A6. That is, the net result of applying the five
automaton operations in lines 4–8 of Alg. 1 to Fig. 11 is that we get back an automaton identical

to A1. The reason why A6 is the same as A1 is that, in this example, the stack-configuration slice

does not have a procedure that has multiple variants that both (i) consist of different sets of PDG
vertices, and (ii) include the same formal-out vertex.

In contrast, consider formal-out vertex p8 in Fig. 4. There are three occurrences of p8 in
different variants: (p8, C1), (p8, C2), and (p8, C3). The variants with stack-configurations C1 and
C3 consist of the same set of PDG vertices, but the variant with stack-configuration C2 has a

different set of PDG vertices. In this example, the output automaton A1 obtained after applying
Prestar to query automaton Fig. 9 is the automaton shown in Fig. 10(a), which has the transition

(p, p8, pp8). The MRD automaton A6 obtained after performing lines 4–8 of Alg. 1 is the different
automaton shown in Fig. 10(b). It has two transitions (p, p8, 1) and (p, p8, 2), which correspond
to the two occurrences of p8 in Fig. 5.
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sitions among states m, pr23, pr22, ps7, and ps6.
The program for the specialized SDG is shown in Fig. 2(b). Note how the tran-

sitions among states m, pr23, pr22, ps7, and ps6 correspond to the call graph of
Fig. 2(b). 2

3.5 Correctness Issues

The correctness of the specialization-slicing algorithm is established via the propo-
sitions listed below. Their proofs can be found in Appendix A.

Theorem 3.16. Automaton A6 created in line 8 of Alg. 1 is a minimal reverse-
deterministic automaton. 2

Theorem 3.17. A solution to the configuration-partitioning problem
(Defn. 2.10) is encoded in the structure of automaton A6 created in line 8
of Alg. 1. 2

Theorem 3.18. Alg. 1 is a sound and complete algorithm for stack-configuration
slicing. 2

Corollary 3.19. Let R be the SDG created via Alg. 1 for SDG S and slicing
criterion C. R has no parameter mismatches. 2

4. COST OF ALG. 1

In this section, we establish that output slices created by Alg. 1 are optimal, and
characterize the running time and space used by the algorithm.

4.1 Minimality and Optimality

As discussed in §2.2, the configuration-partitioning problem (Defn. 2.10) implicitly
defines a notion of minimality for specialization slicing. By Thm. 3.17, a solution to
the configuration-partitioning problem is encoded in the structure of automaton A6
from Alg. 1, which, by Thm. 3.16, is a minimal reverse-deterministic automaton.
Moreover, from lines 12–18 of Alg. 1, it is clear that the number of vertices in the
answer SDG R is proportional to the size of A6. Consequently, SDG R is a minimal
specialization slice.

Corollary 4.1. Alg. 1 is an optimal specialization-slicing algorithm in the
sense of Defn. 2.11: i.e., for every specialization-slicing problem, Alg. 1 creates
a minimal, sound and complete output slice. 2

Proof. By Thm. 3.18, Alg. 1 is a sound and complete algorithm for stack-
configuration slicing. By the argument made above, the output slice created by
Alg. 1 is minimal.

4.2 Running Time

Alg. 1 has four operations that can be expensive:

(1) A1 = Prestar[PS ](A0) (line 3),

(2) A3 = determinize(A2) (line 5),

(3) A4 = minimize(A3) (line 6), and

(4) reading out SDG R from automaton A6 (lines 9–24).
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—As mentioned in Defn. 3.6, Prestar’s worst-case running time is O(|Q|2|∆|). Here
|Q| is 1+ #actual-out vertices, and ∆ is the number of dependence edges in input
SDG S. Consequently, the running time of item (1) is bounded by a polynomial
in the size of the input program.

—Determinization is performed by the subset construction. In the worst case,
item (2) can be exponential in the number of states of A2.

—Minimization can be performed in time O(n log n) [Hopcroft 1971]. In the worst
case, item (3) can be exponential in the number of states of A2.

—The number of vertices in the answer SDG R is proportional to the size of A6.
In addition, the read-out code adds copies of dependence edges from the original
PDGs. Such work in any PDG is bounded by the square of the number of vertices,
but is usually much lower. In any case, the time for item (4) is linear in the size
of the output SDG R.

Our experiments indicate that for the automata that arise from Prestar, the result
of determinize is significantly smaller than the input to determinize by 4.4%–34%.

4.3 Space

The space needs of Alg. 1 are dominated by the same four operations discussed
under “Running Time”.

—As mentioned in Defn. 3.6, the space for Prestar is bounded by O(|Q| |∆|+|→C |),
where |→C | is the size of the transition relation for the automaton for slicing
criterion C.

—Determinize and minimize are standard automaton operations, with space cost
similar to their time cost.

—The space for the read-out task is linear in the size of the result SDG R.

Number of Specialized PDGs. The number of specialized PDGs in R depends on
both the query automaton AC , which specifies slicing criterion C, and the input
SDG S. The specialized PDGs that appear in R can be placed in two categories:

(1) PDGs associated with calling contexts in the suffix-closure of the stack-
configurations defined by AC .6

(2) PDGs associated with calling contexts other than those in item (1).

—The number of specialized PDGs in R from item (1) is bounded by the number
of states in the query automaton.

—The number of specialized PDGs in R from item (2) is bounded by a function of
the number of actual-outs in each PDG of SDG S. In particular, for a PDG p
that has np actual-outs, the maximum number of specialized PDGs possible for
p is 2np . Consequently, the number of specialized PDGs in R from item (2) is
bounded by Σp∈PDGs(S)2

np .

6If L is a language, the suffix closure L→ is {b | ∃a such that ab ∈ L}.
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

unsigned int g1, . . ., gk;

void Pk(int m) {
int v;
unsigned int t1, . . ., tk;

if (m == 0) return;
v = scanf("%d\n", &v);
if (v == 1) {

Pk(m-1);
t1 = 0; t2 = g2; . . . tk = gk;

}
else if (v == 2) {

Pk(m-1);
t1 = g1; t2 = 0; . . . tk = gk;

}
. . .
else {

Pk(m-1);
t1 = g1; t2 = g2; . . . tk = 0;

}
g1 = t1; g2 = t2; . . . gk = tk;

}

int main() {
g1 = 1; . . . gk = k;
Pk(k);
printf("%d\n", g1 + . . . + gk); /* SLICE HERE */
return 0;

}

Fig. 13. The kth representative of a family of programs for which a specialization slice is expo-
nentially larger than the program.

Achieving Exponential Explosion. The bound Σp∈PDGs(S)2
np give above is expo-

nential in the number of actual-outs. In the worst case, this bound is achievable, as
demonstrated by the family of programs presented in Fig. 13, which shows the kth

representative, Pk. Pk has k recursive call-sites that call Pk; after the call at each
call-site, a different pattern of assignments to the temporary variables t1 . . . tk is
performed. In particular, just after the call at the ith call-site, variable ti is zeroed
out; each of the rest of the temporaries receives the value of the corresponding
global variable g1 . . . gk.

In essence, the assignment ti = 0 breaks the dependence between the preceding
call-site and formal-out gi. That is, the call-site does not need an actual-out to
carry the value of gi.

Because Pk calls itself recursively, the broken-dependence patterns at different
instances of Pk in the unrolled SDG interact, and the slice with respect to the
indicated point in Fig. 13 generates specialized procedures with different sets of
actual-outs for all elements of the power set of global variables, P({g1 . . . gk}).
The number of such procedures is thus 2k.

Explosion in Practice. As discussed in more detail in §8, our experiments indicate
that exponential explosion does not arise in practice: no procedure had more than
six specialized versions, and the vast majority of procedures (90.6%) had just a
single version (see Fig. 18). Moreover, worst-case exponential behavior of operations
like automaton determinization also does not seem to arise in practice. Thus, based
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(a) Backward closure slice w.r.t. (b) Polyvariant slice (c) Monovariant slice with
printf’s params. on line (17) with two versions of p matched actuals

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

int g1, g2, g3;

void p(int a, int b) {
g1 = a;
g2 = b;

g3 = g2;
}

int main() {
g2 = 100;
p(g2, 2);
p(g2, 3);
p(4, g1+g2);
printf("%d", g2);

}

int g1, g2;

void p_1(int b) {
g2 = b;
}

void p_2(int a, int b) {
g1 = a;
g2 = b;
}

int main() {

p_1(2);
p_2(g2, 3);
p_1(g1+g2);
printf("%d", g2);
}

int g1, g2;

void p(int a, int b) {
g1 = a;
g2 = b;

}

int main() {
g2 = 100;
p(g2, 2);
p(g2, 3);
p(4, g1+g2);
printf("%d", g2);
}

Fig. 14. (a) The program from Fig. 1, and the closure slice with respect to the actual parameters

of the call to printf on line (17). (b) Polyvariant executable slice with respect to the same slicing

criterion. (c) Monovariant executable slice created by Binkley’s algorithm.

on our experience to date, we believe it is fair to say that, for the observed cost,

Both the running time and space of the algorithm are bounded by the
sum of two terms: one is polynomial in the size of the input program;
the other is linear in the size of the output slice.

5. EXECUTABLE SLICING

As mentioned in §2.1.2, the issue that prevents closure slices from being executable
is the parameter-mismatch problem ([Horwitz et al. 1990, §1] and [Binkley 1993]). A
closure slice can have multiple calls to the same procedure, with different subsets of
actual parameters at different call-sites. However, the slice contains the union of the
corresponding formal-parameter sets, which causes a mismatch between the actual
parameters at a call-site and the procedure’s formal parameters (e.g., compare
lines (14) and (16) of Fig. 14(a) with line (3)). For most programming languages,
a program with such a mismatch would trigger a compile-time error.

In contrast, the output slices created via Alg. 1 never contain such parameter
mismatches (Cor. 3.19), and thus Alg. 1 represents a new approach to executable
slicing ; namely, it provides an algorithm for polyvariant executable slicing.7 The al-
gorithm for executable slicing due to Binkley [1993] is an algorithm for monovariant
executable slicing.

An example that illustrates the difference between a closure slice and the two
kinds of executable slices is shown in Fig. 14. Fig. 14(a) shows the original program
and its closure slice with respect to the actual parameters of the call to printf

on line (17). Fig. 14(b) shows the polyvariant executable slice produced by the

7Throughout the remainder of the paper, we use the terms “specialization slicing” and “polyvari-
ant executable slicing” interchangeably. We generally use the latter when we want to emphasize
how the properties of Alg. 1 differ from those of the algorithm for monovariant executable slicing.
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algorithm of §3. Fig. 14(c) shows the monovariant executable slice that would be
created by Binkley’s algorithm.

While a closure slice can be useful—e.g., for program understanding—there are
some contexts in which an executable slice is preferable. For example, in general,
the smaller a program is, the easier it is to debug. Given a program that fails
(throws an exception or prints a bad value) at an element q, if the executable slice
from q is substantially smaller than the original program, then debugging the slice
is likely to be easier than debugging the whole program. While it may be helpful
for the programmer to examine the closure slice from q, being able to actually run
the slice on different inputs may give the programmer much more leverage.

Other applications of executable slicing include (i) extracting specialized compo-
nents from application programs (e.g., creating a version of the word-count utility
wc that counts only lines), and (ii) creating versions of libraries specialized to an
application. Such specialized components can run faster than the original program.
In general, there is no a priori bound on the speed-up achievable: for some pro-
grams and some slicing criteria, a slice can be arbitrarily faster than the original
program. For instance, an experiment with wc showed that on average—computed
as the geometric mean—its executable slices with respect to its calls to printf took
32.5% of the time used by the original wc.

According to Binkley [1993, p. 32], Weiser’s slicing algorithm avoids the
parameter-mismatch problem because “call sites are treated as indivisible com-
ponents: if a slice includes one parameter, it must include all parameters”. While
this approach ensures that Weiser’s slices are executable, they can include many
irrelevant components. Another disadvantage of Weiser’s algorithm is that it is
context-insensitive. That is, if a slice includes one call-site on procedure p, then it
includes all call-sites on p, which is clearly undesirable. (For Fig. 14(a), Weiser’s
algorithm would produce Fig. 14(c), although not for the same reasons as Binkley’s
algorithm, which is discussed next.)

Binkley [1993] addressed the parameter-mismatch problem by expanding the clo-
sure slice of Horwitz et al. [1990] to include missing actual parameters, together
with everything in the backward slice from the missing actuals. The latter slices can
themselves introduce new parameter mismatches, so the process is repeated until
there are no further parameter mismatches. For instance, as shown in Fig. 14(c),
Binkley’s algorithm would include the missing first parameters in the two calls to
p on lines (14) and (16), as well as the assignment to g2 on line (13). The latter is
added back into the slice so that g2 is initialized properly by the time it is used on
line (14).

Binkley’s algorithm is never worse than Weiser’s, and can lead to smaller ex-
ecutable slices. However, both of their algorithms have the undesirable property
that they can cause arbitrarily many program elements that were not in the closure
slice to be included in the final answer. In the worst case, they could include all of
the elements in the input program, even when the closure slice contains just a few
program elements. In contrast, Alg. 1 never introduces program elements that are
not already in the closure slice (albeit the output specialization slice may contain
multiple copies of such elements). Thus, Alg. 1 represents a different point in the
“design space” of slicing algorithms than previous work on executable slicing.

As discussed in §8, our experiments showed that, for both monovariant executable
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slicing and polyvariant executable slicing, the size increase is modest. Normalized to
“|closure slice| = 100”, on average (computed as the geometric mean) monovariant
executable slices are 107.1 and polyvariant executable slices are 109.4. However,
one should bear in mind that in the first case 107.1 means that 7.1% worth of
extraneous elements are added (i.e., elements not in the closure slice), whereas in
the second case 109.4 means that 9.4% worth of closure-slice elements are replicated.
While the extraneous elements from Binkley’s algorithm are “noise”, the replicated
elements from specialization slicing provide information about specialized patterns
of program behavior.

Why Not Just Color a Monovariant Executable Slice?. One might ask, “Why
not just highlight with a different color the extraneous program elements (not in
the closure slice) that are added back by Binkley’s algorithm?” This feature would
be desirable to have in the user interface of a system that supports monovariant
executable slicing. However, it is not a full substitute for the information obtained
via polyvariant executable slicing. In particular, the closure slice of an SDG folds
together in callees information from different calling contexts, and thus different
patterns of dependences through a procedure would not be highlighted by the col-
oring scheme. In contrast, these patterns are made explicit through the specialized
procedures created via Alg. 1.

For instance, the boxes in Fig. 14(a) show the elements in the closure slice with
respect to the actual parameters of the call to printf on line (17). The boxed ele-
ments of procedure p in the closure slice are the same as the elements of procedure
p in the Binkley slice (Fig. 14(c)). Thus, even though the first actual parameters at
the call sites on lines (14) and (16) of main would be colored, it would not be imme-
diately apparent in procedure p itself that the slice really has two different “calling
patterns” (cf. procedures p 1 and p 2 in Fig. 14(b)). Moreover, such changes in
calling patterns can propagate many levels down the call chain (cf. Fig. 2).

6. EXTENSIONS

6.1 Calls to Library Procedures

Assuming that source code for library procedures is not available, and therefore
those procedures cannot be specialized, we need to ensure that their signatures
do not change: i.e., whenever a library procedure is included in a slice, all of its
actual parameters must be included as well. We accomplish this by adding extra
dependence edges to the SDG for library-procedure calls: for every vertex v that
represents a library-procedure call, for every vertex a that represents an actual
parameter associated with that call, we add an edge a→ v.

Example 6.1. In C, calls to exit cause program termination. This is modeled
in the SDG by making all vertices that represent program elements that follow a
call to exit control-dependent on that call. However, the value of exit’s argument
does not affect its behavior, and so there are no dependence edges out of the vertex
that represents the actual parameter. Consequently, the closure-slice back from a
program element that follows a call to exit includes the call but not the actual. For
the purposes of specialization slicing, adding a dependence edge from the actual to
the call solves the problem. 2
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

int f(int a, int b) {
return a+b;

}

int g(int a, int b) {
return a;

}

int main() {
int (*p)(int, int);

int x;

if (...) p = f;

else p = g;

x = p(1,2);

printf("%d", x);

}

Fig. 15. Example illustrating some of the problems that arise in the presence of procedure pointers

and indirect calls.

6.2 Pointers to Procedures and Indirect Calls

Pointers to procedures and calls via those pointers also require special handling.
Consider slicing the program shown in Fig. 15 with respect to x at line (16). The
slice must include the call via procedure-pointer p on line (15), and the code in
procedures f and g (the procedures that p may point to) that sets the return values
of those procedures. For procedure f, that means the whole procedure (including
both of its formals), while for procedure g that means just its first formal. However,
the resulting code would not compile: the declared type of procedure-pointer p

needs to match the types of both f and g, so those types must themselves match.
This is a new kind of parameter-mismatch problem that was not considered by

Binkley [1993]. Like the original parameter-mismatch problem, this one can be
solved either using a monovariant approach, à la Binkley, or using a polyvariant
approach, à la §3. The monovariant approach involves computing the closure slice,
then finding all procedures in each procedure-pointer’s points-to set, and adding
back any mismatched formals (those in the closure slice for some but not all pro-
cedures in the points-to set).

The polyvariant approach involves adding a new procedure for each indirect call
in the program, then performing specialization slicing as usual. The new proce-
dure makes explicit the fact that the choice of which procedure to call depends on
which procedure the procedure-pointer currently points to. For example, the new
procedure added to the program in Fig. 15 is shown below.

int indirect(int (*p)(int, int), int a, int b) {
if (p == f) f(a, b);

else g(a, b);

}
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The indirect call in the original program (x = p(1, 2); in our example) is changed
to call the new procedure, passing the procedure-pointer in addition to the original
actuals: x = indirect(p, 1, 2);. After this transformation has been applied,
the specialization-slicing algorithm will automatically create the appropriate spe-
cialized versions of all of the procedures in the slice from line (15), including a
specialized version of procedure indirect named indirect 1.

Note that the if-condition in indirect 1 still tests whether p points to the original
procedures f or g, but the calls themselves are changed to target the specialized
versions f 1 and g 1. In essence, the original procedures are retained because their
addresses define the space of values V that pointer p can hold. p’s value is used
to dispatch to the appropriate specialized version of a procedure in V. Here is the
specialization slice with respect to line (15):

int f(int a, int b) {
}

int f 1(int a, int b) {
return a+b;

}

int g(int a, int b) {
}

int g 1(int a) {
return a;

}

int indirect 1(int (*p)(int, int), int a, int b) {
if (p == f) f 1(a, b);

else g 1(a);

}

int main() {
int (*p)(int, int);

int x;

if (...) p = f;

else p = g;

x = indirect 1(p,1,2);

printf("%d", x);

}

A Caveat. In our implementation, which is based on CodeSurfer/C, there is one
limitation on the transformation of indirect calls to explicit PDGs. The transfor-
mation described above assumes that the points-to set of the procedure-pointer is
exhaustive. However, the pointer-analysis algorithms supported by CodeSurfer/C
are all variants of Andersen’s analysis [Andersen 1993], which does not account for
uninitialized pointer variables. For example, suppose that there are three paths
to an indirect-call site through p, and that p is initialized to f on one path, g on
another path, and not initialized on the third path. The indirect-call procedure will
dispatch just to f and g. Assuming that f and g are two-parameter procedures,
the indirect-call PDG will still have the form

int indirect(int (*p)(int, int), int a, int b) {
if (p == f) f(a, b);

else g(a, b);

}

and thus the transformed program would call g whenever p is uninitialized (and
thus the specialized-slice would call g 1). Note, however, that a program that makes
a call via an uninitialized pointer variable is not a “strictly conforming program”
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(a) Program to compute sum and prod-
uct

(b) Summation program (before
useless-code elimination)

int add(int a,int b) {
q: return a+b;

}

int mult(int a,int b) {
int i = 0;

int ans = 0;
while(i < a) {

c5: ans = add(ans,b);

c6: i = add(i,1);
}
return ans;

}

void tally

(int& sum,int& prod,int N) {
int i = 1;

while(i <= N) {
c2: sum = add(sum,i);

c3: prod = mult(prod,i);

c4: i = add(i,1);

}
}

int main() {
int sum = 0;
int prod = 1;

c1: tally(sum,prod,10);

printf("%d ",sum);
printf("%d ",prod);

}

int add(int a,int b) {
q: return a+b;

}

int mult( int b) {
int i = 0;

int ans = 0;

return;

}

void tally

(int& sum, int N) {
int i = 1;

while(i <= N) {
c2: sum = add(sum,i);

c3: mult( i);

c4: i = add(i,1);

}
}

int main() {
int sum = 0;

c1: tally(sum, 10);

printf("%d ",sum);

}

Fig. 16. (a) A program to compute the sum and product of the integers from 1 to N. The boxed

code indicates the forward closure slice with respect to “prod = 1” in main. (b) The program

obtained by using specialization slicing to remove the forward slice with respect to “prod = 1” in
main.

according to the ANSI C standard.8

7. FEATURE REMOVAL

If a program consists of only a single procedure, a forward closure slice of the
procedure’s PDG defines a kind of “feature” consisting of all elements possibly
influenced by the slicing criterion. Moreover, it is possible to use a conventional
PDG slicing algorithm to remove such a feature. The key property is the following:

8According to the ANSI C standard [ANSI C 2005, p. 7], “A strictly conforming program shall use
only those features of the language and library specified in this International Standard. It shall

not produce output dependent on any unspecified, undefined, or implementation-defined behavior,
and shall not exceed any minimum implementation limit.”
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Input: SDG S and slicing criterion C

Output: A specialization-slice SDG R for S with the forward stack-configuration slice with
respect to C removed

1 PS = the PDS for S, encoded according to Defn. 3.2

2 AE = a PS-automaton that accepts {〈entermain, ε〉}
3 AC = a PS-automaton that accepts C
4 A0 = Poststar[PS ](AC)

5 A1 = Poststar[PS ](AE) ∩ complement(determinize(A0))

// continue at line 4 of Alg. 1

Algorithm 2: An algorithm to remove a “feature” defined by the forward stack-
configuration slice with respect to C.

Observation 7.1. The complement of a (single-procedure) forward closure slice
is a backward slice with respect to a different slicing criterion (namely, the vertices
of the complement). 2

Thus, by subtracting the elements in the forward closure slice, one is left with a
PDG without the feature identified by the forward closure slice. An executable
program can be created from the latter PDG.

It is unclear how to implement feature removal for multi-procedure programs via
standard SDG-based slicing techniques [Horwitz et al. 1990]. In particular, Obs. 7.1
does not hold, in general, for the forward closure slice of an SDG. Consider the
program shown in Fig. 16, which uses procedure tally to compute both the sum
and product of the numbers from 1 to 10. Additions are performed using procedure
add, which is also invoked repeatedly to perform multiplication. Suppose that we
want to remove the computation of the product. That “feature” includes all of
the code in the forward closure slice from “prod = 1” (i.e., the boxed code in
Fig. 16(a)). However, we cannot just subtract all elements of the forward closure
slice: that approach would remove procedure add, but we must keep add because
add is needed to compute the sum.

The cause of the problem is that the standard SDG closure-slicing algorithm
merges different configurations of the unrolled SDG. When the standard SDG-
based algorithm for context-sensitive closure slicing [Horwitz et al. 1990] is applied
to a multi-procedure program, the complement of the forward closure slice of an
SDG is not necessarily a backward closure slice of the SDG, and thus it may not
be possible to create an executable program from the complement.

We now explain how specialization slicing, in conjunction with forward stack-
configuration slicing, can be employed to solve the feature-removal problem for
multi-procedure programs. In particular, because the PDS-based machinery devel-
oped in §3 explicitly manipulates the possibly infinite set of configurations of the
unrolled SDG, we regain the property stated in Obs. 7.1, and have the machinery
needed to create a feature-removal algorithm.

In the PDS-based approach to feature removal (Alg. 2), the algorithm (i) sub-
tracts the set of configurations of the forward stack-configuration slice with respect
to criterion C from the set of configurations that are reachable from entermain

(line 5), and (ii) creates an executable program from the result. For instance, for the
program from Fig. 16(a), PS—defined in line 1 of Alg. 2—contains the following con-
figurations for q in add: {(q, c2 c1), (q, c5 c3 c1), (q, c6 c3 c1), (q, c4 c1)}. When slic-
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ing criterion C is {prod = 1}, A0’s q-configurations are {(q, c5 c3 c1), (q, c6 c3 c1)},
and hence A1’s q-configurations are {(q, c2 c1), (q, c4 c1)}. By this means, Alg. 2
correctly keeps statement q (and all of procedure add) in the feature-removal result
shown in Fig. 16(b).

The key property of automaton A1 in Alg. 2 is that it represents a set of config-
urations that is backwards-closed with respect to the transitions in PS ’s possibly
infinite transition relation.

Note how tally is specialized from three parameters in Fig. 16(a) to two in
Fig. 16(b). This specialization happens automatically because the core of Alg. 2
is the specialization-slicing algorithm (Alg. 1). Fig. 16 also illustrates how the
feature-removal algorithm operates at a fine-grained level: it leaves in all elements
that are not in the forward stack-configuration slice from “prod = 1”, including
some “extraneous” elements, namely, the specialization of mult and the specialized
call to mult at c3. These elements are useless, and the program could be cleaned
up by performing an interprocedural useless-code-elimination pass.

8. EXPERIMENTS

8.1 Structure of the Implementation

Our implementation was created using GrammaTech’s CodeSurfer/C code-
understanding tool [Anderson et al. 2003], which supports closure slicing of SDGs of
C and C++ programs, and provides a scripting language to provide access to a pro-
gram’s SDG. We implemented both specialization slicing (§3) and feature removal
(§7).

CodeSurfer/C is used to build the input SDG, which is then translated into a PDS
implemented using the Weighted Automaton Library (WALi) [Kidd et al. 2007].
WALi is used to perform the Prestar operation, and the resulting automaton is
converted into an OpenFST “recognizer” (FSA) [OpenFST 2012]. OpenFST is used
for the reverse, determinize, minimize, reverse, and removeEpsilonTransitions se-
quence to create an MRD automaton. The output SDG R is created from the MRD
automaton, and the source text for the specialized program is pretty-printed from
R.

8.2 Specialization-Slicing Experiments

Our experiments were designed to answer four questions:

(1) Blow-up of polyvariant : Does Alg. 1 suffer from its potential worst-case, expo-
nential blow-up in practice?

(2) Polyvariant vs. closure: Are polyvariant executable slices created via Alg. 1
substantially larger than closure slices in practice?

(3) Monovariant vs. closure: Are monovariant executable slices created via the
algorithm of Binkley [1993] substantially larger than closure slices in practice?

(4) Polyvariant vs. monovariant : How do polyvariant and monovariant executable
slicing compare?

Information about the test programs is given in Fig. 17. The first seven programs
are the Siemens suite: a set of small, toy programs collected by Hutchins et al.
[1994]. The others are open-source applications gathered from the Internet. For
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Avg. # Avg. #
# source # Pro- PDG # Call # Slices

Program Versions lines cedures vertices sites taken

tcas 37 564 9 466 38 37

schedule2 2 717 16 980 47 6
schedule 6 725 18 873 44 11

print tokens 4 889 18 1298 89 4

replace 26 931 21 1330 65 58
print tokens2 8 957 19 1128 84 42

tot info 19 1414 7 675 37 23

wc v.8.13 1 802 11 1899 170 10
gzip 4 5314 97 26419 556 26
space 20 7429 136 18822 1016 69

flex 5 10425 147 38436 1308 79
go 1 29246 372 102455 2084 10

Fig. 17. Information about the test programs.

Fig. 18. Distribution of the number of specialized versions of procedures in executable slices
created via polyvariant executable slicing.

the Siemens suite, gzip, space, and flex, the experiments use slices taken from
(PDG-vertex, call-stack) pairs at which symptoms of runtime errors have been
observed (i.e., unexpected output or crashes). Those configurations were obtained
using the debugging tools described by Horwitz et al. [2010]. For wc and go, slices
were taken with respect to all of the calling contexts of printf in the unrolled SDG
(by using an automaton that expressed this slicing criterion).

8.2.1 Blow-Up of Polyvariant. Figs. 18–22 provide evidence that polyvariant
executable slicing does not exhibit its worst-case exponential behavior in practice.
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The figures show that neither (i) the exponential blow-up that occurs for the fam-
ily of examples discussed in §4.3, nor (ii) the worst-case exponential behavior of
operations like automaton determinization, arose in the programs and slices used
in our experiments. (In fact, as mentioned in §4.2, for the automata that arise
from Prestar, the result of determinize is significantly smaller than the input to
determinize by 4.4%–34%.)

Fig. 18 shows the distribution of the number of specialized versions of procedures
in all tested programs, which provides evidence that the potential exponential ex-
plosion in the number of specialized procedures (as described in §4.3) does not occur
in practice. By summing the products of columns 4 and 7 of Fig. 17, we find that
our tests involved 30,225 procedures in total. From Fig. 18, we see that the closure
slices from all tests consisted of 20,380 procedures (= 18,469 + 1,736 + 159 + 13
+ 2 + 1). That is, 33% of the procedures were eliminated by closure slicing. Out
of the 20,380 procedures in the closure slices, 1,911 (= 1,736 + 159 + 13 + 2 + 1)
involved parameter mismatches. Consequently, multiple versions were created by
Alg. 1 for only 1,911/20,380 = 9.4% of the procedures.

Put another way, approximately 90.6% of the procedures have a single specialized
version, and the count decreases rapidly as the number of specialized procedures
increases. The largest number of specialized versions of a procedure that we saw in
our experiments with specialization slicing is six. Fig. 18 shows that Alg. 1 created
2,106 (= 1,736 + 318 + 39 + 8 + 5) “extra” copies, producing a total of 22,486
procedures (= 18,469 + 1,911 + 2,106).

8.2.2 Polyvariant vs. Monovariant vs. Closure. Both Alg. 1 and Binkley’s algo-
rithm for monovariant executable slicing perform closure slices as their first step—
although Binkley’s algorithm performs a closure slice of the SDG, whereas Alg. 1
performs a closure slice of the unrolled SDG. Nevertheless, if the stack configura-
tions of the closure slice used in Alg. 1 are discarded, and we consider just the set
of program elements involved, both algorithms identify the same set of program
elements in their first step. Thus, we can normalize measurements relative to the
size of the set of program elements in the closure slice of the SDG.

Figs. 19–22 provide four ways to compare polyvariant/monovariant executable
slicing and closure slicing.

Blow-Up in Overall Slice Size. One way to compare polyvariant and monovariant
executable slicing is to compare the overall sizes of the resulting slices. Columns 3
and 5 of Fig. 19 provide data about the percentage of “extra” vertices that are in
the two kinds of executable slices, compared with the corresponding closure slices.
Based on these results, it appears that in practice, blow-up in slice size is neither a
problem for monovariant executable slicing nor for polyvariant executable slicing.
Normalized to “|closure slice| = 100”, on average (computed as the geometric mean)
monovariant executable slices are 107.1 and polyvariant executable slices are 109.4.
While polyvariant executable slicing had the largest average increases in size (e.g.,
46% for gzip), on the three largest programs size increases were very modest,
and were similar for monovariant and polyvariant executable slicing. However, one
should bear in mind that in the first case 107.1 means that 7.1% worth of extraneous
elements are added (i.e., elements not in the closure slice), whereas in the second
case 109.4 means that 9.4% worth of closure-slice elements are replicated. While the
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Average % increase in #PDG vertices relative to closure slice

# Slices Monovariant slicing Polyvariant slicing

Program taken % increase Std. dev. % increase Std. dev.

tcas 37 5.3 0.1 0.2 0.0

schedule2 6 6.3 0.0 28.4 0.1

schedule 11 4.8 0.7 5.4 1.7
print tokens 4 4.9 0.0 0.4 0.0

replace 58 7.1 0.7 5.6 5.4

print tokens2 42 5.5 0.4 0.7 2.2
tot info 23 2.8 0.1 0.0 0.0

wc v.8.13 10 10.5 5.6 26.0 11.2

gzip 26 37.3 55.3 46.0 74.1

space 69 4.2 1.4 4.3 2.3
flex 79 2.0 0.1 7.8 3.9

go 10 6.3 11.1 7.8 3.9

geometric mean N/A 7.1 N/A 9.4 N/A

Fig. 19. Comparison of the percentage of “extra” vertices, relative to the size of the closure
slice, produced via monovariant executable slicing with those produced via polyvariant executable

slicing.

Fig. 20. Scatter-plot of procedure sizes. Each dot represents the relative size of a procedure pro-

duced via monovariant executable slicing against the size of a corresponding procedure produced
via polyvariant executable slicing. Both axes are in terms of the percentage of vertices in the

original procedure.

extraneous elements from monovariant executable slicing are “noise”, the replicated
elements from polyvariant executable slicing provide information about specialized
patterns of program behavior.
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Average slicing time (seconds)

Monovariant slicing Polyvariant slicing

Avg. time Avg. time Automaton
Program for all phases Std. dev. for all phases Std. dev. operations Std. dev.

tcas 1.18 0.06 3.42 0.07 0.054 0.22

schedule2 1.6 0.02 5.12 0.04 0.5 0.5

schedule 1.56 0.24 4.5 0.42 0.18 0.39
print tokens 2.4 0.03 6.45 0.05 0.5 0.5

replace 2.7 0.54 6.63 0.92 0.24 0.43

print tokens2 2.23 0.14 5.48 0.27 0.095 0.29
tot info 1.75 0.06 4.23 0.03 0.13 0.34

wc 2.52 1.09 8.23 3.8 0.36 0.48

gzip 15.26 18.71 124.55 101.08 54.817 4.45

space 26.04 9.26 63.55 22.51 3.06 0.41
flex 374.81 374.47 1125.28 428.2 134.79 42.95

go 109.13 49 1263.87 457.58 391.2 13.04

Fig. 21. Times (in seconds) to create executable slices via monovariant and polyvariant executable

slicing. Column 6 reports the amount of time that was used for all PDS and FSA operations during
polyvariant executable slicing. (Column 6 times are included in column 4.)

Sizes of Individual PDGs. Another way to compare polyvariant and monovariant
executable slicing is to compare procedure sizes, as opposed to the overall sizes of
slices, as we did above. As we saw from Fig. 19, Binkley’s algorithm introduces
7.1% worth of elements that are not in the closure slice. In contrast, Alg. 1 never
introduces any program elements that are not in the closure slice.

Fig. 20 is a scatter-plot that compares the sizes of the PDGs produced via mono-
variant executable slicing with those produced via polyvariant executable slicing.
PDG sizes are reported as the percentage of a PDG’s vertices in the original pro-
gram that occur in a PDG of an executable slice. Each point in the plot represents
one PDG in one polyvariant slice; i.e., for each PDG p k in each polyvariant slice,
there is one point in the plot at position (x, y), where x is the percentage of vertices
of the original PDG that are in p k and y is the percentage that are in PDG p in
the monovariant slice. If there are two specialized versions of PDG p, there will be
two points in the plot, all with the same y coordinate.

Fig. 20 shows that many polyvariant-slice PDGs are close in size to the original
PDGs (the points clustered in the upper right-hand corner); that monovariant-
slice PDGs are often close in size to the corresponding polyvariant-slice PDGs
(the points clustered along the 45-degree line); but that there are also cases where
a monovariant-slice PDG is much larger than the corresponding polyvariant-slice
PDG (the points along the top). For each point, including all “extra” procedures, we
computed (%vertices in polyvariant PDG)/(%vertices in monovariant PDG); the
geometric mean of these values is 93%.

Running Time. Fig. 21 provides information about slicing times when creating
executable slices via monovariant and polyvariant executable slicing. Columns 2
and 4 of Fig. 21 report end-to-end slicing times—i.e., times for starting with the
SDG, slicing via the respective algorithms, creating the output SDG, and generating
the program text for the output slice. In the case of polyvariant executable slicing,
column 6 of Fig. 21 reports the amount of time that was used for all PDS and FSA
operations. (Column 6 times are included in column 4.)
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Average maximum memory usage (MB)

Monovariant slicing Polyvariant slicing

Automaton
Program CodeSurfer/C Std. dev. CodeSurfer/C Std. dev. operations Std. dev.

tcas 43.39 0.59 44.22 0.46 1.71 0.31
schedule2 43.85 0.30 46.04 0.65 1.71 0.34

schedule 43.81 0.49 45.24 0.41 1.86 0.52
print tokens 45.24 0.45 46.70 0.27 1.99 0.33

replace 45.38 0.47 47.14 0.53 1.81 0.51

print tokens2 44.14 0.35 45.75 0.37 1.66 0.24
tot info 43.81 0.34 44.91 0.42 1.82 0.41

wc 45.57 0.99 48.04 1.44 1.79 0.65
gzip 75.37 2.63 80.72 22.07 270.05 23.12

space 69.35 3.58 83.83 15.28 32.81 1.55
flex 106.53 14.90 133.02 13.37 386.50 75.99

go 337.84 48.24 422.53 78.55 1,479.48 47.70

Fig. 22. The space (in MB) used when creating executable slices via monovariant and polyvariant
executable slicing. Column 6 reports the amount of space that was used for all PDS and FSA

operations during polyvariant executable slicing. (The space reported in column 6 is in addition
to that reported in column 4 for the CodeSurfer/C process.)

Overall, our implementation of polyvariant executable slicing is about 2.7x slower
than our implementation of monovariant executable slicing (geometric mean) on the
seven examples above the line in Fig. 21, and 4.7x slower (geometric mean) on the
five examples below the line in Fig. 21.

In considering the times reported in Fig. 21, one should bear in mind that our
implementation of polyvariant executable slicing is an experimental implementa-
tion that makes use of WALi and OpenFST, in addition to CodeSurfer/C. There
are several copies made of data structures that are O(size of program). The im-
plementation of monovariant executable slicing makes use of the slicing algorithm
used internally by the CodeSurfer/C product, as well as some fix-ups that we were
able to implement entirely within CodeSurfer/C, using the scripting language that
CodeSurfer/C supports.

For both implementations, the times should be taken with a grain of salt. Both
implementations used two experimental additions to CodeSurfer/C: (i) operations for
rewriting SDGs—in this case, removing vertices and edges—and (ii) a pretty-printer
for generating program text from an SDG. Neither extension can be considered to
be a first-class part of the API of CodeSurfer/C’s scripting language.

Space Used. Fig. 22 provides information about the amount of space used when
creating executable slices via monovariant and polyvariant executable slicing. The
space reported is the average, over all slices of a given example, of the maximum
memory used (in MB). The two algorithms used roughly comparable amounts of
space in their respective CodeSurfer/C processes.

In the case of polyvariant executable slicing, the additional amount of space used
during PDS and FSA operations is reported separately from the space used by the
CodeSurfer/C process (see column 6). In all cases, the peak memory usage for PDS
and FSA operations occurred during Prestar; after Prestar, memory usage always
dropped by 30–80%. These observations are consistent with the fact that slicing
was performed with respect to slicing criteria expressed using non-trivial FSAs.
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That is, for the Siemens suite, gzip, space, and flex, the Prestar operations are
with respect to FSAs that capture languages of the form {(PDG-vertex, call-stack)},
representing the configuration of a bug-site. For wc and go, the slicing criterion was
expressed using an FSA that captured all of the calling contexts of printf in the
unrolled SDG. The significance of using a non-trivial FSA for the slicing criterion
is that the number of states in the query FSA contributes multiplicatively to the
space cost of Prestar. That is, using the algorithm of Esparza et al. [2000] (which
is implemented in WALi) the space used during Prestar is bounded by O(|Q| |∆|+
|→C |), where |Q| is the number of states in the FSA for the slicing criterion.

In three examples, gzip, flex and go, the memory needed for Prestar was the
dominant memory cost. For these three examples, Prestar required more memory
than that used by our implementation of monovariant executable slicing: 3.6x for
gzip, 3.6x for flex, and 4.4x for go (cf. columns 2 and 6 of Fig. 22).

Given our earlier observations that (i) the sizes of the output slices created via
Alg. 1 were only modestly larger than the corresponding closure slices (9.4%), and
(ii) determinize never blew up, we believe it is fair to say that, for the observed cost,
both the running time and space of Alg. 1 are bounded by the sum of two terms:
one polynomial in the size of the input program, the other linear in the size of the
output slice. (See the non-exponential costs of Alg. 1 discussed in §4.2 and §4.3.)

8.3 Reslicing Check

Ordinary slicing algorithms are idempotent : letG/C denote the slice of PDGG with
respect to slicing criterion C; then (G/C)/C = G/C. Thus, as an additional test
to validate that the specialization-slicing result computed by our implementation
is correct, the implementation performs an additional “reslicing” check.

Suppose that for SDG S and slicing criterion C, the resulting SDG is R. Roughly,
we slice R with respect to C to obtain R′, and compare R′ to R. The expectation
is that they should be identical: if they fail to be identical, the implementation has
a bug.

As in the initial discussion of soundness and completeness in §2.2, because the
PDG vertices and call-site labels in S and R are named differently, the paragraph
above is slightly inaccurate. Such naming differences create a problem for reslicing
because the PDG vertices and call-site labels are alphabet symbols in the FSAs
used by the algorithm described in §3. Consequently, the reslicing check must
compensate in two places for such changes in the alphabet symbols.

(1) The slice of R must be taken with respect to a suitably adjusted slicing criterion
C ′, rather than with respect to C itself.

(2) The comparison of R′ to R is not a pure equality test; the comparison must
account for the changes in the alphabet.

As in §2.2, it is possible to identify each vertex or call-site in R as the specializa-
tion of some vertex or call-site in S, and this information can be used to define a
mapping that maps vertices and call-sites in R back to the original alphabet of S.
In particular, to account for the changes in the alphabet from S to R, we create
a finite-state transducer TC , which maps a vertex or label of an R call-site to the
corresponding vertex or label of an S call-site.
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To implement the reslicing check, in addition to TC , six other data objects come
into play.

—two SDGs, S and R

—two automata for slicing criteria, C and C ′, and

—two automata that hold slice results, A6S and A6R—i.e., the automata A6 of
Alg. 1 arising in the slices of S and R, respectively.

To reslice R, we need to map slicing criterion C to an appropriate reslicing
criterion C ′ (item (1) above). Transducer TC can be combined with automaton
C to create an automaton for the inverse transduction T−1

C (C). However, because
transduction TC is many-to-one, the inverse transduction T−1

C is, in general, one-to-
many. In such cases, the language of T−1

C (C) contains strings that do not correspond
to any configuration of R. Fortunately, we can rectify this problem by intersecting
T−1
C (C) with an automaton for the language of all possible configurations of R. Let
PR be the PDS for R, encoded according to Defn. 3.2; the language of configurations
of R can be obtained by the PDS query Poststar[PR](entrymain) [Bouajjani et al.
1997; Finkel et al. 1997].

To recap, to handle item (1) above, the automaton C ′ for the reslicing criterion
is created by performing the following PDS/transducer/automaton computation:

C ′ = T−1
C (C) ∩ Poststar[PR](entrymain).

To handle item (2), it is convenient to compare the automata A6S and A6R,
rather than to compare the SDGs R and R′. In particular, we perform the language-
equality check

L(A6S)
?
= L(TC(A6R)). (7)

Note that A6S represents the configurations of the closure slice of the (possibly
infinite) unrolling of SDG S. Similarly, A6R represents the configurations of the
closure slice of the unrolling of R. Consequently, Eqn. (7) tests whether the two
closure slices have identical configurations after TC is used to map each R configu-
ration back to a configuration in the alphabet of S. The comparison performed in
Eqn. (7) is equivalent to testing whether SDGs R and R′ are equal because R and
R′ are constructed merely by reading out information contained in the automata
A6S and A6R, respectively.

9. RELATED WORK

Slicing has been applied to many software-engineering problems [Horwitz and Reps
1992], including program understanding [Jackson and Rollins 1994; Reps and Rosay
1995; De Lucia et al. 1996; Field et al. 1995], maintenance [Gallagher and Lyle 1991;
Canfora et al. 1994; Lakhotia and Deprez 1998], debugging [Lyle and Weiser 1986;
1987], testing [Binkley 1992; Bates and Horwitz 1993], differencing [Horwitz 1990;
Horwitz and Reps 1991], specialization [Reps and Turnidge 1996], and merging
[Horwitz et al. 1989]. The literature on program slicing is extensive; literature
surveys include [Tip 1995; Binkley and Gallagher 1996; Mund and Mall 2007].
Some of the related work on slicing has already been summarized in §1 and §2.

Binkley et al. [2004] gave declarative semantic specifications for a number of
different varieties of slices. Their work unifies and relates eight different kinds
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of slicing criteria for static and dynamic slicing. In contrast, our work is mainly
algorithmic in nature; moreover, because our work shows how automata-theoretic
techniques allow explicit manipulations of representations of unrolled SDGs and
infinite sets of configurations to be performed, our work brings a new collection of
algorithmic techniques to bear on slicing problems. While our experiments used C
programs, the principles on which Alg. 1 is based should apply to interprocedural
slicing for any language.

In the Weiser’s original paper on program slicing [Weiser 1984], he shows that
finding semantically minimal slices is, in general, undecidable. Consequently, re-
search on slicing has studied different notions that side-step the undecidability
problem. A common approach, which is used in this paper and goes back to the
introduction of PDGs for program slicing [Ottenstein and Ottenstein 1984], is that
no evaluation or simplification is performed, and the elements of the output slice are
all elements from the input program. There has been more recent work by Snelting
et al. [2006], Canfora et al. [1994], Fox et al. [2004], Danicic et al. [2005], and Jaffar
et al. [2012] that combines slicing-like operations with simplification operations or
symbolic execution. Some of that work still uses SDG-like structures.

Conditioned slicing [Canfora et al. 1994; Fox et al. 2004; Danicic et al. 2005]
combines static slicing and program simplification to produce executable program
slices. The simplification phase propagates information forward to remove state-
ments that cannot be executed when a given constraint holds on the initial state.
Some of this work merely applies off-the-shelf slicing algorithms for the static-slicing
component and hence could adopt the specialization-slicing algorithm presented in
this paper: Danicic et al. [2005] use the static-slicing algorithm of Ouarbya et al.
[2002]; Fox et al. [2004] use an implementation of Weiser’s algorithm.

Harman and Danicic [1997] studied what they call amorphous slicing, which
drops the requirement of syntax preservation. What distinguishes an amorphous
slice is merely that the number of vertices in the slice’s control-flow graph (CFG) is
no greater than the number of vertices in the original program’s CFG. We have no
such restriction, and in fact a slice created by Alg. 1 could be larger overall than the
original program. Consequently, a slice returned by Alg. 1 does not always qualify
as an amorphous slice; however, our work is in somewhat the same spirit—especially
the material in §6.2 on function pointers and indirect calls.

Binkley [1997] defined the notion of a calling-context slice: in addition to an SDG
vertex v, a slicing criterion for a calling-context slice includes a calling context c,
where c is a single stack configuration. A calling-context slice includes the vertices
on which v depends in calling context c, but excludes vertices if they either have
no influence on v or can only influence v in calling contexts other than c. Krinke
[2004] identified a small degree of imprecision in Binkley’s algorithm, and gave a
more precise algorithm for calling-context slicing.

The PDS-based slicing algorithm that we use in this paper generalizes calling-
context slicing in two ways:

(1) The use of a PDS allows slicing with respect to a regular language of configu-
rations, which can be an infinite set.

(2) The answer is reported in the form of an automaton that represents a regular
language of configurations; the answer language can also be an infinite set.
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Calling-context slicing addresses only the simpler case in which

—the language of stack configurations is a singleton set; and

—the answer is reported as merely a finite set of SDG vertices, rather than as a
possibly infinite set of configurations.

Moreover, Alg. 1 relies on generalization (2) in a crucial way. The core task in
specialization slicing is to find a finite partition of the potentially infinite set of
configurations in a stack-configuration slice (Defn. 2.10). The latter set is captured
exactly by the automaton A1 created in line 3 of Alg. 1. The fact that we can
manipulate A1 explicitly allows us to convert A1 into automaton A6, from which
we extract a solution to the configuration-partitioning problem (Defn. 2.10).

In our implementation, an SDG is encoded as a PDS using the Weighted Au-
tomaton Library (WALi) [Kidd et al. 2007], and WALi is used to perform Prestar.
The algorithm for computing Prestar with respect to a regular set of configurations
in a PDS is due to Bouajjani et al. [1997] and Finkel et al. [1997]. The history
of the model-checking problem for PDSs is recounted by Bouajjani et al. [2000,
§6], who credit Büchi with establishing the foundational result ([Büchi 1964] and
[Büchi 1988, Ch. 5]), and point out that it was rediscovered several times (e.g., by
Caucal [1992] and Book and Otto [1993]). By encoding SDGs as PDSs (Defn. 3.2
and Fig. 8), we are able to harness this powerful technology—and make use of an
existing implementation—rather than having to “rediscover” and reimplement it
for SDGs.

Minimal reverse-deterministic FSAs were used by Gupta [1994] as a symbolic
representation for a class of inductive Boolean functions. The state complexity of
a regular language L is the number of states in the minimal deterministic FSA for
L. Sebej [2010] studied the change in state complexity between a regular language
L and its reversal LR. He showed that if L has state complexity n, the state
complexity of LR is between log n and 2n.

In §1, we discussed how our work was inspired by the notion of polyvariant
specialization in partial evaluation [Jones et al. 1993, p. 370]. In addition to spe-
cialization slicing and feature removal, the automaton-based analysis developed in
this paper also has an application in partial evaluation. So-called “off-line” par-
tial evaluators perform a preliminary phase of binding-time analysis to identify, for
each function, the different patterns of “static” (i.e., “supplied”) and “dynamic”
(i.e., “delayed”) parameters that can arise during the second specialization phase
[Jones et al. 1993, p. 84]. Such binding-time information can be obtained using
the techniques developed in this paper. In particular, if one performs a forward
stack-configuration slice of a program P (via Poststar) with respect to P ’s dynamic
inputs, and then creates a minimal reverse-deterministic automaton A from the
answer automaton, A contains explicit information about the set of possible pat-
terns of “dynamic” bindings that can arise for different stack configurations—and
hence provides implicit information about the complementary patterns of “static”
bindings. That is, the method just sketched out is an algorithm for polyvariant
binding-time analysis.

What is striking about the automaton-based algorithm is that it is quite differ-
ent from a more standard analysis approach that builds up, for each procedure,
a function from the set of input binding-time patterns to a return binding-time
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[Bulyonkov 1993]. In essence, such an analysis propagates tuples of binding-times.
In contrast, the automaton-based approach propagates binding-time facts indepen-
dently in the potentially infinite unrolled SDG; however, each independent fact is
indexed by a stack-configuration, which—via the construction of a minimal reverse-
deterministic automaton—is used to coalesce related “independent” binding-time
facts.

10. CONCLUSIONS

In this paper, we introduced a new variant of program slicing, called specialization
slicing, and presented an algorithm for the specialization-slicing problem that cre-
ates an optimal output slice (Cor. 4.1). At an intuitive level, the claim that Alg. 1
produces an optimal answer follows from two properties: (i) the output slice cre-
ated by Alg. 1 is minimal in the sense defined by Defn. 2.10, and (ii) each element
replicated by Alg. 1 is necessary for the output slice to capture one of the input
program’s specialized patterns of parameter passing.

Given the level of sophistication of the pushdown-system machinery used in
Alg. 1, it is natural to wonder whether some simple SDG-based algorithm solves the
specialization-slicing problem. In working on the problem, we considered numerous
such algorithms, one of which is discussed in §1. The flaws in such attempts moti-
vated us to investigate the fundamental principles underlying specialization slicing.
These principles are presented in §2, where we formalized specialization slicing in
terms of a partitioning problem on the unrolled SDG (Eqn. (3) and Defn. 2.10) and
formulated declarative conditions for soundness and completeness (Defn. 2.9).

Because the unrolled SDG is, in general, an infinite graph, in §3 we encoded the
SDG as a pushdown system. This approach allowed us to represent finitely the
infinite sets of objects that are needed to solve the partitioning problem. Moreover,
it allowed us to bring to bear the repertoire of symbolic techniques that had already
been developed for PDSs in the model-checking community [Bouajjani et al. 1997;
Finkel et al. 1997]. With this powerful machinery at our disposal, we showed how
to obtain the desired answer by performing just a few simple automata-theoretic
operations (cf. lines 3–8 of Alg. 1).

Although Alg. 1 can, in the worst case, exhibit exponential behavior, our exper-
iments suggest that exponential behavior does not arise in practice: no procedure
had more than six specialized versions, and the vast majority of procedures (90.4%)
had just a single version (see Fig. 18). Moreover, worst-case exponential behavior of
operations like automaton determinization also does not seem to arise in practice.

In §7, we showed that specialization slicing, in conjunction with forward stack-
configuration slicing, provides a solution to the feature-removal problem for multi-
procedure programs. While it was previously known how to solve the feature-
removal problem for single-procedure programs, no algorithm was known for multi-
procedure programs.

The paper by Horwitz et al. [1990] on closure slicing of SDGs is one of the “stan-
dard” papers cited about program slicing, and has served as the jumping-off point
for much subsequent work on slicing in the programming-languages and software-
engineering communities. Many researchers have used SDG-like data structures, as
well as algorithms similar to the one given by Horwitz et al., and thus it may be
possible to carry over the principles used in Alg. 1 to such work.
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Although parts of our implementation are specific to CodeSurfer, the principles
can be used to perform specialization slicing on programs written in any language
for which one has an SDG-like intermediate representation.
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A. CORRECTNESS OF ALG. 1

Theorem 3.16. Automaton A6 created in line 8 of Alg. 1 is a minimal reverse-
deterministic automaton. 2

Proof. Because the operations determinize and minimize do not change the
language that an automaton accepts, the two calls on reverse in lines 4 and 7
cancel, and hence L(A6) = L(A1).

Automaton A4 created in line 6 of Alg. 1 is a minimal deterministic automaton
for the reversed language of configurations in the stack-configuration slice. That
is, A4 is a minimal deterministic FSA and L(A4) = LR(A1) = LR(A6). Con-
sequently, we just have to argue that the call on reverse in line 7, followed by
removeEpsilonTransitions in line 8 causes A6 to be MRD.

Words in L(A1) (L(A6)) all have the form (vertex-symbol call-site∗); moreover,
the call-site symbols are disjoint from the vertex symbols. Consequently, there
cannot be any loops that allow repetitions of the vertex symbols. Thus, at the
beginning (and end, for the reversed languages), there are no loops or self-loops.
What this means is that the minimized automaton (A4) must have a single accept-
ing state. Moreover, because A4 is deterministic, it has no ε-transitions.

In any call on reverse(A), the only condition that necessitates the introduc-
tion of an ε-transition is if A has multiple accepting states (because one needs
to have a single start state in A′ = reverse(A)). Consequently, the statement
“A5 = reverse(A4)” can be implemented by making A5’s initial state be the
(unique) final state of A4, and A5’s final state be the initial state of A4. Because A4
has no ε-transitions, A5 has no ε-transitions, and thus removeEpsilonTransitions
has no effect (i.e., A6 = A5). Because A4 is a minimal deterministic FSA, A5 and
A6 are MRD.

In our implementation, lines 4–8 are implemented with OpenFST FSAs [OpenFST
2012]. The reverse operation in OpenFST introduces a dummy initial state with an
ε-transition. Thus, the implementation does call removeEpsilonTransitions, which
removes the single, initial ε-transition from A5 to create A6, which is MRD.

Theorem 3.17. A solution to the configuration-partitioning problem (Defn. 2.10)
is encoded in the structure of automaton A6 created in line 8 of Alg. 1. 2

Proof. A6 is the unique MRD automaton for the language L(A1) =
Prestar[PS ](C)—i.e., the stack-configuration slice of S with respect to C.

Instead of A6, consider how a word is accepted by A4 (which is nearly iden-
tical to A6 except for the direction of transitions). Each A4 word has the form
(call-site∗ vertex-symbol). Because the call-site symbols are disjoint from the ver-
tex symbols, and because A4 is a minimal deterministic FSA, two properties must
hold: (i) A4 must have a unique final state acc, and (ii) it can have no loops that
involve the final state.

Processing starts in A4’s initial state (A6’s final state), and follows transitions
of the form (qi, C, qj), where C is a call-site label. Because A4 is deterministic,
the call-site∗ prefix of the word follows a unique path—in effect, transitioning from
one calling-context partition-element to another at each step. Finally, there is a
transition of the form (qk, v, acc) to A4’s unique final state acc.

State qk represents the set of variants (of some procedure Q) associated with the
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calling-contexts given by the languages PA4(qk). The program-elements in each of

the variants is the set of PDG vertices Vqk
def
= {v | (qk, v, acc) ∈ Transitions(A4)}.

The set of configurations in the partition-element associated with qk is, therefore,

PEqk
def
= Vqk × (PA4(qk))R.

The partition is defined by Part
def
= {PEqk | qk ∈ States(A4)}. (Note that Part is

truly a partition because
⋃
qk

PEqk = LR(A4) = L(A1) = L(A6).)
The three conditions of Defn. 2.10 follow from the observations that (i) A4

is a minimal deterministic FSA, and hence a set Vqk cannot be associated with
any (PA4(qm))R, for k 6= m; (ii) PEqk is defined as a cross-product; and (iii)
in an unrolled SDG, different procedure instances always have different stack-
configurations.

Theorem 3.18. Alg. 1 is a sound and complete algorithm for stack-configuration
slicing. 2

Proof. Let MC be the mapping that maps PDG vertices and call-sites in R
back to the original alphabet of S. Let GR be the unrolling of R. The proof divides
into two cases.

Completeness: L(A6) consists of all elements in the closure slice with respect to C of
the unrolling of S. Let (v, w) be an arbitrary configuration in L(A6). Completeness
holds because of the steps of the read-out process in lines 9–24:

—Lines 12–18 create, for the procedure variant that has stack-configuration w, an
SDG in R that has a copy v′ of v. Hence, MC(v′) = v.

—Lines 19–24 preserve the language of stack-configurations of L(A6) in the calling
structure of R, which controls the stack-configurations of GR. Consequently, GR
has some configuration (v′, w′) such that MC(w′) = w.

Thus, there is a configuration (v′, w′) in GR such that MC((v′, w′)) = (v, w).

Soundness: Let (v′, w′) be an arbitrary configuration in GR. Soundness holds
because of the steps of the read-out process in lines 9–24:

—The PDG in R that has vertex v′ was created in lines 12–18 from some transition
(q0, v, q) in A6. Hence, MC(v′) = v.

—Moreover, because w′ is a stack-configuration of GR, and lines 19–24 preserve
the language of stack-configurations of L(A6) in the calling structure of R, w′

must correspond (via MC) to some word in L(q). Consequently, L(A6) has some
configuration (v, w) such that MC(w′) = w.

Thus, there is a configuration (v, w) in L(A6) such that MC((v′, w′)) = (v, w).

Corollary 3.19. Let R be the SDG created via Alg. 1 for SDG S and slicing
criterion C. R has no parameter mismatches. 2

Proof. Let MC be the mapping that maps PDG vertices and call-sites in R
back to the original alphabet of S. Let GS be the unrolling of S and GR be the
unrolling of R. Because each procedure instance is called at a unique call-site
in an unrolled graph, the closure slice in GS has no parameter mismatches. By
Thm. 3.18, MC(GR) is isomorphic to the closure slice of S with respect to C, and
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hence has no parameter mismatches. MC is purely a name-change operation, and
thus does not change the calling structure of GR. The way the SDG is read out
of automaton A6 preserves the calling structure of GR in R, and thus R has no
parameter mismatches.


