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SPKI/SDSI is a framework for expressing naming and authorization issues that arise in a distributed-
computing environment. In this paper, we establish a connection between SPKI/SDSI and a formalism
known as pushdown systems (PDSs). We show that the SPKI/SDSI-to-PDS connection provides a frame-
work for formalizing a variety of certificate-analysis problems. Moreover, the connection has computa-
tional significance: many analysis problems can be solved efficiently (i.e., in time polynomial in the size
of the certificate set) using existing algorithms for model checking pushdown systems.
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1. Introduction

Systems with shared resources use access-control mechanisms for protection.
There are two fundamental problems in access control: authorization and enforce-
ment. Authorization addresses the following problem: should a request r by a specific
principal A be allowed? Enforcement addresses the problem of implementing the au-
thorization during an execution. In a centralized system, authorization is based on the
closed-world assumption, i.e., all of the parties are known and trusted. In a distrib-
uted system, the closed-world assumption is not valid. Trust management systems [6]
solve the authorization problem in distributed systems by defining a formal language
for expressing authorization and access-control policies, and rely on an algorithm to
determine when a specific request is allowable. A survey of trust management sys-
tems, along with a formal framework for understanding them, is presented in [27].
Two prominent trust management systems are Keynote [5] and SPKI/SDSI [16].

In SPKI/SDSI, name certificates define the names available in an issuer’s local
name space; authorization certificates grant authorizations, or delegate the ability
to grant authorizations. Clarke et al. [12] considered the problem of discovering a
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certificate chain for an authorization with respect to a set of SPKI/SDSI certificates;
a certificate chain provides a proof that a client’s public key is one of the keys that
has been authorized to access a given resource – either directly or transitively, via
one or more name-definition or authorization-delegation steps.

This paper studies the problem of certificate analysis in the context of SPKI/SDSI.
In particular, we establish a connection between SPKI/SDSI (without threshold sub-
jects) and a formalism known as pushdown systems (PDSs) [8,17]. (Except for Sec-
tion 4.2, “SPKI/SDSI” refers to the language defined in [16] without threshold sub-
jects; Section 4.2 discusses how our work can be extended to handle threshold sub-
jects.)

Our work stems from a simple observation:

A set of SPKI/SDSI name and authorization certificates defines a PDS.

The significance of this connection, and the contributions made by the paper, can be
summarized as follows:

• The SPKI/SDSI-to-PDS connection provides a framework for formalizing a
variety of certificate-set analysis problems: Certificate-set analysis becomes
a problem of model checking pushdown systems.1 Analysis problems can be
stated precisely in any of the standard formalisms for posing model-checking
queries. Such problems include the authorization problem addressed by Clarke
et al., i.e.,

Authorized access 1: Given resource R and principal K , is K authorized to
access R?

However, there are many other questions that one may be interested in with
respect to a certificate set C, such as

Authorized access 2: Given resource R and name N (not necessarily a princi-
pal), is N authorized to access R?

Authorized access 3: Given resource R, what names (not necessarily princi-
pals) are authorized to access R?2

Shared access 1: For two given resources R1 and R2, what principals can ac-
cess both R1 and R2?

Shared access 2: Given two principals, K1 and K2, and a resource R, can both
K1 and K2 access R?

Shared access 3: For two given principals, K1 and K2, and a finite set of re-
sources R = {R1, . . . , Rk}, which resources from R can be accessed by
both K1 and K2?

1There are many flavors of model checking. Henceforth, unless otherwise noted, the term “model
checking” refers to model checking of pushdown systems [8,17]. Background on this problem is given in
Section 3.

2In general, this can be an infinite set; as will be shown, the answer can be given in the form of a
finite-state automaton that accepts the names that are authorized to access R.
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Compromisation assessment 1: What resources from a finite set R = {R1,
. . . , Rk} could principal K have gained access to (solely) due to the pres-
ence of maliciously or accidentally issued certificate set C′ ⊆ C?

Compromisation assessment 2: What principals could have gained access to
resource R (solely) due to the presence of maliciously or accidentally is-
sued certificate set C′ ⊆ C?

Expiration vulnerability 1: What resources from a finite set of resources
{R1, . . . , Rk} will principal K be prevented from accessing if certificate
set C′ ⊆ C expires?

Expiration vulnerability 2: What principals will be excluded from accessing
resource R if certificate set C′ ⊆ C expires?

Universally guarded access 1: Is it the case that all authorizations that can be
issued for a given resource R must involve a certificate signed by principal
K?

Universally guarded access 2: Is it the case that all authorizations that grant
a given principal K ′ access to a finite set of resources {R1, . . . , Rk} must
involve a certificate signed by K?

• Analysis problems such as the ones listed above can be solved efficiently (i.e., in
time polynomial in the size of certificate set C) using existing model-checking
algorithms for PDSs. In addition, annotating certificates with labels from a
semiring enables us to address additional types of questions, such as “When
does a specific authorization expire?” (see Section 4.6).

• In addition to the specific queries listed above, any certificate-set analysis ques-
tion that can be posed as an LTL query can be solved in the time polynomial in
the size of C.

• In the case of certificate-chain discovery, we show that an operation that is used
as a subroutine in algorithms for model checking PDSs provides a new algo-
rithm for the problem. A special-purpose algorithm for certificate-chain discov-
ery was developed by Clarke et al. [12]. Although the worst-case asymptotic
running time for the new algorithm is the same as that of Clarke et al., the im-
proved handling of tabulated data does lead to an asymptotic improvement for
the family of examples given by Clarke et al. to illustrate that their worst-case
upper bound is tight to within a constant factor. This family of examples does
not cause our algorithm to exhibit worst-case behavior (see Section 4.5).

• The closure C� of a set of certificates C includes additional certificates that can
be “derived” from a chain of certificates in C. In general, the closure C� of C
can be an infinite set. To circumvent this problem Clarke et al. defined a re-
stricted type of closure called name-reduction closure, which is guaranteed to
be finite. The PDS-based algorithm computes the actual closure, not just the
name-reduction closure. (The PDS-based algorithm uses a finite-state automa-
ton to represent a set of certificates, which hence provides a finite representation
of a potentially infinite set.) In the SPKI/SDSI context, this allows us to answer
questions where the capability to return an infinite set is necessary, such as
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Table 1

Kinds of arrows used in the paper

K A −→ S An SPKI/SDSI name cert (K ,A, S, V )

K � −→ S � An SPKI/SDSI auth cert (K , S, D, T , V ), with delegation bit D on

K � −→ S � An SPKI/SDSI auth cert (K , S, D, T , V ), with delegation bit D off

〈p, γ〉 ↪→ 〈q, w〉 Transition rule of a PDS

〈p, w〉 ⇒ 〈q, w′〉 Immediate-successor relation of a PDS

〈p, w〉 ⇒+ 〈q, w′〉 Transitive closure of immediate-successor relation of a PDS

〈p, w〉 ⇒� 〈q, w′〉 Reflexive transitive closure of immediate-successor relation of a PDS

p
w→ q Reachability relation on states of a configuration automaton

p
γ
� q The relation p (

ε→)�
γ→ (

ε→)� q in a configuration automaton

“Authorized access 3” (“Given resource R, what names [not just principals] are
authorized to access R?”).

The remainder of the paper is organized as follows: Section 2 provides an intro-
duction to SPKI/SDSI, and describes the algorithm for certificate-chain discovery
from [12]. Section 3 provides background on model checking pushdown systems.
Section 4 discusses applications of the formal machinery to certificate-set analysis
problems. Section 5 discusses related work.

The paper is structured so as to be self-contained. It deals with several problem
domains, and uses several kinds of arrows to denote relationships among different
kinds of objects; these are summarized in Table 1.

Readers familiar with [12] and [8,17] may wish to skip Sections 2 and 3, respec-
tively (although there are some minor notational differences with those papers; see
footnotes 4 and 5).

2. Background on SPKI/SDSI

In SPKI/SDSI, all principals are represented by their public keys. A principal can
be an individual, process, host, or any other active entity. SPKI/SDSI does not make
any distinction between the principal and its public key, i.e., the principal is its public
key.
K denotes the set of public keys. Specific keys are denoted by K , KA, KB, K ′, . . . ,

etc. Data-structure issues related to representation of keys can be found in [16].
An identifier is a word over some alphabet Σ. The set of identifiers is denoted

by A. Identifiers are usually written in typewriter font, e.g., A and Bob.
A term is a key followed by 0 or more identifiers. Terms are either keys, local

names, or extended names. A local name is of the form K A, where K ∈ K and
A ∈ A is an identifier. For example, K Bob is a local name. Local names are
important in SPKI/SDSI because they create a decentralized name space. The set of
all local names is denoted by NL, and the local name space of K (local names of the
form K A) is denoted by NL(K).
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An extended name is of the form K σ, where K ∈ K and σ is a sequence of iden-
tifiers of length greater than one. For example, K UW CS faculty is an extended
name. Let NE be the set of extended names and NE(K) denote the set of extended
names beginning with key K . The set of names N is NL ∪NE , and the name space
N (K) of the key K is NL(K) ∪ NE(K). The set of terms T is thus K ∪N .

2.1. Certificates

SPKI/SDSI has two types of certificates, or “certs”. The first type of certificate,
called a name cert, provides definitions of local names. Authorizations are specified
using authorization certs (or auth certs, for short).
Name Certificates. A name cert provides a definition of a local name in the issuer’s
local name space. Only key K may issue or sign a cert that defines a name in the
local name space NL(K). A name cert C is a signed four-tuple (K ,A, S, V ):

• The issuer K is a public key and the certificate is signed by K .
• A is an identifier.
• The subject S is a term in T . Intuitively, S gives additional meaning for the

local name K A.
• The validity specification V provides information regarding the validity of the

certificate. Usually, the validity specification V takes the form of an interval
[t1, t2], i.e., the cert is valid from time t1 to t2 inclusive. A validity specifica-
tion can also take the form of an on-line check to be performed. For a complete
explanation of validity specifications, see [16]. In the context of the authoriza-
tion problem, we will generally ignore the validity specification, and assume
that we are working exclusively with valid certificates. (Extensions to handle
certain types of validity specifications are discussed in Section 4.6.)

Authorization Certificates. An auth cert grants or delegates a specific authorization
from an issuer to a subject. Specifically, an auth cert C is a five-tuple (K , S, D, T , V ),
where

• The issuer K is a public key, which is also used to sign the cert. The issuer is
the one granting a specific authorization.

• The subject S is a term.
• If the delegation bit D is turned on, then the key receiving this authorization

can delegate this authorization to other keys.
• The authorization specification T specifies the permission being granted.

For example, it may specify a permission to read a specific file, or a
permission to login to a particular host. The authorization specification
T of an auth cert refers to some resource, e.g., the authorization spec-
ification (dir /afs/cs.wisc.edu/public/tmp) refers to the resource
/afs/cs.wisc.edu/public/tmp. However, in a slight abuse of terminol-
ogy, we will refer to an authorization specification T as a resource. Moreover,
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we assume that there is a partial order ⊆ between authorization specifications,
e.g., T ′ ⊆ T denotes the fact that T is “more permissive” than T ′. In the exam-
ple shown below, T ′ ⊆ T .3

T ′ ((dir /afs/cs.wisc.edu/public/tmp) read)

T ((dir /afs/cs.wisc.edu/public/tmp) (* set read write))

• The validity specification V for an auth cert is same as in the case of name cert.

We will treat certs as rewrite rules:

• A name cert (K ,A, S, V ) will be written as K A −→ S.
• An auth cert (K , S, D, T , V ) will be written as K � −→ S � if the delegation

bit D is turned on; otherwise, it will be written as K � −→ S �.

2.2. An authorization example

In this section, we describe an authorization example that will be used for illustra-
tive purposes later in the paper.

In traditional discretionary access control, each protected resource has an associ-
ated access-control list, or ACL, describing which principals have various permis-
sions to access the resource. An auth cert (K , S, D, T , V ) can be viewed as an ACL
entry, where keys or principals represented by the subject S are given permission to
access resource T . We assume that each resource T has a unique owner (denoted
by Kowner[T ]); all certificate chains granting access to resource T should “start at”
Kowner[T ]. For instance, suppose that Alice (i.e., KA) wants to login to host H . Ini-
tially, the owner of host H , Kowner[H], denies access to her, but reports the following
ACL entry to Alice (written as an auth cert):

Kowner[H] � −→ K0 UW CS faculty �

Given the set of certs C shown in Fig. 1, Alice has to “prove” that she is authorized
to access host H .

2.3. Name-reduction closure

We now describe the algorithm given in [12,14]. The reader is referred to [14] for
additional details.

First, we define the concept of a closure of a set of certificates C. A term S appear-
ing in a rule can be viewed as a string, over the alphabet K∪A, in which elements of
K appear only at the beginning. For uniformity, we also refer to strings of the form

3“(* set read write)” denotes read/write permission; “read” denotes read permission.
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Kowner[H] � −→ K0 UW CS faculty � (1)
K0 UW −→ K1 (2)
K1 CS −→ K2 (3)
K2 faculty −→ K3 Bob (4)
K3 Bob −→ KB (5)
KB � −→ K4 Alice � (6)
K4 Alice −→ KA (7)

Fig. 1. A set of certs.

S � and S � as terms. Assume that we are given a rewrite rule L −→ R corre-
sponding to a cert. Consider a term S = LX . In this case, the rewrite rule L −→ R
applied to the term S (denoted by (L −→ R)(S)) yields the term RX . Therefore, a
rule can be viewed as a function from terms to terms. For example,

(KA Bob −→ KB)(KA Bob myFriends) = KB myFriends

A term S and a rule L → R are called compatible if S is of the form LX . Given a
set of certificates C and a term S, we define C(S) as the following set:

{C(S) | C is compatible with S and C ∈ C}

Consider two rules C1 = (L1 −→ R1) and C2 = (L2 −→ R2). Moreover, assume
that L2 is a prefix of R1, i.e., there exists an X such that R1 = L2X . Then the
composition C2 ◦ C1 of the two rules C1 and C2 is the rule L1 −→ R2X . For
example, consider the following two rules:

C1 : KA friends −→ KA Bob myFriends
C2 : KA Bob −→ KB

The composition C2 ◦ C1 is the following rule:

KA friends −→ KB myFriends

Two rules C1 and C2 are called compatible if their composition C2 ◦ C1 is well-
defined. Given a set of certificates C, its closure (denoted by C�) is the smallest set of
certificates that includes C and is closed under composition.4 In general, C� is infinite
and hence cannot be computed directly. For example, consider the set of certificates
C = {(K A −→ K A A)}. The closure C� of C is the following set:

{(K A −→ K Ai) : i � 2}

4 For rule application, we write (L → R)(S) instead of S ◦ (L → R) as used in [12]. For the
composition of C1 = (L1 → L2X) and C2 = L2 → R2, we write C2 ◦ C1 instead of C1 ◦ C2 (so that
(C2 ◦ C1)(L1) = (C2(C1(L1))) = R2X). Finally, we use C� instead of C+.
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Given a name N and a set of certificates C, VC(N ) is defined as

VC(N ) = C�(N ) ∩ K.

In other words, VC(N ) is the set of keys that can be obtained from N by using the
rewrite rules corresponding to the set of certs C. In applications, if N is granted a
certain authorization, every key in VC(N ) is also indirectly granted that authorization.
For instance, in the authorization example from Section 2.2, it can be shown that
KA ∈ VC (K0 UW CS faculty), and thus Alice has authorization to login to
host H .

Because the closure C� of a set of certs C can be infinite, the concept of a
name-reduction closure was introduced in [12,14]. A reducing cert is of the form
K A −→ K ′. A name reduction is a composition of two compatible rules C1 and
C2, where C2 is a reducing cert. The name-reduction closure C� of a set of certifi-
cates C is defined as the smallest set of certificates that contains C and is closed
under name reduction. Given a name N and a set of certs C, the following equality
is proved in [12]:

C�(N ) ∩ K = C�(N ) ∩ K.

In other words, it is safe to inspect just the name-reduction closure to find the set of
keys that correspond to a name N under certificate set C.

We now return to our authorization example and describe the four-step procedure
from [12] for determining whether a principal KP is authorized to access a given
resource according to an authorization specification TP (to perform a particular op-
eration), given a set of certificates C. A tuple (KP , TP ) is referred to as a request.

1. Remove useless certificates
All invalid name and auth certificates are removed from the set C. All auth certs
(K , S, D, T , V ) such that TP �⊆ T are also removed from C.

2. Name reduction
Compute the name-reduction closure C� for the set C. The name-reduction clo-
sure of the set C shown in Fig. 1 yields the additional certs shown in Fig. 2.

K2 faculty −→ KB (8) = (5) ◦ (4)
KB � −→ KA � (9) = (7) ◦ (6)
Kowner[H] � −→ K1 CS faculty � (10) = (2) ◦ (1)
Kowner[H] � −→ K2 faculty � (11) = (3) ◦ (10)
Kowner[H] � −→ KB � (12) = (8) ◦ (11)

Fig. 2. Additional rules added by name-reduction closure.
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3. Depth-First Search
First, remove all the rules not of the form K1 � −→ K2 � or K1 � −→ K2 �.
In our example, the only rules that remain after this step are

KB � −→ KA �,
Kowner[H] � −→ KB �.

Second, remove all rules of the form Ki � −→ Kj �, where Kj �= KP .
Third, construct a graph with a vertex for each key. There is an edge from Ki

to Kj if there is a rule of the form Ki � −→ Kj � or Ki � −→ Kj �. In our
example, the edges are Kowner[H] −→ KB and KB → KA. Fourth, perform
depth-first search to determine whether there is a path from Kowner[H] to KP .
In our example, there is a path from Kowner[H] to Alice’s key KA, so Alice is
authorized to login to host H .

4. Reconstruct the certificate chain
Information from the previous steps can be used to create a certificate chain
that “proves” that principal KP is authorized to access the desired resource. In
our example, the certificate chain

(1 2 3 4 5 6 7)

proves that Alice is authorized to login to the host H , because

((7) ◦ (6) ◦ (5) ◦ (4) ◦ (3) ◦ (2) ◦ (1))(Kowner[H] �) = KA �.

Certificate-chain reconstruction requires that additional information be stored
during the algorithm used to perform name-reduction closure. Because the
smallest size of a certificate chain can be exponential in the number of certs, it
may be desirable to report certificate chains in a factored form [14, Chapter 3].

The time and space complexity of name-reduction closure can be analyzed as
follows: Let C be the set of certificates and nK be the number of keys occurring
in C. Consider a typical certificate of the form L → KA1A2 · · ·Am. After one name
reduction, we obtain a rule of the form L → K1A2 · · ·Am. After i < m name
reductions, we obtain rules of the form L → KiAi+1 · · ·Am.

After m reductions, we obtain a rule of the form L → Km. There are nK possi-
bilities for the keys K1, . . . , Km, so there are nKm possibilities for the rules that are
generated. Let |C| be the sum of the lengths of the right-hand sides of all rules that
occur in C. The maximum number of new rules that can be produced is nK |C|. A rule
can be compatible with at most nK reducing certs. Therefore, each rule can result in
O(nK) work, and thus the time complexity of name-reduction closure is O(n2

K |C|).
The number of nodes and edges in the graph constructed in the depth-first-search

step is bounded by nK and O(n2
K), respectively. Therefore, the time complexity of

the depth-first search in the authorization procedure is O(nK + n2
K). Hence, the
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time complexity of the name-reduction closure step dominates the running time of
the procedure. Because the number of new rules produced is bounded by nK |C|, the
space complexity of the procedure is O(nK |C|+n2

K), where the second term appears
because of the depth-first search. Data structures for representing certs are discussed
in detail in Elien’s thesis [14].

3. Background on model checking pushdown systems

This section provides the necessary background on model checking of pushdown
systems (PDSs). A detailed treatment of model checking PDSs, including the com-
putational complexity of various problems, can be found in [8]. An improved algo-
rithm for model checking PDSs was presented in [17]. The material in this section is
largely based on [17], and a few further improvements found in [25].

A pushdown system is a triple P = (P , Γ, ∆), where P is a finite set of control
locations, Γ is a finite stack alphabet, and ∆ ⊆ (P × Γ) × (P × Γ�) is a finite set of
transition rules. If ((q, γ), (q′, w)) ∈ ∆, then we write it as 〈q, γ〉 ↪→ 〈q′, w〉.

A configuration of P is a pair 〈q, w〉, where q ∈ P is a control location and
w ∈ Γ� represents the stack contents. The set of all configurations is denoted by
C. A surface configuration is a pair 〈q, γ〉, where q ∈ P and γ ∈ Γ. If 〈q, γ〉 ↪→
〈q′, w〉, then for all v ∈ Γ� the configuration 〈q, γv〉 is an immediate predecessor of
〈q′, wv〉, and 〈q′, wv〉 is an immediate successor of 〈q, γv〉 (denoted by 〈q, γv〉 ⇒
〈q′, wv〉). The reflexive transitive closure (known as the reachability relation) and the
transitive closure of the immediate-successor relation are denoted by ⇒� and ⇒+,
respectively.5 A run of P is a sequence of configurations c0, c1, . . . , cn such that ci

is an immediate predecessor of ci+1.
Pushdown systems are similar to pushdown automata; however, unlike pushdown

automata they do not have an input alphabet. Therefore, a PDS should not be viewed
as a language recognizer, but as a mechanism that specifies an infinite-state transition
system, i.e., a transition system that may have an infinite number of distinct states.
Consider a PDS P = (P , Γ, ∆), where P = {K , K ′}, Γ = {A}, and ∆ consists of
the following transition rules: 〈K , A〉 ↪→ 〈K , AA〉 and 〈K , A〉 ↪→ 〈K ′, ε〉, where ε
denotes the empty string of symbols from Γ. Starting from the configuration 〈K , A〉,
the infinite-state transition system generated by the PDS P is shown in Fig. 3.

The remainder of the section summarizes algorithms and complexity results that
provide the basic toolkit for addressing reachability questions on PDSs. The basic
backward and forward reachability algorithms are discussed in Sections 3.1 and 3.2,
respectively. Linear time logic (LTL) is a powerful query language for asking gener-
alized reachability questions about a PDS. LTL model checking of PDSs is discussed
in Section 3.3.

5 In [17], the symbol ⇒ denotes the reflexive transitive closure of the immediate predecessor relation.
We use ⇒ for the immediate predecessor relation, and ⇒� for its reflexive transitive closure.
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Fig. 3. Infinite-state transition systems generated by a PDS.

Given a set of configurations C ⊆ C, the set of predecessors of C (denoted by
pre[P](C)) is

{c | ∃c′ ∈ C.c ⇒ c′}

The reflexive transitive closure of pre[P] is denoted by pre�; thus, pre�[P](C) is

{c | ∃c′ ∈ C.c ⇒� c′}

The set of immediate successors post[P](C) of a set of configurations C is defined
similarly. The reflexive transitive closure of post[P] is denoted by post�[P]. When
P is understood, we will merely write pre, pre�, post, and post�.

3.1. Computing pre�

Assume that we are given a pushdown system P = (P , Γ, ∆). A regular set of
configurations of P can be represented with a finite-state automaton, called a config-
uration automaton of P , whose input alphabet is P’s stack alphabet.

Formally, a configuration automaton of P is an automaton A = (Γ, Q, δ, P , F ),
where Q is a finite set of states and the set of locations P of P is a subset of Q;
δ ⊆ Q × Γ × Q is the set of transitions; P is the set of initial states; and F ⊆ Q is
the set of final states. The configuration automaton’s reachability relation, denoted
by

w→⊆ Q × Γ� × Q, is defined as the smallest relation satisfying:

• q
ε→ q for every q ∈ Q,

• if (q, γ, q′) ∈ δ, then q
γ→ q′, and

• if q
w→ q′′ and q′′

γ→ q′, then q
wγ→ q′.

Henceforth, we will refer to a configuration automaton simply as an automaton. An
automaton accepts or recognizes a configuration 〈p, w〉 ofP if p

w→ q for some p ∈ P
and q ∈ F . The set of configurations recognized by an automaton A is denoted by
Conf (A).
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Fig. 4. Automaton that accepts C = {〈p2, γ1γ2γ3〉}.

Example 1. Consider a PDS P = (P , Γ, ∆), where P = {p1, p2}, Γ = {γ1, . . . , γ6},
and ∆ consists of the following transition rules:

(p2, γ4) ↪→ (p2, γ1γ2)
(p1, γ5) ↪→ (p2, γ4γ3)
(p1, γ6) ↪→ (p1, ε)

The automaton shown in Fig. 4 recognizes the set of configurations C =
{〈p2, γ1γ2γ3〉}.

Assume that we are given a regular set of configurations C accepted by an au-
tomaton A. It has been shown that the set of configurations pre�(C) is also reg-
ular [7–9,11]. An automaton recognizing pre�(C) can be constructed from A by
adding transitions to A using the following saturation rule; i.e., we add transitions
to the automaton until no more can be added:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w→ q in the current automaton, add a transition (p, γ, q).

Theorem 1 [25]. Let P = (P , Γ, ∆) be a PDS and A = (Γ, Q, δ, P , F ) be
a configuration automaton of P . There exists an automaton Apre� that recog-
nizes pre�(Conf (A)). Moreover, Apre� can be constructed in O(n2

Qn∆) time and
O(nQn∆ + nδ) space, where nQ = |Q|, nδ = |δ|, and n∆ is the sum of the lengths
of the right-hand sides of transition rules in ∆. The length of the right-hand side of
transition rule 〈p, γ〉 ↪→ 〈p, w〉 is max{1, |w|}.

Example 2. Consider the PDS from Example 1. Recall that the automaton in Fig. 4
recognizes the set of configurations C = {〈p2, γ1γ2γ3〉}. The automaton A that
recognizes pre�(C) is shown in Fig. 5. The transition rule (p1, γ6) ↪→ (p1, ε) from
P causes a self-loop (p1, γ6, p1) to be added to A. The transition rule (p2, γ4) ↪→
(p2, γ1γ2) from P and the fact that p2

γ1γ2→ s2 holds in A causes the transition
(p2, γ4, s2) to be added to A. The transition rule (p1, γ5) ↪→ (p2, γ4γ3) in P and
the fact that p2

γ2γ3→ s3 holds in A causes the transition (p1, γ5, s3) to be added to A.
The automaton shown in Fig. 5 accepts the following set of configurations:

{〈p1, γi
6γ5〉} ∪ {〈p2, γ1γ2γ3〉, 〈p2, γ4γ3〉}.
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Fig. 5. Automaton that accepts pre�(C) = {〈p1, γi
6γ5〉} ∪ {〈p2, γ1γ2γ3〉, 〈p2, γ4γ3〉}.

3.2. Computing post�

Consider a PDS P = (P , Γ, ∆) and a regular set of configurations C that is repre-
sented as an automaton A. We will assume that each transition rule 〈p, γ〉 ↪→ 〈p′, w〉
of ∆ satisfies |w| � 2. This assumption involves no loss of generality because a
PDS that does not satisfy this constraint can be converted into one that does. Sup-
pose that we are given a general PDS P ′ = (P ′, Γ, ∆′). Consider a transition rule
〈p, γ〉 ↪→ 〈p′, γ1, . . . , γk〉, where k � 3. We add k − 2 new control locations
p1, . . . , pk−2 and replace the original rule with the following k − 1 transition rules:

〈p, γ〉 ↪→ 〈p1, γk−1γk〉
〈p1, γk−1〉 ↪→ 〈p2, γk−2γk−1〉

...
〈pi, γk−i〉 ↪→ 〈pi+1γk−i−1γk−i〉

...
〈pk−2, γ2〉 ↪→ 〈p′, γ1γ2〉

Assume that we are given a regular set of configurations C by means of an au-
tomaton A. An automaton Apost� that accepts post�(C) is obtained from A by the
following two-phase procedure:

• Phase I
For each pair (p′, γ′) such that P contains at least one rule of the form 〈p, γ〉 ↪→
〈p′, γ′γ′′〉, add a new state qp′ ,γ′ .

• Phase II (saturation phase)
In this phase, new transitions are added to the automaton until no more rules
can be added. (The symbol

γ
� denotes the relation (

ε→)�
γ→ (

ε→)�.) The rules
for adding new transitions are as follows:

– If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ and p
γ
� q in the current automaton, add a transition

(p′, ε, q).
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– If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p
γ
� q in the current automaton, add a transition

(p′, γ′, q).
– If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ and p

γ
� q in the current automaton, first add

(p′, γ′, qp′,γ′) and then (qp′,γ′ , γ′′, q).

Theorem 2 [25]. Let P = (P , Γ, ∆) be a pushdown system, and A = (Γ, Q, δ, P , F )
be a configuration automaton of P . There exists an automaton Apost� recog-
nizing post�(Conf (A)). Moreover, Apost� can be constructed in time and space
O(nP n∆(n1 + n2) + nP nδ), where nP = |P |, n∆ = |∆|, nQ = |Q|, nδ = |δ|,
n1 = |Q\P |, and n2 is the number of different pairs (p′, γ′) such that there is a rule
of the form 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 in ∆.

Fig. 6. Automaton that accepts C = {〈p1, γ5〉}.

Fig. 7. Automaton that accepts post�(C) = {〈p1, γ5〉, 〈p2, γ4γ3〉, 〈p2, γ1γ2γ3〉}.
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Example 3. Consider again the PDS P = (P , Γ, ∆), where P = {p1, p2}, Γ =
{γ1, · · · , γ6}, and ∆ contains the following transition rules:

〈p2, γ4〉 ↪→ 〈p2, γ1γ2〉
〈p1, γ5〉 ↪→ 〈p2, γ4γ3〉
〈p1, γ6〉 ↪→ 〈p1, ε〉

Consider the automaton shown in Fig. 6, which accepts the set of configurations C =
{〈p1, γ5〉}. The automaton corresponding to post�(C) is shown in Fig. 7. The states
qp2,γ1 and qp2,γ4 are the two states added during Phase I of the saturation procedure.
The automaton shown in Fig. 7 accepts the following set of configurations:

{〈p1, γ5〉, 〈p2, γ4γ3〉, 〈p2, γ1γ2γ3〉}.

3.3. Model checking for linear time logic

Let AP be a finite set of atomic propositions, and let Σ = 2AP. Let φ be an LTL
formula over the atomic propositions AP . (The reader should consult [13, Chapter 3]
and [8] for the syntax and semantics of LTL.) Let P = (P , Γ, ∆) be a PDS, and let
Ω : (P × Γ) → Σ be a labeling function that associates a set of atomic propositions
with each surface configuration 〈p, γ〉. By extension, the set of atomic propositions
that hold at a configuration 〈q, γw〉 is given by Ω(〈q, γ〉).

We are interested in the following model-checking problem:

Given a configuration c of P and an LTL formula φ, determine whether c satis-
fies φ.

The head of a transition rule 〈p, γ〉 ↪→ 〈p′, w〉 is the surface configuration 〈p, γ〉.
Suppose that 〈p, γ〉 is in the set pre�({〈p, γv〉}), or equivalently, 〈p, γ〉 ⇒� 〈p, γv〉.
In this case, we have the following path in the transition system defined by the PDS
along which the head 〈p, γ〉 keeps repeating:

〈p, γ〉 ⇒� 〈p, γv〉 ⇒� 〈p, γv2〉 ⇒� · · · ⇒� 〈p, γvi〉 ⇒� · · ·

Identifying such repeating heads is crucial in LTL model checking of PDSs. First,
we generalize slightly the concept illustrated above.

Definition 1. Assume that we are given a PDS P = (P , Γ, ∆) and a set of locations
G ⊆ P . Given two configurations c and c′, we say that c ⇒r(G) c′ if and only if
c ⇒� 〈g, u〉 ⇒+ c′ such that g ∈ G, i.e., there is a path of length � 1 from c to c′

that passes through a configuration whose location is in the set G.
A transition rule’s head 〈p, γ〉 is called G-repeating if there exists a v ∈ Γ� such

that 〈p, γ〉 ⇒r(G) 〈p, γv〉. The set of heads and G-repeating heads corresponding to
a PDS P and set of locations G are denoted by H(P) and R(P , G), respectively.
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Theorem 3 [25]. Assume that we are given a PDS P = (P , Γ, ∆) and a set of loca-
tions G ⊆ P . The set of repeating heads R(P , G) can be computed in O(n2

P n∆) time
and O(nP n∆) space, where nP = |P | and n∆ = |∆|.

A Büchi automaton B = (Σ, Q, δ, q0, F ) is a 5-tuple, where Σ is the alphabet, Q
is the set of states, δ ⊆ Q × Σ × Q is the transition relation, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. The set of infinite words over the alphabet
Σ is denoted by Σω. Let σ = α1α2 . . . be an infinite word over the alphabet Σ. We
say that σ is accepted by B if there exists a sequence of states s0s1s2 . . . , such that
(si−1, αi, si) ∈ δ and some state from F appears infinitely often in the sequence.
The sequence of states s0s1s2 . . . is called an accepting run (under Büchi acceptance
condition F ). Let L(B) be the language accepted by the Büchi automaton B.

Assume that we are given a configuration c and an LTL formula φ. It is well known
that, given an LTL formula over the atomic propositions in AP , there exists a Büchi
automaton over the alphabet Σ = 2AP that accepts the same ω-regular language.
Moreover, there are efficient algorithms to translate an LTL formula into a Büchi
automaton [18]. Let B = (Σ, Q, δ, q0, F ) be the Büchi automaton corresponding
to the LTL formula ¬φ. The product of a PDS P = (P , Γ, ∆) and B produces a
Büchi pushdown system – a PDS augmented with a Büchi acceptance condition –
BP = ((P × Q), Γ, ∆′, G), where

• 〈(p, q), γ〉 ↪→ 〈(p′, q′), w〉 ∈ ∆′ if 〈p, γ〉 ↪→ 〈p′, w〉, q
σ→ q′, and σ ⊆ Ω(〈p, γ〉).

• (p, q) ∈ G if q ∈ F .

Given a Büchi pushdown system, the accepting-run problem is the problem of
answering the question “Is there an accepting run starting from the configuration
〈(p, q), γ〉 – i.e., a run that visits infinitely often the configurations with control loca-
tions in G?”.

LTL model checking answers the following question about a PDS P = (P , Γ, ∆)
and labeling function Ω: “Does a configuration c = 〈p, γ〉 satisfy φ?” LTL model
checking can be reduced to the accepting-run problem as follows [17]:

• Construct the Büchi automaton B = (Σ, Q, δ, q0, F ) corresponding to ¬φ. An
algorithm for computing a Büchi automaton corresponding to an LTL formula
is given in [18].

• Compute BP as the product of the Büchi automaton B = (Σ, Q, δ, q0, F ) and
the PDS P = (P , Γ, ∆) with respect to labeling function Ω.

• A configuration 〈p, w〉 violates ¬φ iff there is an accepting run in BP starting
from the configuration 〈(p, q0), γ〉.

Esparza et al. [17] have shown that there is an accepting run starting from 〈(p, q), γ〉
iff the following condition holds:

〈(p, q), γ〉 ∈ pre�(RΓ�),
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where R is the set of G-repeating heads in BP, and RΓ� denotes the set of configura-
tions 〈(p′, q′), γ′w〉, where 〈(p′, q′), γ′〉 is a repeating head. (Thus, the set pre�(RΓ�)
is the set of configurations that have a run leading to a configuration 〈(p′, q′), γ′v〉,
where 〈(p′, q′), γ′〉 is a repeating head.)

The complexity of computing repeating heads is given in Theorem 3. Let the Büchi
pushdown system BP be the product of a Büchi automaton B = (Σ, Q, δ, q0, F ) and
a PDS P = (P , Γ, ∆). Let nP = |P |, n∆ = |∆|, nQ = |Q|, and nδ = |δ|. Then BP
has at most s = nP nQ control locations and r = n∆nδ rules, and can be computed
in O(r) time. RΓ� can be represented by an automaton of size O(sr); consequently,
by Theorem 1, LTL model checking can be performed in time and space O(s2r) and
O(sr), respectively (i.e., O(n2

P n2
Qn∆nδ) and O(nP nQn∆nδ), respectively).

Other algorithms for LTL model checking of PDSs, along with their time and
space complexity, are discussed in [25, Section 3.2].

4. From SPKI/SDSI to PDSs

This section explains the connection between SPKI/SDSI and PDSs, and demon-
strates how the authorization problem, as well as a variety of other certificate-set
analysis problems, can be viewed as model-checking problems on PDSs.

Assume that we are given a set of certs C and a request r = (KP , TP ). We assume
that all invalid name and auth certificates, as well as auth certs (K , S, D, T , V ) such
that TP �⊆ T , are removed from C. We assume that useless certificates have been
removed from C. Let the set of keys and identifiers that appear in C be denoted by
KC and AC , respectively.

We construct a PDS PC = (P , Γ, ∆) as follows:

• The set of locations is P = KC ; i.e., each key represents a control location of
PC .

• The stack alphabet is Γ = AC ∪ {�, �}; i.e., the stack alphabet is the set of
identifiers, along with filled and unfilled squares (which encode delegation bits).

• The set of transition rules ∆ contains a rule 〈K , γ〉 ↪→ 〈K ′, w〉 iff (K γ →
K ′ w) ∈ C; i.e., the certs in C correspond to the transition rules.

Consider a term N ∈ K ∪ N . The term N = KA1 · · ·Am corresponds to the
configuration c(N ) = 〈K , A1 · · ·Am〉 in the PDS PC . If N = K , then c(N ) =
〈K , ε〉. The lemma given below establishes a correspondence between the closure
C� of the set of certs C and the reachability relation ⇒� in the PDS PC.

Lemma 4. Assume that we are given a set of certs C. Let PC be the PDS correspond-
ing to C, and let N be a term. For all terms N ′, we have N ′ ∈ C�(N ) if and only if
c(N ) ⇒� c(N ′) in PC. In other words, we have the following equality:

C�(N ) = post�(c(N ))
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Proof. The mapping c(·) provides a one-to-one mapping between the set of terms
and the set of configurations of the PDS PC . It follows from the construction of PC
that c(N ) ⇒ c(N ′) iff there exists a rule C1 ∈ C such that C1(N ) = N ′. The result
follows directly from the definitions. �

There are two options to solve the authorization problem “Is KP authorized to
access resource TP ?”: one uses pre�; the other uses post�. A “proof” of the autho-
rization is a run of the PDS PC that starts at the configuration 〈Kowner[TP ], �〉 and
ends at one of the configurations from the following set:

{〈KP , �〉, 〈KP , �〉}.

In terms of pre� and post�, the condition described above can be formalized by either
of the following:

〈Kowner[TP ], �〉 ∈ pre�({〈KP , �〉, 〈KP , �〉}) (1)

post�({〈Kowner[TP ], �〉}) ∩ {〈KP , �〉, 〈KP , �〉} �= ∅ (2)

Algorithms based on conditions (1) and (2) will be referred to as Apre and Apost,
respectively. The SPKI/SDSI algorithm described in Section 2.3 will be referred to
as ASPKI/SDSI. Based on Lemma 4, the following theorem is easy to prove:

Theorem 5.

1. A principal KP is granted authorization to access resource TP by algorithm
ASPKI/SDSI iff algorithm Apre grants authorization to KP to access TP .

2. A principal KP is granted authorization to access resource TP by algorithm
ASPKI/SDSI iff algorithm Apost grants authorization to KP to access TP .

Proof. Algorithm Apre checks whether the following condition is true:

〈Kowner[TP ], �〉 ∈ pre�({〈KP , �〉, 〈KP , �〉}).

The statement given above is equivalent to the following one, which is the condition
checked by Apost:

post�({〈Kowner[TP ], �〉}) ∩ {〈KP , �〉, 〈KP , �〉} �= ∅.

In the SPKI/SDSI context, the latter condition is equivalent to the following condi-
tion (via Lemma 4):

C�(Kowner[TP ] �) ∩ {KP �, KP �} �= ∅.

This is exactly the question that algorithm ASPKI/SDSI answers. �
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The algorithm Apre works as follows:

1. Construct the PDS PC corresponding to the set of certs C as described before.
2. Let Y be the following set of configurations:

{〈KP , �〉, 〈KP , �〉}.

Construct the automaton AY = (Γ, Q, δ, P , F ), where Q = P ∪ {s}, δ =
{(KP , �, s), (KP , �, s)}, and F = {s}. (Conf (AY ) is Y .) Using the algorithm
described in Section 3.1, create the automaton corresponding to pre�(Y ).

3. Grant authorization to KP iff 〈Kowner[TP ], �〉 is accepted by the automaton for
pre�(Y ).

The complexity of algorithm Apre can be analyzed as follows: The number of
states nQ in the automaton AY is nK + 1. There is a one-to-one correspondence
between the transition rules and the certs in the set C; therefore, n∆ is equal to |C|.
Moreover, the number of transitions nδ in the automaton AY is 2. Invoking The-
orem 1, we obtain that the time and space complexity of Apre are O(n2

K |C|) and
O(nK |C|), respectively. Notice that this is exactly the same asymptotic complexity
that Clarke et al. obtain for algorithm ASPKI/SDSI.

Example 4. Consider the example described in Section 2.2. Let C be the set of con-
figurations shown in Fig. 1. Let PC = (P , Γ, ∆) be the PDS corresponding to C. In
this case, the control locations P and the stack alphabet Γ are given by the following
sets:

{Kowner[H], K0, K1, K2, K3, KB, K4, KA}
{UW,CS,faculty,Bob,Alice, �, �}

The transition rules ∆ are shown in Fig. 8.

We are interested in an authorization for Alice, whose key is KA. Consider the
following set of configurations X :

{〈KA, �〉, 〈KA, �〉}.

〈Kowner[H], �〉 ↪→ 〈K0,UW CS faculty �〉 (1)
〈K0,UW〉 ↪→ 〈K1, ε〉 (2)
〈K1,CS〉 ↪→ 〈K2, ε〉 (3)
〈K2,faculty〉 ↪→ 〈K3,Bob〉 (4)
〈K3,Bob〉 ↪→ 〈KB , ε〉 (5)
〈KB , �〉 ↪→ 〈K4,Alice �〉 (6)
〈K4,Alice〉 ↪→ 〈KA, ε〉 (7)

Fig. 8. The set of transition rules ∆ in PC .
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Fig. 9. Automaton that accepts the set of configurations pre�({〈KA, �〉, 〈KA, �〉}).

A configuration automaton AX = (Γ, Q, δ, P , F ) that accepts X can be defined as
follows: Q = P ∪ {s}, δ = {(KA, �, s), (KA, �, s)}, and F = {s}. The automaton
that would be constructed for pre�(X) is shown in Fig. 9. Note that the configuration
〈Kowner[H], �〉 is accepted by the automaton, and thus principal KA (i.e., Alice) is
authorized to login to host H .

Next, we describe in detail the algorithm Apost that uses the construction post�.
Again, suppose that we are interested in determining whether a principal KP is au-
thorized to access resource TP , given a set of certificates C. The algorithm for solving
the authorization problem is as follows:

1. Construct the PDS PC corresponding to the set of certs C.
2. Let S be the following set of configurations: {〈Kowner[TP ], �〉}. Construct the

automaton AS = (Γ, Q, δ, P , F ), where Q = P∪{s}, δ = {(Kowner[TP ], �, s)},
and F = {s}. (Conf (AS) is S.) Before computing post�(S), we need to trans-
form the PDS PC so that all transition rules 〈p, γ〉 ↪→ 〈p′, w〉 satisfy |w| � 2.
Then add a new state qp′ ,γ′ for each rule right-hand side of the form 〈p′, γ′γ′′〉.
Finally, complete the construction of the automaton for post�(S) by repeatedly
applying the saturation rule.

3. Grant authorization to KP iff 〈KP, �〉 or 〈KP, �〉 is accepted by the automaton
corresponding to post�(S).

We analyze the complexity of this algorithm as follows: the number of states nQ

in the automaton AS is nK + 1. Using Theorem 2, we obtain that the time and space
complexity of Apost are both O(nK |C|2).6

Example 5. Consider the set of certs C shown in Fig. 1. The PDS PC = (P , Γ, ∆)
corresponding to the set of certs C was explicitly constructed in Example 4 and Fig. 8.

6Whenever each principal signs at least one certificate, nK � |C|, and therefore the time and space
complexity of Apost is worse than that of Apre. However, there are two reasons why Apost is of interest:
(i) it can serve as a subroutine in the algorithm for LTL model checking, which provides a way to answer a
general class of certificate-set-analysis questions [25, Section 3.2.3], and (ii) in other kinds of PDS model-
checking problems, it has been found that, in practice, post� works faster than pre� [25]. It remains to be
seen whether this is also true for certificate-set-analysis problems.



S. Jha and T. Reps / Model checking SPKI/SDSI 337

Recall that the post� algorithm assumes that every transition rule 〈p, γ〉 ↪→ 〈p′, w〉
satisfies |w| � 2. The following rule in PC does not satisfy that constraint:

〈Kowner[H], �〉 ↪→ 〈K0,UW CS faculty �〉

We transform the PDS by (i) adding two new locations K1
0 and K2

0 , (ii) adding the
following three rules, and (iii) deleting the rule given above.

〈Kowner[H], �〉 ↪→ 〈K1
0 ,faculty �〉

〈K1
0 ,faculty〉 ↪→ 〈K2

0 ,CS faculty〉
〈K2

0 ,CS〉 ↪→ 〈K0,UW CS〉

One of the original transition rules of the PDS has two stack symbols on the right-
hand side: 〈KB , �〉 ↪→ 〈K4,Alice �〉.

A configuration automaton AS = (Γ, Q, δ, P , F ) that accepts the set S =
{〈Kowner[H], �〉} can be defined as follows: Q = P ∪ {s}, F = {s}, and δ =
{(Kowner[H], �, s)}. After Phase I of the construction from Section 3.2, the automa-
ton has the following components

Q = P ∪ {K1
0 , K2

0 , qK1
0 ,faculty, qK2

0 ,CS, qK0,UW, qK4,Alice, s} ,

F = {s}, and δ = {(Kowner[H], �, s)}. The automaton that would be constructed for
post�(S) is shown in Fig. 10. Note that the configuration 〈KA, �〉 is accepted by this
automaton, and thus principal KA (i.e., Alice) is authorized to login to host H .

Fig. 10. Automaton that accepts the set of configurations post�(S). In the figure, m0, m1, m2, and m3

stand for qK1
0

,faculty, qK2
0

,CS , qK0,UW , and qK4,Alice, respectively.
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4.1. Certificate-chain reconstruction

We now describe how we can augment the automaton constructed by algorithm
Apre with extra information for the purpose of certificate-chain reconstruction. (Apost

can be augmented similarly.)
The automaton for pre�(X) is created by adding transitions to AX , until no more

transitions can be added, according to the saturation rule

If 〈p, γ〉 ↪→ 〈p′, w〉, and p′
w→ q in the current automaton, add a transition

(p, γ, q).

With each transition (p, γ, q) of the configuration automaton, we associate a struc-
ture with two components: an integer identifier and a list of transitions. Suppose that
a transition (p, γ, q) is added due to the PDS transition rule 〈p, γ〉 ↪→ 〈p′, w〉 and
the fact that a path p′

w→ q holds in the automaton. Let path p′
w→ q consist of the

(possibly empty) sequence of transitions t1t2 · · · tn. The structure associated with the
transition (p, γ, q) is

(id(〈p, γ〉 ↪→ 〈p′, w〉), [t1t2 · · · tn]),

where the identifier of a PDS transition rule r is denoted by id(r). The collection of
such structures forms a dag.7

We will explain how to construct a certificate chain from such structures using the
example from Section 2.2, for which the final configuration automaton is given in
Fig. 9. The structures associated with the transitions of the automation from Fig. 9
are shown in Fig. 11. An empty structure and an empty list are denoted by ε and
NULL, respectively.

When a request r = (K , T ) succeeds, the final configuration automaton for
pre�({〈K , �〉, 〈K , �〉}) must contain the transition (Kowner[T ], �, s), where s is the
automaton’s accepting state. When the pre� algorithm has been extended as de-
scribed above, a certificate chain for request r can be obtained from the auxiliary
structure associated with (Kowner[T ], �, s) in the final configuration automaton.

For instance, Fig. 9 contains the transition t8 = (Kowner[H], �, s), which has the
associated structure (1, [t5t4t7t6]). Certificate-chain reconstruction can be performed
by flattening the dag rooted at t8, to produce a preorder listing – with repetitions – of
the rule identifiers in the dag. Let the symbol || denote list concatenation.

• If ti’s structure is ε, flatten(ti) = ().
• If ti’s structure is (j, NULL), flatten(ti) = (j).

7The method described above keeps enough information to recover one certificate chain. In general, one
can associate a set of pairs with each automaton transition, where a pair consists of an integer identifier
(corresponding to the rule) and a list of transitions (corresponding to a path in the automaton). Each pair
in the set associated with a transition (p, γ, q) represents a way for the saturation rule to derive (p, γ, q).
This provides a way to recover a dag of certificate chains.
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transition structure
t0 (KA, �, s) ε
t1 (KA, �, s) ε
t2 (K4,Alice, KA) (7, NULL)
t3 (K3,Bob, KB) (5, NULL)
t4 (K1,CS, K2) (3, NULL)
t5 (K0,UW, K1) (2, NULL)
t6 (KB, �, s) (6, [t2t1])
t7 (K2,faculty, KB) (4, [t3])
t8 (Kowner[H], �, s) (1, [t5t4t7t6])

Fig. 11. Structures associated with the transitions of the automaton shown in Fig. 9.

• If ti’s structure is (j, [t1
i , . . . , tki

i ]), flatten(ti) = (j) || flatten(t1
i ) || . . . ||

flatten(tki

i ).

(Because flattening a dag may create a list that is exponentially larger than the size
of the dag, in practice it may be better for a system to manipulate certificate dags
directly.)

For Fig. 9, flatten(t8) produces the certificate chain (1 2 3 4 5 6 7), which proves
that Alice has the proper authorization for her request.

4.2. Threshold subjects

The document that defines SPKI/SDSI [16] provides for an additional kind
of subject in name and auth certs: a threshold subject is a subject of the form
θk(S1, S2, . . . , Sm), where 1 � k � m. The value k is a threshold value, and a thresh-
old subject specifies k of the m subjects S1, S2, . . . , Sm. Although the SPKI/SDSI
defining document permits threshold subjects in both name and auth certs, Clarke et
al. restrict them to just auth certs [12, Section 10], observing

The reason that a threshold subject may not appear in a name cert is that a name
cert is used to define a name as a set of public keys; if a name cert could have a
threshold subject as a subject then the notion of the value of a name would have
to be generalized from a set of keys to a set of sets of keys, which would almost
surely be too convoluted to be usable in practice.

In this section, we also adopt this restriction.8

As in [12, Section 10], an auth cert that uses a threshold subject, such as

K � −→ θk(S1, S2, . . . , Sm) �, (3)

8Certificate-set analysis for certificates that use threshold subjects in name certs could be handled using
model checking of alternating pushdown systems [8].
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would be normalized by introducing m new keys to serve as placeholders, and re-
placing rule (3) by the set of rules

K � −→ θk(K̂1, K̂2, . . . , K̂m) �
K̂1 � −→ S1 �
K̂2 � −→ S2 �

...
K̂m � −→ Sm �

(If the right-hand side of rule (3) used �, the m rules for the K̂i would have the form
K̂i � −→ Si �.)

As usual, to determine if principal KP has authorization to access T , we start with
a configuration automaton that accepts the language {〈KP , �〉, 〈KP , �〉}, and check
whether 〈Kowner[T ], �〉 is accepted by the final configuration automaton. However,
the pre� algorithm is changed to implement the following saturation rules:

• If 〈p, γ〉 ↪→ 〈p′, w〉 and p′
w→ q in the current automaton, add a transition

(p, γ, q).
• If r = 〈p, �〉 ↪→ 〈θk(p1, p2, . . . , pm), �〉, and there are k transitions of the form

(pi, �, q) in the current automaton, add a transition (p, �, q).

In the initial configuration automaton, the only transitions labeled with � or � are
ones to the final state. No transitions can be added that are labeled with �, and when
transitions are added with the label �, these must all be to the final state. Moreover,
because the K̂i symbols are new, transitions of the form (K̂i, �, s) and (K̂i, �, s) can
only contribute to saturation steps of the second type. Thus, the only changes to the
pre� algorithm are that it needs to maintain a counter for each threshold rule r; these
counters are initialized to 0; the algorithm must identify the first time a transition
of the form (K̂i, �, s) or (K̂i, �, s) is generated, at which point the counter for rule
r is incremented; a transition (p, �, s) is generated when the value of the counter
reaches k. The costs in time and space to perform these operations are dominated by
the other costs of the pre� algorithm, so this does not change the overall complexity
of certificate-set analysis via algorithm Apre.

4.3. Handling multiple requests

For certain certificate-set-analysis problems, we need to consider multiple requests
(e.g., see “Shared access 3” and “Compromisation assessment 1” in Section 4.4).
We describe how the authorization framework can be extended to handle multiple
requests. Assume that we are given m requests r1 = (K1, T1), . . . , rm = (Km, Tm).

1. Remove useless certificates
All invalid name and auth certificates are removed from the set C.
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2. Encoding multiple requests
As before, each name cert (K , A, S, V ) in C corresponds to a rewrite rule of the
form KA −→ S. However, each auth cert (K , S, D, T , V ) in C can generate
more than one rewrite rule. For each auth cert (K , S, D, T , V ) in C, perform
the following steps:

for 1 � i � m
if Ti ⊆ T then

Generate a rewrite rule

{
K �i −→ S �i if D is on
K �i −→ S �i otherwise

end if

Essentially, �i and �i represent access to resource Ti – with and without del-
egation, respectively. The set of rewrite rules generated by the algorithm de-
scribed above is denoted by CR.

Let PCR be the PDS corresponding to CR. Note that the stack alphabet of PCR is

ACR ∪ {�1, · · · , �m, �1, · · · , �m}.

Algorithms Apre and Apost are extended to handle multiple requests, as follows.
For Apre, we compute the following set of configurations:

pre�

( m⋃
i=1

{〈Ki, �i〉, 〈Ki, �i〉}
)

.

Request ri is granted iff 〈Kowner[Ti], �〉 is in the set given above. Similarly, for Apost

we compute

post�
( m⋃

i=1

{〈Kowner[Ti], �i〉}
)

.

Request ri is granted iff 〈Ki, �i〉 or 〈Ki, �i〉 is in the set given above.
To discuss the time and space complexity of the extended algorithms, let CN and

CA be the sets of name and auth certs in CR, respectively. Because each auth cert
can generate at most m rewrite rules (one for each request), the size of the set CR is
bounded by |CN | + m|CA|. Therefore, the time and space complexity of algorithm
Apre is O(n2

K(|CN | + m|CA|)) and O(nK(|CN | + m|CA|), respectively. Similarly,
both the time and space complexity of algorithm Apost are O(nK(|CN | + m|CA|)2).
In both cases, this is more efficient than running the algorithms m times, once for
each request. The basic intuition is that certain work for processing the set of name
certs is shared when requests are processed simultaneously; the algorithm performs
saturation steps due (solely) to name certs only once.
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Note: Multiple requests can also be handled using the name-reduction-closure-
based algorithm of Clarke et al. as follows: compute the name-reduction closure C�

R

for the set CR. Remove all the rules from C�
R not of the form K ′ �i −→ K ′′ �i and

K ′ �i −→ K ′′ �i. Next we partition the rules into m sets C1, · · · , Cm, where Ci

contains all the rules of the following form:

K ′ �i −→ K ′′ �i and
K ′ �i −→ K ′′ �i

Intuitively, Ci contains all the rules pertaining to request ri. Now the validity of
request ri can be determined by the depth-first-search algorithm described earlier,
where rules Ci to construct the directed graph.

4.4. Certificate-set-analysis problems

This section discusses applications of model checking to specific certificate-set-
analysis problems; in particular, we show how model checking furnishes algorithms
for the analysis problems listed in the introduction. (Here, we use the term “model
checking” to mean both (i) the problem of checking whether a given PDS satisfies a
given LTL formula, and (ii) the problem of answering simple forward and backward
reachability queries; the latter can be stated in terms of set-former expressions that
use the basic automaton-building operations pre∗ and post∗.) Given a set of certs
C and a set of configurations X , we write pre�[PC](X) as pre�[C](X). Similarly,
post�[PC] is written as post�[C]. In analysis problems involving multiple resources
we use the encoding given in Section 4.3.

Authorized access 1: Given resource R and principal K , is K authorized to access
R?

〈Kowner[R],�〉 ∈ pre∗({〈K ,�〉, 〈K , �〉}) or, alternatively,
{〈K ,�〉, 〈K , �〉} ∩ post∗({〈Kowner[R],�〉}) �= ∅

Authorized access 2: Given resource R and name N (not necessarily a principal),
is N authorized to access R?

〈Kowner[R],�〉 ∈ pre∗({c(N.�), c(N.�)}) or, alternatively,
{c(N.�), c(N.�)} ∩ post∗({〈Kowner[R],�〉}) �= ∅

In the expression given above N.� denotes the term obtained by concatenating
� to N .

Authorized access 3: Given resource R, what names are authorized to access R?

post∗({〈Kowner[R],�〉})
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Shared access 1: For two given resources R1 and R2, what principals can access
both R1 and R2?

{K | 〈K , �〉 or 〈K , �〉 is in post�[C]({〈Kowner[R1], �〉})}
∩ {K | 〈K , �〉 or 〈K , �〉 is in post�[C]({〈Kowner[R2], �〉})}

Shared access 2: Given two principals, K1 and K2, and a resource R, can both K1

and K2 access R? This question can be answered by checking if K1 and K2

are both in the following set:

{K | 〈K , �〉 or 〈K , �〉 is in post�[C]({〈Kowner[R], �〉})}

Shared access 3: For two given principals, K1 and K2, and a finite set of resources
R = {R1, . . . , Rk}, which resources from R can be accessed by both K1 and
K2?

{
Ri ∈ R

∣∣∣∣∣〈Kowner[Ri],�i〉 ∈
(

pre∗(
⋃k

i=1{〈K1,�i〉, 〈K1, �i〉})
∩ pre∗(

⋃k
i=1{〈K2,�i〉, 〈K2, �i〉})

)}

Compromisation assessment 1: What resources from a finite set R = {R1, . . . ,
Rk} could principal K have gained access to (solely) due to the presence of
maliciously or accidentally issued certificate set C′ ⊆ C?

{
Ri ∈ R

∣∣∣∣∣〈Kowner[Ri],�i〉 ∈
(

pre�[C](
⋃k

i=1{〈K ,�i〉, 〈K , �i〉})
−pre�[C − C′](

⋃k
i=1{〈K ,�i〉, 〈K , �i〉})

)}

Compromisation assessment 2: What principals could have gained access to re-
source R (solely) due to the presence of maliciously or accidentally issued
certificate set C′ ⊆ C?

{K | 〈K , �〉 or 〈K , �〉 is in post�[C]({〈Kowner[R], �〉})}
− {K | 〈K , �〉 or 〈K , �〉 is in post�[C − C′]({〈Kowner[R], �〉})}

Expiration vulnerability 1: What resources from a finite set of resources {R1, . . . ,
Rk} will principal K be prevented from accessing if certificate set C′ ⊆ C
expires?
Same as compromisation assessment 1.

Expiration vulnerability 2: What principals will be excluded from accessing re-
source R if certificate set C′ ⊆ C expires?
Same as compromisation assessment 2.
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Universally guarded access 1: Is it the case that all authorizations that can be is-
sued for a given resource R must involve a certificate signed by principal K?
For this, we use LTL model checking, with the labeling Ω defined as follows:

• All surface configurations that involve location K are labeled with atomic
proposition Q.

• All surface configurations 〈K ′,�〉 and 〈K ′, �〉, such that K ′ ∈ K, are la-
beled with atomic proposition S.

We then ask whether configuration 〈Kowner[R], �〉 satisfies the LTL formula

�(¬S U (Q ∨ �¬S)) (4)

The LTL formula given above describes two types of runs of the PDS:

1. Runs in which ¬S is true globally on the run. These represent chains where
nobody is authorized to access the resource R.

2. Runs in which S is true but Q is true before S becomes true. These rep-
resent chains where some principal does receive an authorization, but a
certificate issued by principal K is utilized.

Universally guarded access 2: Is it the case that all authorizations that grant a given
principal K ′ access to a finite set of resources {R1, . . . , Rk} must involve a
certificate signed by K?
We again use LTL formula (4). In this case, the labeling Ω is defined as fol-
lows:

• All surface configurations that involve location K are labeled with atomic
proposition Q.

• The surface configurations of the form 〈K ′,�i〉 and 〈K ′, �i〉 are labeled
with atomic proposition S.

We then ask whether every surface configuration of the form 〈Kowner[Ri],�i〉
satisfies LTL formula (4).

4.5. Efficiency of the automaton representation

Clarke et al. [12] give a “worst case” example for their name-reduction-closure
algorithm. We will use their example to illustrate the efficiency of the automaton
representation of a set of configurations. Consider the following set of certificates C:

K C → K0 Al Bj (for 0 � j < n)
K0 A → Ki (for 0 � i < n)
Ki A → K(i+1) mod n A (for 0 � i < n)
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In the rules given above, Al represents the string A · · ·A of length l. Name-reduction
closure yields the following n2(l + 1) + n2 rules:

K C → Ki Ak Bj (for 0 � i < n, 0 � j < n, 0 � k � l)
Ki A → Kj (for 0 � i < n and 0 � j < n)

Let PC be the PDS corresponding to the set of certificates C. It is true that
post�({〈K ,C〉}) is equal to the following set of configurations:

{〈Ki,AkBj〉 | for 0 � i < n, 0 � j < n, and 0 � k � l},

and, therefore, the size of the set post�({〈K ,C〉}) is n2(l + 1). However, the automa-
ton representation of post�({〈K ,C〉}) is only of size O(nl). The basic idea is the
following: given a pair of keys Ki and Kj and a stack configuration w, the configu-
ration 〈Ki, w〉 is in post�({〈K ,C〉}) iff 〈Kj , w〉 is. In the automaton representation,
such commonalities are captured by means of sharing. In particular, the automaton
accepting the set of configurations post�({〈K ,C〉}) has states that represent the stack
configurations AkBj , and various locations (representing the keys Ki) have ε-edges
and A-edges pointing to those shared states.

We now provide a worst-case example for a PDS-based algorithm, in particular for
the backward algorithm pre�.9 Since there is a one-to-one correspondence between
PDSs and a SPKI/SDSI system, the worst-case example can easily be recast in terms
of certificates.

Consider the PDS P = (P , Γ, ∆), where P = {p0, ..., pn−1}, Γ = {y}, and ∆
contains the following transitions (for 0 � i < n):

〈pi, y〉 ↪→ 〈p(i+1) mod n, ε〉
〈pi, y〉 ↪→ 〈pi, yy〉

The size of the PDS P is n. Suppose we want to compute pre�({〈p0, ε〉}). The ε-rules
create a cycle between the locations, and the second rule turns the automaton into a
clique. The resulting automaton has Θ(n2) transitions, and the pre� algorithm uses
time Θ(n3) (because every automaton transition can be created in n different ways).

4.6. Semiring labelings

This section discusses how annotating the PDS and the configuration automaton
with labels from a bounded idempotent semiring can answer several useful questions,
such as, “How long does a specific authorization last?” and “What is the trust level
associated with an authorization?”.10 It also describes an alternative way to handle
authorization specifications, which has certain advantages over previous proposals.

9We thank Stefan Schwoon for providing us with this example.
10A more complete treatment of this subject, including a justification of the necessary extensions to

algorithm Apre and certificate-chain reconstruction, can be found in [26].
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Definition 2. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1), where
D is a set, 0 and 1 are elements of D, and ⊕ (the combine operation) and ⊗ (the
extend operation) are binary operations on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕ is
idempotent (i.e., for all a ∈ D, a ⊕ a = a).

2. (D,⊗) is a monoid with the neutral element 1.
3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c).

4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
5. In the partial order � defined by: for all a, b ∈ D, a � b iff a ⊕ b = a, there

are no infinite descending chains.

Let each cert c in the set C be annotated with a label l(c) from a semiring R. Let
PC be the PDS corresponding to C. A transition rule r of PDS PC has the label of
the corresponding cert. Recall that the algorithm Apre constructs an automaton for
pre�(X), where X is the following set of configurations:

{〈KP , �〉, 〈KP , �〉}.

We start with the automaton AX that accepts the set of configurations X . Each transi-
tion (p, γ, q) of the automaton will also be labeled with an element from the semiring
R (denoted by l(p, γ, q)). Initially, all of the transitions in AX are labeled with 1. We
add transitions (p, γ, q) to AX according to the following saturation rule:

If r = 〈p, γ〉 ↪→ 〈p′, w〉 and there is a path for string w from p′ to q with cost c in
the current automaton, either (i) introduce a transition (p, γ, q) if the automaton
does not already contain such a transition, or (ii) change the label on (p, γ, q)
if (p, γ, q) already occurs in the automaton. The label of transition (p, γ, q) is
computed as follows:

l(r) ⊗ c if (p, γ, q) is a new transition
(l(r) ⊗ c) ⊕ l(p, γ, q) otherwise

The cost of a path in the automaton is computed by taking the ⊗ of the labels on the
transitions along the path.

Semirings for the two cases discussed below are shown in Table 2.

Certificate chains with maximal trust levels. For this problem, each certificate c
is assigned a trust level Tr(c) by the issuer of the certificate. Intuitively, Tr(c) denotes
the confidence that the issuer of c has in the relationship expressed by certificate c.

The elements of the semiring represent trust levels, where low, medium, and high
trust levels are denoted by L, M , and H , respectively. A fourth value, Z , is added as
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Table 2

Semirings for trust and validity

D ⊕ ⊗ 0 1

Trust {Z , L, M , H} 	 
 Z H

Validity N ∪ {±∞} max min −∞ +∞

the 0 element. Z , L, M , and H form a totally ordered set, where Z � L � M �
H .11

The semiring operations ⊗ and ⊕ correspond to join (�) and meet (�) on the
totally ordered set {Z , L, M , H}:

x � y =
{

x if x � y
y otherwise

x � y =
{

y if x � y
x otherwise

Referring back to the example from Section 2.2, for which the final automaton
is given in Fig. 9, if a trust level drawn from {Z , L, M , H} were assigned to each
certificate, the value that labels the transition (Kowner[H], �, s) in the automaton con-
structed by the algorithm Apre represents the “trust level” of Alice’s authorization.
The answer reported can then be used by the reference monitor for resource H
to make authorization decisions. The value that labels (Kowner[H], �, s) represents
the trust level of the certificate chain that has the least trust value in the ordering
Z � L � M � H – where lower in the ordering corresponds to “higher level of
trust” in the sense of everyday speech. For instance, if the label of (Kowner[H], �, s)
is H , then there exists a certificate chain such that (i) the chain justifies granting
authorization to Alice, and (ii) all of the chain’s labels have the value H .

Maximally valid certificate chains. Let V (c) be the expiration value of cert c; i.e.,
cert c will expire at time Tcurrent + V (c), where Tcurrent is the current time. The expi-
ration value of a certificate chain (c1 c2 · · · ck) is mink

i=1 V (ci). Suppose that Alice
wants to login to host H . If Alice provides a certificate chain that is only valid for
two minutes, then she will be logged off of the host after two minutes. Thus, Alice
wants to find a certificate chain that not only authorizes her to login to H , but has the
maximum expiration value among all such certificate chains. This is captured by the
semiring (N ∪ {−∞},⊕,⊗,−∞, +∞), where ⊕ is max and ⊗ is min.12 We label a
cert C with the interval representing its validity period. Let i be the label associated
with the transition (Kowner[H], �, s) in the automaton produced by algorithm Apre.
Then the authorization for Alice to login to host H will be valid for i time units.
(The reference monitor for H can use this information to log Alice off after i time
units.)

11Note that “highest level of trust” is denoted by the element H , which is lowest in the total order.
12(N ∪ {−∞},⊕,⊗,−∞, +∞) has infinite descending chains; however, the only operations per-

formed are min and max. Hence, only a finite number of values ever arise in any run of the saturation
process, and the semiring-labeling framework still applies.
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Authorization specifications via semirings. The semiring-labeling framework pro-
vides a different approach to handling the authorization specifications of auth certs.
Earlier, following Clarke et al. [12], we imposed a step in which every auth cert
C = (K , S, D, T , V ) is removed for which T does not include the authorization
specification T ′ of the request (i.e., the certificates retained are those for which
T ⊇ T ′). (This step was in addition to one that removes every name and auth cert
with an expired validity specification.)

However, this approach has a significant drawback, which is that it does not handle
situations in which a proof of authorization requires multiple certificate chains (either
a set of certificate chains or a dag of certificates, each path of which is a certificate
chain that proves some part of the required authorization).13 For instance, consider
the following certificate set:

c1 : (K KA 0 ((dir /afs/cs.wisc.edu/public/tmp) read)

[t1 . . . t2])

c2 : (K KA 0 ((dir /afs/cs.wisc.edu/public/tmp) write)

[t1 . . . t2])

Suppose that Alice makes the request

(KA,((dir /afs/cs.wisc.edu/public/tmp) (* set read

write))).

In this case, the chain “(c1)” authorizes Alice to read from directory
/afs/cs.wisc.edu/public/tmp, and a separate chain “(c2)” au-
thorizes her to write to /afs/cs.wisc.edu/public/tmp. Together,
(c1) and (c2) prove that she has both read and write privileges for
/afs/cs.wisc.edu/public/tmp. However, both of the certificates c1

and c2 would be removed from the certificate set prior to running the certificate-
chain discovery algorithm, because read �⊇ (* set read write) and
write �⊇ (* set read write). Consequently, no proof of authorization for
Alice’s request would be found.

13This is the basis for the observation by Li and Mitchell that the “5-tuple reduction rule” of [16] is
incomplete [22]. Although [12] speaks of “certificate chains”, and [16] refers to “. . . finding the correct
list of reductions . . .”, which appears to imply a single path, Carl Ellison confirmed to us that a scenario
that requires justification via a set of certificate chains (or a dag of certificates) is reasonable, and noted
that the justification of k-of-m threshold subjects also requires a set or a dag [15].
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Table 3

A semiring for authorization

D ⊕ ⊗ 0 1

Authorization P (Resources) ∪ ∩ ∅ Resources

The semiring-labeling framework [26] overcomes these problems, provided that
SPKI/SDSI authorization specifications form a bounded idempotent semiring.14

A semiring of authorization-specification values is shown in Table 3.
Certificate-set analysis is performed using the techniques for generalized push-

down reachability on weighted PDSs developed in [26]. After all name and auth certs
that have an expired validity specification are removed, the generalized pushdown
reachability algorithm is run, using all of the remaining certificates, starting with
a configuration automaton that accepts the language {〈KA, �〉, 〈KA, �〉}. In the
weighted configuration automaton that would be constructed, there would be a tran-
sition (Kowner[(dir /afs/cs.wisc.edu/public/tmp)], �, s) with weight
(* set read write). This indicates that Alice’s read/write request is autho-
rized, and the algorithm given in [26] for identifying a set of certificate-chains that
justify the authorization would return the set {(c1), (c2)}.

It should be noted that any number of such semirings can be used together. For-
mally, we use a cross-product semiring (i.e., elements are tuples, one component
from each semiring; ⊕ and ⊗ are computed pointwise; etc.)

4.7. Distributed authorization

This section describes how the automaton-based approach has certain advan-
tages for distributed authorization problems. This is the subject of on-going work,
but is sketched here to emphasize another potential advantage of the approach to
certificate-set analysis that has been taken in this paper.

The Computer Sciences Department (CS) at the UW-Madison is in the College
of Letters and Sciences (L&S). There are many other departments in L&S, such as
Biology. Suppose that there is a resource R that should only be accessible to the
faculty in a department that belongs to L&S. The owner of R might issue the cert

Kowner[R] � → KLS faculty �,

and a system administrator in L&S might issue the following set of certs CLS:

14As noted earlier, it is acceptable to have infinite descending chains as long only a finite number
of values ever arise in any run of the saturation process [26]. Regardless of whether we think of the
set of resources as being of finite or infinite cardinality, the authorization specifications of a given set
of certificates can only name a finite number of sets, durations of valid certificates, and roots of tree-
structured file hierarchies, and so only a finite number of values ever arise during saturation.
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KLS faculty → KCS faculty

KLS faculty → KBio faculty

· · · (certs for other departments in L&S)

A system administrator for CS might issue the following set of certs CCS :

KCS faculty → KB

· · · (certs for other faculty members in CS)

KCS students → KA

· · · (certs for other students in CS)

We want to determine whether principal KB is authorized to access resource R. In
the Clarke et al. setting, we would first compute the name-reduction closure of the
set of certs CLS ∪ CCS and then proceed as before. In a realistic setting, the sizes
of the sets CCS and CLS could be quite large, and thus computing the closure of the
union could require significant time and space.

The algorithms that have been presented in this paper are automaton-based. In the
distributed setting, the automaton-based approach may enjoy certain advantages over
an approach like that of Clarke et al. In particular, when work can be partitioned, the
authorization question for KB can be determined in a distributed manner: automata
can be computed at separate sites, and the information shipped between sites can
take the form of automata. For instance, we could compute the following two sets at
L&S and CS, respectively:

P1 = post�[CLS]({〈Kowner[R], �〉})

P2 = pre�[CCS]({〈KB, �〉, 〈KB, �〉})

If the intersection of P1 and P2 is non-empty (a standard operation on automata),
KB is granted authorization. A similar operation can be used to answer authorization
questions about other departments in L&S, such as Bio.

In this example, the independent name-reduction closures of CLS and CCS do
not yield any new certificates; therefore, the procedure proposed by Clarke et al.
would not provide a basis for savings during a distributed authorization-resolution
procedure.

Certain technical conditions must hold for this approach to be correct. For exam-
ple, a principal in CS must not refer to a local name in the L&S domain; i.e., the certs
must be organized hierarchically. These issues are the subject of on-going work.
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5. Related work

A certificate-chain-discovery algorithm for SPKI/SDSI was first proposed by
Clarke et al. [12]. Their algorithm was based on the idea of computing the name-
reduction closure of the certificate set. A credential-chain-discovery algorithm for
the role-based trust management language RT0 was presented by Li et al. [23]. One
feature that distinguishes our work from both of those papers is the use of automaton-
based model-checking techniques from the theory of model checking pushdown
systems [8,17]. In the present paper, we have shown that the techniques from the
PDS model-checking literature solve not only the problem of discovering certificate
chains, but also provide answers to a broad array of questions that one might wish
to pose about a set of SPKI/SDSI certificates. One of the most striking differences
between this approach and previous work on certificate-chain-discovery is that the
PDS-based certificate-chain-discovery algorithms compute the actual closure of the
certificate set, not just the name-reduction closure (e.g., see “Authorized access 3”
in Section 4.4). In general, the closure of a certificate set is an infinite set; however,
it is a regular set – a fact that we are not aware of anyone observing before in the
authorization literature – and hence can be represented via a finite-state automaton.

A fair amount of research exists on the formal semantics of SPKI/SDSI [1,19,
20,24]. Most of this research is geared towards giving a formal semantics to the
local name spaces and tuple-reduction rules of SPKI/SDSI. The SPKI/SDSI-to-PDS
connection presented in this paper provides an alternative semantics for SPKI/SDSI:
The names of an SPKI/SDSI name space are identified with the configurations of the
transition system defined by a PDS. Compared to existing work, the SPKI/SDSI-to-
PDS connection has the following advantages:

• It provides a semantic account of a number of aspects of SPKI/SDSI.
• It leverages off the substantial body of research that exists on the subject of

model-checking PDSs; in particular, one immediately obtains polynomial-time
algorithms for a number of certificate-set analysis problems.

• A standard logic, LTL, provides a way to answer a general class of certificate-
set-analysis questions. All such queries can be answered in time polynomial in
the size of the certificate set.15

The model-checking problem for “context-free processes” has been addressed
in [10,21]; context-free processes can be viewed as pushdown systems that have
a single control location.

Benedikt et al. [4] showed that pushdown systems were equivalent to an “unre-
stricted” version of the Hierarchical State Machines (HSMs) introduced (in their
restricted form) by Alur and Yannakakis [3]. (“Hierarchical” means that a system
consists of several state machines that can call each other; “unrestricted HSMs” al-
low recursive calls between machines.) Benedikt et al. also gave algorithms for LTL

15The constant of proportionality is exponential in the size of the formula; however, as with other types
of verification problems based on LTL model checking, the formulas of interest are usually small.
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and CTL∗ model checking for unrestricted HSMs [4]. Similar algorithms for LTL
model checking were developed independently and contemporaneously by Alur et
al. [2].
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