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Abstract. Several recent operating systems provide system calls that
allow an application to explicitly manage the privileges of modules with
which the application interacts. Such privilege-aware operating systems
allow a programmer to a write a program that satisfies a strong security
policy, even when it interacts with untrusted modules. However, it is
often non-trivial to rewrite a program to correctly use the system calls
to satisfy a high-level security policy. This paper concerns the policy-
weaving problem, which is to take as input a program, a desired high-
level policy for the program, and a description of how system calls affect
privilege, and automatically rewrite the program to invoke the system
calls so that it satisfies the policy. We present an algorithm that solves
the policy-weaving problem by reducing it to finding a winning mod-
ular strategy to a visibly pushdown safety game, and applies a novel
game-solving algorithm to the resulting game. Our experiments demon-
strate that our algorithm can efficiently rewrite practical programs for a
practical privilege-aware system.

1 Introduction

Developing practical but secure programs remains a difficult, important, and
open problem. Web servers and VPN clients execute unsafe code, and yet are
directly exposed to potentially malicious inputs from a network connection [24].
System utilities such as Norton Antivirus scanner [20], tcpdump, the DHCP
client dhclient [23], and file utilities such as bzip, gzip, and tar [16, 21, 22]
have contained unsafe code with well-known vulnerabilities that allow them to be
compromised if an attacker can control their inputs. Once an attacker compro-
mises any of the above programs, they can typically perform any action allowed
for the user that invoked the program, because the program does not restrict
the privileges with which its code executes.

Traditional operating systems provide to programs only weak primitives for
managing their privileges [9, 18, 23, 24]. As a result, if a programmer is to verify
that his program is secure, he typically must first verify that the program satisfies
very strong properties, such as memory safety. However, recent work [9, 18, 23,
24] has produced new operating systems that allow programmers to develop
programs that execute unsafe code but still satisfy strong properties, and to
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construct such programs with significantly less effort than fully verifying the
program. Such systems map each program to a set of privileges, and extend
the set of system calls provided by a traditional operating system with security-
specific calls (which henceforth we will call security primitives) that the program
invokes to manage its privileges. We call such systems privilege-aware systems.

This paper concerns the policy-weaving problem, which is to take a program
and a security policy that defines what privileges the program must have, and
to automatically rewrite the program to correctly invoke the primitives of a
privilege-aware system so that the program satisfies the policy when run on
the system. The paper addresses two key challenges that arise in solving the
policy-weaving problem. First, a privilege-aware system cannot allow a program
to modify its privileges arbitrarily, or an untrusted module of the program could
simply give itself the privileges that it requires to carry out an attack. Instead,
the system allows a program to modify its privileges subject to system-specific
rules. In practice, these rules are subtle and difficult to master; the developers
of the Capsicum capability system reported issues in rewriting the tcpdump

network utility to use the Capsicum primitives to satisfy a security policy, while
preserving the original functionality of tcpdump [23].

Second, the notions of privilege often differ between privilege-aware systems,
and thus so too do the primitives provided by each system, along with the rules
relating privileges to primitives. The Capsicum operating system defines priv-
ileges as capabilities [23], the Decentralized Information Flow Control (DIFC)
operating systems Asbestos, HiStar, and Flume [9, 18, 24] define privileges as the
right to send information, and each provide different primitives for manipulating
information-flow labels [7]. Thus, a policy-weaving algorithm for a specific system
must depend on the privileges and primitives of the system, yet it is undesirable
to manually construct a new policy-weaving algorithm for each privilege-aware
system that has been or will yet be developed.

We address the above challenges by reducing the policy-weaving problem to
finding a winning Defender strategy to a two-player safety game. Each game is
played by an Attacker, who plays program instructions, and a Defender, who
plays system primitives. The game accepts all sequences of instructions and
primitives that violate the given policy. A winning Defender strategy never allows
the Attacker to generate a play accepted by the game, and thus corresponds to
a correct instrumentation of the program, which invokes primitives so that the
policy is never violated. If the rules describing how a system’s primitives modify
privileges can be encoded as an appropriate automaton, then the game-solving
algorithm can be applied to rewrite programs for the system. We argue that
stack-based automata, in particular visibly pushdown automata (VPAs) [5], are
sufficient to model the rules of practical privilege-aware systems. Furthermore,
modular winning strategies exactly correspond to correct instrumentations of
programs for such systems.

Finding a modular winning strategy to a game defined by a VPA is NP-
complete. However, games resulting from policy-weaving problems are constructed
as products of input automata, and a game will often have a strategy whose
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structure closely matches one of the inputs. Inspired by this observation, we
present a novel algorithm that, given a game, finds a modular strategy with
structure similar to an additional, potentially smaller game called a scaffold.
We show that our scaffolding algorithm generalizes two known algorithms for
finding modular strategies [4, 19] — in particular, those algorithms result from
using two (different) “degenerate” scaffolds, and correspond to two ends of a
spectrum of algorithms that can be implemented by our algorithm. We eval-
uated the scaffold-based algorithm on games corresponding to policy-weaving
problems for six UNIX utilities with known vulnerabilities for the Capsicum ca-
pability system, and found that it could rewrite practical programs efficiently,
and that the choice in scaffold often significantly affected the performance of the
algorithm.

Organization §2 motivates by example the policy-weaving problem and our
game-solving algorithm. §3 defines the policy-weaving problem, and reduces the
problem to solving visibly-pushdown safety games. §4 presents a novel algorithm
for solving visibly pushdown safety games. §5 presents an experimental evalua-
tion of our algorithm. §6 discusses related work.

2 Overview

In this section, we motivate the policy-weaving problem. We sketch how the
policy-weaving problem can be reduced to finding a winning strategy to a class
of safety games, and how the structure of games constructed from policy-weaving
problems makes them amenable to our novel game-solving algorithm.

2.1 An Example Policy-Weaving Problem: Filter on MiniCap

We illustrate the policy-weaving problem using an example program Filter that
reads information from an input channel, processes and compresses the data,
and then writes the data to an output channel. Filter is inspired by the UNIX
utilities tcpdump and gzip, which have exhibited security vulnerabilities in the
past, and have previously been rewritten manually for the Capsicum privilege-
aware systems [23]. The executions of Filter are presented as the runs of the
automaton F in Fig. 1(a), where each transition is labeled with a program action.
Intraprocedural transitions are denoted with solid lines. Call transitions, which
place their source node on a stack (see Defn. 3), are denoted with dashed lines.
Return transitions, defined by the top two states of the stack, are denoted with
dash-dot lines, where the transition from the top state of the stack is labeled
with a 0, and the transition from the next state down on the stack is labeled
with a 1. In each figure, doubled circles denote accepting states.

Filter executes a no-op instruction (spin) until it reads data from its desig-
nated input channel (e.g., UNIX stdin) (read), processes a segment of its input
data (proc), and calls a compression function Compress (call). Compress first
opens and reads a configuration file (cnfg), compresses its input data (cmpr),
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Fig. 1. Automata models of (a) the program Filter (F), (b) Filter’s MiniCap mon-
itor (M), and (c) Filter’s policy for MiniCap (Pol). Executions of Filter are the
runs of the automaton in (a). Filter’s MiniCap monitor allows sequences of privilege-
instruction pairs and primitives accepted by the automaton in (b). Filter’s policy
allows all sequences of privilege-instructions pairs accepted by the automaton in (c).
Notation is explained in §2.1.

and returns the result (ret). After Compress returns, Filter writes the data
to its designated output channel (e.g., UNIX stdout) (wr), and loops to read
another segment of data (loop).

Unfortunately, in practice, much of the code executed by a practical imple-
mentation of functions like Filter and Compress (e.g., tcpdump and gzip [23])
is not memory-safe, and thus allows an attacker to violate the security policy
of a program. Suppose that the programmer wants to ensure that Filter only
interacts with communication channels by opening and reading from its desig-
nated input at read and writing to its designated output at wr, and Compress

only interacts with communication channels by reading from its configuration
files at cnfg. However, suppose also that the data-processing action proc in
Filter and the compression action cmpr in Compress perform memory-unsafe
operations when passed particular inputs. Then an attacker who can control the
inputs to Filter could craft a malicious input that injects code that opens a
communication channel (e.g., a file) and violates the policy.

However, if the programmer correctly rewrites Filter for a suitable privilege-
aware systems, then the rewritten Filter will satisfy such a policy even if it
executes code injected by an attacker. Consider a privilege-aware system Mini-
Cap, which is a simplification of the Capsicum capability system now included
in the “RELEASE” branch of FreeBSD [11, 23]. MiniCap maps each executing
process to a two-valued flag denoting if the process has high or low privilege. If a
process has high privilege H, then it can open communication channels, but if it
has low privilege L, then it can only read and write to its designated input and
output channels. A process on MiniCap begins executing with high privilege,
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but may invoke the MiniCap primitive dropcap, which directs MiniCap to give
the process low privilege, and never give the process the high privilege again. A
process thus might invoke dropcap after executing safe code that requires high
privilege, but before executing unsafe code that requires only low privilege.

MiniCap also allows one process to communicate with another process via a
remote procedure call (RPC), in which case the called process begins execution
with high privilege, independent of the privilege of the caller. The Capsicum
capability system uses RPC in this way, while DIFC systems allow a process to
call a process with different privileges via an analogous gate call [24].

MiniCap is partially depicted in Fig. 1(b) as an automaton M that accepts
sequences of privilege-instruction pairs and primitives executed by Filter. We
call M the MiniCap monitor of Filter. M accepts a trace of privilege-instruction
pairs and primitives if when Filter executes the sequence of instructions and
primitives, MiniCap grants Filter the privilege paired with each instruction.
The call and return transitions of M are omitted for simplicity; M transitions on
an RPC to the high-privilege state H, and returns from an RPC to the calling
state.

Filter’s policy can be expressed directly in terms of MiniCap’s privileges
by requiring that the instructions read and cnfg execute with high privilege,
while the instructions proc and cmpr execute with low privilege. The policy is
presented as an automaton Pol in Fig. 1(c), where each transition is labeled with
a privilege-instruction pair (the label * denotes any label that does not appear
explicitly on a transition from the same source state). The traces accepted by
Pol are the sequences of instruction-privilege pairs that violate the policy.

For Filter to satisfy its policy when it is run on MiniCap, it must use
the primitives of MiniCap in a way that is only indirectly related to, and sig-
nificantly more complex than, its desired policy. In particular, Filter must
(1) invoke dropcap after executing read but before executing proc, (2) call
Compress via RPC so that Compress executes cnfg with high privilege, (3) in-
voke dropcap after executing cnfg but before executing cmpr. This rewritten
Filter is “modular” across calls and returns, in the sense that the rewritten
Filter and Compress invoke primitives independently of the actions of each
other. On practical privilege-aware systems, a process that can be called via RPC
cannot necessarily trust its caller, and thus cannot trust information passed by
its caller. Thus a practical instrumentation must be modular.

The policy-weaving problem for Filter is to take F, its policy Pol, and Min-
iCap monitor M, and instrument Filter to use MiniCap’s primitives modularly
to satisfy Pol.

2.2 Policy-Weaving Filter via Safety Games

Each policy-weaving problem can be reduced to finding a winning strategy to a
safety game. A safety game is played by two players, an Attacker and Defender,
and is a transition system in which each state belongs to either the Attacker or
the Defender. The goal of the Attacker is to drive the state of the game to an
accepting state, while the goal of the Defender is to thwart the Attacker. The
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Fig. 2. (a) a selection of transitions of the game Gex that is the product of F, Pol, and
M from Fig. 1; (b) a strategy corresponding to a correct instrumentation of Filter.

game is played in turns: when the game enters an Attacker state, the Attacker
chooses the next transition, and when the game enters a Defender state, the
Defender chooses the next transition. A strategy for the Defender takes as input
a play of the game, and chooses the next transition for the Defender. A winning
strategy chooses Defender transitions that never allow the Attacker to drive the
state of the game to an accepting state.

From program, policy, and monitor automata, we can construct a game that
accepts all policy-violating executions of a version of the program that is instru-
mented to invoke the primitives of the monitor. The game is constructed by (1)
transforming the alphabets of the automata to a common alphabet defined by
the instructions, privileges, and primitives, (2) constructing the product of the
transformed automata, and (3) transforming the alphabet of the resulting prod-
uct game so that all Attacker transitions are labeled with program instructions,
and all Defender transitions are labeled with system primitives.

A subset of the transitions of the game Gex constructed from F, Pol, and M
are shown in Fig. 2(a). Each state of Gex is either an Attacker or Defender state
constructed from a triple of a state of F, state of Pol, and state of M, and each
state in Fig. 2(a) is labeled with its triple. Each Attacker state and Attacker
transition is denoted with a solid circle or line, while each Defender state is de-
noted with a dotted circle or line. The play “read, noop, proc” is accepted by
Gex (i.e., is a winning play for the Attacker) because it is an execution in which
the instrumented Filter does not execute dropcap before executing proc, caus-
ing proc to execute with high-privilege, which violates the policy Pol. However,
the play “read, dropcap, proc” is not accepted by Gex, because it corresponds
to an execution in which Filter invokes dropcap, causing proc to execute with
low privilege, which satisfies the policy.

One winning Defender strategy to Gex, which corresponds to the correct in-
strumentation of Filter given in §2.1, is presented in Fig. 2(b). The strategy is a



7

transducer that, from its current state, reads an instruction executed by Filter,
outputs the primitive paired with the instruction on the label of a transition t
(Fig. 2(b) includes a primitive noop that denotes that no MiniCap primitive
is invoked), transitions on t, and reads the next instruction. The strategy is
partitioned into a Filter module that chooses what primitives are invoked dur-
ing an execution of Filter, and a Compress module that chooses primitives
are invoked during the execution of Compress. The modules are independent,
in that the primitives chosen by the Compress module are independent of the
instructions and primitives executed by Filter before the most recent call of
Compress.

Solving games constructed from policy-weaving problems efficiently is a hard
problem. The game Gex is the product of F, Pol, and M, and thus has a state space
whose size is proportional to the product of the sizes of F, Pol, and M (Gex has
128 states). Furthermore, finding modular winning Defender strategies to games
is NP-complete in the size of the game. However, in practice, games constructed
from policy-weaving problems have a winning strategy whose structure closely
matches the structure of one of the input automata. For example, the winning
strategy in Fig. 2(b) closely matches the structure of F. Each execution of Filter
is in state Fn of F when the strategy is in state Sn, and in state Cn of F when
the strategy is in state Tn (see Fig. 1(a) and Fig. 2(b)). To find winning modular
strategies to games efficiently, we apply a novel algorithm that takes a game
and an additional, potentially smaller, game called a scaffold, and searches for
a winning strategy whose structure is similar to that of the scaffold. For Gex, F
serves as such a scaffold.

3 Policy Weaving as a Safety Game

3.1 Definition of the Policy-Weaving Problem

The policy-weaving problem is to take a program, a description of a privilege-
aware system, and a policy that describes what privileges the program must
have as it executes on the system, and to instrument the program so that it
always has the privileges required by the policy. We model a program, policy,
and privilege-aware system each as a Visibly Pushdown Automaton.

Definition 1. A deterministic visibly-pushdown automaton (Vpa) for internal
actionsΣI , call actionsΣC , and return actionsΣR (alternatively, a (ΣI , ΣC , ΣR)-
Vpa) is a tuple V = (Q, ι,QF , τi, τc, τr), where: Q is the set of states; ι ∈ Q is
the initial state; QF ⊆ Q is the set of accepting states; τi : Q × Σi → Q is the
internal transition function; τc : Q × Σc → Q is the call transition function;
τr : Q×Σr ×Q→ Q is the return transition function.

For Σ̂ = ΣI ∪ΣC ∪ΣR, each Vpa accepts a set of traces of (i.e., sequences of
actions in) Σ̂. Let ε denote the empty sequence. Let “.” denote the concatenation
of two sequences; for set X, x ∈ X, and s ∈ X∗, x . s = [x] . s and s . x = s . [x],
where [x] ∈ X∗ is the sequence containing only x. For sets X0 and X1, let X0 . X1

be the set of all sequences x0 . x1 for x0 ∈ X0 and x1 ∈ X1. Let τ : Q∗×Σ̂ → Q∗
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map a sequence of states s ∈ Q (i.e., a stack) and action a ∈ Σ̂ to the stack to
which V transitions from s on a:

τ(q . s, a) = τI(q, a) . s for a ∈ ΣI
τ(q . s, a) = (τC(q, a) . q . s) for a ∈ ΣC

τ((q0 . q1 . s
′), a) = τR(q0, a, q1) . s′ for a ∈ ΣR

Let ρ : Σ̂∗ → Q∗ map each trace to the stack that V is in after reading the trace.
Formally, ρ(ε) = ι, and for a ∈ Σ̂ and s ∈ Σ̂∗, ρ(s . a) = τ(ρ(s), a). A trace

t ∈ Σ̂∗ is accepted by V if ρ(t) = q . s with q ∈ QF . In a trace t, an instance c of
a call action is matched by an instance r of a return action if c is before r in t,
and each instance c′ of a call action in t between c and r is matched by a return
action r′ between c and r. A trace is matched if all call and return actions in the
string are matched. Let L(V ) be the set of all traces accepted by V . ut

A program is a language of traces of intraprocedural instructions, calls, and
returns of the program (e.g., for Filter in §2, spin, read, etc.). Let Instrs =

(ΣI , ΣC , ΣR), let Înstrs = ΣI ∪ΣC ∪ΣR, and let a program P be an Instrs-Vpa.
A program policy is a language of traces of program instructions paired with

privileges. A program’s privilege is a system-specific ability (e.g., for MiniCap
in §2, a program may have either the high privilege H or the low privilege L).
Let Privs be a set of privileges, and let the set of privileged executions of P

be (Înstrs × Privs)∗. Let an (Instrs,Privs)-policy for P be a (ΣI × Privs, ΣC ×
Privs, ΣR,×Privs)-Vpa (e.g., Fig. 1(c)) that accepts all privileged executions that
constitute violations.

A privilege-aware monitor is a language of privileged executions interleaved
with primitives. The primitives of a privilege-aware system are the set of security-
specific system calls that the application can invoke to manage its privileges (e.g.,
for MiniCap, the system call dropcap). Let Prims be a set of primitives and let

the instrumented executions of P be (Prims . Înstrs)∗. A privilege-aware monitor
of P reads an instrumented execution of P, and decides what privilege P has as
it executes each instruction. Let an (Instrs,Privs,Prims)-privilege-aware monitor
M be a ((ΣI × Privs) ∪ Prims, ΣC × Privs, ΣR × Privs)-Vpa.

Definition 2. (Policy-Weaving Problem) Let P be a program with internal,
call, and return alphabets Instrs = (ΣI , ΣC , ΣR). For privileges Privs, let Pol be
an (Instrs,Privs)-policy of P. For primitives Prims, let M be an (Instrs,Privs,Prims)-
privilege-aware monitor.

Let an instrumentation function be a function I : Înstrs
∗
→ Prims,

and let Itr : Înstrs
∗
→ (Prims . Înstrs)∗ map each sequence of instructions

to the instrumentation of the sequence defined by I: Itr(ε) = I(ε), and for

s ∈ Înstrs
∗

and a ∈ Înstrs, Itr(s . a) = Itr(s) . I(s . a) . a. Let PrivExM :

(Prims . Înstrs)∗ → (Înstrs × Privs)∗ map each instrumented execution to the
privileged execution that it induces on M: for primitives pj , instructions ij , and
privileges rj , PrivExM([p0, i0, . . . , pn, in]) = [(p0, r0), . . . , (pn, rn)] if and only if
[p0, (i0, r0), . . . , pn, (in, rn)] ∈ L(M).
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The policy-weaving problem PolWeave(P,Pol,M) is to find an instrumen-
tation function I such that:

1. I instruments P to never violate Pol: PrivExM(Itr(L(P))) ∩ L(Pol) = ∅.
2. I chooses primitives independently of the execution before the most recent

call; i.e., I is modular. Let p0, p1 ∈ Img(Itr), (where for a relation R, Img(R)
is the image of R), and p0 = p00 . c . p

0
1 . r0 . p

0
2, p1 = p10 . c . p

1
1 . r1 . p

1
2,

where call action c is matched by r0 in p0, and is matched by r1 in p1.
Let p01 = a0, b

0
0, a1, b

0
1, . . . , an, b

0
n, and let p11 = a0, b

1
0, a1, b

1
1, . . . , an, b

1
n. Then

b0i = b1i for each i in each such p0 and p1. ut

Defn. 2 formalizes the informal policy-weaving problem illustrated in §2. As
discussed in §4.1, if a policy-weaving problem has a solution I, then it has a
solution I∗ that may be represented as a VPA transducer T (i.e., a VPA where
each action is labeled with input and output symbols). The problem of rewriting
program P to satisfy the policy thus amounts to applying T to P, using a standard
product construction from automata theory.

Privilege-aware systems are typically applied to monitor programs that could
run injected code, yet an instrumentation function is defined in Defn. 2 to choose
a primitive after each instruction executed by the program. However, this is not
a fundamental limitation, as if a programmer or static analysis tool determines
that injected code might be run at a particular point in the program, then we can
define the monitor so that no primitive other than a noop can be invoked by the
instrumentation. Conversely, it is not too restrictive to allow an instrumentation
function to invoke only a single primitive after each instruction, as we can rewrite
the program to execute a sequence of security-irrelevant instructions between
which the instrumentation can invoke a sequence of primitives. In [14] App. A,
we describe two different privilege-aware systems as Vpa.

3.2 From Policy Weaving to Safety Games

Each policy-weaving problem PolWeave(P,Pol,M) can be reduced to a single-
entry Vpa (Sevpa [3]) safety game that accepts plays corresponding to instru-
mented executions of P that violate Pol when run on M. A Sevpa safety game is
a Vpa structured as a set of modules with unique entry points whose transitions
are decided in turn by an Attacker and a Defender. The states of the game are
partitioned into modules, where the system transitions to a unique module on
each call transition.

Definition 3. A Sevpa safety game for Attacker internal actions ΣI,A, De-
fender internal actions ΣD, call actions ΣC , and return actions ΣR is a tuple
G = (QA, QD, Q0, ι0, {(Qc, ιc)}c∈ΣC

, QF , τI,A, τD, τR), where

– QA ⊆ Q is a finite set of Attacker states.
– QD ⊆ Q is a finite set of Defender states. QA and QD partition the states

of the game Q.
– Q0 is the initial module.
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– ι0 ∈ Q0 ∩QD is the initial state.
– For c ∈ ΣC , Qc is the module of c. The sets {Qc}c∈ΣC

and Q0 are pairwise
disjoint, and partition Q.

– For c ∈ ΣC , ιc ∈ Qc ∩QD is the initial state of c.
– QF ⊆ Q0 ∩QD is the set of accepting states.
– τI,A : QA ×ΣI,A → QD is the Attacker internal transition function.
– τD : QD ×ΣD → QA is the Defender internal transition function.
– τR : QA ×ΣR × (QA ×ΣC)→ QD is the return transition function.

The modules are closed under internal transitions: for x ∈ {0}∪ΣC , q ∈ Qx, and
a ∈ ΣI,A, τI,A(q, a) ∈ Qx, and for a ∈ ΣD, τD(q, a) ∈ Qx. A Sevpa safety game
is not defined by using an explicit call transition function, because each call on
an action c pushes on the stack the calling Attacker state and calling action (we
thus call Γ = QA×ΣC the stack symbols of the game), and transitions to ιc. The
modules of a Sevpa safety game are closed under matching calls and returns:
for x ∈ {0}∪ΣC , c ∈ ΣC , qx ∈ Qx, qc ∈ Qc, and r ∈ ΣR, τR(qc, r, (qx, c)) ∈ Qx.

The plays of a Sevpa are defined analogously to the traces of a Vpa. Let
the configurations of G be C = Q× Γ ∗, let the attacker configurations be CA =
C ∩ (QA×Γ ∗), and let the defender configurations be CD = C ∩ (QD×Γ ∗). Let
the Attacker actions be ΣA = ΣI,A ∪ΣC ∪ΣR. τA : CA ×ΣA → CD maps each
Attacker configuration and Attacker action to a Defender configuration:

τA((q, s), a) = (τI,A(q, a), s) for a ∈ ΣI,A
τA((q, s), a) = (ιc, (q, a) . s) for a ∈ ΣC

τA((q, s0 . s
′), a) = (τR(q, a, s0), s′) for a ∈ ΣR

Because each transition on a Defender action is to an Attacker state and each
transition on an Attacker action is to a Defender state, all plays that transition
to a defined configuration are in (ΣD . ΣA)∗. Let ρ : (ΣD . ΣA)∗ → CD map
each play of alternating Defender and Attacker actions to the Defender config-
uration that the game transitions to from reading the play: ρ(ε) = (ι0, ε), and
ρ(p . a . b) = τA(τD(ρ(p), a), b). A play p ∈ (ΣD . ΣA)∗ is accepted by G if
ρ(p) = (q, ε) with q ∈ QF . Let L(G) be the set of all plays accepted by G. ut

Because all accepting states of a game are in the initial module, a game
can only accept matched plays. Superscripts denote the Vpa or Sevpa game to
which various components belong; e.g., QG are the states of Sevpa game G.

A Defender strategy of a two-player safety game G is a function σ : (ΣG
A)∗ →

ΣG
D that takes as input a sequence of Attacker actions, and outputs a Defender

action. σ is a winning strategy if as long as the Defender uses it to choose his
next transition of the game, the resulting play is not accepted by G: formally,
σtr((Σ

G
A)∗)∩L(G) = ∅ (for σtr as defined in Defn. 2). Let σ be modular if it sat-

isfies the condition analogous to a modular instrumentation function (Defn. 2).

Theorem 1. For each policy-weaving problem P = PolWeave(P,Pol,M), there
is a Sevpa safety game G = PolWeaveGame(P,Pol,M) such that each instrumen-
tation function that satisfies P defines a winning modular Defender strategy of



11

G, and each winning modular Defender strategy of G defines a satisfying instru-
mentation function of P.

The intuition behind the construction of G from P = PolWeave(P,Pol,M) is
given in §2.2. From P, we construct a game GP that accepts all instrumented
privileged instrumented executions of P. From Pol, we constructed a game GPol

that accepts all instrumented privileged executions that violate Pol. We construct
G as the product of GP, GPol, and GM. Proofs of all theorems stated in §3 and §4
are in [14] App. B.

4 Solving SEVPA Safety Games with Scaffolds

In this section, we present an algorithm ScafAlgo that finds a winning modular
Defender strategy for a given Sevpa safety game. The algorithm uses an addi-
tional, potentially smaller game, which we call a scaffold. We present ScafAlgo as
a non-deterministic algorithm, and demonstrate that a symbolic implementation
builds a formula whose size is decided entirely by the size of the scaffold and
an additional, tunable independent parameter. We describe a known algorithm
for finding modular strategies [4] and a known symbolic algorithm for finding
strategies of bounded size [19] as instances of ScafAlgo.

4.1 Definition and Key Properties of Scaffolds

The key characteristic of our algorithm is that it finds a winning Defender strat-
egy to a given game using an additional game, called a scaffold, and a specified
relation between the states of the scaffold and the states of the game.

Definition 4. (Scaffolds) Let S and G be two Sevpa safety games defined for
Attacker actions ΣI,A, Defender actions ΣD, call actions ΣC , and return actions
ΣR. S is a scaffold of G under R ⊆ QS ×QG if and only if:

1. If qS ∈ QS
F and for qG ∈ QG, R(qS, qG), then qG ∈ QG

F .
2. For c ∈ ΣC , R(ιSc , ι

G
c ).

3. For a ∈ ΣI,A, qS ∈ QS
A, and qG ∈ QG

A, ifR(qS, qG), thenR(τI,A(qS, a), τI,A(qG, a)).
4. For a ∈ ΣD, qS ∈ QS

D, and qG ∈ QG
D, ifR(qS, qG), thenR(τD(qS, a), τD(qG, a)).

5. For c ∈ ΣC , qSc ∈ QS
c , q

G
c ∈ QG

c , qS ∈ QS, qG ∈ QG, if R(qSc , q
G
c ) and R(qS, qG),

then R(τR(qS, r, (qSc , c)), τR(qG, r, (qGc , c))). ut

If so, then R is a scaffold relation from S to G.

Each scaffold relation defines an Attacker bisimulation, with respect to ac-
tions, from configurations of the scaffold to configurations of the game. However,
the bisimulation over configurations need not relate every accepting configura-
tion of the game to an accepting configuration of the scaffold.

Scaffold relations and modular strategies are connected by the following key
property, which provides the foundation for our algorithm. First, we define an
(S,R, k)-strategy of a game G, which intuitively is a strategy whose structure
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tightly corresponds to a scaffold S, according to a relation R from the states of S
to those of G. For a game G and Q′ ⊆ QG such that {ιc}c∈ΣG

C
⊆ Q′ ⊆ QG, let the

subgame G|Q′ be the game constructed by restricting the states and transition
functions of G to the states in Q′. Each subgame G′ of G defines a strategy σG′

as a Vpa transducer. To compute σG′(a0, a1, . . . , an), σG′ uses a0, a1, . . . , an as
the Attacker actions for a play of G′. If G′ is in an attacker state p, then σG
transitions on the next unread ai to τI,A(p, ai). If G′ is in a Defender state q,
then σG′ picks the least Defender action d, under a fixed total ordering of ΣD,
such that τD(q, d) ∈ Q′, outputs d, and transitions to τD(q, d). σG′ outputs the
Defender action chosen by G′ after it reads all of a0, a1, . . . , an.

Definition 5. For sets A and B, let a relation R ⊆ A×B be k-image-bounded
if for each a ∈ A, |{b | b ∈ B,R(a, b)}| ≤ k. Let G be a game, let S be a scaffold
of G under R ⊆ QS ×QG, and let k ∈ N. An (S,R, k)-Defender strategy σ′ of G
is a Defender strategy such that for some R′ ⊆ R, R′ ∩ (QS

A ×QG
A) is k-image-

bounded, G′ = G|Img(R′), and σ′ = σG′ . ut

Let game G have a winning Defender strategy, and let S be a scaffold of G
under a scaffold relation R. Then S is a scaffold of some subgame of G′ that
defines a winning strategy of G, under a finer scaffold relation than R.

Theorem 2. Let G have a winning modular Defender strategy, and let S be a
scaffold of G under R ⊆ QS ×QG. Then for some k, there is a winning modular
(S,R, k)-Defender strategy of G.

4.2 An Algorithm Parametrized on Scaffolds

To find modular winning Defender strategies to games, we can apply Thm. 2 to
search for (S,R, k)-strategies. The algorithm ScafAlgo, given in Alg. 1, takes a
game G, scaffold S, relation R ⊆ QS×QG, and parameter k, and searches for an
(S,R, k)-strategy by searching for an R′ ⊆ R that satisfies the condition given
in Defn. 5.

ScafAlgo searches for such anR′ in three main steps. In the first step, ScafAlgo
non-deterministically chooses a k-image-bounded subrelation of R from the At-
tacker states of S to the Attacker states of G. Specifically, on line [1], ScafAlgo
defines such a relation RA ⊆ QS

A ×QG
A by calling a function nd-bounded-subrel :

(QS
A ×QG

A)×N→ (QS
A ×QG

A), where nd-bounded-subrel(R∩ (QS
A ×QG

A), k) is a
k-image-bounded subrelation of QS

A ×QG
A.

In the second step (lines [2]–[5]), ScafAlgo constructs a relation RD ⊆ QS
D ×

QG
D such that if there is any R∗ ⊆ QS

D × QG
D such that G|Img(RA∪R∗) defines a

winning strategy of G, then the candidate strategy defined by G|Img(RA∪RD) is

a winning strategy of G. On line [2], ScafAlgo defines RD,ι ⊆ QS
D × QG

D that
relates each module-initial state of S to its corresponding module-initial state in
G. On line [3], ScafAlgo defines RD,i ⊆ QS

D × QG
D that, for each (pA, qA) ∈ RA

and internal Attacker action a ∈ ΣG
I,A, relates the a-successor of pA to the

a-successor of qA. On line [4], ScafAlgo defines RD,r ⊆ QS
D × QG

D that, for
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Input: G: a VPA safety game.
S: a scaffold of G
R ⊆ QS ×QG: a scaffold relation.
Output: If G has a winning (S,R, k)-strategy, then it returns a winning

(S,R, k)-strategy. Otherwise, it returns ⊥.
/* Choose RA: a k-image-bounded subrelation of R that defines

Attacker states of a candidate strategy. */

RA := nd-bounded-subrel(R∩ (QS
A ×QG

A), k);1

/* Construct RD: a relation to Defender states of the candidate

strategy defined by RA. */

RD,ι := {(ιSc, ιGc ) | c ∈ ΣG
C} ;2

RD,i := {(τSI,A(pA, a), τGI,A(qA, a)) | (pA, qA) ∈ RA, a ∈ ΣG
I,A} ;3

RD,r := {(τSR(pA, a, sA), τGR(qA, a, tA)) | (pA, qA), (sA, tA) ∈ RA, a ∈ ΣG
R} ;4

RD := RD,ι ∪RD,i ∪RD,r ;5

/* Check if the candidate strategy defined by RA and RD is a

winning strategy. */

StrWins := ∀(pD, qD) ∈ RD : qD /∈ QF ∧ ∃a ∈ ΣD : (τSD(pD, a), τGD(qD, a)) ∈ RA ;6

if StrWins then return σG|Img(RA∪RD)
else return ⊥7

Algorithm 1. ScafAlgo: non-deterministic algorithm that takes a game G, scaffold S,
and relation R ⊆ QS ×QG, and finds a winning modular Defender (S,R, k)-strategy
of G.

each (pA, qA), (sA, tA) ∈ RA and return action a ∈ ΣG
R, relates the r-successor

of (pA, sA) to the r-successor of (qA, tA). On line [5], ScafAlgo defines RD ⊆
QS
D ×QG

D as the union of Rι, RD,i, and RD,r.
In the third step (lines [6] and [7]), ScafAlgo checks if the candidate strategy

defined by G|Img(RA∪RD) is a winning strategy of G. On line [6], ScafAlgo defines
StrWins : B, which is true if and only if for each Defender-state of the candidate
strategy, the state is not an accepting state of the game, and there is some
action that the Defender can take to reach some Attacker-state of the candidate
strategy. On line [7], ScafAlgo returns the strategy defined by G|Img(RA∪RD) if and
only if G|Img(RA∪RD) is a winning strategy. Otherwise, ScafAlgo returns failure.

Theorem 3. Let G be a game, let S be a scaffold of G under R ⊆ QS × QG,
and let k be a positive integer. If σ = ScafAlgo(G,S,R, k), then σ is a winning
Defender strategy for G. If G has a winning Defender strategy, then for each
scaffold S and scaffolding relation R ⊆ QS × QG, there is some k such that
ScafAlgo(G,S,R, k) is a winning Defender strategy of G.

A deterministic implementation of ScafAlgo runs in worst-case time expo-
nential in the number of Attacker states. However, a symbolic implementation
of ScafAlgo can represent its input problem with a formula whose size depends
only on the scaffold, and the tunable parameter k. Assume that each component
of an input game G is given as interpreted symbolic functions and predicates
(i.e., states and actions are given as domains, and the transition functions are
given as interpreted functions), and that the relation R is given as an interpreted
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relation. Then ScafAlgo can be implemented by reinterpreting its steps to build
a symbolic formula StrWins (line [6]) whose models correspond to values of RA
and RD for which G|Img(RA∪RD) defines a winning strategy.

The size (i.e., the number of literals in) of StrWins is determined by S and k.
The universal quantification on line [6] is bounded, and can thus be encoded as a
finite conjunction; the nested existential quantification can then be Skolemized.
To check the membership (τSD(pD, a), τGD(qD, a)) ∈ RA, we can apply the fact
that RA is a k-bounded-image relation to represent the membership check with
k disjuncts. From these observations, the size of the StrWins formula can be
bounded by O(|QS

A|2k3).
Two known algorithms for finding modular strategies can be defined as

ScafAlgo applied to degenerate scaffolds. A naive implementation of the orig-
inal algorithm presented for finding modular strategies [4] can be defined as
ScafAlgo applied to the game itself as a scaffold. A symbolic algorithm for find-
ing strategies of bounded size [19], generalized to Vpa games, can be defined
as ScafAlgo applied to a scaffold with a single Attacker and Defender state for
each module. The known algorithms are thus ScafAlgo applied to scaffolds that
have complete information and no information about their games, respectively.
However, any game defined as a product of “factor” games has as a scaffold
the product of any subset of its factors. In particular, for each policy-weaving
game, we can automatically construct scaffolds from products of any subset of
the program, monitor, and policy automata.

5 Experiments

In this section, we discuss experiments that evaluate the reduction from policy-
weaving problems to safety games presented in §3, and the scaffold-based game-
solving algorithm presented in §4. The experiments were designed to answer two
questions. First, by reducing policy-weaving problems to solving games, can we
efficiently instrument practical programs for a real privilege-aware system so
that they satisfy practical high-level policies? Second, which scaffolds allow our
scaffolding game-solving algorithm to most efficiently solve games constructed
by our policy-weaving algorithm?

To answer these questions, we instantiated our policy-weaving algorithm to
a policy weaver for the Capsicum [23] capability operating system. We collected
a set of six UNIX utilties, given in Tab. 1, that have exhibited critical security
vulnerabilities [16, 21–23]. For each utility, we defined a policy that describes
the capabilities that the program must have as it executes. The policies were
defined by working with the Capsicum developers, or using general knowledge
of the utility. Detailed descriptions of the policies for each utility are given in
[13].

We applied our Capsicum policy-weaver to each utility and its policy, with
each scaffold defined as a product of some subset of the program, policy, and
monitor. The data from all scaffolds is given in [14] App. D; Tab. 1 presents data
for several illustrative scaffolds: the trivial scaffold “Triv.” defined in §4.2, the
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Name LoC Pol. Scaffolds
States Triv. Prog.-Pol. Prog.-Pol.-Mon.

k Time Prims. k Time Prims. k Time Prims.

bzip2-1.0.6 8,399 12 12 - - 1 0:04 6 1 0:09 6
fetchmail-6.3.19 49,370 12 7 - - 1 1:13 5 1 1:39 5
gzip-1.2.4 9,076 9 12 - - 1 1:47 15 1 - -
tar-1.25 108,723 12 3 3:47 15 1 1:20 15 1 - -
tcpdump-4.1.1 87,593 12 15 - - 1 0:30 6 1 0:45 6
wget-1.12 64,443 21 7 0:43 11 1 0:25 11 1 18:59 11

Table 1. Performance of the Capsicum policy weaver. Column “LoC” contains lines
of C source code (not including blank lines and comments) and “Pol. States” contains
the number of states in the policy. For the trivial scaffold “Triv.”, intermediate scaf-
fold “Prog.-Pol.,” and complete scaffold “Prog.-Pol.-Mon.,” k contains the simulation
bound, “Times” contains the times used to find a strategy, and “Prims.” contains the
number of callsites to primitives inserted. “-” denotes a time-out of 20 minutes.

product of the program and policy “Prog.-Pol”, and the product of all program,
policy, and monitor “Prog.-Pol.-Mon.” For each scaffold, we measured how long
it took our weaver to find a strategy, and with what minimum simulation bound
(i.e., value of k from §4) it either found a strategy or timed out. The results for
each scaffold are in the subcolumns of “Scaffolds” in Tab. 1, with each simulation
bound in subcolumn “k,” and each time in subcolumn “Time.”

The results indicate that while many scaffolds give similar results for some
practical problems, an intermediate scaffold constructed as a product of some but
not all of the inputs, e.g. Prog.-Pol., leads to the best performance. The difference
in performance could be due to the fact that a scaffold with little information
about the structure of its game (e.g., “Triv.”) generates a formula that allows
many transitions between a small set of states in a candidate strategy, while a
scaffold with total information (e.g., Prog.-Pol.-Mon.) generates a formula that
allows few transitions between a large set of states in a candidate strategy. An
intermediate scaffold strikes a balance between the two, generating a formula
that allows a moderate number of transitions between a moderate set of states.
The time taken to find a strategy does not directly depend on the size of the
original program, because we apply several optimizations when constructing a
policy-weaving game that cause the size of the constructed game to depend only
on the size of program modules relevant to a given policy.

For each scaffold, the column “Prims.” contains the number of callsites to
primitives dictated by the strategy. Our current game-solving algorithm does not
minimize the number of such callsites, and as a result, the number of callsites
may be larger than necessary. Moreover, in the current implementation, the
number of callsites does not depend on the scaffold used to find a strategy for
the game.
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6 Related Work

Privilege-aware operating systems: Decentralized Information Flow Control (DIFC)
operating systems such as Asbestos [9], HiStar [24], and Flume [18] manage priv-
ileges describing how information may flow through a system, and provide prim-
itives that allow an application to direct flows by managing the labels of each
object in the system. Tagged memory systems such as Wedge [6] enforce similar
policies per byte of memory by providing primitives for managing memory tags.
Capability operating systems such as Capsicum [23] track the capabilities of each
process, where a capability is a file descriptor paired with an access right, and
provide primitives that allow an application to manage its capabilities.

Our work complements privilege-aware operating systems by allowing a pro-
grammer to give an explicit, high-level policy, and automatically rewriting the
program to satisfy the policy when run on the system. Prior work in aiding
programming for systems with security primitives automatically verifies that a
program instrumented to use the Flume primitives enforces a high-level pol-
icy [15], automatically instruments programs to use the primitives of the HiStar
to satisfy a policy [8], and automatically instruments programs [12] to use the
primitives of the Flume OS. However, the languages of policies used in the ap-
proaches presented in [8, 12] are not temporal and cannot clearly be applied to
other systems with security primitives, and the proofs of the correctness of the
instrumentation algorithms are ad hoc. The work in [13] describes the approach
in this paper instantiated to a policy weaver for Capsicum. This paper describes
how the work in [13] may be generalized to arbitrary privilege aware systems,
and describes the novel game-solving algorithm applied in [13].

Inlined Reference Monitors: An Inlined Reference Monitor (IRM) [1, 10] is code
that executes in the same memory space as a program, observes the security-
sensitive events of the program, and halts the program immediately before it
violates a policy. IRMs have shortcomings that prohibit them from monitoring
many practical programs and policies. Because an IRM executes in the same
process space as the program it monitors, it cannot enforce policies throughout
the system. Furthermore, an IRM must be able to monitor security-sensitive
events of a program throughout the program’s execution, but there are known
techniques to subvert an IRM [1]. Privilege-aware operating systems address
the shortcomings of IRM by monitoring policies in the operating system, and
providing a set of primitives that an application invokes to direct the operating
system. The primitives are distinct from the security-sensitive events of interest.

Safety Games: Automata-theoretic games formalize problems in synthesizing
reactive programs and control mechanisms [2]. Alur et. al. give an algorithm
that takes a single-entry recursive state machine and searches for a strategy
that is modular, as defined in §3, and show that this problem is NP-complete [4].
Recursive state machines are directly analogous to Sevpa [3]. Madhusudan et.
al. give a set of symbolic algorithms that find a winning strategy for a given
game whose transition relation is represented symbolically [19]. The practical
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contribution of our work is that we express the emerging and practical problem of
rewriting programs for privilege-aware operating systems in terms of such games.
We also give an algorithm for finding modular strategies that can be instantiated
to a symbolic implementation of the algorithm of [4], to the “bounded-witness”
algorithm of [19].

Jobstmann et al. [17] consider the problem of rewriting a program to satisfy
a Linear Temporal Logic (LTL) specification, and reduce the problem to an LTL
game. Their reduction constructs Defender actions (i.e., “system choices” [17])
from failure-inducing assignments of expressions in the program, whereas our
work constructs Defender actions from a set of security system calls. Also, they
reduce program repair to finite-state games, while our reduction relies crucially
on modular strategies for Sevpa games. Thus, while the work of Jobstmann et
al., like ours, is formalized in terms of automata games, the approaches differ in
both the meaning of actions performed by players of the game, and the fact that
we require a context-sensitive model of a target program.

References
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