
A Runtime Environment for
Online Processing of
Operating System Kernel Events

Michael Schöbel, Andreas Polze

7th Intl. Workshop on Dynamic Analysis (WODA)
20. July 2009 – Chicago, IL

OS Kernel Event Tracing

■  Dynamic Analysis

■  Usage scenarios

□  System analysis
□  Debugging

□  Runtime-state monitoring

■  Problem identification

□  Search “bad” patterns in the event stream

□  Adapt the system as reaction to “bad” pattern

2

Advantages of event tracing

■  Detailed information

■  Hints for solution might be available in trace

■  ... under the assumption that
□  Meaningful set of events is monitored

□  System is usable with activated tracing

3

Limiting aspects

■  Problem identification

□  Experienced administrators

□   Pattern description

■  Huge logfiles

□  Detailed event information requires space

□   Online processing of events

■  Offline/Post-Mortem analysis model

□  Activate tracing – deactivate – (reboot?) – analysis
□   Execute callbacks / scripts when a pattern is detected

4

Agenda

■   Pattern description

■   Online processing of events

■   Execute callbacks / scripts when a pattern is detected

5

Pattern specification

■  Similar to regular expressions

□  Sequence [a, b, c]

□  Alternative (a | b | c)

□  Negation

~a

□  Simple events event:name

□  Arrays of events event[>4]:name

□  Conditions WHERE

□  Timeframe WITHIN
□  Result data RETURN

6

Example

7

EVENTS “wmkevents.h”

RULE nosyscallexit
 PATTERN {
 [syscall:a, ~(syscallexit|threadtermination), syscall]
 }
 WHERE { [ProcessId],
 [ThreadId],
 a.SyscallNr < 300 }
 RETURN { a.SyscallNr,
 a.TimeStamp }

Import Event Types

Rule Name
Event Pattern

Conditions

Return Values

Join fields in WHERE statement

8

 PATTERN {
 [syscall:a, ~(syscallexit|threadtermination), syscall]
 }
 WHERE { [ProcessId],
 [ThreadId] }

 PATTERN {
 [syscall:a, ~(syscallexit:b|threadtermination:c), syscall:d]
 }
 WHERE { a.ProcessId == b.ProcessId,
 a.ProcessId == c.ProcessId,
 a.ProcessId == d.ProcessId,
 a.ThreadId == b.ThreadId,
 a.ThreadId == c.ThreadId,
 a.ThreadId == d.ThreadId }

■  Abbreviated form ...

■  ... instead of

Compiler

■  Based on C++ version of Coco/R

□  Parse event description and pattern definition

□  Generate …

◊ Deterministic Finite Automata (DFA) for pattern
◊ Graphical (.dot) representation of DFA (for debugging)

◊ DLL for console printing of rule results

■  Features

□  Check WHERE conditions as early as possible

□  Save only the required parts of the event information
□  Compact binary representation of DFA

9

Deterministic Finite Automata

10

Agenda

■   Pattern description

■   Online processing of events

■   Execute callbacks / scripts when a pattern is detected

11

Instrumentation framework

■  Windows Monitoring Kernel

□  Static instrumentation

□  Based on Windows Research Kernel

◊ Custom build Windows Server 2003 kernel

□  Usage similar to KLogger for Linux

□  Overhead ~ 1% for 13k events per second

□  Compiler parses C header file wmkevents.h

◊ Get available event types
◊  Read event type descriptions

12

DFA processing model

■  Runtime state (RTS) information

□  Representation for single automata run

□  Data structure is generated by compiler

◊ Current state
◊  Event field information

◊  Result information

□  Evaluate conditions for current state

□  Determine valid transition

□  Conditions evaluated based on event data and RTS

□  Actions copy event data to RTS

13

Current implementation

■  User-mode application

□  Load rule representation

□  Read event stream from WMK logfile

□  Output:

◊  Result information

◊  Processing statistics

14

match #1
{ 106 485370171 }
match #2
{ 139 1320873480 }
match #3
{ 139 1350760491 }
match #4
{ 139 1351041183 }

Agenda

■   Pattern description

■   Online processing of events

■   Execute callbacks / scripts when a pattern is detected

15

React to detected patterns

■  Application domain

□  Reconfiguration

◊ Caching policy

◊ Number of worker threads
□   Callback to application specific function

■  System domain

□  Reconfiguration

◊  Prevent execution of malware pattern

◊  Adapt thread/process priorities
□   Execute script in kernel mode

16

Execute application specific callback

■  Programming interface for applications

□  Control rule lifecycle (load-activate-deactivate-unload)

□  Callback
◊  Registered for a specific rule

◊  Implements reaction to detected pattern

◊  Access to rule results (RETURN values)

◊  Access to execution context information

□  Synchronous or asynchronous processing in user mode

17

Kernel mode scripting

■  Extend rule specification language

□  Allow script definition: DO keyword

◊  Access to (named) events and event data fields

◊  Access to execution context information
◊  Runtime environment exposes some kernel functions

□  Execute reactions directly in the kernel

18

Outlook

■  Kernel integration of runtime environment

□  Efficient synchronization

□  Condition evaluation / transition search

■  Case studies

□  Server applications – worker thread management

□  Deadlock detection / prevention

□  Context-oriented programming

19

Summary

■   Pattern description

□  Regular expressions
□  Compiled to Deterministic Finite Automata

■   Online processing of events

□  No logfile required

■   Execute callbacks / scripts when a pattern is detected

□  OS kernel integrated runtime environment

20

