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Visualizing Program Behavior
Object Oriented Programs are difficult to maintain 
because of dynamic binding 

Visualization of program behavior is useful for developers to 
understand and debug OO-programs

Many tools are proposed to visualize dynamic 
behavior

e.g. ： AMIDA
A tool to visualize a Java execution trace as a sequence diagram
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Technical issue 
How to handle a huge amount of events included in 
an execution trace?

Approaches to reduce the size of  an execution trace
1. Filtering utility and library methods
2. Visualizing an overview of an execution trace
3. A query based interface to select interesting events

To understand an overview of an execution trace 
To investigate the detail of interesting features

Dividing an execution  trace into small Phases
corresponding to features

Developers can visualize only interesting features.
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Definition of “Phase”
A Phase in a execution trace

A consecutive sequence of run-
time events in an execution trace
An execution trace = a sequence 
of phases

Feature-level phase
Corresponding to an execution of 
a feature in the system

Minor phase
Corresponding to one of the tasks 
to achieve a feature

A trace comprises several feature-level phases.
A feature-level phases comprises several minor phases.

Feature-level phase Minor phase (18)

1. Login Show login form

Login

Get pre-user settings

Show entrance page

2. Listing 
items in DB

Get management 
information

Get pre-user items

Get list of items

Show list of items

3. Show the 
detail of an 
item

Get an item ID

Get a detail of the item

Show the item information

4. Updating 
the item 
information

Get an item ID

Update the item information

Get a detail of the item

Show the item information

5. Logout Logout

Show login form

Shutdown the system

<Phases of a Sample Trace>
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Key idea: different objects work 
for different features

Caller and callee object ID in each method calls in 
the sample trace

Monitoring changing of a working set of objects 
using a Least-Recently-Used (LRU) cache
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Phase Detection Process

1. Execute a program and record an execution trace

2. Detect phase transitions
Each phase uses its own working set of objects.
Changing of working set of objects = phase transition

3. Identify the head event of each phases
The beginning of a phase corresponds to a method call event 
following the end of a method belonging to the previous phase.

Output: the list of the events that is the head of the 
phases
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Recording an execution trace
Each method call event has the following attributes:

Timestamp
Caller object ID
Callee object ID
Call stack information

The depth of the call stack

A profiler based on JVMTI
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Detecting Phase Transitions
Observing the working set of objects using a LRU 
cache

Push the CallerID and CalleeID into the LRU cache
Record whether the cache is updated and calculate frequency

Timestamp ... 94 95 96 97 98 99 100 101 102 103 104 ...

CallerID … 137 137 -1 2 2 146 147 8 146 11 148 ...

CalleeID … 145 137 2 141 146 147 8 148 11 148 149 ...
LRU
Cache 

(cache size = 6)

… 145 137 2 141 146 147 8 148 11 148 149 …

… 137 145 -1 2 2 146 147 8 146 11 148 …

… 146 146 137 -1 141 2 146 147 148 146 11 …

… 141 141 145 137 -1 141 2 146 8 8 146 …

… 2 2 146 145 137 -1 141 2 147 147 8 …

… -1 -1 141 146 145 137 -1 141 2 2 147 …

Update Flag … 0 0 0 0 0 1 1 1 1 0 1 …

Frequency 
(window = 5) … 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 0.8 0.8 ...
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Identifying 
the Head Event of each phase
For each events that have higher frequency

Go back to a event that is likely to trigger the new phase
Identify an event who has the local-minimum depth of the call 
stack
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Case Study
Can we get correct phases by our approach?

Compare phases automatically detected by our approach
with phases manually identified by developers

How do the parameters effect to result ?
Use various  “Cache size” and “Window size” 

Cache size : the size of a LRU cache
Window size : the sliding window calculating frequency
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Procedure of the Case Study
1. Record execution traces from 2 industrial systems

Tool Management System: 1 program, 4 scenarios, 4 traces
Library Management System: 5 programs, 1scenario, 5 traces

2. Ask developers of the systems to manually  identify 
all phases in each trace

As correct feature-level phases and minor phases

3. Detect phases by our method with various 
parameter settings

9 traces × various parameter settings =  about 10,000 outputs
Less than 5 minutes on a workstation (Xeon 3.0 GHz)

4. Compare all phases detected by our approach with 
correct phases manually identified by developers 
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Result of the Case Study
Evaluation

The number of output phases with each 
parameter settings
Comparing the head event of output 
phases with one of parameter changes
Precisions and recalls with several 
parameter settings

Feature-level phase Minor phase (18)

1. Login Show login form

Login

Get pre-user settings

Show entrance page

2. Listing 
items in 
database

Get management 
information

Get pre-user items

Get list of items

Show list of items

3. Show the 
detail of an 
item

Get an item ID

Get a detail of the item

Show the item information

4. Updating 
the item 
information

Get an item ID

Update the item 
information

Get a detail of the item

Show the item information

5. Logout Logout

Show login form

Shutdown the system

<Phases of the Sample Trace>

<Working objects of the Sample Trace>
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The number of output phases
with various cache size and window size

A smaller cache size / 
window size lead to 
output a large number 
of phases. 
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Effect of ether 
cache size / window size

Result from 
Various  cache size 
and fixed window 
size

Result from 
Various window 
size and fixed 
cache size
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Precision 
with several parameter settings
Average precision of all parameter settings that 
result the same number of output phase

Very high precision 
with smaller number of 
output phases
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Recall 
with several parameter settings
Average recalls of all parameter settings  that result 
the same number of output phases
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Average Precision and Recall
for all traces

Average precision and Recall for various parameter 
settings that detect the same number of phases

Tool Management System (Feature-level phases : 3 to 5)

Library Management System (Feature-level phases : 15 )

#Phases Recall(Feature) Recall(All) Precision
5 0.56 0.39 0.93

10 0.90 0.48 0.80

#Phases Recall(Feature) Recall(All) Precision
10 0.24 0.20 0.99

15 0.53 0.29 0.98

20 0.45 0.38 0.96

Developers can apply our approach if they could estimate the 
number of feature-level phases from a use-case scenario.



Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 19

Summary
A novel approach to efficiently detecting phases 
using a LRU cache for observing a working set of 
objects

Light weight and easy to implement
Detect phases with precision
With only a little knowledge on an execution trace

Future work
to investigate a way to automatically map an execution trace to 
an use-case scenario
to investigate how the algorithm work in concurrent systems 
other than enterprise systems
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