
Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

July 21, 2008 WODA 2008 1

Feature-level Phase Detection
for Execution Trace Using Object Cache

Yui Watanabe, Takashi Ishio, Katsuro Inoue
Osaka University, Japan

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 2

Contents
Automatic phase detection for execution
traces of object-oriented programs

1. Background
Visualizing program behavior

2. Algorithm
An automatic phase detection technique

3. Case study and Result
analyzing several use-case scenarios on two industrial
systems

4. Summary and future works

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 3

Visualizing Program Behavior
Object Oriented Programs are difficult to maintain
because of dynamic binding

Visualization of program behavior is useful for developers to
understand and debug OO-programs

Many tools are proposed to visualize dynamic
behavior

e.g. ： AMIDA
A tool to visualize a Java execution trace as a sequence diagram

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 4

Technical issue
How to handle a huge amount of events included in
an execution trace?

Approaches to reduce the size of an execution trace
1. Filtering utility and library methods
2. Visualizing an overview of an execution trace
3. A query based interface to select interesting events

To understand an overview of an execution trace
To investigate the detail of interesting features

Dividing an execution trace into small Phases
corresponding to features

Developers can visualize only interesting features.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 5

Definition of “Phase”
A Phase in a execution trace

A consecutive sequence of run-
time events in an execution trace
An execution trace = a sequence
of phases

Feature-level phase
Corresponding to an execution of
a feature in the system

Minor phase
Corresponding to one of the tasks
to achieve a feature

A trace comprises several feature-level phases.
A feature-level phases comprises several minor phases.

Feature-level phase Minor phase (18)

1. Login Show login form

Login

Get pre-user settings

Show entrance page

2. Listing
items in DB

Get management
information

Get pre-user items

Get list of items

Show list of items

3. Show the
detail of an
item

Get an item ID

Get a detail of the item

Show the item information

4. Updating
the item
information

Get an item ID

Update the item information

Get a detail of the item

Show the item information

5. Logout Logout

Show login form

Shutdown the system

<Phases of a Sample Trace>

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 6

Key idea: different objects work
for different features

Caller and callee object ID in each method calls in
the sample trace

Monitoring changing of a working set of objects
using a Least-Recently-Used (LRU) cache

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 7

Phase Detection Process

1. Execute a program and record an execution trace

2. Detect phase transitions
Each phase uses its own working set of objects.
Changing of working set of objects = phase transition

3. Identify the head event of each phases
The beginning of a phase corresponds to a method call event
following the end of a method belonging to the previous phase.

Output: the list of the events that is the head of the
phases

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 8

Recording an execution trace
Each method call event has the following attributes:

Timestamp
Caller object ID
Callee object ID
Call stack information

The depth of the call stack

A profiler based on JVMTI

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 9

Detecting Phase Transitions
Observing the working set of objects using a LRU
cache

Push the CallerID and CalleeID into the LRU cache
Record whether the cache is updated and calculate frequency

Timestamp ... 94 95 96 97 98 99 100 101 102 103 104 ...

CallerID … 137 137 -1 2 2 146 147 8 146 11 148 ...

CalleeID … 145 137 2 141 146 147 8 148 11 148 149 ...
LRU
Cache

(cache size = 6)

… 145 137 2 141 146 147 8 148 11 148 149 …

… 137 145 -1 2 2 146 147 8 146 11 148 …

… 146 146 137 -1 141 2 146 147 148 146 11 …

… 141 141 145 137 -1 141 2 146 8 8 146 …

… 2 2 146 145 137 -1 141 2 147 147 8 …

… -1 -1 141 146 145 137 -1 141 2 2 147 …

Update Flag … 0 0 0 0 0 1 1 1 1 0 1 …

Frequency
(window = 5) … 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 0.8 0.8 ...

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 10

Identifying
the Head Event of each phase
For each events that have higher frequency

Go back to a event that is likely to trigger the new phase
Identify an event who has the local-minimum depth of the call
stack

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 11

Case Study
Can we get correct phases by our approach?

Compare phases automatically detected by our approach
with phases manually identified by developers

How do the parameters effect to result ?
Use various “Cache size” and “Window size”

Cache size : the size of a LRU cache
Window size : the sliding window calculating frequency

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 12

Procedure of the Case Study
1. Record execution traces from 2 industrial systems

Tool Management System: 1 program, 4 scenarios, 4 traces
Library Management System: 5 programs, 1scenario, 5 traces

2. Ask developers of the systems to manually identify
all phases in each trace

As correct feature-level phases and minor phases

3. Detect phases by our method with various
parameter settings

9 traces × various parameter settings = about 10,000 outputs
Less than 5 minutes on a workstation (Xeon 3.0 GHz)

4. Compare all phases detected by our approach with
correct phases manually identified by developers

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 13

Result of the Case Study
Evaluation

The number of output phases with each
parameter settings
Comparing the head event of output
phases with one of parameter changes
Precisions and recalls with several
parameter settings

Feature-level phase Minor phase (18)

1. Login Show login form

Login

Get pre-user settings

Show entrance page

2. Listing
items in
database

Get management
information

Get pre-user items

Get list of items

Show list of items

3. Show the
detail of an
item

Get an item ID

Get a detail of the item

Show the item information

4. Updating
the item
information

Get an item ID

Update the item
information

Get a detail of the item

Show the item information

5. Logout Logout

Show login form

Shutdown the system

<Phases of the Sample Trace>

<Working objects of the Sample Trace>

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 14

The number of output phases
with various cache size and window size

A smaller cache size /
window size lead to
output a large number
of phases.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 15

Effect of ether
cache size / window size

Result from
Various cache size
and fixed window
size

Result from
Various window
size and fixed
cache size

The result is stable. 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000 30000 35000

w
in

d
o
w

 s
iz

e

methodcall timestamp

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 16

Precision
with several parameter settings
Average precision of all parameter settings that
result the same number of output phase

Very high precision
with smaller number of
output phases

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

%

the number of output phases

Precision(All)

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 17

Recall
with several parameter settings
Average recalls of all parameter settings that result
the same number of output phases

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

%

the number of output phases

Precision(All)

Recall(Feature)

Recall(All)

Never detected some
correct phases
comprising a extremely
small number of objects
and method call events.

Increasing with the
number of output phases

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 18

Average Precision and Recall
for all traces

Average precision and Recall for various parameter
settings that detect the same number of phases

Tool Management System (Feature-level phases : 3 to 5)

Library Management System (Feature-level phases : 15)

#Phases Recall(Feature) Recall(All) Precision
5 0.56 0.39 0.93

10 0.90 0.48 0.80

#Phases Recall(Feature) Recall(All) Precision
10 0.24 0.20 0.99

15 0.53 0.29 0.98

20 0.45 0.38 0.96

Developers can apply our approach if they could estimate the
number of feature-level phases from a use-case scenario.

Department of Computer Science, Graduate School of Information Science and Technology, Osaka University July 21, 2008
WODA 2008 19

Summary
A novel approach to efficiently detecting phases
using a LRU cache for observing a working set of
objects

Light weight and easy to implement
Detect phases with precision
With only a little knowledge on an execution trace

Future work
to investigate a way to automatically map an execution trace to
an use-case scenario
to investigate how the algorithm work in concurrent systems
other than enterprise systems

	Feature-level Phase Detection� for Execution Trace Using Object Cache
	Contents
	Visualizing Program Behavior
	Technical issue
	Definition of “Phase”
	Key idea: different objects work for different features
	Phase Detection Process
	Recording an execution trace
	Detecting Phase Transitions
	Identifying �the Head Event of each phase
	Case Study
	Procedure of the Case Study
	Result of the Case Study
	The number of output phases
	Effect of ether �cache size / window size
	Precision �with several parameter settings
	Recall �with several parameter settings
	Average Precision and Recall�for all traces
	Summary

