Extending Dynamic Constraint
Detection with Disjunctive
Constraints

Nadya Kuzmina
John Paul
Ruben Gamboa
James Caldwell

University of Wyoming

Dynamic Constraint Detection

m Fixed grammar of universal properties.

Serves well for the discovery of a well-defined
set of problem-specific, but program-
Independent properties.

Does not allow to capture the logic of a
particular program.
m Goal: enable constraint detection to

capture the subtle essential properties of a
program under analysis.

"
State Space Partitioning Technique
(SSPT)

m Combines static and dynamic program
analysis.

m Automatically specializes the language of
constraint detection.

m Adds program-specific disjunctive
properties.

"
Introduction: State Space Partitions

if (x < 0) {...} P=x <0,
else if (y > 0) {...} = FPo=x>0Ay>0,
else {...} Pa=x>0/Ay <0

State space: {x,y)|-2"<x,y <2%}
Three disjoint subspaces, or abstract states: P,,P,,P,

- _ _ _ |
Types of Disjunctive Constraints

m Object Invariant
Properties a and b are mutually exclusive:"av ™

m Use cases for a method m
Method 2 was called when abstract states sor whold: SVW
m Transitions between abstract states induced by a method
m, P={(
pis an abstract state on variables at precondition of 2

g is a disjunction of abstract states on variables at postcondition
of m

m Daikon-inferred implications for a method m, p=t

pis an abstract state on variables at precondition of 2
{ is an instantiated template

The Calculator Example

public class CalcEngine {

//number which appears in the Calculator display
private int displayValue:

//store a running total

private int total;

//true if #’s pressed should overwrite display
private boolean newNumber:

//true if adding

private boolean adding:;

//true if subtracting

private boolean subtracting:

public void numberPressed(int number) {
if (newNumber)

displayValue = number;
else

displayValue = displayValue % 10 + number;:
newNumber = false ;
H

public void equals() {
if (adding)

displayValue = displayValue + total;
else if (subtracting)
displayValue = total — displayValue;

}

public void clear() { ... }
public void plus() { ... }

public void minus() { ... }

}

State Spaces for the Calculator Example

public class CalcEngine {

//number which appears in the Calculator display

private int displayValue;

//store a running total

private int total;

//true if #’'s pressed should overwrite display
private boolean newNumber:

//true if adding

private boolean adding:

//true if subtracting

private boolean subtracting;

public void numberPressed(int number) {
if (newNumber)

displayValue = number:;
else

displayValue = displayValue % 10 + number:
newNumber = false ;

}

public void equals() |
if (adding)

displayValue = displayValue + total:
else if (subtracting)
displayValue = total — displayValue;

H
public void clear() { ... }
public void plus() { ... }

public void minus() { ... }

}

IT, ={P,, P,}
P, = newNumber
P, = — newNumber

I1,={Q,,Q,.Q;}

Q,= adding

Q, =—adding Asubtracting
Q, = —adding A —subtracting

" A
Constraints for Calculator

public class CalcEngine {

//number which appears in the Calculator display
private int displayValue:

//store a running total

private int total;

//true if #’s pressed should overwrite display
private boolean newNumber:;

//true if adding

private boolean adding;

//true if subtracting

private boolean subtracting:

public void numberPressed(int number) {
if (newNumber)

displayValue = number;
else

displayValue = displayValue % 10 + number;
newNumber = false ;

}

public void equals() {
if (adding)

displayValue = displayValue + total;
else if (subtracting)

displayValue = total — displayValue;
i
public void clear() { ... }
public void plus() { ... }

public void minus() { ... }

}

IT,={Q,,Q,,Q;}
= adding

I, ={R,P}

P, = newNumber Q
Q, =—adding A subtracting

P, =—newNumber) :
Q, = —adding A —subtracting

Object Invariant:
context CalcEngine inv:
(!this.adding || !this.subtracting)

Method Constraints:

context CalcEngine: :numberPressed (int number)
pre: P1 || P2, Q1 || Q2 || Q3

post: orig(Pl) ==> P2, orig(P2) ==> P2

orig(Q1) => Q1l, orig(Q2) ==> Q2
orig(@3) ==> Q3
orig(Pl) <== (displayValue == orig (number))
orig(P2) ==>
(displayValue ==

10*orig(displayValue) +torig (number))
context CalcEngine: :clear ()
pre: P1 || P2, Q3
post: orig(Pl) ==> P1l, orig(P2) ==> P1,
orig(Q3) ==> Q3

" A
SSPT:Overview

m Form disjoint partitions of the state spaces of the

program variables involved in expressing the if-
then-else tests.

1T (adding) IT,={Q,,Q,,Q;}
j‘> , = adding
else if (subtracting) Q, =—adding Asubtracting

Q, = —adding A —subtracting

"
SSPT: Hypothesized Constraints

Let I[1={P,P,,....P}
m Preconditions: pvpr,v..vP
m Postconditions: P="P,vhR,i, jke[l.n]

m Object invariants: check whether the tests of the

corresponding if-then-else Sstatement are mutually
exclusive.

For the Calculator example

if (adding) (adding A —subtracting) v
(—adding Asubtracting) v

I it btracti :
else 1T (subtracting) (—adding A —subtracting)

" S
SSPT: Constraint Approximation
Algorithm

mlet I1={R,P, P}

m Notation: for i1€[1..3]
P.”*- abstract state P, over variable values at precondition
PP abstract state P, over variable values at postcondition

" S
SSPT: Constraint Approximation
Algorithm

At the post-condition program point for a method M compute the
transitional post-condition for each P 7 € [1..3], as follows:

DT e post pre post - ;
l. Assume that P/ = = P?°", P'"° = = PJ""" and P"" =
Y Lt - T . ~
—PY?°" are all possible transitions. Denote this by the set S
of indices S = {1, 2, 3}.

2

Perform dynamic analysis, and whenever P/ and Pj"'”t
both hold, remove j from S.

3. Approximate the transitional post-condition for P/ with a
disjunction of abstract states whose indices are contained in

the complement of S, PP™® = \/ Pros.
kese

ITI

" e
SSPT: Constraint Approximation

Algorithm

Intuition behind the algorithm:
Let ;7 = / and after step 2, let S ={1, 3}.

Then, P = "P"and P,"* = "P* are consistent with
the observed data.

PP v P v P IS true by construction.

The transition PR™=pr" follows by propositional
logic.

ContExt: Implementation

m Lightweight static analysis of Java source
code for abstract state extraction.

m Dynamic analysis tasks are delegated to
Daikon.

m ContExt combines the constraints inferred
by our approach with those inferred by
Daikon in its output.

= BN
Transitional Constraint Inference

m A splitting condition (splitter) is a boolean
expression in terms of some program variables.

m Let 7 be a program point which has all the
variables involved in a splitter a.

m g partitions the data trace into two mutually
exclusive subsets:

T, . contains the data values that satisfy a
T_,. contains the data values on which z does not
hold. p Pre T
m Each abstract state ' from a space s used
as a splitter on the data trace at postcondition
program points of the enclpsing clpss:

m Convenient checks when ' and ' both hold.

Limitations

m Our approach is primarily a dynamic analysis.
The reported constraints are unsound.
Potentially stronger constraints are reported.

m |Increase Iin the number of accidental constraints
reported and loss of precision.

m Given the same test suite, our approach may not
Infer some unconditional constraints that Daikon
would.

m Requires the presence of source code.

m The technique has been applied to only one
class at a time.

" S
Evaluation Challenge

m Quantitative measurement of the quality of
Inferred constraints is challenging.

m Propose a methodology for a quantitative
evaluation of constraint inference
techniques based on a modeling language
Alloy.

m Concentrate on recall.

m Apply it to comparatively evaluate Daikon
and ContExt on two examples.

Evaluation Methodology

Alloy Model of the

(Alloy facts)

Tﬂl‘gﬁt Frcl-grﬂm
[Java Enurc.nw Translation 1 Representation
code / (Alloy signatures)
Alloy
Human | ... |Essential Specification ﬁnalyze[ﬂ_
operator (Alloy assertions)
Auto
Recovered '| Translation g Cﬂ:ll;tl‘nl:‘l!::run the
constraints J cha

valid
assertions

. assertinnsl

inwvalid

Case Study 1: Puzzle

m The Puzzle class represents an environment
with an agent.

{0,0) | (1,0) |{2,0})
{(O,1) | (1,31) {2,121}
| | |
Y | Y | Y
(1,2)

oA

(0, 0}

(1,0}

(2,

)

i®

i T
(o, 21) | (1,1) ({2,
T -
{(o,2y | (1,2 {=2,2)
T— T—
b-l-

-

Puzzle Specification

Assertion in Alloy

English-language specification

assert moveForward 1 |
all p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit)) =>
(p’ .yPosition = p.yPosition <=> p’.yPosition = 0)

}

assert moveForward 2 |
all p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit)) =>

(p’ .yPosition - 1 = p.yPosition <=> p’.yPosition > 0)

}

assert moveForward 3 {
all p’: Puzzle, p : Puzzle |
(p in (p’.moveForward.Unit)) =>
p.yPosition =< p’.yPosition
}
assert moveForward 4 {
all p’: Puzzle, p : Puzzle |

(p in (p'.moveForward.Unit)) =>
(p.xPosition = p’ .xPosition)

The y-coordinate of the agent is to remain
the same only when it attempts a moveForward
from the top edge of the board (y is 0).

Otherwise, an agent moves forward exactly
one square (y-coordinate decreases by one).

The y-position of the agent at the post-
condition of the moveForward method is
less than or equal to the y-position at
pre-condition.

Moving forward does not affect the
x-coordinate of the agent.

» BN
Puzzle Evaluation

number of number of number of

assertions checked facts
assertions
Daikon 35 18 (51%) 35
Daikon (w/split) 35 23 (66%) 124
ContExt 35 28 (80%) 554

Comparative evaluation of the inferred constraints for ContExt
and Daikon on the Puzz1le example

Case Study 2: Employee Example

number of number of

number of checked facts
assertions assertions
Daikon 15 12 (80%) 55
ContExt 15 15 (100%) 39

Comparative evaluation of the inferred constraints for ContExt
and Daikon on the Emplovee example

Related Work

m Csallner et al. employ a dynamic symbolic execution
technique to obtain program-specific constraints.
performs symbolic execution over an existing test suite.

m Engler et al. and Yang et al. focus on recovering a
relatively small number of error-revealing properties.

m Dallmaier et al. use a combination of static and dynamic
analysis to construct state machines that represent an
object’s behavior in terms of its inspector and mutator
methods.

m Arumuga Nainar et al. are interested in finding relevant
boolean formulae.
The formulae partition the program state space into only two

subspaces, one in which a bug is exibited, and the other one in
which it is not.

= BN
Conclusions

m State Space Partitioning Technique
combines lightweight static and dynamic
analysis to provide for the inference of
program-specific disjunctive properties.

m Proposed an evaluation methodology for the

guality of inferred constraints based on the
Alloy modeling language.

Comparative Complexity

m Generalized disjunctive template:

2%, where kis the number of hypothesized
non-disjunctive constraints.

" S
Comparative Complexity

P | Number of program points in the target program.

Number of hypothesized constraints at a program
point.

L Number of data samples observed.

m Daikon (approximated with those of the simple incremental algorithm) .
Space complexity: .S = O * C)
Time complexity: 7=0 (P * C * L)

" J !
Comparative Complexity

P Number of program points in the target program.

C Number of hypothesized constraints at a program point.

L Number of data samples observed.

m Number of class-scoped partitions.

n The maximum number of states per class-scoped partition.

m ContExt:
P'=m*n*P,C'=m*n +C
Space complexity: S=0(P'*C") =0(mnP *(mn +C))
Time complexity: T=0(P'*C'*L)=0(mnP*(mn+C)*L)

	Extending Dynamic Constraint Detection with Disjunctive Constraints�
	Dynamic Constraint Detection
	State Space Partitioning Technique (SSPT)�
	Introduction: State Space Partitions
	Types of Disjunctive Constraints
	The Calculator Example
	State Spaces for the Calculator Example
	Constraints for Calculator
	SSPT:Overview
	SSPT: Hypothesized Constraints
	SSPT: Constraint Approximation Algorithm
	SSPT: Constraint Approximation Algorithm
	SSPT: Constraint Approximation Algorithm
	ContExt: Implementation
	Transitional Constraint Inference
	Limitations
	Evaluation Challenge
	�Evaluation Methodology
	Case Study 1: Puzzle
	Puzzle Specification
	Puzzle Evaluation
	Case Study 2: Employee Example
	Related Work
	Conclusions
	Comparative Complexity
	Comparative Complexity
	Comparative Complexity

