
Extending Dynamic Constraint
Detection with Disjunctive

Constraints

Nadya Kuzmina
John Paul

Ruben Gamboa
James Caldwell

University of Wyoming

Dynamic Constraint Detection

Fixed grammar of universal properties.
Serves well for the discovery of a well-defined
set of problem-specific, but program-
independent properties.
Does not allow to capture the logic of a
particular program.

Goal: enable constraint detection to
capture the subtle essential properties of a
program under analysis.

State Space Partitioning Technique
(SSPT)

Combines static and dynamic program
analysis.
Automatically specializes the language of
constraint detection.
Adds program-specific disjunctive
properties.

State space:
Three disjoint subspaces, or abstract states:

Introduction: State Space Partitions

}2,2,{ 3131 <≤− yxyx

321 ,, PPP

Types of Disjunctive Constraints
Object Invariant

Properties a and b are mutually exclusive:

Use cases for a method m
Method m was called when abstract states s or w hold:

Transitions between abstract states induced by a method
m,

p is an abstract state on variables at precondition of m
q is a disjunction of abstract states on variables at postcondition
of m

Daikon-inferred implications for a method m,
p is an abstract state on variables at precondition of m
t is an instantiated template

ba ¬¬ ∨

qp⇒

tp⇒

ws∨

The Calculator Example

State Spaces for the Calculator Example

newNumber
newNumber

 },{

2

1

211

¬≡
≡
≡Π

P
P

PP

gsubtractinadding
gsubtractinadding

adding
},,{

3

2

1

3212

¬∧¬≡
∧¬≡

≡
≡Π

Q
Q
Q

QQQ

Constraints for Calculator

newNumber
newNumber

 },{

2

1

211

¬≡
≡
≡Π

P
P

PP

gsubtractinadding
gsubtractinadding

adding
},,{

3

2

1

3212

¬∧¬≡
∧¬≡

≡
≡Π

Q
Q
Q

QQQ

SSPT:Overview

Form disjoint partitions of the state spaces of the
program variables involved in expressing the if-
then-else tests.

if (adding)

…

else if (subtracting)

…
gsubtractinadding

gsubtractinadding
adding

},,{

3

2

1

3212

¬∧¬≡
∧¬≡

≡
≡Π

Q
Q
Q

QQQ

SSPT: Hypothesized Constraints
Let

Preconditions:
Postconditions:
Object invariants: check whether the tests of the
corresponding if-then-else statement are mutually
exclusive.

For the Calculator example

if (adding)

…

else if (subtracting)

…

nPPP ∨∨∨ ...21

}...,,,{ 21 nPPP=Π

]..1[,,, nkjiPPP kji ∈∨⇒

)gsubtractinadding(
)gsubtractinadding(
)gsubtractinadding(

¬∧¬
∨∧¬
∨¬∧

Let
Notation: for

- abstract state over variable values at precondition
- abstract state over variable values at postcondition

SSPT: Constraint Approximation
Algorithm

},,{ 321 PPP=Π

pre
iP

iPpost
iP

iP
]3..1[∈i

SSPT: Constraint Approximation
Algorithm

SSPT: Constraint Approximation
Algorithm
Intuition behind the algorithm:
Let i = 1 and after step 2, let S = {1, 3}.
Then, are consistent with

the observed data.
is true by construction.

The transition follows by propositional
logic.

postprepostpre PPPP 3111 and ¬¬ ⇒⇒

postpostpost PPP 321 ∨∨

postpre PP 21 ⇒

ContExt: Implementation

Lightweight static analysis of Java source
code for abstract state extraction.
Dynamic analysis tasks are delegated to
Daikon.
ContExt combines the constraints inferred
by our approach with those inferred by
Daikon in its output.

Transitional Constraint Inference
A splitting condition (splitter) is a boolean
expression in terms of some program variables.
Let T be a program point which has all the
variables involved in a splitter a.
a partitions the data trace into two mutually
exclusive subsets:

: contains the data values that satisfy a
: contains the data values on which a does not

hold.
Each abstract state from a space is used
as a splitter on the data trace at postcondition
program points of the enclosing class.
Convenient checks when and both hold.

Πpre
iP

pre
iP post

jP

aT

aT¬

Limitations
Our approach is primarily a dynamic analysis.

The reported constraints are unsound.
Potentially stronger constraints are reported.

Increase in the number of accidental constraints
reported and loss of precision.
Given the same test suite, our approach may not
infer some unconditional constraints that Daikon
would.
Requires the presence of source code.
The technique has been applied to only one
class at a time.

Evaluation Challenge

Quantitative measurement of the quality of
inferred constraints is challenging.
Propose a methodology for a quantitative
evaluation of constraint inference
techniques based on a modeling language
Alloy.
Concentrate on recall.
Apply it to comparatively evaluate Daikon
and ContExt on two examples.

Evaluation Methodology

Case Study 1: Puzzle

The Puzzle class represents an environment
with an agent.

Puzzle Specification

Puzzle Evaluation

Case Study 2: Employee Example

Related Work
Csallner et al. employ a dynamic symbolic execution
technique to obtain program-specific constraints.

performs symbolic execution over an existing test suite.
Engler et al. and Yang et al. focus on recovering a
relatively small number of error-revealing properties.
Dallmaier et al. use a combination of static and dynamic
analysis to construct state machines that represent an
object’s behavior in terms of its inspector and mutator
methods.
Arumuga Nainar et al. are interested in finding relevant
boolean formulae.

The formulae partition the program state space into only two
subspaces, one in which a bug is exibited, and the other one in
which it is not.

Conclusions
State Space Partitioning Technique
combines lightweight static and dynamic
analysis to provide for the inference of
program-specific disjunctive properties.
Proposed an evaluation methodology for the
quality of inferred constraints based on the
Alloy modeling language.

Comparative Complexity

Generalized disjunctive template:
, where k is the number of hypothesized

non-disjunctive constraints.
k2

Comparative Complexity

P Number of program points in the target program.

C Number of hypothesized constraints at a program
point.

L Number of data samples observed.

Daikon (approximated with those of the simple incremental algorithm) :
Space complexity: S = O(P * C)

Time complexity: T = O (P * C * L)

Comparative Complexity
P Number of program points in the target program.

C Number of hypothesized constraints at a program point.

L Number of data samples observed.
m Number of class-scoped partitions.
n The maximum number of states per class-scoped partition.

ContExt:

Space complexity:
Time complexity:

CnmCPnmP +=′=′ *,**

)) (* () * CmnmnPOCPO(S +=′′=

)*)(*()**(LCmnmnPOLCPOT +=′′=

	Extending Dynamic Constraint Detection with Disjunctive Constraints�
	Dynamic Constraint Detection
	State Space Partitioning Technique (SSPT)�
	Introduction: State Space Partitions
	Types of Disjunctive Constraints
	The Calculator Example
	State Spaces for the Calculator Example
	Constraints for Calculator
	SSPT:Overview
	SSPT: Hypothesized Constraints
	SSPT: Constraint Approximation Algorithm
	SSPT: Constraint Approximation Algorithm
	SSPT: Constraint Approximation Algorithm
	ContExt: Implementation
	Transitional Constraint Inference
	Limitations
	Evaluation Challenge
	�Evaluation Methodology
	Case Study 1: Puzzle
	Puzzle Specification
	Puzzle Evaluation
	Case Study 2: Employee Example
	Related Work
	Conclusions
	Comparative Complexity
	Comparative Complexity
	Comparative Complexity

