e
Presentation at WODA 08

Mining Past-Time Temporal Rules
From Execution Traces

David Lo!.? Siau-Cheng Khoo? Chao Liu3

1Singapore Management University
’National University of Singapore
3Microsoft Research, Redmond

Issue on Software Specifications

o Documented specifications are often lacking, poor,
outdated and incomplete

Hard deadlines & " short-time-to-market’

Productivity == LOC or completed project
High turn-over rate of IT professionals

Difficulties & programmer’s reluctance in writing
formal specs
(Ammons et al., POPL'0O2, Yang et al., ICSE'06)

The Specification Problem

o Contributes to high software costs
Program comprehension = 50% of maintenance cost
High maintenance cost = 90% total cost
(Erlikh, 2000; Cimitile & Canfora, 2001)
US GDP software component = 214.4 billion USD.

o Causes challenges in ensuring correctness of systems
Difficulty in verifying correctness of systems

US National Institute of Standards and Technology
59.5 Billions annual lost due to bugs

3

Specification Mining (SM)

A process to discover protocols that a code exhibit, often through
an analysis of its execution traces (ABLO2 [POPL])

Benefits:
Aid Program Comprehension and Maintenance
Aid Program Verification

Automaton-based SM Rule-based SM

<Lock> -> <Unlock>

RRO1 [TICSE], CW98 [TOSEM]
ABLO2 [POPL], AMBLO3 [PLDI],
WMLO2 [ISSTA] , AXPXO07 [FSE]
MPO5 [ICEECS], LKO6 [FSE]

YEBBDO6 [ICSE]
LKLO8 [DASFAA,JSME]

Only future-time temporal
rules are mined 4

-
Past-Time Temporal Rules

Whenever a series of events pre occurs,
previously, another series of events post
happened before, denoted as: pre ->, post

Among most-widely used temporal logic expressions
(Dwyer,ICSE'99)

Why - Past-time temporal exp. -> complex future-time
Important ? temporal exp. (Laroussinie et al., TCS'95, LICS'02)

- Not minable by existing algorithms mining future
time rules (Yang et al. ICSE'06, Lo et al. JTSME'08]

- Many interesting properties are more intuitively
expressed in past-time

- Many interesting properties are non-symmetric
)

o Whenever a file is used (read or written), it needs to be
opened before.

file_used ->, file_open

o Whenever SSL_read is performed, SSL_init needs to be
invoked before.

ssl_read ->, ssl_init

o Whenever a valid client request a non-sharable resource
and the resource is not granted, previously the resource
had been allocated to another client that requested it.

request, not_granted ->, request, grant

o Whenever money is dispensed from an ATM, previously,
card was inserted, pin was entered, user was authenticated
and account balance suffices.

dispense ->, card, pin, authenticate, balance_suffice

6

Sample Past-Time Rules

e
Outline

o Motivation and Introduction

o Concepts
- Past-Time LTL, Statistical Significance
- Soundness and Completeness

o Mining Past-Time Rules
- Mining Strategy, Pruning Properties
- Removal of Redundant Rules
- Mining Framework

Preliminary Experiments
Discussion
Related Work

Conclusion & Future Work
O

Concepts

e
Past-Time Linear Temporal Logics (PLTL)

o Linear Temporal Logic (LTL)
- Logic that works on program paths
- A path corresponds to an execution trace
o Past-Time Linear Temporal Logic (PLTL)
- Add LTL with past time operators
- More succinct than LTL
o Temporal operators under consideration
- 6’ - Globally
- 'F' - Once in the future
- *X' - Next (immediate)
- "F-1' - Once in the past
- *X-1' - Previous (immediate)

-
PLTL- Examples

o X-1F-1 (file_open)
Meaning: At a time in the past file is opened

o 6(file_read -> X-! F-! (file_open))

Meaning: Globally whenever file is read, at a time in the past
file is opened

o 6((account_deducted = XF (money_dispensed)) -> (X-1F-!
(balance_suffice = (X-!F-! (cash_requested ~ (X-!F?
(correct_pin~(X-1F-! (insert_debit_card)))))))))

Meaning: Globally whenever one's bank account is deducted and
money is dispensed (from an ATM), previously user inserted

debit card, entered correct pin, requested for cash and
account balance suffices.

-
Notations and Scope of Mined Rules

o Denote a past-time rule as pre ->, post
o Sample mappings btw. rule representations and PLTL expressions

MNotation LTL MNotation
a—pb Gla— X TF Th)
(a,b) —pc Gilan XFb) — (X 1F1a))
a—p (b c) Gla— X '"F YHen XTHFHY)
{a,b) —p {c,d) Gilan XFb) — (X 'F~Yd A X WF o))

o Scope of minable temporal expressions

rules ;= G| pre — post)
pre = (event)|(event A X Fpre))
post 1= (event)|(event A X ~'F Y post))

11

Statistical Significance Metrics

o Distinguish Significant Rules via Statistical Notions

- Support: The number of traces supporting the premise pre

- Confidence: The likelihood of the premise pre being preceded
by the consequent post
Rule: <b,a> ->,<C>
Support: 2

Sample Traces Corres. to S1 and S2

Confidence: 100%

Identither | Trace'Sequence
g | ‘ All occurences of <b,a> is
gj‘-' preceded by <c>
Rule: <b,a> ->p<e>
Support: 2
Confidence: 50% 15

-
Soundness and Completeness

o Ensure Soundness and Completeness
- With respect to input traces and specified thresholds

o Sound
All mined rules are statistically significant
o Complete
All statistically significant rules are mined
or represented

o Commonly used in data/pattern mining

13

Mining Past Time
Temporal Rules

-
High-Level Mining Strategy

o Mining Option 1: Check for all 2-event rules (n x n of
them) for statistical significance.

- Not scalable for rules of arbitrary lengths.

o Our Mining Strategy: Consider mining as a search-space
traversal for significant rules

- Explore the search space depth-first
- Identify significant rules

o Employ pruning strategies to throw away search space
containing insignificant rules

o Detect search spaces containing redundant rules early
during the mining process

15

Anti-Monotone Pruning Strategies

[Apriori — Con fidence]
Rx=1p —,C; Ry=»p —>Pd
cCd
conf(Rx) < min_conf
conf(Ry)<min_conf

Ry 1s not significant

[Apriori — Support]
Rx = p —,c; Ry = q —»c
pLgq
sup(Rzr) < min_sup
sup(Ry)<min_sup

Ry 1s not significant

Rx: a -5z ; sup(Rx) < min_sup ' Rx: a -> z . conf(Rx) < min_conf

ab->z a->zb
a,b,c ->z Non- a ->»z,b,c Non-
RYs a,c->z [significant Ry, a-s2z,c [significant
G,b,d ->PZ a ->PZ,b,d
_/ _/

16

-
Detecting Redundant Rules

Rx = p —,c; Ry = q —,d
p+tc C qg++d
sup(Rx) = sup(Ry)
conf(Rx) = conf(Ry)

Redundant rules are
Identified and removed
early during mining

Rx 1s redundant process.
Rx: a ->,b,c,d
C‘a' > l; bc A Redundant
Ry. = %p iff
a "z bl-;cd s sup and conf are
a - p*~. ‘l'he same

_/

17

-
Algorithm Steps

o Step 1: Generate a pruned set of significant pre-

conditions satisfying the minimum support
threshold.

o Step 2: For each pre-condition, find occurrences of pre
in the trace database.

o Step 3: For each pre-condition, generate a pruned set of
significant post-conditions satisfying the
minimum confidence threshold.

o Step 4: Remove remaining rules that are redundant. Note
that many/most redundant rules have been
removed at step 1 and 3.

18

Mining Framework

O
o
Q.
@

| Instrumentation

PART 1

Test , Trace |, Trace Abst. / PART 2
Suite Generation | | Abstraction Traces
| Mining Mined PART 3
_________________________________ | I
Solocted Display &
P electe
> Model [Verification <—/ User
Rules Selection PART 4
v
Legend o End
CI User Input Process Elntermediate Result J
19

Preliminary Experiments

-
Experiment Setups - JBoss Application Server

o JBoss Application Server (JBoss AS)
- One of the most widely used J2EE application server
- Analyze the transaction and security component

o Program Instrumentation & Trace Generation
- Instrument the application using JBoss- AOP
- Run regression tests from JBoss AS distribution

0 Transaction component

- 2551 events, 64 unique events

- min_sup: 25, min_conf: 90%

- Mining time: 30 seconds , Mined non-redundant rules: 36
o Security component

- 4115 events, 60 unique events

- min_sup: 15, min_conf: 90%

- Mining time: 2.5 seconds, Mined non-redundant rules: 4
21

-
A Rule from JBoss Transaction
Premise ——p Consequent

Transactionlmpl.isDone() TxManagerLocator.getinstance()
TxManagerLocator.locate()
TxManagerLocator.tryJNDI()
TxManagerLocator.usePrivateAPI()
TxManager.getinstance()
TxManager.begin()
XidFactory.newXid()
XidFactory.getNextld()
XidImpl.getTrulyGloballd()
Transimpl.assocCurrentThread()
... bevents ...
TxManager.getTransaction()

Whenever a transaction is checked for completion (premise), previously
transaction manager is located (ev 1-4 consequent), transaction manager &
impl are initialized (ev 5-6,10-12), ids are acquired (ev 7-9,13-15) and
transaction object is obtained from the manager (ev 16).

22

-
A Rule from JBoss Security

Premise —>p Consequent
SimplePrincipal.toString() XLoginConflmpl.getConfEntry()
SecAssoc.getPrincipal() PolicyConfig.get()
SecAssoc.getCredential() XLoginConflmpl$1.run()
SecAssoc.getPrincipal() Authenlinfo.copyAppConfEntry()
SecAssoc.getCredential() AuthenlInfo.getName()

ClientLoginModule.initialize()
ClientLoginModule.login()
ClientLoginModule.commit()
SecAssocActs.setPrincipallnfo()
SetPrincipallnfoAction.run()
SecAssocActs.pushSubjectContext()
SubjectThreadLocalStack.push()

Whenever principal and credential info is required (the premise), previously
config. info is checked to determine the auth. service availability (ev 1-5),
actual authentication events are invoked (ev 6-8) and principal info is bound

to the subject (ev 9-12)
23

L
Discussions

o Setting min-sup/conf threshold

- Appropriate values depend on application

- Mining as an iterative process

o Sound and Complete

- With respect to trace and specified thresholds

- If trace is not complete or buggy so does the results

- Confidence provide a measure of tolerance to buggy traces
o Scalability

- Algorithm works better with many shorter traces than
one very long trace

- It's better to split a trace to sub-traces

- Focus on immediate inter-component interaction (Mariani et al., ICSE'08)

- Trace abstraction (Ammons et al., POPL'02)
24

e
Related Work

o Daikon
- Complement Daikon by mining temporal constraints
o Mining Automata
- Many work: ABLO2, RRO1, MP0O5, AXPX07, LKO6, ..

- Diff: Focus on statistically significant property rather
than overall behavior

o Mining Future-Time Temporal Rules
- Many work: YEBBDO6, LKLOS, ..
- Diff: Mining past-time temporal rules
o Mining Sequence Diagram: BLLO6, LMKO7, LMOS, ...
o Mining from Code: RG6J07, WNO5, ...
o Data Mining: S99, AS94, YHAO3, WHO04, LKLO7, ..

25

Conclusion

o Propose a new approach to mine past-time temporal rules using
dynamic analysis, not minable by existing tools:

Whenever a series of events pre occurs,
previously, another series of events post
happened before, denoted as: pre ->, post

o Address the problem of runtime costs by employing smart
pruning strategies.

- Throw away insignificant rules en-masse
- Throw away redundant rules en-masse

o Preliminary experiments on traces of JBoss AS show utility of
the technique to discover program behavioral rules/specifications

26

Future Work

o User Guided Mining

- Let user provide more information to the mining process
aside from the significance thresholds

- Mining Scenario-Based Triggers and Effects
(- ASE'O8 - to-appear) - Mining Sequence Diagram

o Mining more complex LTL expressions

- Incorporating both future and past-time temporal rules
o Improving the scalability of the technique

- Abstraction technique

- Pruning strategies
o Experimenting with more case studies

27

Thank you

Comments ? Questions ? Advices ?

	Slide Number 1
	Issue on Software Specifications
	The Specification Problem
	Slide Number 4
	Past-Time Temporal Rules
	Sample Past-Time Rules
	Outline
	Concepts
	Past-Time Linear Temporal Logics (PLTL)
	PLTL- Examples
	Notations and Scope of Mined Rules
	Statistical Significance Metrics
	Soundness and Completeness
	Mining Past Time�Temporal Rules
	High-Level Mining Strategy
	Anti-Monotone Pruning Strategies
	Detecting Redundant Rules
	Algorithm Steps
	Mining Framework
	Preliminary Experiments�
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Discussions
	Related Work
	Conclusion
	Future Work
	Slide Number 28

