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Issue on Software Specifications

o Documented specifications are often lacking, poor, 
outdated and incomplete

Hard deadlines & `short-time-to-market’
Productivity == LOC or completed project
High turn-over rate of IT professionals
Difficulties & programmer’s reluctance in writing 
formal specs 
(Ammons et al., POPL’02, Yang et al., ICSE’06)
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The Specification Problem

o Contributes to high software costs
Program comprehension = 50% of maintenance cost
High maintenance cost = 90% total cost
(Erlikh, 2000; Cimitile & Canfora, 2001)

US GDP software component = 214.4 billion USD.

o Causes challenges in ensuring correctness of systems
Difficulty in verifying correctness of systems
US National Institute of Standards and Technology    

59.5 Billions annual lost due to bugs
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Specification Mining (SM)
A process to discover protocols that a code exhibit, often through 

an analysis of its execution traces (ABL02 [POPL])

Benefits:
Aid Program Comprehension and Maintenance 

Aid Program Verification

RR01 [ICSE], CW98 [TOSEM]

ABL02 [POPL], AMBL03 [PLDI], 

WML02 [ISSTA] , AXPX07 [FSE]

MP05 [ICEECS], LK06 [FSE]  

Automaton-based SM
0 1

Rule-based SM
<Lock> -> <Unlock>

YEBBD06 [ICSE]

LKL08 [DASFAA,JSME]  

Only future-time temporal 
rules are mined
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Past-Time Temporal Rules

Whenever a series of events pre occurs, 
previously, another series of events post
happened before, denoted as: pre ->P post

Among most-widely used temporal logic expressions
(Dwyer,ICSE’99)

- Past-time temporal exp. -> complex future-time 
temporal exp. (Laroussinie et al., TCS’95, LICS’02)

- Not minable by existing algorithms mining future 
time rules (Yang et al. ICSE’06, Lo et al. JSME’08]

- Many interesting properties are more intuitively 
expressed in past-time

- Many interesting properties are non-symmetric

Why 
Important ?
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o Whenever a file is used (read or written), it needs to be 
opened before.

file_used ->P file_open

o Whenever SSL_read is performed, SSL_init needs to be 
invoked before.

ssl_read ->P ssl_init

o Whenever a valid client request a non-sharable resource 
and the resource is not granted, previously the resource 
had been allocated to another client that requested it.

request, not_granted ->P request, grant

o Whenever money is dispensed from an ATM, previously, 
card was inserted, pin was entered, user was authenticated
and account balance suffices.

dispense ->P card, pin, authenticate, balance_suffice
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Outline

o Motivation and Introduction
o Concepts

− Past-Time LTL, Statistical Significance
− Soundness and Completeness

o Mining Past-Time Rules
− Mining Strategy, Pruning Properties
− Removal of Redundant Rules
− Mining Framework

o Preliminary Experiments
o Discussion
o Related Work
o Conclusion & Future Work
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Concepts
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Past-Time Linear Temporal Logics (PLTL)
o Linear Temporal Logic (LTL)

− Logic that works on program paths  
− A path corresponds to an execution trace

o Past-Time Linear Temporal Logic (PLTL)
− Add LTL with past time operators
− More succinct than LTL

o Temporal operators under consideration
− `G’ – Globally
− `F’ – Once in the future
− `X’ – Next (immediate)
− `F-1‘ – Once in the past
− `X-1’ – Previous (immediate)
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PLTL- Examples
o X-1F-1 (file_open)

Meaning: At a time in the past file is opened
o G(file_read -> X-1 F-1 (file_open))

Meaning: Globally whenever file is read, at a time in the past   
file is opened

o G((account_deducted ^ XF (money_dispensed)) -> (X-1F-1

(balance_suffice ^ (X-1F-1 (cash_requested ^ (X-1F1

(correct_pin^(X-1F-1 (insert_debit_card)))))))))
Meaning: Globally whenever one’s bank account is deducted and 
money is dispensed (from an ATM), previously user inserted 
debit card, entered correct pin, requested for cash and 
account balance suffices.
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Notations and Scope of Mined Rules
o Denote a past-time rule as pre ->P post
o Sample mappings btw. rule representations and PLTL expressions

o Scope of minable temporal expressions
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Statistical Significance Metrics
o Distinguish Significant Rules via Statistical Notions
- Support: The number of traces supporting the premise pre
- Confidence: The likelihood of the premise pre being preceded 
by the consequent post

Rule: <b,a> ->P<c> 
Support: 2

Corres. to S1 and S2
Confidence: 100%

All occurences of <b,a> is 
preceded by <c>

Rule: <b,a> ->P<e> 
Support: 2
Confidence: 50%

Sample Traces
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Soundness and Completeness

o Ensure Soundness and Completeness
- With respect to input traces and specified thresholds

o Sound
All mined rules are statistically significant

o Complete
All statistically significant rules are mined 

or represented

o Commonly used in data/pattern mining 
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Mining Past Time
Temporal Rules
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High-Level Mining Strategy

o Mining Option 1: Check for all 2-event rules (n x n of 
them) for statistical significance. 
− Not scalable for rules of arbitrary lengths.

o Our Mining Strategy: Consider mining as a search-space 
traversal for significant rules
− Explore the search space depth-first
− Identify significant rules

o Employ pruning strategies to throw away search space 
containing insignificant rules

o Detect search spaces containing redundant rules early 
during the mining process
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Anti-Monotone Pruning Strategies

Rx: a -> z ; sup(Rx) < min_sup

a,b -> z
a,b,c -> z
a,c -> z

a,b,d -> z
….

Non-
significant

Rx: a -> z ; conf(Rx) < min_conf

a -> z,b
a -> z,b,c
a -> z,c
a -> z,b,d

….

Non-
significantRys Rys

P P P P

P
P

P

P

P
P

P

P

P P
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Detecting Redundant Rules

Redundant rules are 
identified and removed 

early during mining 
process.

a -> b
a -> c

a -> b,c
a -> b,d

….

Redundant
iff

sup and conf are 
the same

Rx: a -> b,c,d

Rys

P P

P

P

P

P

P
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Algorithm Steps

o Step 1: Generate a pruned set of significant pre-
conditions satisfying the minimum support
threshold.

o Step 2: For each pre-condition, find occurrences of pre 
in the trace database.

o Step 3: For each pre-condition, generate a pruned set of 
significant post-conditions satisfying the 
minimum confidence threshold.

o Step 4: Remove remaining rules that are redundant. Note 
that many/most redundant rules have been 
removed at step 1 and 3.
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Mining Framework
PART 1

PART 2

PART 3

PART 4

ProcessUser Input Intermediate Result

Inst.
Code

Start

End

InstrumentationCode

Trace 
Generation

Test 
Suite

Thresholds

Trace 
Abstraction

Mining 
Algorithm

Display & 
User 

Selection

Abst.
Traces

Mined
Rules

Selected 
Rules

VerificationModel

Legend
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Preliminary Experiments
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Experiment Setups – JBoss Application Server
o JBoss Application Server (JBoss AS)

− One of the most widely used J2EE application server
− Analyze the transaction and security component

o Program Instrumentation & Trace Generation
− Instrument the application using JBoss-AOP
− Run regression tests from JBoss AS distribution

o Transaction component
− 2551 events, 64 unique events
− min_sup: 25, min_conf: 90%
− Mining time: 30 seconds , Mined non-redundant rules: 36

o Security component
− 4115 events, 60 unique events
− min_sup: 15, min_conf: 90%
− Mining time: 2.5 seconds, Mined non-redundant rules: 4
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A Rule from JBoss Transaction
Premise Consequent

TransactionImpl.isDone() TxManagerLocator.getInstance()
TxManagerLocator.locate()
TxManagerLocator.tryJNDI()
TxManagerLocator.usePrivateAPI()
TxManager.getInstance()
TxManager.begin()
XidFactory.newXid()
XidFactory.getNextId()
XidImpl.getTrulyGlobalId()
TransImpl.assocCurrentThread()
… 5 events …
TxManager.getTransaction()

Whenever a transaction is checked for completion (premise), previously 
transaction manager is located (ev 1-4 consequent), transaction manager & 
impl are initialized (ev 5-6,10-12), ids are acquired (ev 7-9,13-15) and 

transaction object is obtained from the manager (ev 16).

P
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A Rule from JBoss Security
Premise Consequent

SimplePrincipal.toString()
SecAssoc.getPrincipal()
SecAssoc.getCredential()
SecAssoc.getPrincipal()
SecAssoc.getCredential()

XLoginConfImpl.getConfEntry()
PolicyConfig.get()
XLoginConfImpl$1.run()
AuthenInfo.copyAppConfEntry()
AuthenInfo.getName()
ClientLoginModule.initialize()
ClientLoginModule.login()
ClientLoginModule.commit()
SecAssocActs.setPrincipalInfo()
SetPrincipalInfoAction.run()
SecAssocActs.pushSubjectContext()
SubjectThreadLocalStack.push()

Whenever principal and credential info is required (the premise), previously 
config. info is checked to determine the auth. service availability (ev 1-5), 
actual authentication events are invoked (ev 6-8) and principal info is bound 

to the subject (ev 9-12)

P
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Discussions 
o Setting min-sup/conf threshold
− Appropriate values depend on application
− Mining as an iterative process 
o Sound and Complete
− With respect to trace and specified thresholds 
− If trace is not complete or buggy so does the results
− Confidence provide a measure of tolerance to buggy traces
o Scalability
− Algorithm works better with many shorter traces than 
one very long trace

− It’s better to split a trace to sub-traces 
− Focus on immediate inter-component interaction (Mariani et al., ICSE’08)
− Trace abstraction (Ammons et al., POPL’02)
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Related Work

o Daikon
− Complement Daikon by mining temporal constraints

o Mining Automata
− Many work: ABL02, RR01, MP05, AXPX07, LK06, …
− Diff: Focus on statistically significant property rather 
than overall behavior

o Mining Future-Time Temporal Rules
− Many work: YEBBD06, LKL08, …
− Diff: Mining past-time temporal rules

o Mining Sequence Diagram: BLL06, LMK07, LM08, ...
o Mining from Code: RGJ07, WN05, …
o Data Mining: S99, AS94, YHA03, WH04, LKL07, …
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Conclusion
o Propose a new approach to mine past-time temporal rules using 
dynamic analysis, not minable by existing tools:  

o Address the problem of runtime costs by employing smart 
pruning strategies.

− Throw away insignificant rules en-masse
− Throw away redundant rules en-masse

o Preliminary experiments on traces of JBoss AS show utility of 
the technique to discover program behavioral rules/specifications

Whenever a series of events pre occurs, 
previously, another series of events post
happened before, denoted as: pre ->P post
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Future Work
o User Guided Mining

− Let user provide more information to the mining process 
aside from the significance thresholds

− Mining Scenario-Based Triggers and Effects 
(- ASE’08 – to-appear) – Mining Sequence Diagram

o Mining more complex LTL expressions 
− Incorporating both future and past-time temporal rules

o Improving the scalability of the technique
− Abstraction technique
− Pruning strategies

o Experimenting with more case studies 
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Comments ? Questions ? Advices ?

Thank you
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