
1

David Lo1,2 Siau-Cheng Khoo2 Chao Liu3

1Singapore Management University
2National University of Singapore

3Microsoft Research, Redmond

Mining Past-Time Temporal Rules
From Execution Traces

Presentation at WODA’08

2

Issue on Software Specifications

o Documented specifications are often lacking, poor,
outdated and incomplete

Hard deadlines & `short-time-to-market’
Productivity == LOC or completed project
High turn-over rate of IT professionals
Difficulties & programmer’s reluctance in writing
formal specs
(Ammons et al., POPL’02, Yang et al., ICSE’06)

3

The Specification Problem

o Contributes to high software costs
Program comprehension = 50% of maintenance cost
High maintenance cost = 90% total cost
(Erlikh, 2000; Cimitile & Canfora, 2001)

US GDP software component = 214.4 billion USD.

o Causes challenges in ensuring correctness of systems
Difficulty in verifying correctness of systems
US National Institute of Standards and Technology

59.5 Billions annual lost due to bugs

4

Specification Mining (SM)
A process to discover protocols that a code exhibit, often through

an analysis of its execution traces (ABL02 [POPL])

Benefits:
Aid Program Comprehension and Maintenance

Aid Program Verification

RR01 [ICSE], CW98 [TOSEM]

ABL02 [POPL], AMBL03 [PLDI],

WML02 [ISSTA] , AXPX07 [FSE]

MP05 [ICEECS], LK06 [FSE]

Automaton-based SM
0 1

Rule-based SM
<Lock> -> <Unlock>

YEBBD06 [ICSE]

LKL08 [DASFAA,JSME]

Only future-time temporal
rules are mined

5

Past-Time Temporal Rules

Whenever a series of events pre occurs,
previously, another series of events post
happened before, denoted as: pre ->P post

Among most-widely used temporal logic expressions
(Dwyer,ICSE’99)

- Past-time temporal exp. -> complex future-time
temporal exp. (Laroussinie et al., TCS’95, LICS’02)

- Not minable by existing algorithms mining future
time rules (Yang et al. ICSE’06, Lo et al. JSME’08]

- Many interesting properties are more intuitively
expressed in past-time

- Many interesting properties are non-symmetric

Why
Important ?

6Sa
m
pl
e

Pa
st

-T
im

e
Ru

le
s

o Whenever a file is used (read or written), it needs to be
opened before.

file_used ->P file_open

o Whenever SSL_read is performed, SSL_init needs to be
invoked before.

ssl_read ->P ssl_init

o Whenever a valid client request a non-sharable resource
and the resource is not granted, previously the resource
had been allocated to another client that requested it.

request, not_granted ->P request, grant

o Whenever money is dispensed from an ATM, previously,
card was inserted, pin was entered, user was authenticated
and account balance suffices.

dispense ->P card, pin, authenticate, balance_suffice

7

Outline

o Motivation and Introduction
o Concepts

− Past-Time LTL, Statistical Significance
− Soundness and Completeness

o Mining Past-Time Rules
− Mining Strategy, Pruning Properties
− Removal of Redundant Rules
− Mining Framework

o Preliminary Experiments
o Discussion
o Related Work
o Conclusion & Future Work

8

Concepts

9

Past-Time Linear Temporal Logics (PLTL)
o Linear Temporal Logic (LTL)

− Logic that works on program paths
− A path corresponds to an execution trace

o Past-Time Linear Temporal Logic (PLTL)
− Add LTL with past time operators
− More succinct than LTL

o Temporal operators under consideration
− `G’ – Globally
− `F’ – Once in the future
− `X’ – Next (immediate)
− `F-1‘ – Once in the past
− `X-1’ – Previous (immediate)

10

PLTL- Examples
o X-1F-1 (file_open)

Meaning: At a time in the past file is opened
o G(file_read -> X-1 F-1 (file_open))

Meaning: Globally whenever file is read, at a time in the past
file is opened

o G((account_deducted ^ XF (money_dispensed)) -> (X-1F-1

(balance_suffice ^ (X-1F-1 (cash_requested ^ (X-1F1

(correct_pin^(X-1F-1 (insert_debit_card)))))))))
Meaning: Globally whenever one’s bank account is deducted and
money is dispensed (from an ATM), previously user inserted
debit card, entered correct pin, requested for cash and
account balance suffices.

11

Notations and Scope of Mined Rules
o Denote a past-time rule as pre ->P post
o Sample mappings btw. rule representations and PLTL expressions

o Scope of minable temporal expressions

12

Statistical Significance Metrics
o Distinguish Significant Rules via Statistical Notions
- Support: The number of traces supporting the premise pre
- Confidence: The likelihood of the premise pre being preceded
by the consequent post

Rule: <b,a> ->P<c>
Support: 2

Corres. to S1 and S2
Confidence: 100%

All occurences of <b,a> is
preceded by <c>

Rule: <b,a> ->P<e>
Support: 2
Confidence: 50%

Sample Traces

13

Soundness and Completeness

o Ensure Soundness and Completeness
- With respect to input traces and specified thresholds

o Sound
All mined rules are statistically significant

o Complete
All statistically significant rules are mined

or represented

o Commonly used in data/pattern mining

14

Mining Past Time
Temporal Rules

15

High-Level Mining Strategy

o Mining Option 1: Check for all 2-event rules (n x n of
them) for statistical significance.
− Not scalable for rules of arbitrary lengths.

o Our Mining Strategy: Consider mining as a search-space
traversal for significant rules
− Explore the search space depth-first
− Identify significant rules

o Employ pruning strategies to throw away search space
containing insignificant rules

o Detect search spaces containing redundant rules early
during the mining process

16

Anti-Monotone Pruning Strategies

Rx: a -> z ; sup(Rx) < min_sup

a,b -> z
a,b,c -> z
a,c -> z

a,b,d -> z
….

Non-
significant

Rx: a -> z ; conf(Rx) < min_conf

a -> z,b
a -> z,b,c
a -> z,c
a -> z,b,d

….

Non-
significantRys Rys

P P P P

P
P

P

P

P
P

P

P

P P

17

Detecting Redundant Rules

Redundant rules are
identified and removed

early during mining
process.

a -> b
a -> c

a -> b,c
a -> b,d

….

Redundant
iff

sup and conf are
the same

Rx: a -> b,c,d

Rys

P P

P

P

P

P

P

18

Algorithm Steps

o Step 1: Generate a pruned set of significant pre-
conditions satisfying the minimum support
threshold.

o Step 2: For each pre-condition, find occurrences of pre
in the trace database.

o Step 3: For each pre-condition, generate a pruned set of
significant post-conditions satisfying the
minimum confidence threshold.

o Step 4: Remove remaining rules that are redundant. Note
that many/most redundant rules have been
removed at step 1 and 3.

19

Mining Framework
PART 1

PART 2

PART 3

PART 4

ProcessUser Input Intermediate Result

Inst.
Code

Start

End

InstrumentationCode

Trace
Generation

Test
Suite

Thresholds

Trace
Abstraction

Mining
Algorithm

Display &
User

Selection

Abst.
Traces

Mined
Rules

Selected
Rules

VerificationModel

Legend

20

Preliminary Experiments

21

Experiment Setups – JBoss Application Server
o JBoss Application Server (JBoss AS)

− One of the most widely used J2EE application server
− Analyze the transaction and security component

o Program Instrumentation & Trace Generation
− Instrument the application using JBoss-AOP
− Run regression tests from JBoss AS distribution

o Transaction component
− 2551 events, 64 unique events
− min_sup: 25, min_conf: 90%
− Mining time: 30 seconds , Mined non-redundant rules: 36

o Security component
− 4115 events, 60 unique events
− min_sup: 15, min_conf: 90%
− Mining time: 2.5 seconds, Mined non-redundant rules: 4

22

A Rule from JBoss Transaction
Premise Consequent

TransactionImpl.isDone() TxManagerLocator.getInstance()
TxManagerLocator.locate()
TxManagerLocator.tryJNDI()
TxManagerLocator.usePrivateAPI()
TxManager.getInstance()
TxManager.begin()
XidFactory.newXid()
XidFactory.getNextId()
XidImpl.getTrulyGlobalId()
TransImpl.assocCurrentThread()
… 5 events …
TxManager.getTransaction()

Whenever a transaction is checked for completion (premise), previously
transaction manager is located (ev 1-4 consequent), transaction manager &
impl are initialized (ev 5-6,10-12), ids are acquired (ev 7-9,13-15) and

transaction object is obtained from the manager (ev 16).

P

23

A Rule from JBoss Security
Premise Consequent

SimplePrincipal.toString()
SecAssoc.getPrincipal()
SecAssoc.getCredential()
SecAssoc.getPrincipal()
SecAssoc.getCredential()

XLoginConfImpl.getConfEntry()
PolicyConfig.get()
XLoginConfImpl$1.run()
AuthenInfo.copyAppConfEntry()
AuthenInfo.getName()
ClientLoginModule.initialize()
ClientLoginModule.login()
ClientLoginModule.commit()
SecAssocActs.setPrincipalInfo()
SetPrincipalInfoAction.run()
SecAssocActs.pushSubjectContext()
SubjectThreadLocalStack.push()

Whenever principal and credential info is required (the premise), previously
config. info is checked to determine the auth. service availability (ev 1-5),
actual authentication events are invoked (ev 6-8) and principal info is bound

to the subject (ev 9-12)

P

24

Discussions
o Setting min-sup/conf threshold
− Appropriate values depend on application
− Mining as an iterative process
o Sound and Complete
− With respect to trace and specified thresholds
− If trace is not complete or buggy so does the results
− Confidence provide a measure of tolerance to buggy traces
o Scalability
− Algorithm works better with many shorter traces than
one very long trace

− It’s better to split a trace to sub-traces
− Focus on immediate inter-component interaction (Mariani et al., ICSE’08)
− Trace abstraction (Ammons et al., POPL’02)

25

Related Work

o Daikon
− Complement Daikon by mining temporal constraints

o Mining Automata
− Many work: ABL02, RR01, MP05, AXPX07, LK06, …
− Diff: Focus on statistically significant property rather
than overall behavior

o Mining Future-Time Temporal Rules
− Many work: YEBBD06, LKL08, …
− Diff: Mining past-time temporal rules

o Mining Sequence Diagram: BLL06, LMK07, LM08, ...
o Mining from Code: RGJ07, WN05, …
o Data Mining: S99, AS94, YHA03, WH04, LKL07, …

26

Conclusion
o Propose a new approach to mine past-time temporal rules using
dynamic analysis, not minable by existing tools:

o Address the problem of runtime costs by employing smart
pruning strategies.

− Throw away insignificant rules en-masse
− Throw away redundant rules en-masse

o Preliminary experiments on traces of JBoss AS show utility of
the technique to discover program behavioral rules/specifications

Whenever a series of events pre occurs,
previously, another series of events post
happened before, denoted as: pre ->P post

27

Future Work
o User Guided Mining

− Let user provide more information to the mining process
aside from the significance thresholds

− Mining Scenario-Based Triggers and Effects
(- ASE’08 – to-appear) – Mining Sequence Diagram

o Mining more complex LTL expressions
− Incorporating both future and past-time temporal rules

o Improving the scalability of the technique
− Abstraction technique
− Pruning strategies

o Experimenting with more case studies

28

Comments ? Questions ? Advices ?

Thank you

	Slide Number 1
	Issue on Software Specifications
	The Specification Problem
	Slide Number 4
	Past-Time Temporal Rules
	Sample Past-Time Rules
	Outline
	Concepts
	Past-Time Linear Temporal Logics (PLTL)
	PLTL- Examples
	Notations and Scope of Mined Rules
	Statistical Significance Metrics
	Soundness and Completeness
	Mining Past Time�Temporal Rules
	High-Level Mining Strategy
	Anti-Monotone Pruning Strategies
	Detecting Redundant Rules
	Algorithm Steps
	Mining Framework
	Preliminary Experiments�
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Discussions
	Related Work
	Conclusion
	Future Work
	Slide Number 28

