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Invariants

An invariant is a predicate that is expected to be true at all 
points during program execution

Important for correctness and optimization

• Predicates about the program state:
e.g. no node has itself as a child

• Predicates about the history of program states:
no new command is sent while a command is still executing
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foreach (o in extent(Node): o in o.children):
report("Error: ", o, " has a self-edge.")
stop()



Runtime Invariant Checking

Checks invariants during program execution
i.e. checks predicates at all program execution points

+ Can check any invariant

- Has runtime overhead, especially high if complex 
invariants are checked naively
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Our Framework Supports

• Specifying invariants using high-level queries
▫ Invariant : query result is non-empty

▫ Recording history data for use in queries

• Analysis and transformations for efficient checking
▫ Incremental computation of query results

▫ Static alias analysis and type analysis

• Mechanism for triggering actions for reporting 
errors, debugging, and prevention or remediation
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foreach (query):
action

recording history



Related Work

• Runtime invariant verification
Behavioral specification languages

Spec#/Boogie [Barnett06], JML[Leavens05]/jmlc[Cheon03],…
not incremental for our queries, less expressive, or both

Logic specification languages
Jnuke[Artho04], EAGLE [Barringer04], …
queries over sequences of events, not data structures

• Incremental query result maintenance
JQL [Willis06], JQL Incremental Maintenance [Willis08],…

less expressive, e.g. no membership tests on nested objects
and sets.

• AOP
AOP[Kiczales01] – manually writing pointcuts and advices

5



Outline

• The problem, framework, related work

• Specification of invariants using queries

• Efficient maintenance of query results

• Implementation and experiments 
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foreach (sp in $sending_packets,
kt in extent(KerberosTicket):
kt.invalid and kt.ip==sp.target_ip):

report("Sending ", sp, " with invalid ticket!")
stop()

de in global: $sending_packets=set()
at $x.send($p):
if type($x)==socket:
do before:

$sending_packets.add($p)
do after:

$sending_packets.remove($p)

Query

Action

Recording
history

7

Specification of Invariants using Queries



Incremental Maintenance of Query Results

• For every kind of update to the query’s underlying 
sets and objects:

generate program transformation rule that specifies 
how to incrementally update the query result

• For updates to the query’s underlying sets and 
objects actually in the subject program: 

apply rules to incrementally maintain the query result
static analysis reduces number of runtime checks

• When a new element is added to the query result, 
run the action

8

foreach (query):
action



Generating Program Transformation Rules
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for sp in $sending_packets:
for kt in extent(KerberosTicket):

if kt.ip==sp.target_ip:
if kt.invalid :

action

foreach (
sp in $sending_packets,
kt in extent(KerberosTicket):
kt.invalid and kt.ip==sp.target_ip):

action

Query

Naive checking 
code

foreach (query):
action



Generating Program Transformation Rules
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for sp in $sending_packets:
for kt in extent(KerberosTicket):

if kt.ip==sp.target_ip : 
if kt.invalid:

action

at $sending_packets.add($sp) :
for $k in revmapK[$sp.target_ip]:

mapS2K[$sp].add($k)
if $sp not in $sending_packets :

for $k in mapS2K[$sp]:
if $k.invalid:

action

1. Eliminate loops over 
the updated sets

2. Use auxiliary maps to 
replace loops/tests over 
sets that are joined with 
the updated sets with 
lookups

3. Leave remaining tests

4. Update auxiliary maps
when necessary



May-Alias Analysis – For Update Detection

• Only insert maintenance code at places where query 
results could be affected

• Compute pairs of variables and fields that may alias each 
other.
▫ If not aliased to data that the query depends on, cannot 

affect results

• Uses and extends [Goyal05]

• Interprocedural, object-oriented, flow-sensitive, 
derivation context-sensitive

• Time complexity : O(n3)
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Type Analysis – For Precise Update Detection

• Do not insert maintenance code at places where 
query results cannot be affected

• Infer types of all expressions statically
▫ If the type of expression is different than type of 

anything in the query, cannot affect results

• Type analysis
▫ distinguishes between constants, etc 
▫ supports union types, e.g. union(int(1), int(2))

• Time complexity : O(näs)
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Implementation

• Checks invariants in Python programs
▫ 5000 lines of Python code

▫ Takes seconds to generate rules

▫ Applied to programs up to 80KLOC

• InvTS – the engine that applies generated 
transformation rules to subject programs
▫ 18000 lines of Python code

▫ Takes tens of seconds to apply rules

▫ Applied to programs up to 80KLOC
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Experiments – Checking Invariants 

• AST Transformations performed by InvTS – inputs from 
493 to 15955 AST nodes
▫ Not own child – no node has itself as a child

▫ Not shared child – no two nodes have the same child

• Authentication performed by Python Samba client
▫ Require valid ticket – no packets sent with an invalid ticket

▫ Repeated authentication – no gratuitous reauthentication

• File distribution protocol (BitTorrent)
▫ No duplicate data – no unneeded duplication of data

▫ No packets changed in transit – md5 of payload unchanged
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Experiments – Runtime Overhead of Invariant Checking

15Non-incremental versions take more than 20 min vs. 1/2 min for “No check”



Experiments – Benefits of Static Analysis
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Conclusion

• An efficient runtime invariant checking framework
▫ Incrementally maintaining query results drastically 

reduces overhead of runtime invariant checking
▫ Deriving rules from queries allows the programmer to 

declaratively specify invariants using queries
▫ Type and alias analysis provide significant further 

reduction of overhead in our experiments

• Other recent and on-going work
▫ InvTS, Python and C program transformation system

Generating optimized implementations, instrumentation, ...
▫ Efficient query-based debugging [SCAM’08]
▫ More general incrementalization technique [GPCE’08]
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