
Efficient Runtime Invariant Checking:
A Framework and Case Study

Michael Gorbovitski

Tom Rothamel

Y. Annie Liu

Scott D. Stoller

Computer Science Department
State University of New York at Stony Brook

Invariants

An invariant is a predicate that is expected to be true at all
points during program execution

Important for correctness and optimization

• Predicates about the program state:
e.g. no node has itself as a child

• Predicates about the history of program states:
no new command is sent while a command is still executing

2

foreach (o in extent(Node): o in o.children):
report("Error: ", o, " has a self-edge.")
stop()

Runtime Invariant Checking

Checks invariants during program execution
i.e. checks predicates at all program execution points

+ Can check any invariant

- Has runtime overhead, especially high if complex
invariants are checked naively

3

Our Framework Supports

• Specifying invariants using high-level queries
▫ Invariant : query result is non-empty

▫ Recording history data for use in queries

• Analysis and transformations for efficient checking
▫ Incremental computation of query results

▫ Static alias analysis and type analysis

• Mechanism for triggering actions for reporting
errors, debugging, and prevention or remediation

4

foreach (query):
action

recording history

Related Work

• Runtime invariant verification
Behavioral specification languages

Spec#/Boogie [Barnett06], JML[Leavens05]/jmlc[Cheon03],…
not incremental for our queries, less expressive, or both

Logic specification languages
Jnuke[Artho04], EAGLE [Barringer04], …
queries over sequences of events, not data structures

• Incremental query result maintenance
JQL [Willis06], JQL Incremental Maintenance [Willis08],…

less expressive, e.g. no membership tests on nested objects
and sets.

• AOP
AOP[Kiczales01] – manually writing pointcuts and advices

5

Outline

• The problem, framework, related work

• Specification of invariants using queries

• Efficient maintenance of query results

• Implementation and experiments

6

foreach (sp in $sending_packets,
kt in extent(KerberosTicket):
kt.invalid and kt.ip==sp.target_ip):

report("Sending ", sp, " with invalid ticket!")
stop()

de in global: $sending_packets=set()
at $x.send($p):
if type($x)==socket:
do before:

$sending_packets.add($p)
do after:

$sending_packets.remove($p)

Query

Action

Recording
history

7

Specification of Invariants using Queries

Incremental Maintenance of Query Results

• For every kind of update to the query’s underlying
sets and objects:

generate program transformation rule that specifies
how to incrementally update the query result

• For updates to the query’s underlying sets and
objects actually in the subject program:

apply rules to incrementally maintain the query result
static analysis reduces number of runtime checks

• When a new element is added to the query result,
run the action

8

foreach (query):
action

Generating Program Transformation Rules

9

for sp in $sending_packets:
for kt in extent(KerberosTicket):

if kt.ip==sp.target_ip:
if kt.invalid :

action

foreach (
sp in $sending_packets,
kt in extent(KerberosTicket):
kt.invalid and kt.ip==sp.target_ip):

action

Query

Naive checking
code

foreach (query):
action

Generating Program Transformation Rules

10

for sp in $sending_packets:
for kt in extent(KerberosTicket):

if kt.ip==sp.target_ip :
if kt.invalid:

action

at $sending_packets.add($sp) :
for $k in revmapK[$sp.target_ip]:

mapS2K[$sp].add($k)
if $sp not in $sending_packets :

for $k in mapS2K[$sp]:
if $k.invalid:

action

1. Eliminate loops over
the updated sets

2. Use auxiliary maps to
replace loops/tests over
sets that are joined with
the updated sets with
lookups

3. Leave remaining tests

4. Update auxiliary maps
when necessary

May-Alias Analysis – For Update Detection

• Only insert maintenance code at places where query
results could be affected

• Compute pairs of variables and fields that may alias each
other.
▫ If not aliased to data that the query depends on, cannot

affect results

• Uses and extends [Goyal05]

• Interprocedural, object-oriented, flow-sensitive,
derivation context-sensitive

• Time complexity : O(n3)
11

Type Analysis – For Precise Update Detection

• Do not insert maintenance code at places where
query results cannot be affected

• Infer types of all expressions statically
▫ If the type of expression is different than type of

anything in the query, cannot affect results

• Type analysis
▫ distinguishes between constants, etc
▫ supports union types, e.g. union(int(1), int(2))

• Time complexity : O(näs)

12

Implementation

• Checks invariants in Python programs
▫ 5000 lines of Python code

▫ Takes seconds to generate rules

▫ Applied to programs up to 80KLOC

• InvTS – the engine that applies generated
transformation rules to subject programs
▫ 18000 lines of Python code

▫ Takes tens of seconds to apply rules

▫ Applied to programs up to 80KLOC

13

Experiments – Checking Invariants

• AST Transformations performed by InvTS – inputs from
493 to 15955 AST nodes
▫ Not own child – no node has itself as a child

▫ Not shared child – no two nodes have the same child

• Authentication performed by Python Samba client
▫ Require valid ticket – no packets sent with an invalid ticket

▫ Repeated authentication – no gratuitous reauthentication

• File distribution protocol (BitTorrent)
▫ No duplicate data – no unneeded duplication of data

▫ No packets changed in transit – md5 of payload unchanged
14

Experiments – Runtime Overhead of Invariant Checking

15Non-incremental versions take more than 20 min vs. 1/2 min for “No check”

Experiments – Benefits of Static Analysis

16

Conclusion

• An efficient runtime invariant checking framework
▫ Incrementally maintaining query results drastically

reduces overhead of runtime invariant checking
▫ Deriving rules from queries allows the programmer to

declaratively specify invariants using queries
▫ Type and alias analysis provide significant further

reduction of overhead in our experiments

• Other recent and on-going work
▫ InvTS, Python and C program transformation system

Generating optimized implementations, instrumentation, ...
▫ Efficient query-based debugging [SCAM’08]
▫ More general incrementalization technique [GPCE’08]

17

	Efficient Runtime Invariant Checking:� A Framework and Case Study
	Invariants
	Runtime Invariant Checking
	Our Framework Supports
	Related Work
	Outline
	Specification of Invariants using Queries
	Incremental Maintenance of Query Results
	Generating Program Transformation Rules
	Generating Program Transformation Rules
	May-Alias Analysis – For Update Detection
	Type Analysis – For Precise Update Detection
	Implementation
	Experiments – Checking Invariants
	Experiments – Runtime Overhead of Invariant Checking
	Experiments – Benefits of Static Analysis
	Conclusion

