
Testing mobile computing applications: 
toward a scenario language and tools

Minh Duc Nguyen, Hélène Waeselynck, Nicolas Rivière

Sixth International Workshop on Dynamic Analysis (WODA), 21 July 2008



2

Mobile computing systems

Dynamicity of system structure
Communication with unknown partners in a local 
vicinity
Context awareness

Solutions for the testing of applications and 
services in mobile settings



3

Outline

State of the art in testing traditional/mobile 
distributed systems

Case study: a Group Membership Protocol (GMP) in 
the ad hoc domain

Toward a scenario language & automated support 
for mobile computing applications

Conclusion and perspectives



4

Testing: state of the art

Traditional distributed systems
Platforms with dedicated test interfaces, dedicated test languages 
(e.g. TTCN-3)
Use of graphical scenario languages (MSC, UML SD) to support 
design & validation activities
Formal approaches in the protocol community
SDL model × test purposes → test cases
Passive testing approaches

Mobile computing systems
Experimental platforms with simulation facilities (mainly for 
evaluation purposes)
Testing issues have been little explored so far
Pioneering work based on SDL models (but SDL is not well-suited 
to mobile settings)
No established modeling framework for mobile computing systems



5

Outline

State of the art in testing traditional/mobile 
distributed systems

Case study: a Group Membership Protocol 
(GMP) in the ad hoc domain

Toward a scenario language & automated support 
for mobile computing applications

Conclusion and perspectives



6

A Group Membership Protocol (GMP)

References
"Relying on Safe Distance to Achieve Strong Group Membership in Ad 
Hoc Mobile Environments " , IEEE Transactions on Mobile Computing,
Washington University
Open-source implementation in the mobility-oriented LIME middleware  
(http://lime.sourceforge.net)

Goal
Consistent view of the group members while groups merge and split 
according to location information

The GMP case study: 
Exemplifies a classical problem in distributed computing
Still, the mobile settings particularizes the problem
High dynamicity, high dependency on location & movement 
patterns
Example in the ad hoc domain
Not trivial (each node = 4KLOC of Java code, 6 concurrent 
threads)

http://lime.sourceforge.net/


7

GMP principle

Notion of safe distance
Nodes are “close enough” to prevent motion-induced disconnection 
for some time (assuming an upper bound Vmax on speed)

Requirements: 8 properties (local & global)

GMP analysis and testing
Review of the paper specification
Reverse engineering of the source code to produce 
UML models
Test experiments using a synthetic workload (random 
movement of nodes)

1 2 3 4safe safe safe Accomodates multi-hop
communication



8

Test platforms need network and context simulators

Adequate formalisms to support design & validation activities?
Standard UML: OK for modeling one GMP node
System-level behavior and structure?

Graphical scenario descriptions appear a useful support but:
Usual scenario languages need extensions to account for mobile settings
Production of concrete contextual data (e.g., location coordinates) to 
instantiate an abstract scenario?

Insights gained from the case study

[Ricardo Morla et al.] & [Christoph Schroth et al.]



9

Outline

State of the art in testing traditional/mobile 
distributed systems

Case study: a Group Membership Protocol (GMP) in 
the ad hoc domain

Toward a scenario language & automated 
support for mobile computing applications

Conclusion and perspectives



10

Describing scenarios from the case study

MSC-like languages: focus on the partial order of communication events

But the underlying spatial configuration is equally important to
characterize the split & merge scenario

Absence of broadcast constructs

How to represent broadcast in local vicinity (here, « hello » message
from 2)?

Example of a split & merge 
fail scenario

1 2 4
GetLeader

LeaderAddress

GroupInfo

GroupChange

Failure
GroupChange

3

GroupChange



11

Scenario language for mobile settings

(a) Spatial view (b) Event view

Labeled graphs for the spatial configurations
Configuration changes as global events, causally related to
communication events
Topology-aware broadcast primitives

Being at a safe distance (Safe) 
Being at communication range,
But not at a safe distance (RangeNotSafe)

Config. C1

Config. C2

4

3

21

21
4

3

hello from 5

1 2 4

GetLeader

LeaderAddress

GroupInfo

GroupChange

GroupChange

C1

C2

Config changes from C1 to C2

hello from 2 hello from 2

hello(Safe, 
RangeNotSafe)

3

GroupChange



12

Automated support

To check whether an execution trace satisfies a requirement
To check whether an execution trace covers a test purpose

To assist in the production of contextual data for implementing a test 
case (principle: extract data from random simulation runs)

1. Determine which physical nodes match the nodes 
specified in the spatial view

2. Analyze the order of events in the identified 
configurations

1. Run the context controller and record contextual 
data at each simulation step

2. Abstract the simulation trace by series of graphs
3. Search whether subgraphs can match the desired 

evolution pattern
4. List of matches = baseline configurations for the 

implementation of the scenario

Importance of graph matching problems



13

Automated support (2)

A graph homomorphism from G1 = (V1, E1, λ1, μ1) to G2 = (V2, E2, λ2, μ2)
is an injective function f : V1 → V2 such that:

– λ1 (v1) = λ2 (f(v1)) for all v1 ∈ V1

– For any edge e1 = (v1s, v1e) ∈ E1, there exists an edge
e2 = (f(v1s), f(v1e)) such that μ1(e1) = μ2(e2)

Does G1 appear as a
subgraph of G2?

Graph G1 Graph G2

Build a graph 
homomorphism 
from G1 to G2



14

Automated support (3)

Some convenient extensions to the basic definition:
Allow for tuple of labels, e.g. node can be characterized by <id, 
type>
Allow for label variables, e.g. nodes <x,"Mobile"> and 
<1,"Mobile"> can match using substitution x:=1

Graph matching 
= 

Mapping of nodes 
+

Valuation that unifies the labels



15

Implementation 
Based on an existing graph tool (developed at LAAS) 

Input: a graph G1, a graph G2
Ouput: all homomorphisms from G1 to G2

Our work: search for sequences of configuration patterns in a 
concrete trace

Patterns: P1 → P2 → … → Pm
Trace    : C1 → C2 → … → Cn

(Note: a configuration pattern Pi may occur in several consecutive Cj before the 
configuration changes to Pi+1)

Fixed number of nodes in patterns

Nodes may appear and disappear 
This introduces some additional concerns…



16

Outline

State of the art in testing traditional/mobile 
distributed systems

Case study: a Group Membership Protocol (GMP) in 
the ad hoc domain

Toward a scenario language & automated support 
for mobile computing applications

Conclusion and perspectives



17

Conclusion and perspectives

Proposition of extensions to better represent scenario 
descriptions in mobile computing settings
Processing of scenario descriptions, based on graph 
matching algorithms
On-going work

Scenario language for mobile settings
Extensions of UML 2.0 Sequence Diagram
Compromise: expressiveness / well-defined semantics

Support for automated comparison of scenarios 
and traces

Spatial view: Optimizations required to handle large simulation 
traces, consideration of min-max duration constraints
Event view: Comparison of the order of events: will be 
implemented once the language is stabilized


	Testing mobile computing applications: toward a scenario language and tools
	Mobile computing systems
	Outline
	Testing: state of the art
	Outline
	A Group Membership Protocol (GMP)	
	GMP principle
	Insights gained from the case study
	Outline
	Describing scenarios from the case study
	Scenario language for mobile settings
	Automated support
	Automated support (2)
	Automated support (3)
	Implementation 
	Outline
	Conclusion and perspectives

