
1WODA 2008 July 21, 2008

Random Testing and Model
Checking: Building a

Common Framework for
Nondeterministic Exploration

Alex Groce and Rajeev Joshi

Jet Propulsion Laboratory,
California Institute of Technology

2WODA 2008 July 21, 2008

Background & Motivation

LaRS (Laboratory for Reliable Software)
at JPL has been building, verifying, and
testing flash file systems for space
mission use

This work grows out of that experience

3WODA 2008 July 21, 2008

Background & Motivation

MSAP
• Two flash file systems, one RAM file system,

one critical parameter storage module
• Approach: random testing [ICSE’07,ASE’08]

MSL (Mars Science Laboratory)
• One flash file system, one RAM file system,

one low-level flash interface (critical
parameter storage)

• Approach: model checking/random testing

4WODA 2008 July 21, 2008

Random Testing

I think we all know what random testing is:
• Operations and parameters generated at

random to test a program
• Possibly with some bias or feedback to help

with the problem of irrelevant/redundant
operations

5WODA 2008 July 21, 2008

Model Checking and Dynamic Analysis

(Software) model checking
• (In principle exhaustive) exploration of a

program’s state space

Dynamic analysis (what we’re here for today)
• Analysis of a running program
• Usually instrumentation or execution in virtual

environment – e.g. Valgrind, Daikon
• Testing is a dynamic analysis: program is

executed in order to learn about its behaviors
• We’re looking at the kind of model checking

that is essentially a dynamic analysis

6WODA 2008 July 21, 2008

Many Software Model Checkers

CBMC

BLAST

SLAM

JPF2

SPIN

CMC
CRunner

MAGIC

VeriSoftBogor

7WODA 2008 July 21, 2008

Two Approaches

CBMC

BLAST

SLAM

JPF2

SPIN

CMC
CRunner

MAGIC

Analysis of derived transition system

Execution of actual code

VeriSoft

CRunner

Our focus in this talk

(dynamic: like testing)

(“static”)

Bogor

8WODA 2008 July 21, 2008

Model Checking as State-Based Testing

Model-checking by executing the program
• Backtracking search for all states

State already visited!
Backtrack and try a
different operation Done with test!

Backtrack and try a
different operation

CFG

State already visited!
Backtrack and try a
different operation

Will explore, as a side-effect,
many executions (like random testing)
but the goal is to explore states

mkdir /a

mkdir /b

mkdir /c

mkdir /armdir /a

9WODA 2008 July 21, 2008

SPIN and Model-Driven Verification

SPIN compiles a PROMELA model into a C
program: it’s a model checker generator
• Embed C code in transitions by executing the

compiled C code
• Take advantage of all SPIN features –

hashing, multicore exploration, etc.

Requires the ability to restore a running
program to an earlier execution state
• Difficult engineering problem, handled by CIL-

based automatic code instrumentation [VMCAI’08]

10WODA 2008 July 21, 2008

SPIN and Model-Driven Verification

When SPIN backtracks,
it uses information on
how to restore the state
of the C program:
• Tracked memory is

restored on backtrack
• Matched memory is also

used to determine if a
state has been visited
before

Execute C code
until control

returns to SPIN

Push tracked & matched
state on stack

Has state been
visited before?

Store matched
state in state

table

Backtrack:
pop stack &

restore tracked &
matched state

Y N

11WODA 2008 July 21, 2008

SPIN and Model-Driven Verification

(Unsound) abstraction
by matching on an
abstraction of the
tracked concrete state
• E.g. track the

pointers/contents of a
linked list

• Match on a sorted array
copy only (if order
doesn’t matter for
property in question)

Execute C code
until control

returns to SPIN

Push tracked & matched
state on stack

Has state been
visited before?

Store matched
state in state

table

Backtrack:
pop stack &

restore tracked &
matched state

Y N

12WODA 2008 July 21, 2008

A Common Goal

Program state spaces are typically too
large to explore fully even after
(unsound) abstraction

Random testing and model checking
are both methods for
nondeterministically exploring a
program’s state space
• A series of random walks
• vs. systematic exploration with

backtracking

13WODA 2008 July 21, 2008

Which is Better?

Conventional wisdom (exaggerated):
• Random testing is probably less effective

than model checking
• BUT model checking is much more

difficult to apply than random testing,
scales poorly, crashes a lot, makes your
ears bleed, and may cause temporary
paralysis

Test engineer using a
model checker on a C program?

14WODA 2008 July 21, 2008

How True is the Conventional Wisdom?

Realistically, the state spaces for real
programs are huge
• Model checking will almost certainly use

unsound abstractions, and still be only
partial exploration

• Systematically missing some states that
could expose errors

• Are we sure this is better than smart
random testing for fault detection /
coverage?

15WODA 2008 July 21, 2008

How True is the Conventional Wisdom?

On the other hand, explicit-state model
checking is not that difficult to apply
• PROMELA is a nice language for expressing

nondeterministic choice & test structure
• Provides test-case playback, minimization,

and other things often build by hand for testing
• Scales quite well if memory usage is (a)

limited (no 5GB memory footprint) and (b)
well-defined

• Often true for embedded systems

16WODA 2008 July 21, 2008

Using SPIN for True Random Testing

Want to apply both methods
• For research purposes (comparison)
• Due diligence in testing! This stuff is

going to Mars…

But why write two testers? – one for
random testing, one for model checking
• Basic harness looks the same,

property checks look the same, etc.
• Annoying redundant work, better to

spend time improving the harness or
running more tests

17WODA 2008 July 21, 2008

A Quick Primer: Using SPIN for
Random Testing, in Five Slides OR
Almost All the PROMELA You Ever

Need to Know

18WODA 2008 July 21, 2008

Simple PROMELA Code
int x;

int y;

active proctype main () {

if
:: x = 1
:: x = 2
fi;

assert (x == y);

}

Start simple

This model has 7 states

What are they?

State = (PC, x, y)

1

2

3

5
7

SPIN’s nondeterministic choice construct

Picks any one of the choices that is enabled

How do we guard a choice? if
:: (x < 10) -> y = 1
:: (x < 5) -> y = 3
:: (x > 1) -> y = 4
fi;

Not mutually
exclusive!

19WODA 2008 July 21, 2008

Simple PROMELA Code
int x;

int y;

active proctype main () {

if
:: x = 1
:: x = 2

fi;

if
:: y = 1
:: y = 2

fi;

if
:: x > y -> x = y
:: y > x -> y = x
:: else -> skip

fi;

assert (x == y);

}

This model has 17 states

What are they?

State = (PC, x, y)

1
2
3

5

7
9

13

14
15
17

Er…

Don’t worry about state-counting too
much – SPIN has various automatic
reductions and atomicity choices that
can make that difficult

20WODA 2008 July 21, 2008

Simple PROMELA Code
int x;

active proctype main () {

x = 0;

do

:: (x < 10) -> x++

:: break

od

/* Here, x is anything between

0 and 9 inclusive */

Only a couple more PROMELA
constructs to learn for building test
harnesses: the do loop

Like if, except it introduces
a loop to the top – break choice
can exit the loop

This nondeterministically assigns x
a value in the range 0…9

21WODA 2008 July 21, 2008

Simple PROMELA Code

inline pick (var, MAX)

var = 0;

do

:: (var < MAX) -> var++

:: break

od

inline gives us a macro facility

As you can imagine, this is a
useful macro for building a
test harness!

22WODA 2008 July 21, 2008

Less Simple PROMELA Code
:: choice == UNLINK -> /* unlink */

pick(pathindex, NUM_PATHS); /* Choose a path */

c_code {

now.res = nvfs_unlink (path[now.pathindex]);

};

nvfs_errno = c_expr{errno};

check_reset(); /* Check for system reset and reinit if needed */

if

:: (res < 0) && (nvfs_errno == ENOSPC) -> /* If out-of-space error */

check_space();

:: ((!did_reset) || (res != -1)) && !((res < 0) && (nvfs_errno == ENOSPC)) ->

c_code{

now.ramfs_res = ramfs_unlink (path[now.pathindex]);

};

ramfs_errno = c_expr{errno};

:: else -> skip

fi;

...

assert (res == ramfs_res);

assert (nvfs_errno == ramfs_errno);
Finally, we want to be able to call
the C program we are testing

23WODA 2008 July 21, 2008

Testing via Model Checking

Basic idea:
• We’ll write a test harness in PROMELA
• Use SPIN to backtrack and explore inputs
• Use abstraction to limit the number of

states we consider

• We can even “trick” SPIN into doing pure
random testing!

24WODA 2008 July 21, 2008

The pick Macro, Revisited
inline pick (var, MAX)

var = 0;

do

:: (var < MAX) -> var++

:: break

od

What if we change pick?

25WODA 2008 July 21, 2008

The pick Macro, Revisited
inline pick (var, MAX) {

if
:: ! initialized ->

nondet_pick(seed, SEED_RANGE);
c_code{

printf (“Test with seed %d\n”,
now.seed);

srandom(now.seed);
};

initialized = 1
:: else -> skip
fi;
var = c_expr{random()} % MAX;

}

To this?

26WODA 2008 July 21, 2008

Some Results

From a flash file system for the Mars
Science Laboratory mission – see the
paper for details

Basic idea – how does coverage (source
code / configurations of the flash file
system) change as we increase testing
time?

27WODA 2008 July 21, 2008

Coverage of nvds_box.c

78

79

80

81

82

83

84

85

86

87

0 50 100 150 200
Minutes

%
 C

ov
er

ag
e

Model Checking
Random Testing

28WODA 2008 July 21, 2008

Coverage of nvfs_pub.c

75.2

75.25

75.3

75.35

75.4

75.45

75.5

75.55

0 50 100 150 200
Minutes

%
 C

ov
er

ag
e

Model Checking
Random Testing

29WODA 2008 July 21, 2008

Coverage of flash abstraction

0

10

20

30

40

50

60

70

0 50 100 150 200
Minutes

A
bs

tr
ac

t s
ta

te
s

co
ve

re
d

Model Checking
Random Testing

30WODA 2008 July 21, 2008

Coverage of page abstraction

0

5

10

15

20

25

30

35

40

0 50 100 150 200
Minutes

A
bs

tr
ac

t s
ta

te
s

co
ve

re
d

Model Checking
Random Testing

31WODA 2008 July 21, 2008

Conclusions (and an Invitation)

Is model checking better?
• Maybe, maybe not
• Preliminary results for one program
• Visser et al. and others report varying

results for this question
• These results don’t use as much feedback

as our latest test harness – which may
change the results (improves both model
checking and random testing results)

32WODA 2008 July 21, 2008

Conclusions (and an Invitation)

If you’re analyzing or testing C programs
• Where function-call level atomicity is ok
• With well-defined memory usage
• It might be well worth your while to try explicit-

state model checking
• Easy to work with abstractions and guide

testing/analysis towards certain goals
• Can also provide random testing “for free”

JPF may work well for this purpose, also, though
since it uses its own JVM, may be trickier/slower
Download SPIN at http://www.spinroot.com

	Slide Number 1
	Background & Motivation
	Background & Motivation
	Random Testing
	Model Checking and Dynamic Analysis
	Many Software Model Checkers
	Two Approaches
	Model Checking as State-Based Testing
	SPIN and Model-Driven Verification
	SPIN and Model-Driven Verification
	SPIN and Model-Driven Verification
	A Common Goal
	Which is Better?
	How True is the Conventional Wisdom?
	How True is the Conventional Wisdom?
	Using SPIN for True Random Testing
	A Quick Primer: Using SPIN for Random Testing, in Five Slides OR�Almost All the PROMELA You Ever Need to Know
	Simple PROMELA Code
	Simple PROMELA Code
	Simple PROMELA Code
	Simple PROMELA Code
	Less Simple PROMELA Code
	Testing via Model Checking
	The pick Macro, Revisited
	The pick Macro, Revisited
	Some Results
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Conclusions (and an Invitation)
	Conclusions (and an Invitation)

