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Background & Motivation

LaRS (Laboratory for Reliable Software) 
at JPL has been building, verifying, and 
testing flash file systems for space 
mission use

This work grows out of that experience
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Background & Motivation

MSAP
• Two flash file systems, one RAM file system, 

one critical parameter storage module
• Approach: random testing [ICSE’07,ASE’08]

MSL (Mars Science Laboratory)
• One flash file system, one RAM file system, 

one low-level flash interface (critical 
parameter storage)

• Approach: model checking/random testing
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Random Testing

I think we all know what random testing is:
• Operations and parameters generated at 

random to test a program
• Possibly with some bias or feedback to help 

with the problem of irrelevant/redundant 
operations
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Model Checking and Dynamic Analysis

(Software) model checking
• (In principle exhaustive) exploration of a 

program’s state space 

Dynamic analysis (what we’re here for today)
• Analysis of a running program
• Usually instrumentation or execution in virtual 

environment – e.g. Valgrind, Daikon
• Testing is a dynamic analysis:  program is 

executed in order to learn about its behaviors
• We’re looking at the kind of model checking 

that is essentially a dynamic analysis
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Many Software Model Checkers
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Two Approaches

CBMC
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SLAM
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CMC
CRunner
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Analysis of derived transition system

Execution of actual code

VeriSoft

CRunner

Our focus in this talk

(dynamic: like testing)

(“static”)

Bogor



8WODA 2008    July 21, 2008

Model Checking as State-Based Testing

Model-checking by executing the program
• Backtracking search for all states

State already visited!
Backtrack and try a
different operation Done with test!

Backtrack and try a
different operation

CFG

State already visited!
Backtrack and try a
different operation

Will explore, as a side-effect,
many executions (like random testing)
but the goal is to explore states

mkdir /a

mkdir /b

mkdir /c

mkdir /armdir /a
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SPIN and Model-Driven Verification

SPIN compiles a PROMELA model into a C 
program:  it’s a model checker generator
• Embed C code in transitions by executing the

compiled C code
• Take advantage of all SPIN features –

hashing, multicore exploration, etc.

Requires the ability to restore a running 
program to an earlier execution state 
• Difficult engineering problem, handled by CIL-

based automatic code instrumentation [VMCAI’08]
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SPIN and Model-Driven Verification

When SPIN backtracks, 
it uses information on 
how to restore the state 
of the C program:
• Tracked memory is

restored on backtrack
• Matched memory is also

used to determine if a
state has been visited
before

Execute C code
until control

returns to SPIN

Push tracked & matched
state on stack

Has state been
visited before?

Store matched
state in state

table

Backtrack:
pop stack &

restore tracked &
matched state

Y N
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SPIN and Model-Driven Verification

(Unsound) abstraction 
by matching on an 
abstraction of the 
tracked concrete state
• E.g. track the 

pointers/contents of a 
linked list

• Match on a sorted array 
copy only (if order 
doesn’t matter for 
property in question)

Execute C code
until control

returns to SPIN

Push tracked & matched
state on stack

Has state been
visited before?

Store matched
state in state

table

Backtrack:
pop stack &

restore tracked &
matched state

Y N
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A Common Goal

Program state spaces are typically too 
large to explore fully even  after 
(unsound) abstraction

Random testing and model checking 
are both methods for 
nondeterministically exploring a 
program’s state space
• A series of random walks
• vs. systematic exploration with 

backtracking
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Which is Better?

Conventional wisdom (exaggerated):
• Random testing is probably less effective 

than model checking
• BUT model checking is much more 

difficult to apply than random testing, 
scales poorly, crashes a lot, makes your 
ears bleed, and may cause temporary 
paralysis

Test engineer using a
model checker on a C program?
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How True is the Conventional Wisdom?

Realistically, the state spaces for real 
programs are huge
• Model checking will almost certainly use 

unsound abstractions, and still be only 
partial exploration

• Systematically missing some states that 
could expose errors

• Are we sure this is better than smart 
random testing for fault detection / 
coverage?
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How True is the Conventional Wisdom?

On the other hand, explicit-state model 
checking is not that difficult to apply
• PROMELA is a nice language for expressing 

nondeterministic choice & test structure
• Provides test-case playback, minimization, 

and other things often build by hand for testing
• Scales quite well if memory usage is (a) 

limited (no 5GB memory footprint) and (b) 
well-defined

• Often true for embedded systems
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Using SPIN for True Random Testing

Want to apply both methods 
• For research purposes (comparison)
• Due diligence in testing!  This stuff is 

going to Mars…

But why write two testers? – one for 
random testing, one for model checking
• Basic harness looks the same, 

property checks look the same, etc.
• Annoying redundant work, better to 

spend time improving the harness or 
running more tests
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A Quick Primer:  Using SPIN for 
Random Testing, in Five Slides OR
Almost All the PROMELA You Ever 

Need to Know
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Simple PROMELA Code
int x;

int y;

active proctype main () {

if
:: x = 1
:: x = 2
fi;

assert (x == y);

}

Start simple

This model has 7 states

What are they?

State = (PC, x, y)

1

2

3

5
7

SPIN’s nondeterministic choice construct

Picks any one of the choices that is enabled

How do we guard a choice? if
:: (x < 10) -> y = 1
:: (x < 5)  -> y = 3
:: (x > 1)  -> y = 4
fi;

Not mutually
exclusive!
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Simple PROMELA Code
int x;

int y;

active proctype main () {

if
:: x = 1
:: x = 2

fi;

if
:: y = 1
:: y = 2

fi;

if
:: x > y -> x = y
:: y > x -> y = x
:: else -> skip

fi;

assert (x == y);

}

This model has 17 states

What are they?

State = (PC, x, y)

1
2
3

5

7
9

13

14
15
17

Er…

Don’t worry about state-counting too
much – SPIN has various automatic
reductions and atomicity choices that
can make that difficult
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Simple PROMELA Code
int x;

active proctype main () {

x = 0;

do

:: (x < 10) -> x++

:: break

od

/* Here, x is anything between

0 and 9 inclusive */

Only a couple more PROMELA
constructs to learn for building test
harnesses:  the do loop

Like if, except it introduces
a loop to the top – break choice
can exit the loop

This nondeterministically assigns x
a value in the range 0…9
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Simple PROMELA Code

inline pick (var, MAX)

var = 0;

do

:: (var < MAX) -> var++

:: break

od

inline gives us a macro facility

As you can imagine, this is a
useful macro for building a 
test harness!
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Less Simple PROMELA Code
:: choice == UNLINK -> /* unlink */

pick(pathindex, NUM_PATHS); /* Choose a path */

c_code { 

now.res = nvfs_unlink (path[now.pathindex]);

};

nvfs_errno = c_expr{errno};

check_reset(); /* Check for system reset and reinit if needed */

if

:: (res < 0) && (nvfs_errno == ENOSPC) -> /* If out-of-space error */

check_space();

:: ((!did_reset) || (res != -1)) && !((res < 0) && (nvfs_errno == ENOSPC)) ->

c_code{ 

now.ramfs_res = ramfs_unlink (path[now.pathindex]);

};

ramfs_errno = c_expr{errno};

:: else -> skip

fi;

...

assert (res == ramfs_res);

assert (nvfs_errno == ramfs_errno);
Finally, we want to be able to call
the C program we are testing
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Testing via Model Checking

Basic idea:
• We’ll write a test harness in PROMELA
• Use SPIN to backtrack and explore inputs
• Use abstraction to limit the number of 

states we consider

• We can even “trick” SPIN into doing pure 
random testing!



24WODA 2008    July 21, 2008

The pick Macro, Revisited
inline pick (var, MAX)

var = 0;

do

:: (var < MAX) -> var++

:: break

od

What if we change pick?
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The pick Macro, Revisited
inline pick (var, MAX) {

if
:: ! initialized ->

nondet_pick(seed, SEED_RANGE);
c_code{

printf (“Test with seed %d\n”,
now.seed);

srandom(now.seed);
};

initialized = 1
:: else -> skip
fi;
var = c_expr{random()} % MAX;

}

To this?
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Some Results

From a flash file system for the Mars 
Science Laboratory mission – see the 
paper for details

Basic idea – how does coverage (source 
code / configurations of the flash file 
system) change as we increase testing 
time?
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Coverage of nvds_box.c
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Coverage of nvfs_pub.c
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Coverage of flash abstraction
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Coverage of page abstraction
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Conclusions (and an Invitation)

Is model checking better?
• Maybe, maybe not
• Preliminary results for one program
• Visser et al. and others report varying 

results for this question
• These results don’t use as much feedback 

as our latest test harness – which may 
change the results (improves both model 
checking and random testing results)
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Conclusions (and an Invitation)

If you’re analyzing or testing C programs
• Where function-call level atomicity is ok
• With well-defined memory usage
• It might be well worth your while to try explicit-

state model checking
• Easy to work with abstractions and guide 

testing/analysis towards certain goals
• Can also provide random testing “for free”

JPF may work well for this purpose, also, though 
since it uses its own JVM, may be trickier/slower
Download SPIN at http://www.spinroot.com
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