
A Dynamic Tool for Finding Redundant
Computations in Native Code

Software and Solutions Group
Kyungwoo Lee, Zino Benaissa, Juan Rodriguez

Intel Corporation

July 21, 2008

7/23/2008 2

Motivation

• Compiler optimizations do not always deliver their
full performance potential
– Complicated interactions between optimizations

– Unforeseen interactions with the target architecture

• Compiler engineers spend significant portion of
their time tuning optimizations
– Focus on hot-code of specific application

– Use HW profile to assist identifying inefficiencies in the
generated code

Could we build a new tool to helps assess the quality of
compiler optimizations?

7/23/2008 3

Why use Dynamic Analysis?

Dynamic

Pros

• handles indirect jump, and
dynamically loaded libraries

• Observes the same address and
value as they run

• Simple verification technique

Static

Cons

• Indirect jump and DLLs are a
problem

• Values cannot be observed. Symbolic
analysis is conservative and limited.

• Require multiple analysis to be
effective – e.g. alias analysis,
symbolic, range and control-flow, call
graph.

Cons

• Unexecuted path/code are not
analyzed

• High runtime overhead but can be
made reasonable

Pros

• All execution paths are covered

• No runtime overhead

7/23/2008 4

Performance Opportunity Finder
(POF)

• POF identifies potentially redundant computations
– that require contextual analysis relevant to
(global/interprocedural) compiler optimization

• Redundant sign/zero extensions

• Redundant constant spills

• Missing copy/constant propagations

• POF is implemented using Intel’s PIN* dynamic
instrumentation framework
– POF uses program execution contexts (register/memory
value) and program execution paths

– POF determines invariants associated with redundant
computations

*http://rogue.colorado.edu/pin

7/23/2008 5

How POF Works?

1. Instrumentation: Performs
(dynamic) instrumentation on
candidate instructions associated
with redundant computation
patterns

2. Dynamic Analysis: Checks if
invariants on the patterns are
satisfied during the program
execution.

3. (Re-instrumentation): Unnecessary
instrumentation is removed.

4. At program exit, reports the locations
(virtual addresses) of redundant
computations and how many times
they execute.

Instrumentation

Dynamic Analysis

No

Flush instrumentation
Prune candidates

Yes

Program
Starts

Need re-
instrumentation

Program
Ends

67/23/2008

• Redundant Sign/Zero Extension

– Instruments every:movsx/movzx dst, src

– Check whether the value of src register is already
sign/zero extended in its super register

• Redundant Constant Spill

– Instruments every: mov [esp + offset], src

– Check whether the value of src is the same over the
execution

(Potentially) Redundant Computation
Patterns

77/23/2008

Missing Copy/Constant Propagation

def: mov dst, src / mov dst, const
...

use: inst … dst …

• Check if neither dst nor src is defined along any
possible path between the def and use sites

– Potentially, all instructions having register operands need
to be instrumented.

• Basic-block level instrumentation for efficiency

– Initially summary information (Uses/Defs) is built for each
basic block using a bit vector representation.

– POF propagates summary information at each basic block
entrance during execution.

87/23/2008

Missing Copy/Constant Propagation
(Cont.)

• Data flows along the actual execution path

– No control flow/call graphs are required.

• POF Handles control-flow merge

eip1: mov eax, ebx eip2: mov eax, edx

eip3: add ecx, eax

– A copy pair (eax, ebx) is created.

– A missing copy propagation from eip1 to eip3 is identified.

– Another copy pair (eax, edx) is created.

– The missing copy propagation is invalidated.

Execution Path 1 Execution Path 2

97/23/2008

Reducing POF’s Runtime Overhead

• Static instrumentation removal

– If a benchmark has several input scenarios, POF skips
instrumentation on instructions that were proven to be non-
redundant in the previous execution.

• Dynamic instrumentation removal

– POF investigates how instructions become non-redundant, and
decides when to re-instrument the binary

• If the number of instructions that dynamically become non-
redundant exceeds a certain number, POF flushes out all
previous instrumentations and re-instruments only
remaining candidates.

107/23/2008

Experiments

• Hardware

– Intel® Core™ 2 Duo 2.4GHz 4MB L2, FSB 1066MHz, 2GB memory

– BIOS version/date: Intel Corp CO96510J.86A.2254.2006.0316.1743
3/16/2006

– SUSE™ Linux* 10.0 with kernel 2.6.5

• Software Configuration

– Benchmarks: SPEC® CPU2006 (CINT)

– Compilers:

• GCC version 3.4 and version 4.0 for IA-32(x86) and Intel® 64(x86-
64) respectively (/O2)

• Evaluate the code generated by compilers

1. Static counts: Number of redundant computations found in the binary

2. Hot-score [%]= D/ Dhottest
where D is the number of times the redundant instructions execute,
and Dhottest is the number of times the hottest instruction executes.

*Other names and brands may be claimed as the property of others.

117/23/2008

Redundant Sign/Zero Extension

• In 403.gcc and 445.gobmk, there are two consecutive zero-
extended moves (movzx EAX, byte ptr [EBX] … movzx EAX, AL)

• Overall, x86-64 compilers have more redundant sign/zero
extensions than x86 compilers.

0

500

1000

1500

2000

2500

3000

3500

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

99
9.

sp
ec

ra
nd

av
er

ag
e

R
ed

u
n

d
an

t
S

ig
n
/Z

er
o

 E
xt

en
si

o
n
s

F
o

u
n
d

GCC(x86)v3.4 GCC(x86)v4.0 GCC(x86-64)v3.4 GCC(x86-64)v4.0

127/23/2008

Redundant Sign/Zero Extension

• No more than 2% of redundant sign/zero extensions have only 5%
Hot-score – most redundant computations are not in the hot path.

• Relatively, x86-64 compilers have higher Hot-scored redundant
sign/zero extensions than x86.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90 100

Hot-score [%]

R
e

d
u

n
d

a
n

t S
ig

n
/Z

e
ro

 E
xt

e
n

si
o

n
s

F
o

u
n

d

(c
u

m
u

la
tiv

e
)

[%
]

GCC(x86)v3.4 GCC(x86)v4.0 GCC(x86-64)v3.4 GCC(x86-64)v4.0

137/23/2008

Redundant Constant Spill

• Overall, x86 compilers have more redundant constant spills than
x86-64 compilers.

• This happens because register pressure is higher in x86 compilers.

0

500

1000

1500

2000

2500

3000

3500

4000

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

99
9.

sp
ec

ra
nd

av
er

ag
e

R
ed

u
n
d
an

t
C
o
n
st

an
t
S
p
il
ls

 F
o
u
n
d

GCC(x86)v3.4 GCC(x86)v4.0 GCC(x86-64)v3.4 GCC(x86-64)v4.0

147/23/2008

Redundant Constant Spill

• Hot-scores for all redundant constant spills do not exceed 55[%].

• Relatively, x86-64 compilers have higher Hot-scored redundant
constant spills than x86 compilers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Hot-score [%]

R
ed

un
da

nt
 C

on
st

an
t

S
pi

lls
 F

ou
nd

(c

um
ul

at
iv

e)
 [

%
]

GCC(x86)v3.4 GCC(x86)v4.0 GCC(x86-64)v3.4 GCC(x86-64)v4.0

157/23/2008

Missing Copy/Constant Propagation

• Counts def sites (instructions associated with copy pairs).

• Overall, x86 have more missing copy/constant propagations than
x86-64 compilers.

0

1000

2000

3000

4000

5000

6000

7000

8000

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

99
9.

sp
ec

ra
nd

av
er

ag
e

R
ed

u
n

d
an

t
C

o
p

y/
C

o
n

st
an

t
P

ai
rs

 F
o

u
n

d

GCC(x86)v3.4 GCC(x86)v4.0 GCC(x86-64)v3.4 GCC(x86-64)v4.0

167/23/2008

Missing Copy/Constant Propagation

• Relatively, x86-64 compilers have higher Hot-scored redundant
copy/constant pairs than x86 compilers.

• There is little difference between version 3.4 and 4.0 for x86
compilers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Hot-score [%]

R
e

du
nd

an
t C

o
py

/C
on

st
an

t P
ai

rs
 F

ou
nd

(c

um
u

la
tiv

e)
 [%

]

GCC(x86)v3.4 GCC(x86)v4.0 GCC(x86-64)v3.4 GCC(x86-64)v4.0

177/23/2008

POF Execution Time Relative To the
Original Run

• Average of three execution time of all runs of the reference input
data sets with all patterns enabled

• Overhead is affected by the number of redundant computations
found.

• POF has an average of 19X slowdown relative to the original run.

0

1000

2000

3000

4000

5000

6000

7000

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

99
9.

sp
ec

ra
nd

av
er

ag
eN

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e

[%
]

Without the removing instrumentation technique With the removing instrumentation technique

187/23/2008

Conclusion & Next Steps

• POF is an original tool to help assess the quality of compiler
optimizations

– Our first implementation supports three patterns

– Using various GCC compilers, we have performed a comparative
study on the redundant computations.

• Future work

– Add more redundant computation patterns for both
architecture-independent/dependent optimizations.

– Generalize a pattern description rule

– Share POF with compiler developers and see how effectively
they fix deficiencies in compiler optimizations

197/23/2008

Acknowledgement

• Mark Charney and Hongjiu Lu for help with Pin and compiler
framework

• Our peers for their valuable feedback, help, and encouragement
during this project

