
The BREW project
at Sandia

Louis Kruger
Feb 14, 2005

2

Background
• Sandia does a lot of work with binary

analysis.
– Security audits of high consequence information

systems
– Adding protections and logging to existing code

• Each job often requires a custom ad-hoc
solution

• They are interested in tools to add
sophistication, reduce costs.

3

Sandia’s interest
• Use BREW analysis and disassembly to

provide better view of system behavior that
is possible using standard disassembly tools.

• Especially interested in embedded BREW
scenarios:
– Analysis done once, rewriting done many times
– Embedded environment has more limited

resources.

4

Embedded BREW
• Pre-analyze code in the lab and save analysis

information.
• In embedded environment, use stored

analysis data to run rewriting clients.
• Save precious resources in embedded

environment, which is not as powerful as
desktop PC or server.

5

Projects
• Transfer knowledge about BREW
• New BREW features:

– Portable assembly language generation (e.g.
nasm)

– Better separation of components
• Demonstrate sample applications:

– Buffer overflow protection
– Add functional logging for later audit

6

NASM Codegenerator
• Problem: BREW relies on Borland compiler and

linker
– Borland tools do things in a nonstandard way
– Rewritten binary has portability issues

• Solution: target another assembler
– NASM chosen because it uses familiar syntax and is

open-source
– Produces MS and GNU Linker compatible object files
– Code Generator modified to produce NASM compatible

.asm files
• Status: now integrated into BREW distribution

7

Embedded BREW
• Problem: All of BREW runs as IDA Pro plugin

– IDA Pro analysis, connector analysis, rewriting, and
codegeneration all happen sequentially in one program
module.

– Not practical for on-line rewriting in an embedded
system

• Solution: separate rewriting from analysis
– Need to persist analysis information to disk
– When BREW is run as a standalone program, load analysis

information, then perform rewriting and codegeneration
• Status: functional proof of concept.

8

Embedded BREW
• Developed C++ object persistence tool

– Supports all necessary C++ features used by
x86fe data structures
• pointers, references, fixed and variable size arrays,

STL types, virtual subclasses (with or without RTTI),
templates

– Reads type descriptions, generates C++ code to
perform serialization and deserialization

– Object graph written to customizable binary
format

– Serialization of notepad.exe analysis data is
~5.7 megs. (~1.7 megs with gzip)
• notepad.exe is ~50k and contains ~100 CFGs

9

Future Work
• Support rewriting DLLs (not just .exe files)
• Eliminate assemble/link step entirely –

produce binary output from BREW
• Improve analysis accuracy with VSA, etc.
• Reduced footprint

